Endoscopic electrosurgical jaws with offset knife

Abstract
A forceps includes an end effector assembly having first and second jaw members. Each jaw member includes a proximal flange having an inwardly-facing surface. The proximal flanges are coupled to one another for moving the jaw members relative to one another between a first position and a second position for grasping tissue therebetween. The inwardly-facing surfaces of the proximal flanges are disposed in abutting relation relative to one another. A knife is configured to move along a knife path defined along an outwardly-facing surface of one of the proximal flanges. The knife is movable between a retracted position and an extended position, wherein the knife extends between the jaw members to cut tissue grasped therebetween.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to an electrosurgical jaws and, more particularly, to an elongated endoscopic electrosurgical forceps with an offset knife for sealing and/or cutting tissue.


2. Background of Related Art


Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopic or laparoscopic instruments for remotely accessing organs through smaller, puncture-like incisions or natural orifices. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


Typically, after a vessel or tissue is sealed, the surgeon advances a knife to sever the sealed tissue disposed between the opposing jaw members. In some instances, the knife blade is difficult to advance through the knife channel defined between jaw members or is subject to wear and tear over repeated use due to the relative position of the knife blade through the knife channel (contacting the sides of the knife channel).


SUMMARY

The present disclosure relates to an endoscopic forceps that includes a housing having a shaft attached thereto with a longitudinal axis defined therethrough. An end effector assembly is disposed at a distal end thereof and includes first and second jaw members disposed in opposing relation relative to one another and moveable from a first, open position to a second, closed position for grasping tissue therebetween. Each of the jaw members includes a proximal flange adapted to communicate with a drive assembly for moving the jaw members between the first and second positions. One or both of the of the jaw members has a curved knife channel (or a portion, e.g., distal portion, of the knife channel is curved) defined therein having a proximal end that is offset from the longitudinal axis defined through the shaft. A knife guide is assembled to an outer surface of one of the proximal flanges of the jaw members on the same side as the proximal end of the knife channel and defines a knife path therein configured to guide a knife into the knife channel for translation therethrough. One or more handles may be included that operably couple to the drive assembly for moving the jaw members between the first and second positions.


In one embodiment, the endoscopic forceps is an electrosurgical instrument and at least one of the jaw members is adapted to connect to an electrosurgical energy source to communicate energy to tissue disposed between the jaw members.


In another embodiment, the proximal flanges of the end effector and the knife guide include elongated slots defined therethrough that cooperate with a drive pin operably connected to the drive assembly to move the jaw members from the first to second positions. The elongated slots of the proximal flanges may be cam slots that operably engage the drive pin and the elongated slot of the knife guide may be a pass-through or non-engaging slot.


In yet another embodiment, the offset knife channel and the disposition of the knife guide relative to the longitudinal axis facilitate substantially straight extension of the knife through the knife channel along a substantial length of the knife channel. This configuration helps prevent binding of the knife during translation through the knife channel. The proximal end of the knife channel may be offset a distance “X” relative to the longitudinal axis “A” defined through the forceps, wherein “X” is in the range of about 0.010 inches to about 0.040 inches. The knife channel may be defined within both the first and second jaw members and the knife guide is configured to preload the jaw members during assembly for ensuring proper alignment of the knife channels to facilitate translation of the knife therethrough.


In still yet another embodiment, the knife guide includes one or more channels defined therein that are configured to guide a corresponding number of electrical leads to the jaw member(s) for supplying electrosurgical energy thereto.


The present disclosure also relates to an endoscopic forceps that includes a housing having a shaft attached thereto with a longitudinal axis defined therethrough and an end effector assembly disposed at a distal end thereof. The end effector assembly includes first and second jaw members disposed in opposing relation relative to one another and moveable from a first, open configuration to a second, closed configuration for grasping tissue therebetween. Each of the jaw members includes a proximal flange adapted to communicate with a drive assembly for moving the jaw members between the first and second positions. One or both of the of the jaw members has a knife channel defined therein having a proximal end that is offset from the longitudinal axis defined through the shaft. A knife guide is assembled to an outer surface of one of the proximal flanges of the jaw members on the same side as the proximal end of the knife channel and defines a knife path therein configured to guide a knife into the knife channel for translation therethrough. The knife guide includes a blade stop at a distal end thereof that is positionable from a first position that interferes with or obstructs the knife path to prevent distal translation of the knife when the jaw members are disposed in an first, open configuration to a second position that allows distal translation of the knife when the jaw members are disposed in the second, closed configuration. The blade stop may be pivotably engaged to the knife guide and biased to obstruct the knife path when the jaw members are disposed in the first, open configuration.


The forceps may include one or more handles that operably couple to a drive assembly for moving the jaw members between the first and second configurations. Moreover, the forceps may be an electrosurgical forceps wherein one or both of the jaw members are adapted to connect to an electrosurgical energy source to communicate energy to tissue disposed between the jaw members.


The proximal flanges of the end effector and the knife guide may include elongated slots defined therethrough that cooperate with a drive pin operably connected to the drive assembly to move the jaw members from the first to second configurations. The elongated slots of the proximal flanges may be cam slots that operably engage the drive pin and the elongated slot of the knife guide may be a pass-through or non-engaging slot.


In another embodiment, the offset knife channel and the disposition of the knife guide relative to the longitudinal axis may be configured to facilitate substantially straight extension of the knife through the knife channel along a substantial length of the knife channel. The proximal end of the knife channel may be offset a distance “X” relative to the longitudinal axis “A” defined through the forceps, wherein “X” is in the range of about 0.010 inches to about 0.040 inches.


In yet another embodiment, the knife guide includes one or more channels defined therein that are configured to guide a corresponding number of electrical leads to the jaw member for supplying electrosurgical energy thereto.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1A is a top, perspective view of an endoscopic forceps shown in an open configuration and including a housing, a handle assembly, a shaft and an end effector assembly according to the present disclosure;



FIG. 1B is a top, perspective view of the endoscopic forceps of FIG. 1A showing the end effector assembly in a closed configuration according to the present disclosure;



FIG. 2A is an enlarged, top view of the forceps of FIG. 1A showing the disposition of the internal components when the forceps is in an open configuration;



FIG. 2B is an enlarged, top view of the forceps of FIG. 1B showing the disposition of the internal components when the forceps is in a closed configuration;



FIG. 3A is an enlarged, top view showing the knife actuator after actuation;



FIG. 3B is a greatly-enlarged, side cross sectional view of the end effector assembly showing the position of the knife after actuation;



FIG. 4A is a greatly-enlarged, perspective view of the bottom jaw of the end effector assembly with parts separated;



FIG. 4B is a greatly-enlarged, perspective view of the top jaw of the end effector assembly with parts separated;



FIG. 5 is a greatly-enlarged, perspective view of the elongated shaft for housing various moving parts of the drive assembly and knife assembly;



FIG. 6 is a partially exploded, perspective view of the end effector assembly;



FIG. 7 is a top view of the end effector assembly with the upper jaw member removed;



FIG. 8 is a rear, perspective view of one of the jaw members in accordance with an alternate embodiment of the present disclosure; and



FIG. 9 is an enlarged side view of another embodiment of the knife guide according to the present disclosure.





DETAILED DESCRIPTION

Turning now to FIGS. 1A and 1B, one embodiment of an electrosurgical forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, a knife trigger assembly 70 and an end effector assembly 100 which mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue. Although the majority of the figure drawings depict a forceps 10 for use in connection with endoscopic or laparoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, the forceps 10 is described in terms of an endoscopic or laparoscopic instrument; however, it is contemplated that an open version of the forceps may also include the same or similar operating components and features as described below.


