Endoscopic cutting instrument with axial and rotary motion

Information

  • Patent Application
  • 20080021487
  • Publication Number
    20080021487
  • Date Filed
    December 06, 2006
    17 years ago
  • Date Published
    January 24, 2008
    16 years ago
Abstract
Disclosed herein is an endoscopic surgical assembly having improved cutting efficiency. In particular, the present invention provides an endoscopic shaver assembly configured for automated axial as well as rotational motion so as to enhance tissue resection.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a disassembled view of a prior art arthroscopic shaver blade assembly.



FIG. 2 is a plan view of a cam for a shaver constructed in accordance with the principles of this invention.



FIG. 3 is a side elevational view of the object of FIG. 2.



FIG. 4 is a distal axial view of the object of FIG. 2.



FIG. 5 is a perspective view of the object of FIG. 2.



FIG. 6 is a plan view of the outer assembly of a shaver constructed in accordance with the principles of this invention.



FIG. 7 is an expanded side elevational sectional view of the proximal portion of the object of FIG. 6.



FIG. 8 is a plan view of a cam follower of a shaver constructed in accordance with the principles of this invention.



FIG. 9 is a side elevational view of the object of FIG. 8.



FIG. 10 is a proximal axial view of the object of FIG. 8.



FIG. 11 is a perspective view of the object of FIG. 8.



FIG. 12 is a perspective view of the inner assembly of a shaver constructed in accordance with the principles of this invention.



FIG. 13 is an expanded plan view of a shaver constructed in accordance with the principles of this invention with the inner assembly in a first position relative to the outer assembly.



FIG. 14 is an expanded plan view of the objects of FIG. 13 with the inner assembly in a second position relative to the outer assembly.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. However, before the present materials and methods are described, it is to be understood that this invention is not limited to the particular sizes, shapes, dimensions, materials, methodologies, protocols, etc. described herein, as these may vary in accordance with routine experimentation and optimization. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. However, in case of conflict, the present specification, including definitions, will control.


In the context of the present invention, the following definitions apply:


The words “a”, “an” and “the” as used herein mean “at least one” unless otherwise specifically indicated. Thus, for example, reference to a “cam lobe” is a reference to one or more cams and equivalents thereof known to those skilled in the art, and so forth.


The term “proximal” as used herein refers to that end or portion which is situated closest to the user of the device, farthest away from the target surgical site. In the context of the present invention, the proximal end of the inventive device includes the handpiece region.


The term “distal” as used herein refers to that end or portion situated farthest away from the user of the device, closest to the target surgical site. In the context of the present invention, the distal end of the inventive device includes the respective cutting windows of the inner and outer tubular members.


The term “rotational” as used herein refers to the revolutionary movement about the center point or longitudinal axis of the device. In the context of the present invention, rotation of the elongated inner tubular member relative to the elongated outer tubular member, which typically is held in a stationary position, results in relative rotation of their respective cutting apertures which coordinate to resect target tissue within the surgical site of interest.


The term “axial” as used herein refers to the direction relating to or parallel with the longitudinal axis of the device. In the context of the present invention, the addition of relative axial movement between the elongated outer tubular member and the elongated inner tubular member slidably received therein results in improved cutting efficiency.


The instant invention has both human medical and veterinary applications. Accordingly, the terms “subject” and “patient” are used interchangeably herein to refer to the person or animal being treated or examined. Exemplary animals include house pets, farm animals, and zoo animals. In a preferred embodiment, the subject is a mammal.


Hereinafter, the present invention is described in more detail by reference to the Figures and Examples. However, the following materials, methods, figures, and examples only illustrate aspects of the invention and are in no way intended to limit the scope of the present invention. As such, methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention.



FIG. 1 depicts a conventional prior art arthroscopic shaver 1 comprised of an elongated tubular outer assembly 2, typically formed from a metallic material, having a distal portion 4 and a proximal portion 6 forming a hub suitable for mounting in a shaver handpiece. Distal portion 4 has a distal end 8 in which is formed cutting window 10 and spherical inner distal surface 19. Shaver 1 also includes an elongated tubular inner assembly 12, also of metal, having a distal portion 14 and a proximal portion 16 forming a hub suitable for transmitting rotational motion provided by a handpiece to inner assembly 12. Distal portion 14 has a distal end 18 in which is formed cutting window 20 and a distal spherical surface 19. Diameter 22 of distal portion 14 of inner assembly 12 is slightly less than the diameter of the inner lumen of distal portion 4 of outer assembly 2 such that that inner assembly 12 may be rotatably positioned therein for use. Spring 26 disposed within spring retainer 28 when shaver 1 is mounted in a suitable powered handpiece creates a distal axial force on inner assembly 12 so as to maintain axial contact between distal spherical portion 19 of inner assembly 12 and the inner surface 9 of distal end 8 of outer assembly 2.


