Endoscopic device with temperature based light source control

Information

  • Patent Application
  • 20080058602
  • Publication Number
    20080058602
  • Date Filed
    August 30, 2006
    17 years ago
  • Date Published
    March 06, 2008
    16 years ago
Abstract
An endoscopic system includes an endoscopic device having a light guide passing therethrough to a distal end thereof, a light source in communication with the endoscopic device, the light source transmitting illumination light to the light guide, a light source controller in communication with the light source, the light source controller controlling an intensity of the illumination light transmitted to the light guide, and at least one temperature sensor, at least a portion of which is carried by the endoscopic device. The temperature sensor senses a temperature of at least a portion of the endoscopic device and produces a signal indicative of the sensed temperature, the signal being transmitted to the light source controller. The light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the sensed temperature.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of an endoscopic system in accordance with an embodiment of the present invention; and



FIG. 2 is an enlarged, schematic view of an embodiment of a sensor employed by the endoscopic system of FIG. 1.





DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION

Referring first to FIG. 1, an endoscopic system 10 in accordance with an exemplary embodiment of the present invention is shown. Endoscopic system 10 includes an endoscopic device 12, which may comprise a conventional endoscope with an eyepiece and an optical transmission means, such as a lens system or a fiber optic system, an electronic endoscope having a distally disposed imaging unit or camera head mounted at the proximal end to produce video images, or some other type of image viewing system. However, because numerous types of image capture/viewing systems are well known in the art, and because the present invention is concerned with the illumination system, rather than the image capture/viewing system, the numerous image capture/viewing systems in connection with which the present invention may be used are not described herein and the elements thereof are not shown in the Figures for the sake of clarity. Moreover, it should be noted that the present invention may be used in connection with substantially any type of known or later developed endoscopic devices, such as, but not limited to, rigid endoscopes, semi-rigid endoscopes, and flexible endoscopes.


Endoscopic device 12 includes a distal end 14 which during use is typically inserted into an orifice or body cavity and is directed at tissue 16 to inspect the tissue 16. As is known, there is typically very little light within the orifice or body cavity, such that illumination light 18 is required to be provided in order to illuminate tissue 16 for viewing. Typically, this illumination light 18 is provided by a high intensity light source 20 and passed to the distal end 14 of endoscopic device 12 through a light guide 22 that passes through the endoscopic device 12 to the distal end 14.


The light guide 22 may take the form of, for example, a fiber optic bundle coupled to a light cable 24 supplied light energy from light source 20 by way of an optical coupler 26 or the like. Of course, light guide 22 may take other forms.


Light source 20 may comprise any of numerous types of known or yet to be developed light sources. One type of known light source is a high intensity light source that utilizes an incandescent bulb (such as a xenon bulb, or other type), driven by an amplifier, which in turn is controlled by output control circuitry, to set the light intensity level of the light source. Of course, other types of light source intensity output control are known within the art, such as mechanical diaphragm or iris, liquid crystal shutter, rotary reed or slot devices, and the like. These various types of light source output controls may be utilized within the system of the present invention. All that is required is that the light source 20 for use in accordance with the present invention have a controller 28 that is capable of automatically controlling an intensity of illumination light 18 transmitted to light guide 22 of endoscopic device 12 in response to input signals (as described in more detail below).


Endoscopic device 12 includes at least one, but preferably a plurality of, temperature sensors 30 associated therewith sensing a temperature of at least a portion of endoscopic device 12 and producing a signal indicative of the sensed temperature. Preferably, temperature sensors 30 are disposed within endoscopic device, but if desired, they may be carried on an external surface thereof. It is also preferable that temperature sensors 30 be spaced apart at various locations along endoscopic device 12 so as to provide temperature readings at various locations thereof to ensure that the desired maximum temperature is not exceeded locally at any location thereof.


The signals indicative of the sensed temperature produced by temperature sensors 30 are transmitted to light source controller 28, which varies the intensity of illumination light 18 transmitted to light guide 22 based at least in part upon the signal indicative of the sensed temperature. More specifically, light source controller 28 varies the intensity of illumination light 18 transmitted to light guide 22 so as to maintain the sensed temperature below a threshold value. As discussed above, the threshold value is in some circumstances 50° C., but some other threshold value may be appropriate or dictated by appropriate standards.


Any of numerous algorithms may be employed by light source controller 28 to vary the intensity of illumination light 18 based at least in part upon the signal indicative of the sensed temperature. One simple algorithm employed may be to reduce the intensity of illumination light 18 transmitted to light guide 22 if the temperature sensed by any of temperature sensors 30 is above the threshold value (e.g., 50° C.), and then to increase the intensity of illumination light 18 again if the temperature sensed by all of temperature sensors 30 falls below another value (e.g., the threshold value minus 3° C., or 47° C.). Of course, one skilled in the art could easily and routinely program light source controller 28 with other control algorithms.


As discussed above in greater detail, known temperature sensors, such as thermocouples, suffer from a number of disadvantages which typically make them unsuitable for use in connection with endoscopic system 10 in accordance with the present invention. Referring now to FIG. 2 in addition to FIG. 1, temperature sensors 30 in accordance with another aspect of the present invention will be discussed in more detail.


