Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. However, before the present materials and methods are described, it is to be understood that this invention is not limited to the particular sizes, shapes, dimensions, materials, methodologies, protocols, etc. described herein, as these may vary in accordance with routine experimentation and optimization. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. However, in case of conflict, the present specification, including definitions, will control.
In the context of the present invention, the following definitions apply:
The words “a”, “an” and “the” as used herein mean “at least one” unless otherwise specifically indicated. Thus, for example, reference to a “cam lobe” is a reference to one or more cams and equivalents thereof known to those skilled in the art, and so forth.
The term “proximal” as used herein refers to that end or portion which is situated closest to the user of the device, farthest away from the target surgical site. In the context of the present invention, the proximal end of the inventive device includes the handpiece region.
The term “distal” as used herein refers to that end or portion situated farthest away from the user of the device, closest to the target surgical site. In the context of the present invention, the distal end of the inventive device includes the respective cutting windows of the inner and outer tubular members.
The term “rotational” as used herein refers to the revolutionary movement about the center point or longitudinal axis of the device. In the context of the present invention, rotation of the elongated inner tubular member relative to the elongated outer tubular member, which typically is held in a stationary position, results in relative rotation of their respective cutting apertures which coordinate to resect target tissue within the surgical site of interest.
The term “axial” as used herein refers to the direction relating to or parallel with the longitudinal axis of the device. In the context of the present invention, the addition of relative axial movement between the elongated outer tubular member and the elongated inner tubular member slidably received therein results in improved cutting efficiency.
The instant invention has both human medical and veterinary applications. Accordingly, the terms “subject” and “patient” are used interchangeably herein to refer to the person or animal being treated or examined. Exemplary animals include house pets, farm animals, and zoo animals. In a preferred embodiment, the subject is a mammal.
Hereinafter, the present invention is described in more detail by reference to the Figures and Examples. However, the following materials, methods, figures, and examples only illustrate aspects of the invention and are in no way intended to limit the scope of the present invention. As such, methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention.
During use, distal portion 14 of inner assembly 12 is rotated within distal portion 14 of outer assembly 4 in an oscillatory manner, that is, the inner tube is rotated in one direction a predetermined number of revolutions, stopped, and then rotated in the opposite direction a predetermined number of revolutions. This action is repeated as long as the handpiece in which the shaver is mounted is activated. Suction supplied to the lumen of distal portion 14 of outer assembly 12, via passage 24 in communication therewith, draws tissue into contact with, and partially into, the opening formed by angular alignment of windows 10 and 20. Continued rotation of inner assembly 12 causes tissue to be cut by the cooperative action of the cutting edges of windows 10 and 20.
Additional information on shaver construction and operation may be found in U.S. Pat. Nos. 5,693,063 (Van Wyk et al.), 5,766,199 (Heisler et al.), and 5,843,106 (Heisler), the contents of which are incorporated by reference herein in their entirety.
Referring now to
Referring now to
As seen in
In use, as inner assembly 12 is rotated within outer assembly 2 between a first position, shown in
The increase in efficiency is readily understood by considering a knife cutting a steak. Simply pushing the knife edge vertically into the steak will cut the steak; however, much greater force is required than that required if the steak knife is “sawed” back and forth while the vertical force is applied. When a cutting edge is forced into tissue in a simple, direct motion without relative motion parallel to the cutting edge, the tissue is separated by a force perpendicular to the cutting edge due to the wedge shape of the cutting edge. The separating stress in the tissue caused by the wedge must exceed the strength of the material. The friction force of the tissue against the knife blade tends to prevent the separation of the tissue. In contrast, when the cutting edge moved parallel to the cutting edge (i.e., a sawing motion”) the tissue at the cutting edge sees a separating force caused by the wedge shape of the cutting edge, and also a tearing force caused by friction between the moving cutting edge and the tissue at the edge. If a motion is imparted to the cutting edge parallel to the cutting edge, friction between the edge and the tissue aids the cutting process. This is in contrast with cutting in which such motion is not present and friction between the edge and the tissue hinders the cutting process.