During use, distal portion 14 of inner assembly 12 is rotated within distal portion 14 of outer assembly 4 in an oscillatory manner, that is, the inner tube is rotated in one direction a predetermined number of revolutions, stopped, and then rotated in the opposite direction a predetermined number of revolutions. This action is repeated as long as the handpiece in which the shaver is mounted is activated. Suction supplied to the lumen of distal portion 14 of outer assembly 12, via passage 24 in communication therewith, draws tissue into contact with, and partially into, the opening formed by angular alignment of windows 10 and 20. Continued rotation of inner assembly 12 causes tissue to be cut by the cooperative action of the cutting edges of windows 10 and 20.


Additional information on shaver construction and operation may be found in U.S. Pat. Nos. 5,693,063 (Van Wyk et al.), 5,766,199 (Heisler et al.), and 5,843,106 (Heisler), the contents of which are incorporated by reference herein in their entirety.


Referring now to FIGS. 2 through 5, cam 30 of outer diameter 32 has a first axial surface 34 having raised portions 36, and an inner diameter 38. Raised portions 36 are displaced axially distance 37 from surface 34 and have a predetermined contour.


Referring now to FIGS. 6 and 7, outer assembly 2 of an endoscopic shaver formed in accordance with the principles of this invention has a proximal hub assembly 6 having a hub 40 and retainer 42, analogous in construction to those of prior art shaver 1. However, the hub assembly 2 of the instant invention further includes cam element 30, coaxial with outer assembly 2, cam 30 being compressibly retained within cylindrical recess 44, the diameter 32 of cam 30 being slightly larger than diameter 46 of recess 44.


As seen in FIGS. 8 through 11, cam follower element 50 has a first axial surface 52 with raised portions 54, and a second axial surface 56 having a pocket formed therein, the pocket being configured to allow connection of cam follower 50 to an inner hub. Raised portions 54 are axially displaced a distance 55 from surface 52. Distance 55 is less than or equal to distance 37 of cam 30.



FIG. 12 depicts the inner assembly 12 of a shaver formed in accordance with the principles of this invention, wherein cam follower 50 is assembled to distal end 62 of inner hub 60.



FIG. 13 depicts a shaver 100 constructed in accordance with the principles of this invention, wherein the inner assembly 12 is in a first angular position relative to outer assembly 2. In this first position, cutting window 20 of inner assembly 12 is aligned with window 10 of outer assembly 2. Distal outer spherical surface 19 of tubular element 14 of inner assembly 12 (see FIG. 1) is in contact with inner spherical surface 9 of tubular element 4 of outer assembly 2. Cam 30 is not in contact with cam follower 50. Raised portions 36 of cam 30 are axially separated from surfaces 52 of cam 50 distance 70. Raised portions of 54 of follower 50 are axially separated from surfaces 34 of cam 30 by distance 72. Distances 70 and 72 are approximately equal. In other embodiments, distance 70 is greater than 72. In still other embodiments distance 72 is greater than distance 70. FIG. 14 depicts a shaver 100 constructed in accordance with the principles of this invention, wherein the inner assembly 12 is in a second angular position relative to outer assembly 2. In this second position, cutting window 20 of inner assembly 12 is rotated so that the edge 74 of window 20 is in close proximity to and approaching edge 76 of outer window 10 as when resecting tissue therebetween. Raised portions 54 of cam follower 50 are in contact with raised portions 36 of cam 30. Distal end spherical surface 19 of distal portion 14 of inner assembly 12 is displaced axially distance 102 from the inner surface 9 of distal end 8 of elongated portion 4 of outer assembly 2. Spring 26 in combination with spring retainer 28 in coordination with the handpiece maintain contact between the surfaces of cam 30 and follower 50. Distance 102 is preferably between 0.005 and 0.16 inches, and more preferably between 0.01 and 0.12 inches.


In use, as inner assembly 12 is rotated within outer assembly 2 between a first position, shown in FIG. 13, and a second position, shown in FIG. 14. In this manner, inner assembly 12 undergoes both rotational and axial motion. This results in an axial relative motion between the inner and outer cutting edges as the edges approach each other. This, in turn, results in increased resection efficiency.


The increase in efficiency is readily understood by considering a knife cutting a steak. Simply pushing the knife edge vertically into the steak will cut the steak; however, much greater force is required than that required if the steak knife is “sawed” back and forth while the vertical force is applied. When a cutting edge is forced into tissue in a simple, direct motion without relative motion parallel to the cutting edge, the tissue is separated by a force perpendicular to the cutting edge due to the wedge shape of the cutting edge. The separating stress in the tissue caused by the wedge must exceed the strength of the material. The friction force of the tissue against the knife blade tends to prevent the separation of the tissue. In contrast, when the cutting edge moved parallel to the cutting edge (i.e., a sawing motion”) the tissue at the cutting edge sees a separating force caused by the wedge shape of the cutting edge, and also a tearing force caused by friction between the moving cutting edge and the tissue at the edge. If a motion is imparted to the cutting edge parallel to the cutting edge, friction between the edge and the tissue aids the cutting process. This is in contrast with cutting in which such motion is not present and friction between the edge and the tissue hinders the cutting process.