Forceps 10 includes a shaft 12 that has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 that mechanically engages the housing 20. Details of how the shaft 12 connects to the end effector assembly 100 are described in more detail below. The proximal end 14 of shaft 12 is received within the housing 20 and the connections relating thereto are also described in detail below. In the drawings and in the descriptions that follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 that is closer to the user, while the term “distal” will refer to the end that is further from the user.


Forceps 10 also includes an electrosurgical cable 310 that may connect the forceps 10 to a source of electrosurgical energy, e.g., a generator. Generators such as those sold by Covidien, located in Boulder, Colo. may be used as a source of both bipolar electrosurgical energy for sealing vessel and vascular tissues as well as monopolar electrosurgical energy which is typically employed to coagulate or cauterize tissue. It is envisioned that the generator may include various safety and performance features including isolated output, impedance control and/or independent activation of accessories.


Handle assembly 30 includes two movable handles 30a and 30b disposed on opposite sides of housing 20. Handles 30a and 30b are movable relative to one another to actuate the end effector assembly 100 as explained in more detail below with respect to the operation of the forceps 10.


Rotating assembly 80 is mechanically coupled to housing 20 and is rotatable approximately 90 degrees in either direction about a longitudinal axis “A.” Rotating assembly 80, when rotated, rotates shaft 12, which, in turn, rotates end effector assembly 100. Such a configuration allows end effector assembly 100 to be rotated approximately 90 degrees in either direction with respect to housing 20.


As mentioned above, end effector assembly 100 is attached at the distal end 16 of shaft 12 and includes a pair of opposing jaw members 110 and 120 (see FIG. 6). Handles 30a and 30b of handle assembly 30 ultimately connect to drive assembly 60 (see FIG. 2A) which, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from a first, open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a second, clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.


Turning now to the more detailed features of the present disclosure as described with respect to FIGS. 1A-8C, handles 30a and 30b each include an aperture 33a and 33b, respectively, defined therein which enables a user to grasp and move each respective handle 30a and 30b relative to one another. Handles 30a and 30b also include ergonomically-enhanced gripping elements 39a and 39b, respectively, disposed along an outer edge thereof which are designed to facilitate gripping of the handles 30a and 30b during activation. It is envisioned that gripping elements 39a and 39b may include one or more protuberances, scallops and/or ribs to enhance gripping.


As best illustrated in FIG. 1A, handles 30a and 30b are configured to extend outwardly on opposite sides from a transverse axis “B” defined through housing 20 which is perpendicular to longitudinal axis “A”. Handles 30a and 30b are movable relative to one another in a direction parallel to axis “B” to open and close the jaw members 110 and 120 as needed during surgery. Details relating to the inner-working components of forceps 10 are disclosed in commonly-owned U.S. patent application Ser. No. 11/540,335. This forceps style is commonly referred to as an “in-line” or hemostat style forceps. In-line hemostats or forceps are more commonly manufactured for open surgical procedures and typically include a pair of shafts having integrally coupled handles which are movable relative to one another to open and close the jaw members disposed at the distal end thereof.


As best seen in FIGS. 2A and 2B, the distal end of each handle 30a and 30b is selectively moveable about pivot pins 34a and 34b attached to a distal end 21 of the housing 20 to actuate the jaw members 110 and 120. Movement of the handles 30a and 30b away from one another (and the housing 20) unlocks and opens the handles 30a and 30b and, in turn, the jaw members 110 and 120 for subsequent grasping or re-grasping of tissue. In one embodiment, the handles 30a and 30b may be biased in an open configuration to facilitate handling and manipulation of the jaws within an operative field. Various spring-like mechanisms are contemplated which may be utilized to accomplish this purpose.


Movable handles 30a and 30b are designed to provide a distinct lever-like mechanical advantage over conventional handle assemblies. The enhanced mechanical advantage for actuating the jaw members 110 and 120 is gained by virtue of the unique position and combination of several inter-cooperating elements which reduce the overall user forces necessary to obtain and maintain the jaw members 110 and 120 under ideal operating pressures of about 3 kg/cm2 to about 16 kg/cm2. Details relating to the working components the handle assembly and drive assembly are disclosed in above-mentioned U.S. patent application Ser. No. 11/540,335. In other words, it is envisioned that the combination of these elements and their positions relative to one another enables the user to gain lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to effect a proper and effective tissue seal.


As shown best in FIGS. 4A, 4B, 5 and 6, the end effector assembly 100 is designed as a bilateral assembly, i.e., both jaw members 110 and 120 pivot relative to one another about a pivot pin 185 disposed therethrough. A unilateral end effector assembly is also envisioned. End effector assembly 100 further includes a knife guide 133 that houses the knife blade 190 for translation therethrough. Knife guide 133 is assembled with flanges 113 and 123 to allow pivotable movement of the flanges 113 and 123 about a pivot pin 185 disposed between the jaw members 110 and 120 upon translation of a drive pin 180 as explained in more detail below.


More particularly, jaw members 110 and 120 include proximal flanges 113 and 123, respectively, which each include an elongated angled slot 181a and 181 b, respectively, defined therethrough. Drive pin 180 mounts jaw members 110 and 120 and knife guide 133 to the end of a rotating shaft 18 and within a cavity 17′ defined at the distal ends 17a and 17b of drive actuator or sleeve 17 (See FIG. 5). Knife guide 133 includes an elongated slot 181c defined therethrough, configured for accepting the drive pin 180 and for allowing translation of the drive pin 180 within slots 181a-181c, which pivots the jaw members 110 and 120 relative to one another for grasping tissue. Knife guide 133 may also provide a unique safety feature for the forceps 10 as described in more detail below.


Upon actuation of the drive assembly 60, the drive sleeve 17 reciprocates which, in turn, causes the drive pin 180 to ride within slots 181a and 181b to open and close the jaw members 110 and 120 as desired and similarly causes the drive pin 180 to ride within slot 181c of knife guide 133. The jaw members 110 and 120, in turn, pivot about pivot pin 185 disposed through respective pivot holes 186a and 186b defined within flanges 113 and 123, the jaw members 110 and 120 and hole 186c disposed within knife guide 133. Upon actuation, knife guide 133 remains oriented in alignment with the shaft 12 as the jaws move about pivot pin 185 (See FIG. 6). As can be appreciated, squeezing handles 30a and 30b toward the housing 20 pulls drive sleeve 17 and drive pin 180 proximally to close the jaw members 110 and 120 about tissue grasped therebetween and pushing the sleeve 17 distally opens the jaw members 110 and 120 for grasping purposes.


Flanges 113 and 123 of jaw members 110 and 120, respectively, are positioned in an abutting relationship with one another and knife guide 133 is positioned adjacent to flanges 113 and 123. Flanges 113, 123 and knife guide 133 are assembled and engaged via pivot pin 185 disposed through apertures 186a, 186b, and 186c, respectively. Further, flanges 113, 123 are pivotable about one another via drive pin 180 disposed through slots 181a and 181b and of flanges 113, 123, respectively. A knife path 138 may be defined between flange 113 and knife guide 133, as shown in FIGS. 6 and 7. The knife path 138 longitudinally aligns with knife channels 115a and 115b defined within jaw members 110 and 120, such that knife blade 190 travels in a substantially straight path through knife path 138 and, further, through knife channels 115a and 115b.


Alternatively, the orientation of flanges 113 and 123 may be reversed, with knife path 138 being defined between flange 123 and blade guide 133. In contrast to prior known designs, the abutting relationship between flanges 113 and 123 (in either orientation) strengthens the jaw flanges 113 and 123 since a blade path or blade channel does not need to be defined therebetween but, rather, is defined on an exterior side of one of the flanges 113 and 123. Thus, the knife 190 travels between the blade guide 133 and the flanges 113 and 123 and not between flanges. By manufacturing the knife path 138 on either side of the flanges 113 and 123, jaw splay may also be more easily controlled and tighter tolerances may be employed during the manufacturing process, thereby allowing tighter tolerances on certain features of the jaw member 110 and 120 resulting in better overall performance.


