1. Field of the Invention
The invention relates to generally to intra-uterine devices, including hysteroscopes and related devices for microsurgical use such as use in the field of embryo implantation.
2. Description of the Related Arts
Improving the success of in vitro fertilization (IVF) depends on many factors, one of which is the delivery or transfer of the embryo to the endometrial lining of the uterus and the successful implantation of the embryo therein. It is well known in the art that assisting an embryo to adhere to, or implant within, a pre-determined area of the endometrial lining of the uterine wall, as opposed to simply releasing the embryo into the uterus, will enhance the success of IVF, minimize the risk of tubal pregnancies and reduce high-order multiple births.
U.S. patent application Ser. No. 09/759,415, filed Jan. 12, 2001, titled “Method and Apparatus for Assisted Embryo Implantation,” describes a minimally invasive embryo transfer method, which, in one embodiment, describes a specially formed microcatheter to gently deliver one or more selected embryos into a pocket formed within the endometrial lining of a subject's uterus.
A microcatheter, such as described for use in the referenced document, is inserted typically by way of a hysteroscope. A hysteroscope is generally a specialized endoscopic device, for intrauterine use, which provides for direct or video observation of the interior of a subject's uterus and provides a platform for microsurgical instruments such as catheters by providing a channel or lumen through the device. Representative endoscopes are described in U.S. Pat. No. 6,006,002 issued to Motoki, et al.; U.S. Pat. No. 4,534,339 issued to Collins, et al.; and U.S. Pat. No. 4,203,430 issued to Takahashi. To enhance the field of vision of a hysteroscope within the uterus, often the uterus will be insufflated with a gas to distend the uterine walls. In addition to providing a channel or lumen through the device for instruments, prior art hysteroscopes may provide an additional channel or lumen for a gas introduction. A hysteroscopic device for performing a minimally invasive microsurgical intrauterine procedure such as an embryo implantation procedure should be small enough so that the subject's uterus may be accessed comfortably without inducing dilation. Multiple lumen devices tend to cause discomfort and are generally difficult to maneuver. What is needed is an improved endoscopic device that may provide a stable platform for use of such a microcatheter or other instrument.
A hysteroscope is disclosed. In one embodiment, a hysteroscope provides for minimally invasive operative access to the interior of the subject's uterus for instruments or insufflation via a single operative channel or lumen through an insertion arm of the device. To accomplish insufflation of a subject's uterus, a gas feed line is attached to a gas port on the hysteroscope which feeds into the operative channel. By using the same operative channel for gas insufflation and for instrument (e.g., microcatheter) insertion, the insertion arm of the hysteroscope may be minimized, permitting comfortable and easy uterine access as well as access without inducing dilation. Further features of embodiments of a hysteroscope described herein include an insertion arm having a distal tip with an edge radius that may tend to reduce the bluntness of the distal tip, and a hybrid rigid and flexible arm that may provide a more stable operative platform for microsurgery, such as the microsurgery of the endometrial lining and embryo implantation.
Referring now to the drawings, illustrated in
Hysteroscope 10 is a two-part device, with operational section 11 at one end and hybrid insertion arm 12 at the other end. Operational section 11 is held by the operator during an intrauterine procedure, and a portion of hybrid insertion arm 12 is inserted into a subject's uterus. Supported on operational section 11 is eyepiece 13, used to visualize inside a uterus; control knob 14 used to maneuver a control structure (e.g., one or more braided wires extending to hybrid insertion arm 12 to actuate hybrid insertion arm 12 (the actuation shown in ghost lines)); and a series of access ports 15–17 extending from operational section 11 through one or more lumens inside both proximal portion 18 and distal portion 19 which form hybrid insertion arm 12. Hybrid insertion arm 12 is, in this embodiment, generally tubular and includes proximal portion 18 of a generally rigid material and distal portion 19 of a relatively flexible material (e.g., a polymer material).
The one or more lumens defined by access ports 15–17 extend through proximal portion 18 and distal portion 19 and exit or terminate at distal end 30 of distal portion 19 through guide face 31. Included among the one or more lumens is operative channel or lumen 20. Operative channel 20 extends between distal end 30 and, representatively access port 16. Operative channel 20 has a diameter suitable for insertion of a microcatheter therethrough for the purpose of performing a microsurgical procedure.
In one embodiment, distal end 30 of hybrid insertion arm 12 has edge radius 32 (e.g., a rounded edge) to facilitate gradual and gentle insertion through a subject's cervix. Edge radius provides less trauma than a blunt ended instrument and is generally able to gain entry into a smaller opening than a blunt instrument. To further aid the operator during insertion, series of locator marks 33 may be added to an exterior of hybrid insertion arm 12 to help the operator gauge the position of hybrid insertion arm 12 within a subject's uterus.
Prior art hysteroscopes with wholly flexible insertion sections are often difficult to control precisely during an intrauterine procedure. In the case of an intrauterine microsurgical procedure, hybrid insertion arm 12, having, in one embodiment, a rigid tubular proximal portion 18, preferably constructed of a smooth material such as stainless steel, seamlessly grafted/bonded to flexible tubular polymer (plastic-like) distal portion 19, is more easily maneuvered within a uterus and provides a more stable platform from which to perform the microsurgery and/or embryo implantation than from a wholly flexible hysteroscopic insertion arm.
