1. Technical Field
The present disclosure relates to an electrosurgical jaws and, more particularly, to an elongated endoscopic electrosurgical forceps with an offset knife for sealing and/or cutting tissue.
2. Background of Related Art
Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopic or laparoscopic instruments for remotely accessing organs through smaller, puncture-like incisions or natural orifices. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.
Typically, after a vessel or tissue is sealed, the surgeon advances a knife to sever the sealed tissue disposed between the opposing jaw members. In some instances, the knife blade is difficult to advance through the knife channel defined between jaw members or is subject to wear and tear over repeated use due to the relative position of the knife blade through the knife channel (contacting the sides of the knife channel).
The present disclosure relates to an endoscopic forceps that includes a housing having a shaft attached thereto with a longitudinal axis defined therethrough. An end effector assembly is disposed at a distal end thereof and includes first and second jaw members disposed in opposing relation relative to one another and moveable from a first, open position to a second, closed position for grasping tissue therebetween. Each of the jaw members includes a proximal flange adapted to communicate with a drive assembly for moving the jaw members between the first and second positions. One or both of the of the jaw members has a curved knife channel (or a portion, e.g., distal portion, of the knife channel is curved) defined therein having a proximal end that is offset from the longitudinal axis defined through the shaft. A knife guide is assembled to an outer surface of one of the proximal flanges of the jaw members on the same side as the proximal end of the knife channel and defines a knife path therein configured to guide a knife into the knife channel for translation therethrough. One or more handles may be included that operably couple to the drive assembly for moving the jaw members between the first and second positions.
In one embodiment, the endoscopic forceps is an electrosurgical instrument and at least one of the jaw members is adapted to connect to an electrosurgical energy source to communicate energy to tissue disposed between the jaw members.
In another embodiment, the proximal flanges of the end effector and the knife guide include elongated slots defined therethrough that cooperate with a drive pin operably connected to the drive assembly to move the jaw members from the first to second positions. The elongated slots of the proximal flanges may be cam slots that operably engage the drive pin and the elongated slot of the knife guide may be a pass-through or non-engaging slot.
In yet another embodiment, the offset knife channel and the disposition of the knife guide relative to the longitudinal axis facilitate substantially straight extension of the knife through the knife channel along a substantial length of the knife channel. This configuration helps prevent binding of the knife during translation through the knife channel. The proximal end of the knife channel may be offset a distance “X” relative to the longitudinal axis “A” defined through the forceps, wherein “X” is in the range of about 0.010 inches to about 0.040 inches. The knife channel may be defined within both the first and second jaw members and the knife guide is configured to preload the jaw members during assembly for ensuring proper alignment of the knife channels to facilitate translation of the knife therethrough.
In still yet another embodiment, the knife guide includes one or more channels defined therein that are configured to guide a corresponding number of electrical leads to the jaw member(s) for supplying electrosurgical energy thereto.
The present disclosure also relates to an endoscopic forceps that includes a housing having a shaft attached thereto with a longitudinal axis defined therethrough and an end effector assembly disposed at a distal end thereof. The end effector assembly includes first and second jaw members disposed in opposing relation relative to one another and moveable from a first, open configuration to a second, closed configuration for grasping tissue therebetween. Each of the jaw members includes a proximal flange adapted to communicate with a drive assembly for moving the jaw members between the first and second positions. One or both of the of the jaw members has a knife channel defined therein having a proximal end that is offset from the longitudinal axis defined through the shaft. A knife guide is assembled to an outer surface of one of the proximal flanges of the jaw members on the same side as the proximal end of the knife channel and defines a knife path therein configured to guide a knife into the knife channel for translation therethrough. The knife guide includes a blade stop at a distal end thereof that is positionable from a first position that interferes with or obstructs the knife path to prevent distal translation of the knife when the jaw members are disposed in an first, open configuration to a second position that allows distal translation of the knife when the jaw members are disposed in the second, closed configuration. The blade stop may be pivotably engaged to the knife guide and biased to obstruct the knife path when the jaw members are disposed in the first, open configuration.