For example, the knife channels 115a and 115b defined within the jaw members 110 and 120, respectively, may be more precisely aligned with less splay between the jaw members 110 and 120, thereby facilitating knife blade 190 translation. Moreover, the strength of the flanges 113 and 123 is enhanced as well as the union therebetween, e.g., flat-on-flat abutting flange surfaces have more surface contact making the union therebetween stronger. The knife guide 133 may also be configured to pre-load jaw members 110 and 120 to help ensure proper alignment of knife channel halves 115a and 115b upon closing of the jaw members 110 and 120 as explained in more detail below.


As best shown in FIG. 6, blade guide 133 may include a blade stop or hook 135 disposed at a distal end thereof. The blade stop 135 may be integrally associated with the knife guide 133 (FIG. 6), the purpose of which is explained immediately below, or pivotably engaged with the knife guide 133, the purpose of which is explained with reference to FIG. 9. The relationship between flanges 113 and 123 and blade guide 133 is established by pivot pin 185 disposed through apertures 186a, 186b, and 186c, respectively, and by drive pin 180 disposed through slots 181a, 181b and 181c, respectively. Accordingly, when jaw members 110, 120 are in a first, or open, position, knife guide 133 pivots such the blade stop 135 interferes with the knife path 138, thereby preventing distal translation of knife blade 190. In one embodiment, this may be accomplished by the knife guide 133 including an elongated slot 181c that is cammed when the drive pin 180 is biased in a distal-most position such that the knife guide 133 and blade stop 135 pivot thereby obstructing the knife path 138. Alternatively, the blade stop 135 may pivot relative to the knife guide 133 to obstruct the knife path 138 (See FIG. 9). In this instance, the elongated slot 181c may be constructed as a pass-through or non-engaging slot.


When handles 30a and 30b are squeezed toward the housing 20, drive sleeve 17 and drive pin 180 are pulled proximally to close the jaw members 110 and 120, which also pivots the knife guide 133 so that the blade stop 135 no longer obstructs or interferes with the knife path 138. Thus, in this embodiment, the knife guide 133, by virtue of the blade stop 135, prevents distal advancement of knife blade 190 when jaw members 110 and 120 are in the first, open position and permits distal advancement of knife blade 190 when jaw members 110 and 120 are in the second, closed position.


Alternatively, a hook (not shown) may be disposed on either of flanges 113 or 123. The hook would operate in substantially the same manner as the blade stop 135 disposed on the blade guide 133 in the embodiment discussed above. Accordingly, as jaw members 110, 120 are opened, the hook on flange 113 or 123 is pivoted into the path of knife blade 190, thereby preventing distal translation of knife blade 190. When handles 30a and 30b are squeezed toward the housing 20, drive sleeve 17 and drive pin 180 are pulled proximally to close the jaw members 110 and 120. The pulling of drive pin 180 also pivots flanges 113 and 123, thereby closing the jaw members 110 and 120 and as a result, the hook is pivoted out of the path of knife blade 190.


As best shown in FIG. 4B, jaw member 110 also includes a support base 119 that extends distally from flange 113 and that is configured to support an insulative plate 119′ thereon. Insulative plate 119′, in turn, is configured to support an electrically conductive tissue engaging surface or sealing plate 112 thereon. Sealing plate 112 may be affixed atop the insulative plate 119′ and support base 119 in any suitable manner, e.g., snap-fit, over-molding, stamping, ultrasonically welded, etc. Support base 119 together with the insulative plate 119′ and electrically conductive tissue engaging surface 112 are encapsulated by an outer insulative housing 114. Outer housing 114 includes a cavity 114a that is dimensioned to securely engage the electrically conductive sealing surface 112 as well as the support base 119 and insulative plate 119′. This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate and/or by overmolding a metal injection molded seal plate. All of these manufacturing techniques produce jaw member 110 having an electrically conductive surface 112 that is substantially surrounded by an insulating substrate 114.


The electrically conductive surface or sealing plate 112 and the outer housing 114, when assembled, form longitudinally-oriented knife channel 115a defined therethrough for reciprocation of the knife blade 190. It is envisioned that the knife channel 115a cooperates with corresponding knife channel 115b defined in jaw member 120 to facilitate longitudinal extension of the knife blade 190 along a preferred cutting plane to effectively and accurately separate the tissue along the formed tissue seal. As discussed above, when knife blade 190 is deployed, at least a portion of knife blade 190 advances through knife path 138 and into knife channels 115a and 115b. In addition to the blade stop 135, handle 30a may includes a lockout flange (not shown) which prevents actuation of the knife assembly 70 when the handle 30a is open thus preventing accidental or premature activation of the knife blade 190 through the tissue. A more detailed discussion of the lockout flange is discussed in above-mentioned U.S. patent application Ser. No. 11/540,335.


As explained above and as illustrated in FIGS. 4A and 4B, in one embodiment, the knife channel 115 is formed when the jaw members 110 and 120 are closed. In other words, the knife channel 115 includes two knife channel halves—knife channel half 115a disposed in sealing plate 112 of jaw member 110 and knife channel half 115b disposed sealing plate 122 of jaw member 120. It is envisioned that the knife channel 115 may be configured as a straight slot with no degree of curvature which, in turn, causes the blade 190 to move through the tissue in a substantially straight fashion. Alternatively, and as shown, the knife channel 115 may be curved, which has certain surgical advantages. In the particular embodiment shown in FIGS. 6 and 7, the knife channel 115 (knife channel 115a shown) is curved and is offset from the centerline or longitudinal axis “A” of the forceps 10 by a distance “X” (See FIGS. 7 and 8). This offset distance “X” may be in the range of about 0.010 inches to about 0.040 inches.


The offset orientation of the knife blade 190 (by virtue or the knife guide 133 being assembled on one side of the flanges 113 and 123 allows the knife blade to enter the knife channel 115 in a substantially straight orientation thereby facilitating separation of tissue. Moreover, the knife blade 190 travels in a substantially straight manner through most of the knife channel 115 and is only forced to bend around the knife channel 115 towards a distal end of the jaw members 110 and 120. Further, the offset orientation of the knife channel, e.g., knife channel 115b, and the disposition of the knife blade 190 traveling through the knife guide 133 also enhances the cutting effect and reduces the chances of the knife blade 190 binding during translation (extension or retraction).


As mentioned above, when the jaw members 110 and 120 are closed about tissue, knife channels 115a and 115b form a complete knife channel 115 to allow longitudinal extension of the knife blade 190, from the knife path 138, in a distal fashion to sever tissue along a tissue seal. Knife channel 115 may be completely disposed in one of the two jaw members, e.g., jaw member 120, depending upon a particular purpose. It is also envisioned that jaw member 120 may be assembled in a similar manner as described above with respect to jaw member 110.