In the same manner, a shaver blade constructed in accordance with the principles of this invention has an axial relative motion which causes increased resection efficiency by more effectively separating tissue in contact with the cutting edges.
The invention herein disclosed also increases the efficiency of shavers which have teeth on the inner cutting edges, outer cutting edges or both. In a preferred embodiment previously herein described, the cutting edges are straight or curvilinear. However, it will be readily understood that a number of different cutting window profiles may be used. For example, the longitudinal portions and distal tip edges of the inner and/or outer cutting edges may have contours including, but not limited to, one or more teeth, ridges, waves, pyramidal shapes and the like. The forms of these contours may be optimized for increased resection efficiency when the cutting edges are subjected to axial motion.
The contours of cam 30 and cam follower 50 may be optimized for improved performance. For instance, the angular width of raised portions 36 and 54 respectively can be optimized such that the axial motion of the inner cutting edges occurs when the inner and outer cutting edges are approaching each other and in close proximity. Also, the contour of the transitions to and from the raised portions can be optimized so that the axial motion occurs at an optimal rate and axial acceleration is minimized so that spring 26 is able to maintain contact between the cam and follower.
In the embodiment previously herein described, bearing surfaces 9 and 19 of inner assemblies 2 and 12 respectively, are in contact except when raised portions 36 of cam 30 (
The invention herein described, endoscopic instruments which cut tissue through the cooperative interaction of inner and outer cutting edges through combined rotational and axial motion, also encompasses instruments having inner members which are not tubular. A cam and follower acting as the bearing surfaces for such device increases their efficiency in the same manner as the embodiments previously herein described.
Shavers constructed in accordance with the principles of this invention may be used in existing handpieces without modification to the handpieces, the resilient member of the shaver system allowing for the axial motion of the inner assembly. In the preferred embodiment previously described, spring 26 and spring retainer 28 remain a part of the inner assembly 12. In other embodiments, the spring and spring retainer are part of the handpiece into which shaver 100 is inserted.
In the preferred embodiment previously described, spring 26 and spring retainer 28 are part of inner assembly 12. In other embodiments the spring and spring retainer are part of the handpiece into which shaver 100 is inserted.
In a preferred embodiment, the relative axial motion is provided by a coordinating cam and cam follower. While the examples described herein describe assembly of the cam to the inner tubular member and cam follow to the outer tubular member, it will be readily understood that these elements may be reversed without affecting the overall operation of the device. In addition, as noted above, the present invention contemplates other means for providing the relative motion axial as well as rotational motion, for example through use with a specially configured handpiece adapted for such movement. When a cam and follower are used to provide the axial motion, the resulting motion is synchronized with the rotation of the inner assembly. In embodiments in which the motion is provided by the handpiece, the motion may be synchronized with the rotational motion, or independent of the rotational motion. When the motion is not synchronized with the shaver rotation, the axial motion repetition frequency is preferably between 10 and 5,000 cycles per second, and more preferably between 20 and 1,000 cycles per second.
It is also anticipated that shavers for soft tissue produced in accordance with the principles of this invention will cut with a high efficiency when operated with a constant rotational motion. This will allow their use in low-cost handpieces in which only constant rotational motion is supplied. In yet another embodiment the shaver is integral with a low-cost handpiece so that the device is a limited re-use disposable item.
The concepts of the invention herein disclosed may be applied to any conventional shaver which has linear as well as rotational motion regardless of the means by which the axial motion is generated.
The invention may also be advantageously applied to endoscopic burs used for contouring bone. Axial motion supplied to the bur during use increases the resection efficiency and produces a smoother surface.
The disclosure of each publication, patent or patent application mentioned in this specification is specifically incorporated by reference herein in its entirety. However, nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
The invention has been illustrated by reference to specific examples and preferred embodiments. However, it should be understood that the invention is intended not to be limited by the foregoing description, but to be defined by the appended claims and their equivalents.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/831,986 filed Jul. 19, 2006, the contents of which are incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60831986 | Jul 2006 | US |