In the same manner, a shaver blade constructed in accordance with the principles of this invention has an axial relative motion which causes increased resection efficiency by more effectively separating tissue in contact with the cutting edges.


The invention herein disclosed also increases the efficiency of shavers which have teeth on the inner cutting edges, outer cutting edges or both. In a preferred embodiment previously herein described, the cutting edges are straight or curvilinear. However, it will be readily understood that a number of different cutting window profiles may be used. For example, the longitudinal portions and distal tip edges of the inner and/or outer cutting edges may have contours including, but not limited to, one or more teeth, ridges, waves, pyramidal shapes and the like. The forms of these contours may be optimized for increased resection efficiency when the cutting edges are subjected to axial motion.


The contours of cam 30 and cam follower 50 may be optimized for improved performance. For instance, the angular width of raised portions 36 and 54 respectively can be optimized such that the axial motion of the inner cutting edges occurs when the inner and outer cutting edges are approaching each other and in close proximity. Also, the contour of the transitions to and from the raised portions can be optimized so that the axial motion occurs at an optimal rate and axial acceleration is minimized so that spring 26 is able to maintain contact between the cam and follower.


In the embodiment previously herein described, bearing surfaces 9 and 19 of inner assemblies 2 and 12 respectively, are in contact except when raised portions 36 of cam 30 (FIGS. 2 through 4) and raised portions 54 (FIGS. 9 through 11) are in contact. In other embodiments, cam 30 and follower 40 are in contact throughout the cycle so as to act as irregular bearing surfaces, surfaces 9 and 19 not being in contact throughout the cycle. Because surfaces 9 and 19 are not in contact, it is not necessary that they be formed to the tight tolerances and high-quality surface finishes required for bearing surfaces. Because of this, embodiments in which the cam and follower act as bearing surfaces may be produced at reduced cost compared to shavers in which surfaces 9 and 19 are bearing surfaces.


The invention herein described, endoscopic instruments which cut tissue through the cooperative interaction of inner and outer cutting edges through combined rotational and axial motion, also encompasses instruments having inner members which are not tubular. A cam and follower acting as the bearing surfaces for such device increases their efficiency in the same manner as the embodiments previously herein described.


Shavers constructed in accordance with the principles of this invention may be used in existing handpieces without modification to the handpieces, the resilient member of the shaver system allowing for the axial motion of the inner assembly. In the preferred embodiment previously described, spring 26 and spring retainer 28 remain a part of the inner assembly 12. In other embodiments, the spring and spring retainer are part of the handpiece into which shaver 100 is inserted.


In the preferred embodiment previously described, spring 26 and spring retainer 28 are part of inner assembly 12. In other embodiments the spring and spring retainer are part of the handpiece into which shaver 100 is inserted.


In a preferred embodiment, the relative axial motion is provided by a coordinating cam and cam follower. While the examples described herein describe assembly of the cam to the inner tubular member and cam follow to the outer tubular member, it will be readily understood that these elements may be reversed without affecting the overall operation of the device. In addition, as noted above, the present invention contemplates other means for providing the relative motion axial as well as rotational motion, for example through use with a specially configured handpiece adapted for such movement. When a cam and follower are used to provide the axial motion, the resulting motion is synchronized with the rotation of the inner assembly. In embodiments in which the motion is provided by the handpiece, the motion may be synchronized with the rotational motion, or independent of the rotational motion. When the motion is not synchronized with the shaver rotation, the axial motion repetition frequency is preferably between 10 and 5,000 cycles per second, and more preferably between 20 and 1,000 cycles per second.


It is also anticipated that shavers for soft tissue produced in accordance with the principles of this invention will cut with a high efficiency when operated with a constant rotational motion. This will allow their use in low-cost handpieces in which only constant rotational motion is supplied. In yet another embodiment the shaver is integral with a low-cost handpiece so that the device is a limited re-use disposable item.


The concepts of the invention herein disclosed may be applied to any conventional shaver which has linear as well as rotational motion regardless of the means by which the axial motion is generated.


The invention may also be advantageously applied to endoscopic burs used for contouring bone. Axial motion supplied to the bur during use increases the resection efficiency and produces a smoother surface.


The disclosure of each publication, patent or patent application mentioned in this specification is specifically incorporated by reference herein in its entirety. However, nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.