Referring now to FIGS. 6 and 8, electrical lead or wire 126 is shown extending from shaft 12 through knife housing 133 and entering wire tube 125 of jaw members 120. Wires 116 and 126 are used to supply electrical energy to electrically conductive sealing surfaces 112 and 122 of jaw members 110 and 120, respectively. In the embodiment of FIG. 6, knife housing 133 also acts as a wire guide, configured to guide wires 116 and 126 to jaw members 110 and 120. Electrical leads or wires 116 and 126 are protected by knife housing 133. Wire tube 125 (FIG. 8) of jaw member 120, may be offset from a longitudinal axis “Y” of the forceps 10 in the same direction as the offset knife channel 115b, such that knife channel 115b is disposed above the wire tube 125. The offset “X” of the knife channel, e.g., knife channel 115b, and the offset “Y” of the disposition of the electrical lead or wire 126 relative to longitudinal axis “A” may be different or the same depending upon a particular purpose or to facilitate manufacturing. For example, as mentioned above, the offset distance “X” may be in the range of about 0.010 inches to about 0.040 inches whereas the offset distance “Y” may be in the range about 0.040 inches to about 0.140 inches. In addition, particular “X” and “Y” configurations may be as follows: When “X” is about 0.010 inches “Y” may be about 0.040 inches; when “X” is about 0.017 inches “Y” may be about 0.070 inches; and when “X” is about 0.034 inches “Y” may be about 0.140 inches. Other configurations and offsets for “X” and “Y” are also contemplated and within the scope of this disclosure.



FIG. 9 shows another embodiment of the knife guide 133′ that includes similar features to the knife guide 133 described above such as elongated slot 181c′, pivot hole 186c′ and blade stop 135′. In this particular embodiment, the blade stop is moveable from a first position that interferes with the knife path 138 (See FIG. 7) to prevent distal translation of the knife 190 when the jaw members 110 and 120 are disposed in an first, open configuration to a second position that allows distal translation of the knife 190 when the jaw members 110 and 120 are disposed in the second, closed configuration. The blade stop 135′ is pivotably engaged to the knife guide 133′ and biased to obstruct with the knife path 138 when the jaw members 110 and 120 are disposed in the first, open configuration. Thus in this embodiment, the blade stop 135 prevents distal advancement of knife blade 190 when jaw members 110 and 120 are in the first, open configuration and permits distal advancement of knife blade 190 when jaw members 110 and 120 are in the second, closed configuration.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A forceps, comprising: an end effector assembly, including: first and second jaw members, each jaw member including a proximal flange having an inwardly-facing surface, the proximal flanges coupled to one another for moving the jaw members relative to one another between a first position and a second position for grasping tissue therebetween, the inwardly-facing surfaces of the proximal flanges disposed in abutting relation relative to one another;a knife configured to move along a knife path defined along an outwardly-facing surface of one of the proximal flanges, the knife movable between a refracted position and an extended position, wherein the knife extends between the jaw members to cut tissue grasped therebetween; anda knife guide disposed on the outwardly-facing surface of at least one of the proximal flanges, the knife guide including a blade stop pivotably coupled thereto and biased to obstruct the knife path when the first and second jaw members are disposed in a first, open configuration to prevent distal translation of knife blade.
  • 2. The forceps according to claim 1, wherein at least one of the jaw members defines a knife channel therein, the knife channel configured to receive the knife upon movement of the knife from the retracted position to the extended position.
  • 3. The forceps according to claim 2, wherein the knife channel is offset from a longitudinal axis defined through the end effector assembly.
  • 4. The forceps according to claim 3, wherein the knife channel is offset from the longitudinal axis of the end effector assembly in a direction towards the knife path.
  • 5. The forceps according to claim 1, wherein the knife guide is configured to guide movement of the knife along the knife path.
  • 6. The forceps according to claim 1, wherein at least one of the jaw members is adapted to connect to a source of energy to communicate energy to tissue grasped between the jaw members.
  • 7. The forceps according to claim 1, wherein the knife path extends in substantially parallel orientation relative to a longitudinal axis defined through the end effector assembly.
  • 8. The forceps according to claim 1, wherein the knife guide is configured to guide movement of the knife along the knife path.
  • 9. A forceps, comprising: an end effector assembly, including:first and second jaw members, at least one of the jaw members defining a knife channel extending therethrough, each jaw member including a proximal flange having an inwardly-facing surface, the proximal flanges coupled to one another for moving the jaw members relative to one another between a first position and a second position for grasping tissue therebetween, the inwardly-facing surfaces of the proximal flanges disposed in abutting relation relative to one another;a knife configured to move along a knife path defined along an outwardly-facing surface of one of the proximal flanges, the knife movable between a retracted position and an extended position, wherein the knife extends through the knife channel and between the jaw members to cut tissue grasped therebetween; anda knife guide disposed on the outwardly-facing surface of at least one of the proximal flanges, the knife guide including a blade stop pivotably coupled thereto and biased to obstruct the knife path when the first and second jaw members are disposed in a first, open configuration to prevent distal translation of knife blade.
  • 10. The forceps according to claim 9, wherein the knife channel is offset from a longitudinal axis defined through the end effector assembly.
  • 11. The forceps according to claim 10, wherein the knife channel is offset from the longitudinal axis of the end effector assembly in a direction towards the knife path.
  • 12. The forceps according to claim 9, wherein at least one of the jaw members is adapted to connect to a source of energy to communicate energy to tissue grasped between the jaw members.
  • 13. The forceps according to claim 9, wherein the knife channel and the knife path are disposed in substantial alignment with one another.
  • 14. The forceps according to claim 9, wherein the knife path extends in substantially parallel orientation relative to a longitudinal axis defined through the end effector assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application No. 12,499,553, filed on Jul. 8, 2009, now U.S. Pat. No. 8,246,618, the entire contents of which are hereby incorporated by reference herein.