The forceps may include one or more handles that operably couple to a drive assembly for moving the jaw members between the first and second configurations. Moreover, the forceps may be an electrosurgical forceps wherein one or both of the jaw members are adapted to connect to an electrosurgical energy source to communicate energy to tissue disposed between the jaw members.
The proximal flanges of the end effector and the knife guide may include elongated slots defined therethrough that cooperate with a drive pin operably connected to the drive assembly to move the jaw members from the first to second configurations. The elongated slots of the proximal flanges may be cam slots that operably engage the drive pin and the elongated slot of the knife guide may be a pass-through or non-engaging slot.
In another embodiment, the offset knife channel and the disposition of the knife guide relative to the longitudinal axis may be configured to facilitate substantially straight extension of the knife through the knife channel along a substantial length of the knife channel. The proximal end of the knife channel may be offset a distance “X” relative to the longitudinal axis “A” defined through the forceps, wherein “X” is in the range of about 0.010 inches to about 0.040 inches.
In yet another embodiment, the knife guide includes one or more channels defined therein that are configured to guide a corresponding number of electrical leads to the jaw member for supplying electrosurgical energy thereto.
Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
Turning now to
Forceps 10 includes a shaft 12 that has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 that mechanically engages the housing 20. Details of how the shaft 12 connects to the end effector assembly 100 are described in more detail below. The proximal end 14 of shaft 12 is received within the housing 20 and the connections relating thereto are also described in detail below. In the drawings and in the descriptions that follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 that is closer to the user, while the term “distal” will refer to the end that is further from the user.
Forceps 10 also includes an electrosurgical cable 310 that may connect the forceps 10 to a source of electrosurgical energy, e.g., a generator. Generators such as those sold by Covidien, located in Boulder, Colo. may be used as a source of both bipolar electrosurgical energy for sealing vessel and vascular tissues as well as monopolar electrosurgical energy which is typically employed to coagulate or cauterize tissue. It is envisioned that the generator may include various safety and performance features including isolated output, impedance control and/or independent activation of accessories.
Handle assembly 30 includes two movable handles 30a and 30b disposed on opposite sides of housing 20. Handles 30a and 30b are movable relative to one another to actuate the end effector assembly 100 as explained in more detail below with respect to the operation of the forceps 10.
Rotating assembly 80 is mechanically coupled to housing 20 and is rotatable approximately 90 degrees in either direction about a longitudinal axis “A.” Rotating assembly 80, when rotated, rotates shaft 12, which, in turn, rotates end effector assembly 100. Such a configuration allows end effector assembly 100 to be rotated approximately 90 degrees in either direction with respect to housing 20.
As mentioned above, end effector assembly 100 is attached at the distal end 16 of shaft 12 and includes a pair of opposing jaw members 110 and 120 (see
Turning now to the more detailed features of the present disclosure as described with respect to
As best illustrated in
As best seen in
Movable handles 30a and 30b are designed to provide a distinct lever-like mechanical advantage over conventional handle assemblies. The enhanced mechanical advantage for actuating the jaw members 110 and 120 is gained by virtue of the unique position and combination of several inter-cooperating elements which reduce the overall user forces necessary to obtain and maintain the jaw members 110 and 120 under ideal operating pressures of about 3 kg/cm2 to about 16 kg/cm2. Details relating to the working components the handle assembly and drive assembly are disclosed in above-mentioned U.S. patent application Ser. No. 11/540,335. In other words, it is envisioned that the combination of these elements and their positions relative to one another enables the user to gain lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to effect a proper and effective tissue seal.