The invention has been illustrated by reference to specific examples and preferred embodiments. However, it should be understood that the invention is intended not to be limited by the foregoing description, but to be defined by the appended claims and their equivalents.

Claims
  • 1. An endoscopic surgical assembly comprising an elongated inner member and an elongated outer members, each of said elongated members comprising a coordinating hub disposed at its proximal end, an aperture disposed at its distal end, and a central lumen extending along its length and defining inner and outer surfaces, said inner member sized so as to be slidably received within the lumen of said outer member such that said when said inner and outer hubs are connected, the respective apertures of said inner and outer members cooperate to resect tissue in contact therewith, said assembly further comprising a means for automatically transmitting relative axial movement between said inner and outer members when said inner member and outer member are relatively rotated.
  • 2. The assembly of claim 1, further comprising an elastic member that transmits an axial force distally on the inner member to maintain contact between the outer surface of the distal end of the inner member and the inner surface of the distal end of the outer member when said inner and outer hubs are connected.
  • 3. The assembly of claim 1, wherein said elastic member comprises a coiled spring affixed to the inner hub.
  • 4. The assembly claim 1, wherein said outer member is an open-ended tube and said inner member is helical element provided with one or more cutting elements.
  • 5. The assembly of claim 1, wherein said inner and outer members comprise concentric, closed-ended tubes provided with laterally disposed cooperating cutting windows.
  • 6. The assembly of claim 5, wherein each of said cutting windows has a perimeter comprised of two longitudinal cutting edges and two transverse cutting edges.
  • 7. The assembly of claim 6, wherein one or more of said cutting edges are beveled.
  • 8. The assembly of claim 7, wherein one or more of said beveled cutting edges are provided with plurality of teeth.
  • 9. The assembly of claim 8, wherein the angle of said beveled cutting edges ranges from 15 to 70 degrees.
  • 10. The assembly of claim 1, wherein said means for automatically transmitting relative axial movement between said inner and outer members when said inner member and outer member are relatively rotated comprises cooperating elements disposed along said inner and outer members.
  • 11. The assembly of claim 10, wherein said cooperating elements are disposed within said inner and outer hubs.
  • 12. The assembly of claim 10, wherein said cooperating elements are selected from the group consisting of mating cams and cam followers, screw threads, worm gears, worm wheels, pneumatic devices, hydraulic mechanisms, magnetic assemblies, and push-pull connectors.
  • 13. The assembly of claim 10, wherein said cooperating elements comprise a cam disposed on the distal end of said inner member hub and a mating cam follower disposed on the proximal end of said outer member hub.
  • 14. The assembly of claim 13, wherein said cam is integral with the distal end of said inner member hub and said mating cam follower is integral with said outer member hub.
  • 15. The assembly of claim 13, wherein said cam comprises a separate annular ring having one or more raised lobes or protuberances on its distal facing surface, said ring being slidably disposed about the periphery of said elongated inner member and positioned against the distal end of said inner member hub.
  • 16. The assembly of claim 13, wherein said mating cam follower comprises a compressible disc having one or more raised projections on its proximal facing surface, said disc retained within a cylindrical recess provided on the proximal end of the outer member hub.
  • 17. The assembly of claim 10, wherein cooperating elements comprise a cam disposed on the proximal end of said outer hub and a mating cam follower disposed on the distal end of said inner hub.
  • 18. The assembly of claim 17, wherein said cam and cam follower are provided with a plurality of interacting lobes or projections.
  • 19. The assembly of claim 10, wherein said cooperating elements comprise a cam and mating cam follower disposed within a handpiece upon which the shaver assembly is mounted.
  • 20. A method for resecting a target tissue within a surgical site of interest comprising the steps of: (a) introducing the device of claim 1 into the surgical site;(b) rotating the inner member relative to the outer member, wherein rotation of the inner member a sufficient distance results in the automatic axial movement of the inner member relative to the outer member, further wherein the relative axial and rotational movement of the members results in relative axial and rotational movement of their respective apertures which cooperate to cut the target tissue.
  • 21. The method of claim 19, further comprising the step of rotating said inner member relative to said outer tubular member in one direction for a first predetermined number of revolutions then rotating said inner member relative to said outer tubular member in an opposite direction for a second predetermined number of revolutions.
  • 22. The method of claim 19, wherein said inner and outer members comprise concentric, closed-ended tubes provided with laterally disposed cooperating cutting windows, further comprising the step of applying suction to the proximal end of the surgical assembly so as to draw target tissue into contact with the cooperating cutting windows and aspirate resected tissue from the surgical site through the central lumen of said inner tubular member.
PRIORITY

This application claims the benefit of U.S. Provisional Application Ser. No. 60/831,986 filed Jul. 19, 2006, the contents of which are incorporated by reference herein in its entirety.

Provisional Applications (1)
Number Date Country
60831986 Jul 2006 US