US Referenced Citations (1386)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
1908201 Welch et al. May 1933 A
1918889 Bacon Jul 1933 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2113246 Wappler May 1937 A
2141936 Schmitt Dec 1938 A
2176479 Willis Oct 1939 A
2245030 Gottesfeld et al. Jun 1941 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
2824915 Buturuga Feb 1958 A
3073311 Tibbs et al. Jan 1963 A
3100489 Bagley Aug 1963 A
3204807 Ramsing Sep 1965 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3561448 Peternel Feb 1971 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3798688 Wasson Mar 1974 A
3801766 Morrison, Jr. Apr 1974 A
3839614 Saganowski et al. Oct 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3875945 Friedman Apr 1975 A
3897786 Garnett et al. Aug 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4031898 Hiltebrandt et al. Jun 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4102471 Lore et al. Jul 1978 A
D249549 Pike Sep 1978 S
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4274413 Hahn et al. Jun 1981 A
4300564 Furihata Nov 1981 A
4306561 de Medinaceli Dec 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4315510 Kihn Feb 1982 A
4363944 Poirier Dec 1982 A
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4394552 Schlosser Jul 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4513271 Reisem Apr 1985 A
4535773 Yoon Aug 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4619258 Pool Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4625723 Altnether et al. Dec 1986 A
4644950 Valli Feb 1987 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4674499 Pao Jun 1987 A
4685459 Koch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4753235 Hasson Jun 1988 A
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
D298353 Manno Nov 1988 S
4781175 McGreevy et al. Nov 1988 A
D299413 DeCarolis Jan 1989 S
4805616 Pao Feb 1989 A
4827927 Newton May 1989 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4890610 Kirwan, Sr. et al. Jan 1990 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4973801 Frick et al. Nov 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5019678 Templeton et al. May 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5052402 Bencini et al. Oct 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5122139 Sutter Jun 1992 A
5144323 Yonkers Sep 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5158561 Rydell et al. Oct 1992 A
5169396 Dowlatshahi et al. Dec 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5231997 Kikuchi et al. Aug 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250056 Hasson Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5254129 Alexander Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5267998 Hagen Dec 1993 A
5269780 Roos Dec 1993 A
5269804 Bales et al. Dec 1993 A
D343453 Noda Jan 1994 S
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5281220 Blake, III Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5290287 Boebel et al. Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5312433 Boebel et al. May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5314463 Camps et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
D349341 Lichtman et al. Aug 1994 S
5334166 Palestrant Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5367250 Whisenand Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5376094 Kline Dec 1994 A
D354564 Medema Jan 1995 S
5383875 Bays et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5395360 Manoukian Mar 1995 A
5396194 Williamson et al. Mar 1995 A
5396900 Slater et al. Mar 1995 A
5397325 Della Badia et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5417709 Slater May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437277 Dumoulin et al. Aug 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443479 Bressi, Jr. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445622 Brown Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454739 Strand Oct 1995 A
5454809 Janssen Oct 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5493899 Beck et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5520702 Sauer et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5549604 Sutcu et al. Aug 1996 A
5554172 Horner et al. Sep 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5568859 Levy et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618294 Aust et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624281 Christensson Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626607 Malecki et al. May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5637111 Sutcu et al. Jun 1997 A
5638003 Hall Jun 1997 A
5638827 Palmer et al. Jun 1997 A
5639403 Ida et al. Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5713895 Lontine et al. Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5735849 Baden et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762609 Benaron et al. Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5776156 Shikhman Jul 1998 A
5777519 Simopoulos Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5781048 Nakao et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5791231 Cohn et al. Aug 1998 A
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817083 Shemesh et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827274 Bonnet et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5830212 Cartmell et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836072 Sullivan et al. Nov 1998 A
D402028 Grimm et al. Dec 1998 S
5843080 Fleenor et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5851214 Larsen et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5876410 Petillo Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
D408018 McNaughton Apr 1999 S
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5907140 Smith May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5938589 Wako et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944562 Christensson Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5967997 Turturro et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5993474 Ouchi Nov 1999 A
5997565 Inoue Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6010519 Mawhirt et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050995 Durgin Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6056735 Okada et al. May 2000 A
6059782 Novak et al. May 2000 A
6063086 Benecke et al. May 2000 A
6063103 Hashiguchi May 2000 A
6066137 Greep May 2000 A
6066139 Ryan et al. May 2000 A
6071283 Nardella et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083150 Aznoian et al. Jul 2000 A
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6152924 Parins Nov 2000 A
6159217 Robie et al. Dec 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6190400 Van De Moer et al. Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6249706 Sobota et al. Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267758 Daw et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan, Jr. Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6303166 Kolbe et al. Oct 2001 B1
6309404 Krzyzanowski Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
D453923 Olson Feb 2002 S
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
D454951 Bon Mar 2002 S
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6385265 Duffy et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440130 Mulier et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458129 Scarfi Oct 2002 B2
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6471696 Berube et al. Oct 2002 B1
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6485489 Teirstein et al. Nov 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517536 Hooven et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6540745 Fairbourn et al. Apr 2003 B1
6545239 Spedale et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6613048 Mulier et al. Sep 2003 B2
6616654 Mollenauer Sep 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 de Laforcade et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656173 Palermo Dec 2003 B1