As shown best in
More particularly, jaw members 110 and 120 include proximal flanges 113 and 123, respectively, which each include an elongated angled slot 181a and 181b, respectively, defined therethrough. Drive pin 180 mounts jaw members 110 and 120 and knife guide 133 to the end of a rotating shaft 18 and within a cavity 17′ defined at the distal ends 17a and 17b of drive actuator or sleeve 17 (See
Upon actuation of the drive assembly 60, the drive sleeve 17 reciprocates which, in turn, causes the drive pin 180 to ride within slots 181a and 181b to open and close the jaw members 110 and 120 as desired and similarly causes the drive pin 180 to ride within slot 181c of knife guide 133. The jaw members 110 and 120, in turn, pivot about pivot pin 185 disposed through respective pivot holes 186a and 186b defined within flanges 113 and 123, the jaw members 110 and 120 and hole 186c disposed within knife guide 133. Upon actuation, knife guide 133 remains oriented in alignment with the shaft 12 as the jaws move about pivot pin 185 (See
Flanges 113 and 123 of jaw members 110 and 120, respectively, are positioned in an abutting relationship with one another and knife guide 133 is positioned adjacent to flanges 113 and 123. Flanges 113, 123 and knife guide 133 are assembled and engaged via pivot pin 185 disposed through apertures 186a, 186b, and 186c, respectively. Further, flanges 113, 123 are pivotable about one another via drive pin 180 disposed through slots 181a and 181b and of flanges 113, 123, respectively. A knife path 138 may be defined between flange 113 and knife guide 133, as shown in
Alternatively, the orientation of flanges 113 and 123 may be reversed, with knife path 138 being defined between flange 123 and blade guide 133. In contrast to prior known designs, the abutting relationship between flanges 113 and 123 (in either orientation) strengthens the jaw flanges 113 and 123 since a blade path or blade channel does not need to be defined therebetween but, rather, is defined on an exterior side of one of the flanges 113 and 123. Thus, the knife 190 travels between the blade guide 133 and the flanges 113 and 123 and not between flanges. By manufacturing the knife path 138 on either side of the flanges 113 and 123, jaw splay may also be more easily controlled and tighter tolerances may be employed during the manufacturing process, thereby allowing tighter tolerances on certain features of the jaw member 110 and 120 resulting in better overall performance.
For example, the knife channels 115a and 115b defined within the jaw members 110 and 120, respectively, may be more precisely aligned with less splay between the jaw members 110 and 120, thereby facilitating knife blade 190 translation. Moreover, the strength of the flanges 113 and 123 is enhanced as well as the union therebetween, e.g., flat-on-flat abutting flange surfaces have more surface contact making the union therebetween stronger. The knife guide 133 may also be configured to pre-load jaw members 110 and 120 to help ensure proper alignment of knife channel halves 115a and 115b upon closing of the jaw members 110 and 120 as explained in more detail below.
As best shown in
When handles 30a and 30b are squeezed toward the housing 20, drive sleeve 17 and drive pin 180 are pulled proximally to close the jaw members 110 and 120, which also pivots the knife guide 133 so that the blade stop 135 no longer obstructs or interferes with the knife path 138. Thus, in this embodiment, the knife guide 133, by virtue of the blade stop 135, prevents distal advancement of knife blade 190 when jaw members 110 and 120 are in the first, open position and permits distal advancement of knife blade 190 when jaw members 110 and 120 are in the second, closed position.
Alternatively, a hook (not shown) may be disposed on either of flanges 113 or 123. The hook would operate in substantially the same manner as the blade stop 135 disposed on the blade guide 133 in the embodiment discussed above. Accordingly, as jaw members 110, 120 are opened, the hook on flange 113 or 123 is pivoted into the path of knife blade 190, thereby preventing distal translation of knife blade 190. When handles 30a and 30b are squeezed toward the housing 20, drive sleeve 17 and drive pin 180 are pulled proximally to close the jaw members 110 and 120. The pulling of drive pin 180 also pivots flanges 113 and 123, thereby closing the jaw members 110 and 120 and as a result, the hook is pivoted out of the path of knife blade 190.