Hybrid insertion arm 12 with both rigid proximal portion 18 and flexible distal portion 19 may be attached to a variety of hysteroscopic devices and should not be limited to being attached to, or supported by, operational section 11 detailed herein.
Often during an intrauterine procedure, uterine insufflation is desirable. Referring to
Illumination within a subject's uterus may be added via illumination train extending through lumen 35 of hysteroscope 10. Lumen 35 extends, in one embodiment shown in
In addition to an illumination train, hysteroscope 10 includes an image train. The visualization train includes lumen 36 extending between operational section 11 and hybrid insertion arm 12. At the operational section end, eyepiece 13 is disposed within or coupled about lumen 36. A video camera may alternatively be coupled about lumen 36 to provide video images of the uterus. At the hybrid insertion arm end, one or more lenses 37 is/are disposed within or coupled about lumen 36. In the embodiment shown in
Referring to
Referring again to
Also at a proximal end of handle portion 127 of hysteroscope 100 is a portion of illumination train 140 including illumination holder 144. A plurality of illumination fibers (e.g., glass fibers) are disposed within illumination holder 144 and join operational channel 120 within handle 127. As illustrated more clearly in
Still referring to
Coupled at a proximal end of operational channel 120 is stopcock 126 to, in one position, seal or block operational channel 120 and, in another position, to allow insufflation gas or an instrument such as a microcatheter to be passed through operational channel 120. In another embodiment, stopcock 126 may have three positions to, for example, provide individual access ports for an instrument and for insufflation gas. In one embodiment, stopcock 126 is sterilizable and, where desired, removable and replaceable. A microcatheter and/or insufflation gas, in one embodiment, may alternatively be introduced to operational channel 120 at entry port 116.
Disposed outside of primary channel 125, preferably within a separate lumen or lumens or sheaths is co-axially disposed dumb bell 175 coupled (e.g., via adhesive) to distal end 130 of hybrid insertion arm 112. Wires 162 are coupled to dumb bell 175 to provide for articulation of distal portion 119 of hybrid insertion arm 112 by articulating lever 129.
Referring to
To minimize the diameter of the hybrid insertion arm described in the above embodiments, and to allow for a reduced diameter of the one or more lumens therethrough, including a reduced diameter of an operative channel of the hysteroscope, an improved microcatheter, representatively for use in embryo transfer, implantation and intrauterine microsurgery has been developed.
A microcatheter is a flexible tube with a base section and a tip section. Shown in
To overcome the flexibility problems, some manufacturers have produced “Teflon” based microcatheters which have greater wall strength and are less likely to bend. However, Teflon based microcatheters typically cannot be extruded with a tip diameter of less than 0.4 mm according to current techniques. Therefore, the trade-off for strength (rigidity) has been larger tip diameter.
Referring to
Distal end 521 of the microcatheter 250 once positioned within uterus “U” can be used to perform microsurgery such as the formation of an implantation pocket “P” within the endometrial lining “L” (
In the preceding detailed description, the invention is described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation of U.S. patent application Ser. No. 10/044,350, filed Jan. 11, 2002, now U.S. Pat. No. 6,758,806.
Number | Name | Date | Kind |
---|---|---|---|
3709214 | Robertson | Jan 1973 | A |
4203430 | Takahashi | May 1980 | A |
4534339 | Collins et al. | Aug 1985 | A |
4779612 | Kishi | Oct 1988 | A |
4836189 | Allred, III et al. | Jun 1989 | A |
4846785 | Cassou et al. | Jul 1989 | A |
4890602 | Hake | Jan 1990 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
5195979 | Schinkel et al. | Mar 1993 | A |
5199417 | Muller et al. | Apr 1993 | A |
5217466 | Hasson | Jun 1993 | A |
5325845 | Adair | Jul 1994 | A |
5360389 | Chenette | Nov 1994 | A |
5472419 | Bacich | Dec 1995 | A |
5484422 | Sloane, Jr. et al. | Jan 1996 | A |
5656010 | Li et al. | Aug 1997 | A |
5716321 | Kerin et al. | Feb 1998 | A |
5772628 | Bacich et al. | Jun 1998 | A |
5807239 | DiBernardo | Sep 1998 | A |
5843023 | Cecchi | Dec 1998 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5961444 | Thompson | Oct 1999 | A |
6004302 | Brierley | Dec 1999 | A |
6006002 | Motoki et al. | Dec 1999 | A |
6010448 | Thompson | Jan 2000 | A |
6027443 | Nag | Feb 2000 | A |
6053899 | Slanda et al. | Apr 2000 | A |
6156566 | Bryant | Dec 2000 | A |
6203533 | Ouchi | Mar 2001 | B1 |
6258070 | Kaldany | Jul 2001 | B1 |
6273877 | West et al. | Aug 2001 | B1 |
6280423 | Davey et al. | Aug 2001 | B1 |
6281013 | Grondahl | Aug 2001 | B1 |
6319192 | Engel et al. | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
3702441 | Aug 1988 | DE |
2118840 | Mar 1983 | GE |
WO 9713451 | Apr 1997 | WO |
WO 0054953 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040225187 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10044350 | Jan 2002 | US |
Child | 10830411 | US |