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666862 Jain et al. Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685704 Greep Feb 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6733501 Levine May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6755824 Jain et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
6758846 Goble et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6780181 Kroll et al. Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6821273 Mollenauer Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6843789 Goble Jan 2005 B2
6857357 Fujii Feb 2005 B2
6858028 Mulier et al. Feb 2005 B2
D502994 Blake, III Mar 2005 S
6860880 Treat et al. Mar 2005 B2
6878147 Prakash et al. Apr 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6951559 Greep Oct 2005 B1
6953430 Kidooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6974452 Gille et al. Dec 2005 B1
6976492 Ingle et al. Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6989017 Howell et al. Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7025763 Karasawa et al. Apr 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063699 Hess et al. Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083480 Silber Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7108694 Miura et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7115139 McClurken et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147632 Prakash et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7169145 Isaacson et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
D538932 Malik Mar 2007 S
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7204832 Altshuler et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207990 Lands et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
D541611 Aglassinge May 2007 S
D541938 Kerr et al. May 2007 S
7211084 Goble et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
D545432 Watanabe Jun 2007 S
7232440 Dumbauld et al. Jun 2007 B2
D547154 Lee Jul 2007 S
7238184 Megerman et al. Jul 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7288103 Suzuki Oct 2007 B2
7291161 Hooven Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7326202 McGaffigan Feb 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
7347864 Vargas Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7354440 Truckal et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396265 Darley et al. Jul 2008 B2
7396336 Orszulak et al. Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7422592 Morley et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7431721 Paton et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438714 Phan Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
D582038 Swoyer et al. Dec 2008 S
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
7553686 George et al. Jun 2009 B2
7569626 Truckai Aug 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7588565 Marchitto et al. Sep 2009 B2
7594313 Prakash et al. Sep 2009 B2
7594916 Weinberg Sep 2009 B2
7597693 Garrison Oct 2009 B2
7621910 Sugi Nov 2009 B2
7624186 Tanida Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7651493 Arts et al. Jan 2010 B2
7651494 McClurken et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7655007 Baily Feb 2010 B2
7668597 Engmark et al. Feb 2010 B2
7678111 Mulier et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686827 Hushka Mar 2010 B2
7708735 Chapman et al. May 2010 B2
7717115 Barrett et al. May 2010 B2
7717904 Suzuki et al. May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7727231 Swanson Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749217 Podhajsky Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766910 Hixson et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780662 Bahney Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7799028 Schechter et al. Sep 2010 B2
7806892 Makin et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7828798 Buysse et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7839674 Lowrey et al. Nov 2010 B2
7842033 Isaacson et al. Nov 2010 B2
7846158 Podhajsky Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7857812 Dycus et al. Dec 2010 B2
D630324 Reschke Jan 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7896878 Johnson et al. Mar 2011 B2
7898288 Wong Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909823 Moses et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7922718 Moses et al. Apr 2011 B2
7922742 Hillstead et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
7935052 Dumbauld May 2011 B2
7945332 Schechter May 2011 B2
7947041 Tetzlaff et al. May 2011 B2
7949407 Kaplan et al. May 2011 B2
7951149 Carlton May 2011 B2
7951150 Johnson et al. May 2011 B2
7955326 Paul et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955331 Truckai et al. Jun 2011 B2
7955332 Arts et al. Jun 2011 B2
7963965 Buysse et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972331 Hafner Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988507 Darley et al. Aug 2011 B2
7998095 McAuley Aug 2011 B2
8012150 Wham et al. Sep 2011 B2
8016827 Chojin Sep 2011 B2
8034049 Odom et al. Oct 2011 B2
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
8048074 Masuda Nov 2011 B2
8070746 Orton et al. Dec 2011 B2
8070748 Hixson et al. Dec 2011 B2
8075580 Makower Dec 2011 B2
8089417 Popovic et al. Jan 2012 B2
8092451 Schechter et al. Jan 2012 B2
8104956 Blaha Jan 2012 B2
8112871 Brandt et al. Feb 2012 B2
8114122 Nau, Jr. Feb 2012 B2
8123743 Arts et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128625 Odom Mar 2012 B2
8133224 Geiselhart Mar 2012 B2
8133254 Dumbauld et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142473 Cunningham Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147489 Moses et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8162973 Cunningham Apr 2012 B2
8177794 Cabrera et al. May 2012 B2
8181649 Brunner May 2012 B2
8182476 Julian et al. May 2012 B2
8187273 Kerr et al. May 2012 B2
D661394 Romero et al. Jun 2012 S
8192433 Johnson et al. Jun 2012 B2
8192444 Dycus Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197633 Guerra Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8211105 Buysse et al. Jul 2012 B2
8215182 Artale et al. Jul 2012 B2
8216223 Wham et al. Jul 2012 B2
8221416 Townsend Jul 2012 B2
8226650 Kerr Jul 2012 B2
8235992 Guerra et al. Aug 2012 B2
8235993 Hushka et al. Aug 2012 B2
8236025 Hushka et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 Mckenna et al. Aug 2012 B2
8251996 Hushka et al. Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
20020029036 Goble et al. Mar 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020165469 Murakami Nov 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130653 Sixto et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030191396 Sanghvi et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040115296 Duffin Jun 2004 A1
20040176779 Casutt et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260281 Baxter et al. Dec 2004 A1
20050004569 Witt et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050090817 Phan Apr 2005 A1
20050096645 Wellman et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050222560 Kimura et al. Oct 2005 A1
20050254081 Ryu et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060052779 Hammill Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060111711 Goble May 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060224053 Black et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070027447 Theroux et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070118115 Artale et al. May 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070198011 Sugita Aug 2007 A1
20070225695 Mayer et al. Sep 2007 A1
20070260238 Guerra Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080125797 Kelleher May 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080172051 Masuda et al. Jul 2008 A1
20080215050 Bakos Sep 2008 A1
20080234672 Bastian Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080243158 Morgan Oct 2008 A1
20080249523 McPherson et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080271360 Barfield Nov 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080319292 Say et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090036881 Artale et al. Feb 2009 A1