As best shown in
The electrically conductive surface or sealing plate 112 and the outer housing 114, when assembled, form longitudinally-oriented knife channel 115a defined therethrough for reciprocation of the knife blade 190. It is envisioned that the knife channel 115a cooperates with corresponding knife channel 115b defined in jaw member 120 to facilitate longitudinal extension of the knife blade 190 along a preferred cutting plane to effectively and accurately separate the tissue along the formed tissue seal. As discussed above, when knife blade 190 is deployed, at least a portion of knife blade 190 advances through knife path 138 and into knife channels 115a and 115b. In addition to the blade stop 135, handle 30a may includes a lockout flange (not shown) which prevents actuation of the knife assembly 70 when the handle 30a is open thus preventing accidental or premature activation of the knife blade 190 through the tissue. A more detailed discussion of the lockout flange is discussed in above-mentioned U.S. patent application Ser. No. 11/540,335.
As explained above and as illustrated in
The offset orientation of the knife blade 190 (by virtue or the knife guide 133 being assembled on one side of the flanges 113 and 123 allows the knife blade to enter the knife channel 115 in a substantially straight orientation thereby facilitating separation of tissue. Moreover, the knife blade 190 travels in a substantially straight manner through most of the knife channel 115 and is only forced to bend around the knife channel 115 towards a distal end of the jaw members 110 and 120. Further, the offset orientation of the knife channel, e.g., knife channel 115b, and the disposition of the knife blade 190 traveling through the knife guide 133 also enhances the cutting effect and reduces the chances of the knife blade 190 binding during translation (extension or retraction).
As mentioned above, when the jaw members 110 and 120 are closed about tissue, knife channels 115a and 115b form a complete knife channel 115 to allow longitudinal extension of the knife blade 190, from the knife path 138, in a distal fashion to sever tissue along a tissue seal. Knife channel 115 may be completely disposed in one of the two jaw members, e.g., jaw member 120, depending upon a particular purpose. It is also envisioned that jaw member 120 may be assembled in a similar manner as described above with respect to jaw member 110.
Referring now to
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation application of U.S. patent application Ser. No. 13/571,821, filed on Aug. 10, 2012, now U.S. Pat. No. 8,523,898, which is a continuation application of U.S. application Ser. No. 12/499,553, filed on Jul. 8, 2009. Now U.S. Pat. No. 8,246,618, the entire contents of each of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
1822330 | Ainslie | Sep 1931 | A |
1852542 | Sovatkin | Apr 1932 | A |
1908201 | Welch et al. | May 1933 | A |
1918889 | Bacon | Jul 1933 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2054149 | Wappler | Sep 1936 | A |
2113246 | Wappler | May 1937 | A |
2141936 | Schmitt | Dec 1938 | A |
2176479 | Willis | Oct 1939 | A |
2245030 | Gottesfeld et al. | Jun 1941 | A |
2279753 | Knopp | Apr 1942 | A |
2305156 | Grubel | Dec 1942 | A |
2327353 | Karle | Aug 1943 | A |
2632661 | Cristofv | Mar 1953 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
2824915 | Buturuga | Feb 1958 | A |
3073311 | Tibbs et al. | Jan 1963 | A |
3100489 | Bagley | Aug 1963 | A |
3204807 | Ramsing | Sep 1965 | A |
3372288 | Wigington | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3561448 | Peternel | Feb 1971 | A |
3643663 | Sutter | Feb 1972 | A |
3648001 | Anderson et al. | Mar 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3678229 | Osika | Jul 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
3779918 | Ikeda et al. | Dec 1973 | A |
3798688 | Wasson | Mar 1974 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3839614 | Saganowski et al. | Oct 1974 | A |
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5568859 | Levy et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591181 | Stone et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5624281 | Christensson | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5637111 | Sutcu et al. | Jun 1997 | A |
5638827 | Palmer et al. | Jun 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
5908420 | Parins et al. | Jun 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
RE36795 | Rydell | Jul 2000 | E |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6385265 | Duffy et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6440130 | Mulier et al. | Aug 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458129 | Scarfi | Oct 2002 | B2 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6471696 | Berube et al. | Oct 2002 | B1 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514215 | Ouchi | Feb 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6517539 | Smith et al. | Feb 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6540745 | Fairbourn et al. | Apr 2003 | B1 |
6545239 | Spedale et al. | Apr 2003 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
6951560 | Kidooka | Oct 2005 | B1 |