Each sensor 30 includes an optical fiber 32 having a proximal end 34, which is supplied with light energy, and a distal end 36. The light energy supplied to proximal end 34 may be supplied by light source 20, through, for example, optical coupler 26, or may be supplied by some other source. It should be understood that optical fiber 32 may comprise a single strand or a plurality of strands.


Each sensor 30 also includes a member 38 having a first end 40 disposed adjacent distal end 36 of optical fiber 32 and a second end 42 opposite the first end 40. Member 38 comprises a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature thereof. For example, member 38 may be formed from a material that allows different frequencies of light energy to pass therethrough at different temperatures thereof, different amounts of light energy to pass therethrough at different temperatures thereof, etc. The particular optical properties that vary with temperature are not important, so long as the relationship between the variance of the optical properties and temperature is known. One example of a material from which member 38 may be formed is boresilicate glass doped with neodymium, which material allows varying frequencies of light energy to pass therethrough at varying temperatures, the particular relationship therebetween having been well-documented.


A reflective surface 44 is disposed adjacent second end 42 of member 38, which acts to reflect a significant portion, and preferably substantially all, light energy striking reflective surface 44. Reflective surface 44 may comprise a mirror or any of numerous other reflective elements/materials known or later developed. Reflective surface 44 may comprise a separate element attached to second end 42 of member 38, may be painted, metallized, or otherwise applied directly onto second end 42 of member 38, may be positioned adjacent second end 42 of member 38, etc.


The light energy supplied to the proximal end 34 of optical fiber 32 (indicated by A), propagates to distal end 36 of optical fiber 32 (indicated by B), passes through member 38 from first end 40 to second end 42 thereof (indicated by C), is reflected by reflective surface 44, passes through member 38 from second end 42 to first end 40 thereof (indicated by D), enters distal end 36 of optical fiber 32 (indicated by E), propagates to proximal end 34 of optical fiber 32 (indicated by F), and exits proximal end 34 of optical fiber 32 (indicated by G). As indicated by the difference in size between arrows A, B representing the light energy before passing through member 38 and arrows E, F, G representing the light energy after passing through member 38, the light energy is altered by the optical properties of member 38 as it passes therethrough, and in a manner that is dependent upon the temperature of member 38, as discussed above.


The properties of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) is analyzed using a light energy analyzer 46, which generates a signal indicative of such properties. In the illustrated embodiment, light energy analyzer 46 comprises a spectrophotometer. Thus, in the case where member 38 is formed from a material which allows varying frequencies of light energy to pass therethrough at varying temperatures, the spectrophotometer could be used to measure the frequencies of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) and to generate a signal indicative of these frequencies.


A temperature analyzer 48 receives the signal indicative of the properties of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) generated by light energy analyzer 46, and determines the temperature of member 38 based at least in part upon the this signal, and based at least in part upon the known relationship between the optical absorption/transmission properties of member 38 and the temperature of member 38. Thus, temperature analyzer 48 has stored thereon, or otherwise has access to, data indicative of the known relationship between the variance of the optical properties and temperature for the material from which member 38 is made.


A temperature display 50 may optionally (indicated by dashed lines) be provided for displaying the sensed temperature of member 38. When multiple members 38 are provided, temperature display 50 may display all of the sensed temperatures, or may display only some of the sensed temperatures (e.g., the highest temperature).


Although light energy analyzer 46, temperature analyzer 48, temperature display 50 and controller 28 of light source 20 are shown as separate elements in FIG. 1, any two or more of them may be combined into one or more integrated units.


The present invention, therefore, provides an endoscopic system which provides enhanced safety and reduces the likelihood of patient burns, which ensures that the temperature of an endoscopic device does not exceed a threshold temperature, which automatically controls the intensity of an illumination light based upon a sensed temperature of some portion of the endoscopic device, which employs temperature sensors that can fit within the available volume within typical endoscopic devices, which employs temperature sensors that do not create voltage, and therefore do not compromise patient safety, and which employs temperature sensors that do not require a mechanical wire connection, so that the endoscopic device may be readily autoclaved.


Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art.