20090036899 Carlton et al. Feb 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090138003 Deville et al. May 2009 A1
20090138006 Bales et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090171354 Deville et al. Jul 2009 A1
20090177094 Brown et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
20090198233 Chojin Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090204137 Maxwell Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090209957 Schmaltz et al. Aug 2009 A1
20090209960 Chojin Aug 2009 A1
20090234354 Johnson et al. Sep 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248013 Falkenstein et al. Oct 2009 A1
20090248019 Falkenstein et al. Oct 2009 A1
20090248020 Falkenstein et al. Oct 2009 A1
20090248021 Mckenna Oct 2009 A1
20090248022 Falkenstein et al. Oct 2009 A1
20090248050 Hirai Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090254081 Allison et al. Oct 2009 A1
20090261804 Mckenna et al. Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090275865 Zhao et al. Nov 2009 A1
20090292282 Dycus Nov 2009 A9
20090299364 Batchelor et al. Dec 2009 A1
20090312273 De La Torre Dec 2009 A1
20090318912 Mayer et al. Dec 2009 A1
20100016857 McKenna et al. Jan 2010 A1
20100023009 Moses et al. Jan 2010 A1
20100036375 Regadas Feb 2010 A1
20100042143 Cunningham Feb 2010 A1
20100049187 Carlton et al. Feb 2010 A1
20100049194 Hart et al. Feb 2010 A1
20100057078 Arts et al. Mar 2010 A1
20100057081 Hanna Mar 2010 A1
20100057082 Hanna Mar 2010 A1
20100057083 Hanna Mar 2010 A1
20100057084 Hanna Mar 2010 A1
20100063500 Muszala Mar 2010 A1
20100069903 Allen, IV et al. Mar 2010 A1
20100069904 Cunningham Mar 2010 A1
20100069953 Cunningham et al. Mar 2010 A1
20100076427 Heard Mar 2010 A1
20100076430 Romero Mar 2010 A1
20100076431 Allen, IV Mar 2010 A1
20100076432 Horner Mar 2010 A1
20100087816 Roy Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094287 Cunningham et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100100122 Hinton Apr 2010 A1
20100130971 Baily May 2010 A1
20100130977 Garrison et al. May 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100179543 Johnson et al. Jul 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100179546 Cunningham Jul 2010 A1
20100179547 Cunningham et al. Jul 2010 A1
20100198218 Manzo Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100204697 Dumbauld et al. Aug 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100249769 Nau, Jr. et al. Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274244 Heard Oct 2010 A1
20100274265 Wingardner et al. Oct 2010 A1
20100280511 Rachlin et al. Nov 2010 A1
20100292691 Brogna Nov 2010 A1
20100305558 Kimura et al. Dec 2010 A1
20100307934 Chowaniec et al. Dec 2010 A1
20100312235 Bahney Dec 2010 A1
20100331742 Masuda Dec 2010 A1
20100331839 Schechter et al. Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110015632 Artale Jan 2011 A1
20110018164 Sartor et al. Jan 2011 A1
20110034918 Reschke Feb 2011 A1
20110046623 Reschke Feb 2011 A1
20110054467 Mueller et al. Mar 2011 A1
20110054468 Dycus Mar 2011 A1
20110054469 Kappus et al. Mar 2011 A1
20110054471 Gerhardt et al. Mar 2011 A1
20110054472 Romero Mar 2011 A1
20110060333 Mueller Mar 2011 A1
20110060334 Brandt et al. Mar 2011 A1
20110060335 Harper et al. Mar 2011 A1
20110071523 Dickhans Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110072638 Brandt et al. Mar 2011 A1
20110073594 Bonn Mar 2011 A1
20110077637 Brannan Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110077649 Kingsley Mar 2011 A1
20110082457 Kerr et al. Apr 2011 A1
20110082494 Kerr et al. Apr 2011 A1
20110087221 Siebrecht et al. Apr 2011 A1
20110098689 Nau, Jr. et al. Apr 2011 A1
20110106079 Garrison et al. May 2011 A1
20110118736 Harper et al. May 2011 A1
20110178519 Couture et al. Jul 2011 A1
20110184405 Mueller Jul 2011 A1
20110190653 Harper et al. Aug 2011 A1
20110190765 Chojin Aug 2011 A1
20110193608 Krapohl Aug 2011 A1
20110218530 Reschke Sep 2011 A1
20110230880 Chojin et al. Sep 2011 A1
20110238066 Olson Sep 2011 A1
20110238067 Moses et al. Sep 2011 A1
20110251605 Hoarau et al. Oct 2011 A1
20110251606 Kerr Oct 2011 A1
20110251611 Horner et al. Oct 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110257681 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110270250 Horner et al. Nov 2011 A1
20110270251 Horner et al. Nov 2011 A1
20110270252 Horner et al. Nov 2011 A1
20110276048 Kerr et al. Nov 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110295251 Garrison Dec 2011 A1
20110295313 Kerr Dec 2011 A1
20110301592 Kerr et al. Dec 2011 A1
20110301599 Roy et al. Dec 2011 A1
20110301600 Garrison et al. Dec 2011 A1
20110301601 Garrison et al. Dec 2011 A1
20110301602 Roy et al. Dec 2011 A1
20110301603 Kerr et al. Dec 2011 A1
20110301604 Horner et al. Dec 2011 A1
20110301605 Horner Dec 2011 A1
20110301606 Kerr Dec 2011 A1
20110301637 Kerr et al. Dec 2011 A1
20110319886 Chojin et al. Dec 2011 A1
20110319888 Mueller et al. Dec 2011 A1
20120004658 Chojin Jan 2012 A1
20120010614 Couture Jan 2012 A1
20120022532 Garrison Jan 2012 A1
20120029515 Couture Feb 2012 A1
20120041438 Nau, Jr. et al. Feb 2012 A1
20120046659 Mueller Feb 2012 A1
20120046660 Nau, Jr. Feb 2012 A1
20120046662 Gilbert Feb 2012 A1
20120059371 Anderson et al. Mar 2012 A1
20120059372 Johnson Mar 2012 A1
20120059374 Johnson et al. Mar 2012 A1
20120059375 Couture et al. Mar 2012 A1
20120059408 Mueller Mar 2012 A1
20120059409 Reschke et al. Mar 2012 A1
20120078250 Orton et al. Mar 2012 A1
20120083785 Roy et al. Apr 2012 A1
20120083786 Artale et al. Apr 2012 A1
20120083827 Artale et al. Apr 2012 A1
20120095456 Schechter et al. Apr 2012 A1
20120095460 Rooks et al. Apr 2012 A1
20120109187 Gerhardt, Jr. et al. May 2012 A1
20120118507 Brandt et al. May 2012 A1
20120123402 Chernov et al. May 2012 A1
20120123404 Craig May 2012 A1
20120123410 Craig May 2012 A1
20120123413 Chernov et al. May 2012 A1
20120130367 Garrison May 2012 A1
20120136353 Romero May 2012 A1
20120136354 Rupp May 2012 A1
20120143185 Nau, Jr. Jun 2012 A1
20120165797 Cunningham Jun 2012 A1
20120165818 Odom Jun 2012 A1
20120172868 Twomey et al. Jul 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120172925 Dumbauld et al. Jul 2012 A1
20120184989 Twomey Jul 2012 A1
20120184990 Twomey Jul 2012 A1
20120202179 Fedotov et al. Aug 2012 A1
20120209263 Sharp et al. Aug 2012 A1
20120215219 Roy et al. Aug 2012 A1
20120215242 Reschke et al. Aug 2012 A1
Foreign Referenced Citations (281)
Number Date Country
2104423 Feb 1994 CA
2520413 Mar 2007 CA
2590520 Nov 2007 CA
201299462 Sep 2009 CN
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jun 1986 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19946527 Jul 2001 DE
20121161 Apr 2002 DE
10045375 Oct 2002 DE
202007009165 Aug 2007 DE
202007009317 Aug 2007 DE
202007009318 Aug 2007 DE
10031773 Nov 2007 DE
202007016233 Jan 2008 DE
19738457 Jan 2009 DE
102004026179 Jan 2009 DE
102008018406 Jul 2009 DE
0467501 Jan 1992 EP
0509670 Dec 1992 EP
0306123 Aug 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589555 Mar 1994 EP
0589453 Apr 1994 EP
0648475 Apr 1995 EP
0624348 Jun 1995 EP
0364216 Jan 1996 EP
0518230 May 1996 EP
0517243 Sep 1997 EP
0541930 Mar 1998 EP
0878169 Nov 1998 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0950378 Oct 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1 159 926 Dec 2001 EP
1177771 Feb 2002 EP
1278007 Jan 2003 EP
0717966 Apr 2003 EP
1301135 Apr 2003 EP
0887046 Jul 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
0913126 Oct 2004 EP
1472984 Nov 2004 EP
0754437 Dec 2004 EP
0888747 Dec 2004 EP
1025807 Dec 2004 EP
0774232 Jan 2005 EP
0853922 Feb 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1201192 Feb 2006 EP
1034746 Mar 2006 EP
1632192 Mar 2006 EP
1186274 Apr 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
0875209 May 2006 EP
1685806 Aug 2006 EP
1707143 Oct 2006 EP
1545360 Mar 2007 EP
1767163 Mar 2007 EP
1767164 Mar 2007 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1772109 Apr 2007 EP
1785097 May 2007 EP
1785098 May 2007 EP
1785101 May 2007 EP
1787597 May 2007 EP
1810625 Jul 2007 EP
1810628 Jul 2007 EP
1842500 Oct 2007 EP
1878400 Jan 2008 EP
1894535 Mar 2008 EP
1929970 Jun 2008 EP
1946715 Jul 2008 EP
1958583 Aug 2008 EP
1990019 Nov 2008 EP
1994904 Nov 2008 EP
1683496 Dec 2008 EP
1997438 Dec 2008 EP
1997439 Dec 2008 EP
1527744 Feb 2009 EP
2103268 Sep 2009 EP
2105104 Sep 2009 EP
2147649 Jan 2010 EP
2153791 Feb 2010 EP
2206474 Jul 2010 EP
1920725 Oct 2010 EP
2243439 Oct 2010 EP
2294998 Mar 2011 EP
2301467 Mar 2011 EP
1628586 Jul 2011 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2213416 Aug 1989 GB
2214430 Sep 1989 GB
61-501068 Sep 1984 JP
10-24051 Jan 1989 JP
11-47150 Jun 1989 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
0006030945 Feb 1994 JP
6-121797 May 1994 JP
6-285078 Oct 1994 JP
6-511401 Dec 1994 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
8-56955 May 1996 JP
08252263 Oct 1996 JP
8-289895 Nov 1996 JP
8-317934 Dec 1996 JP
8-317936 Dec 1996 JP
9-10223 Jan 1997 JP
9-122138 May 1997 JP
0010000195 Jan 1998 JP
10-155798 Jun 1998 JP
11-070124 Mar 1999 JP
11-169381 Jun 1999 JP
11-192238 Jul 1999 JP
11244298 Sep 1999 JP
2000-102545 Apr 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001-03400 Apr 2001 JP
2001128990 May 2001 JP
2001-190564 Jul 2001 JP
2002-136525 May 2002 JP
2002-528166 Sep 2002 JP
2003-175052 Jun 2003 JP
2003245285 Sep 2003 JP
2004-517668 Jun 2004 JP
2004-528869 Sep 2004 JP
2005-253789 Sep 2005 JP
2006-015078 Jan 2006 JP
2006-501939 Jan 2006 JP
2006-095316 Apr 2006 JP
2011125195 Jun 2011 JP
401367 Oct 1973 SU
8900757 Jan 1989 WO
9204873 Apr 1992 WO
9206642 Apr 1992 WO
9319681 Oct 1993 WO
9321845 Nov 1993 WO
9400059 Jan 1994 WO
9408524 Apr 1994 WO
9420025 Sep 1994 WO
9502369 Jan 1995 WO
9507662 Mar 1995 WO
9515124 Jun 1995 WO
9520360 Aug 1995 WO
9520921 Aug 1995 WO
9605776 Feb 1996 WO
9611635 Apr 1996 WO
9622056 Jul 1996 WO
9613218 Sep 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9710764 Mar 1997 WO
9718768 May 1997 WO
9724073 Jul 1997 WO
9724993 Jul 1997 WO
9814124 Apr 1998 WO
9827880 Jul 1998 WO
9831290 Jul 1998 WO
9843264 Oct 1998 WO
9903407 Jan 1999 WO
9903408 Jan 1999 WO
9903409 Jan 1999 WO
9903414 Jan 1999 WO
9912488 Mar 1999 WO
9923933 May 1999 WO
9923959 May 1999 WO
9925261 May 1999 WO
9940857 Aug 1999 WO
9940861 Aug 1999 WO
9951158 Oct 1999 WO
9966850 Dec 1999 WO
0024322 May 2000 WO
0024330 May 2000 WO
0024331 May 2000 WO
0033753 Jun 2000 WO
0036986 Jun 2000 WO
0041638 Jul 2000 WO
0047124 Aug 2000 WO
0053112 Sep 2000 WO
0059392 Oct 2000 WO
0101847 Jan 2001 WO
0100114 Jan 2001 WO
0117448 Mar 2001 WO
0115614 Mar 2001 WO
0154604 Aug 2001 WO
0166025 Sep 2001 WO
0207627 Jan 2002 WO
02058544 Aug 2002 WO
02067798 Sep 2002 WO
02045589 Sep 2002 WO
02080783 Oct 2002 WO
02080784 Oct 2002 WO
02080785 Oct 2002 WO
02080786 Oct 2002 WO
02080793 Oct 2002 WO
02080794 Oct 2002 WO
02080795 Oct 2002 WO
02080796 Oct 2002 WO
02080797 Oct 2002 WO
02080798 Oct 2002 WO
02080799 Oct 2002 WO
02081170 Oct 2002 WO
02085218 Oct 2002 WO
02094746 Nov 2002 WO
03061500 Jul 2003 WO
03068046 Aug 2003 WO
03096880 Nov 2003 WO
03101311 Dec 2003 WO
03090630 Apr 2004 WO
2004028585 Apr 2004 WO
2004032776 Apr 2004 WO
2004032777 Apr 2004 WO
2004052221 Jun 2004 WO
2004073488 Sep 2004 WO
2004073490 Sep 2004 WO
2004073753 Sep 2004 WO
2004082495 Sep 2004 WO
2004083797 Sep 2004 WO
2004098383 Nov 2004 WO
2004103156 Dec 2004 WO
2005004734 Jan 2005 WO
2005004735 Jan 2005 WO
2005009255 Feb 2005 WO
2005011049 Feb 2005 WO
2005030071 Apr 2005 WO
2005048809 Jun 2005 WO
2005050151 Jun 2005 WO
2006021269 Mar 2006 WO
2005110264 Apr 2006 WO
2008008457 Jan 2008 WO
2008040483 Apr 2008 WO
2008045348 Apr 2008 WO
2008045350 Apr 2008 WO
2008112147 Sep 2008 WO
2009005850 Jan 2009 WO
2009032623 Mar 2009 WO
2009039179 Mar 2009 WO
2009039510 Mar 2009 WO
2009124097 Oct 2009 WO
2010104753 Sep 2010 WO
Non-Patent Literature Citations (141)
Entry
U.S. Appl. No. 08/926,869, James G. Chandler.
U.S. Appl. No. 09/177,950, Randel A. Frazier.
U.S. Appl. No. 09/387,883, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, Paul R. Sremeich.
U.S. Appl. No. 13/050,182, Glenn A. Horner.
U.S. Appl. No. 13/072,945, Patrick L. Dumbauld.
U.S. Appl. No. 13/080,383, David M. Garrison.
U.S. Appl. No. 13/085,144, Keir Hart.
U.S. Appl. No. 13/091,331, Jeffrey R. Townsend.
U.S. Appl. No. 13/102,573, John R. Twomey.
U.S. Appl. No. 13/102,604, Paul E. Ourada.
U.S. Appl. No. 13/108,093, Boris Chernov.
U.S. Appl. No. 13/108,129, Boris Chernov.
U.S. Appl. No. 13/108,152, Boris Chernov.
U.S. Appl. No. 13/108,177, Boris Chernov.
U.S. Appl. No. 13/108,196, Boris Chernov.
U.S. Appl. No. 13/108,441, Boris Chernov.
U.S. Appl. No. 13/108,468, Boris Chernov.
U.S. Appl. No. 13/111,642, John R. Twomey.
U.S. Appl. No. 13/111,678, Nikolay Kharin.
U.S. Appl. No. 13/113,231, David M. Garrison.
U.S. Appl. No. 13/157,047, John R. Twomey.
U.S. Appl. No. 13/162,814, Barbara R. Tyrrell.
U.S. Appl. No. 13/166,477, Daniel A. Joseph.
U.S. Appl. No. 13/166,497, Daniel A. Joseph.
U.S. Appl. No. 13/179,919, Russell D. Hempstead.
U.S. Appl. No. 13/179,960, Boris Chernov.
U.S. Appl. No. 13/179,975, Grant T. Sims.
U.S. Appl. No. 13/180,018, Chase Collings.
U.S. Appl. No. 13/183,856, John R. Twomey.
U.S. Appl. No. 13/185,593, James D. Allen, IV.
U.S. Appl. No. 13/204,841, Edward J. Chojin.
U.S. Appl. No. 13/205,999, Jeffrey R. Unger.
U.S. Appl. No. 13/212,297, Allan J. Evans.
U.S. Appl. No. 13/212,308, Allan J. Evans.
U.S. Appl. No. 13/212,329, Allan J. Evans.
U.S. Appl. No. 13/212,343, Duane E. Kerr.
U.S. Appl. No. 13/223,521, John R. Twomey.
U.S. Appl. No. 13/227,220, James D. Allen, IV.
U.S. Appl. No. 13/228,742, Duane E. Kerr.
U.S. Appl. No. 13/231,643, Keir Hart.
U.S. Appl. No. 13/234,357, James D. Allen, IV.
U.S. Appl. No. 13/236,168, James D. Allen, IV.
U.S. Appl. No. 13/236,271, Monte S. Fry.
U.S. Appl. No. 13/243,628, William Ross Whitney.
U.S. Appl. No. 13/247,778, John R. Twomey.
U.S. Appl. No. 13/247,795, John R. Twomey.
U.S. Appl. No. 13/248,976, James D. Allen, IV.
U.S. Appl. No. 13/249,013, Jeffrey R. Unger.
U.S. Appl. No. 13/249,024, John R. Twomey.
U.S. Appl. No. 13/251,380, Duane E. Kerr.
U.S. Appl. No. 13/277,373, Glenn A. Horner.
U.S. Appl. No. 13/277,926, David M. Garrison.
U.S. Appl. No. 13/277,962, David M. Garrison.
U.S. Appl. No. 13/293,754, Jeffrey M. Roy.
U.S. Appl. No. 13/306,523, David M. Garrison.
U.S. Appl. No. 13/306,553, Duane E. Kerr.
U.S. Appl. No. 13/308,104, John R. Twomey.
U.S. Appl. No. 13/312,172, Robert J. Behnke, II.
U.S. Appl. No. 13/324,863, William H. Nau, Jr.
U.S. Appl. No. 13/344,729, James D. Allen, IV.
U.S. Appl. No. 13/355,829, John R.Twomey.
U.S. Appl. No. 13/357,979, David M. Garrison.
U.S. Appl. No. 13/358,136, James D. Allen, IV.
U.S. Appl. No. 13/360,925, James H. Orszulak.
U.S. Appl. No. 13/400,290, Eric R. Larson.
U.S. Appl. No. 13/404,435, Kim V. Brandt.
U.S. Appl. No. 13/404,476, Kim V. Brandt.
U.S. Appl. No. 13/412,879, David M. Garrison.
U.S. Appl. No. 13/412,897, Joanna Ackley.
U.S. Appl. No. 13/421,373, John R. Twomey.
U.S. Appl. No. 13/430,325, William H. Nau, Jr.
U.S. Appl. No. 13/433,924, Keir Hart.
U.S. Appl. No. 13/448,577, David M. Garrison.
U.S. Appl. No. 13/460,455, Luke Waaler.
U.S. Appl. No. 13/461,335, James D. Allen, IV.
U.S. Appl. No. 13/461,378, James D. Allen, IV.
U.S. Appl. No. 13/461,397, James R. Unger.
U.S. Appl. No. 13/461,410, James R. Twomey.
U.S. Appl. No. 13/464,569, Duane E. Kerr.
U.S. Appl. No. 13/466,274, Stephen M. Kendrick.
U.S. Appl. No. 13/467,767, Duane E. Kerr.
U.S. Appl. No. 13/470,543, Sean T. Dycus.
U.S. Appl. No. 13/470,775, James D. Allen, IV.
U.S. Appl. No. 13/470,797, John J. Kappus.
U.S. Appl. No. 13/482,589, Eric R. Larson.
U.S. Appl. No. 13/483,733, Dennis W. Butcher.
U.S. Appl. No. 13/488,093, Kristin D. Johnson.
U.S. Appl. No. 13/491,853, Jessica E. Olson.
U.S. Appl. No. 13/537,517, David N. Heard.
U.S. Appl. No. 13/537,577, Tony Moua.
U.S. Appl. No. 13/550,322, John J. Kappus.
U.S. Appl. No. 13/571,055, Paul Guerra.
U.S. Appl. No. 13/571,821, Joseph D. Bucciaglia.
U.S. Appl. No. 13/584,194, Sean T. Dycus.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967, British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71 9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Related Publications (1)
Number Date Country
20120303023 A1 Nov 2012 US
Continuations (1)
Number Date Country
Parent 12499553 Jul 2009 US
Child 13571821 US