Claims
  • 1. An endoscopic system comprising: an endoscopic device having a light guide passing therethrough to a distal end thereof;a light source in communication with said endoscopic device, said light source transmitting illumination light to the light guide of said endoscopic device;a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device;at least one temperature sensor, at least a portion of which is carried by said endoscopic device, said at least one temperature sensor sensing a temperature of at least a portion of said endoscopic device and producing a signal indicative of the sensed temperature, the signal being transmitted to said light source controller; andwherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the sensed temperature.
  • 2. The endoscopic system of claim 1 wherein said light source controller varies the intensity of the illumination light transmitted to the light guide so as to maintain the sensed temperature below a threshold value.
  • 3. The endoscopic system of claim 2 wherein said light source controller reduces the intensity of the illumination light transmitted to the light guide if the sensed temperature is above the threshold value.
  • 4. The endoscopic system of claim 1 wherein said endoscopic device comprises at least one of the following: a rigid endoscope, a semi-rigid endoscope and a flexible endoscope.
  • 5. The endoscopic system of claim 1 wherein said at least one temperature sensor comprises a plurality of temperature sensors disposed along said endoscopic device.
  • 6. The endoscopic system of claim 1 wherein said at least one temperature sensor comprises: an optical fiber having a proximal end and a distal end;a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;a reflective surface disposed adjacent the second end of said member;wherein said light source supplies light energy to the proximal end of said optical fiber, and wherein the light energy propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber; andwherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member.
  • 7. An endoscopic system comprising an endoscopic device having at least one temperature sensor for sensing a temperature of at least a portion of the endoscopic device, the at least one temperature sensor comprising: an optical fiber having a proximal end and a distal end;a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;a reflective surface disposed adjacent the second end of said member;wherein light energy is supplied to the proximal end of said optical fiber, propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber; andwherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member.
  • 8. The endoscopic system of claim 7, wherein the at least one temperature sensor further comprises a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of said optical fiber, and for generating a signal indicative thereof.
  • 9. The endoscopic system of claim 8, wherein the light energy analyzer comprises a spectrophotometer.
  • 10. The endoscopic system of claim 8, wherein the at least one temperature sensor further comprises a temperature analyzer for determining the temperature of said member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of said optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of said member and the temperature of said member.
  • 11. The endoscopic system of claim 10, wherein the at least one temperature sensor further comprises a temperature display for displaying the temperature of said member.
  • 12. The endoscopic system of claim 7 further comprising: a light source in communication with said endoscopic device, said light source transmitting illumination light to a light guide of said endoscopic device;a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device; andwherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon a temperature sensed by the at least one temperature sensor.
  • 13. An endoscopic system comprising: an endoscopic device having a light guide passing therethrough to a distal end thereof;a light source in communication with said endoscopic device, said light source transmitting illumination light to the light guide of said endoscopic device;a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device;at least one temperature sensor comprising: an optical fiber having a proximal end and a distal end;a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;a reflective surface disposed adjacent the second end of said member;wherein light energy is supplied to the proximal end of said optical fiber, propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber;wherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member;a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of said optical fiber, and for generating a signal indicative thereof; anda temperature analyzer for determining the temperature of said member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of said optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of said member and the temperature of said member, said temperature analyzer generating and transmitting a signal indicative of the determined temperature of said member to said light source controller; andwherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the determined temperature of said member.
  • 14. A method of controlling an endoscopic system comprising the steps of: providing an endoscopic device having a light guide passing therethrough to a distal end thereof;transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device;sensing a temperature of at least a portion of the endoscopic device and producing a signal indicative of the sensed temperature using at least one temperature sensor, at least a portion of which is carried by the endoscopic device;transmitting the signal indicative of the sensed temperature to a light source controller; andvarying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature.
  • 15. The method of controlling an endoscopic system of claim 14 wherein said varying step comprises the step of varying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature so as to maintain the sensed temperature below a threshold value.
  • 16. The method of controlling an endoscopic system of claim 15 wherein said varying step comprises the step of-reducing the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, if the signal indicative of the sensed temperature indicates that the sensed temperature is above the threshold value.
  • 17. The method of controlling an endoscopic system of claim 14 wherein the at least one temperature sensor comprises a plurality of temperature sensors disposed along the endoscopic device.
  • 18. The method of controlling an endoscopic system of claim 14 wherein said sensing step comprises the steps of: providing an optical fiber having a proximal end and a distal end;disposing a member with a first end thereof adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;disposing a reflective surface adjacent the second end of the member;supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber; andwherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.
  • 19. A method for sensing a temperature of at least a portion of an endoscopic device comprising the steps of: providing an optical fiber having a proximal end and a distal end;disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;disposing a reflective surface adjacent the second end of the member;supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber; andwherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.
  • 20. The method for sensing a temperature of at least a portion of an endoscopic device of claim 19, further comprising the step of analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof.
  • 21. The method for sensing a temperature of at least a portion of an endoscopic device of claim 20, wherein said analyzing step is performed using a spectrophotometer.
  • 22. The method for sensing a temperature of at least a portion of an endoscopic device of claim 20, further comprising the step of determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member.
  • 23. The method for sensing a temperature of at least a portion of an endoscopic device of claim 22, further comprising the step of displaying the temperature of the member.
  • 24. The method for sensing a temperature of at least a portion of an endoscopic device of claim 19 further comprising the step of using the sensed temperature to vary an intensity of illumination light supplied to the endoscopic device.
  • 25. A method of controlling an endoscopic system comprising the steps of: providing an endoscopic device having a light guide passing therethrough to a distal end thereof;transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device;providing an optical fiber having a proximal end and a distal end;disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;disposing a reflective surface adjacent the second end of the member;supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber;wherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member;analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof;determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member; andvarying the intensity of the illumination light transmitted to the light guide automatically, using a light source controller, based at least in part upon the determined temperature of the member.