D525361 | Hushka | Jul 2006 | S |
7083618 | Couture et al. | Aug 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7131970 | Moses | Nov 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
7422592 | Morley | Sep 2008 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7651493 | Arts et al. | Jan 2010 | B2 |
7651494 | McClurken et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7655007 | Baily | Feb 2010 | B2 |
7668597 | Engmark et al. | Feb 2010 | B2 |
7678111 | Mulier et al. | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686827 | Hushka | Mar 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7717115 | Barrett et al. | May 2010 | B2 |
7717904 | Suzuki et al. | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7727231 | Swanson | Jun 2010 | B2 |
7731717 | Odom et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749217 | Podhajsky | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7753909 | Chapman et al. | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780662 | Bahney | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7799028 | Schechter et al. | Sep 2010 | B2 |
7806892 | Makin et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7828798 | Buysse et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7837685 | Weinberg et al. | Nov 2010 | B2 |
7839674 | Lowrey et al. | Nov 2010 | B2 |
20030109875 | Tetzlaff | Jun 2003 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
61-501068 | Sep 1984 | JP |
11-192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001-03400 | Apr 2001 | JP |
2001128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2002-136525 | May 2002 | JP |
2002-528166 | Sep 2002 | JP |
2003-175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-253789 | Sep 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2011125195 | Jun 2011 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
02045589 | Sep 2002 | WO |
2006021269 | Mar 2006 | WO |
2005110264 | Apr 2006 | WO |
2008040483 | Apr 2008 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Horner. |
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld. |
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison. |
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart. |
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend. |
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey. |
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada. |
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/111,642, filed May 16, 2011, John R. Twomey. |
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin. |
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison. |
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey. |
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell. |
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/179,919, filed Jun. 11, 2011, Russell D. Hempstead. |
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov. |
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims. |
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings. |
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey. |
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin. |
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey. |
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart. |
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monte S. Fry. |
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney. |
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey. |
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Horner. |
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison. |
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey. |
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr. |
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R.Twomey. |
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison. |
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak. |
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson. |
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/412,879, filed Mar. 6, 2012, David M. Garrison. |
U.S. Appl. No. 13/412,897, filed Mar. 6, 2012, Joanna Ackley. |
U.S. Appl. No. 13/421,373, filed Mar. 15, 2012, John R. Twomey. |
U.S. Appl. No. 13/430,325, filed Mar. 26, 2012, William H. Nau, Jr. |
U.S. Appl. No. 13/433,924, filed Mar. 29, 2012, Keir Hart. |
U.S. Appl. No. 13/448,577, filed Apr. 17, 2012, David M. Garrison. |
U.S. Appl. No. 13/460,455, filed Apr. 30, 2012, Luke Waaler. |
U.S. Appl. No. 13/461,335, filed May 1, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/461,378, filed May 1, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/461,397, filed May 1, 2012, James R. Unger. |
U.S. Appl. No. 13/461,410, filed May 1, 2012, James R. Twomey. |
U.S. Appl. No. 13/464,569, filed May 4, 2012, Duane E. Kerr. |
U.S. Appl. No. 13/466,274, filed May 8, 2012, Stephen M. Kendrick. |
U.S. Appl. No. 13/467,767, filed May 9, 2012, Duane E. Kerr. |
U.S. Appl. No. 13/470,543, filed May 14, 2012, Sean T. Dycus. |
U.S. Appl. No. 13/470,775, filed May 14, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/470,797, filed May 14, 2012, John J. Kappus. |
U.S. Appl. No. 13/482,589, filed May 29, 2012, Eric R. Larson. |
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher. |
U.S. Appl. No. 13/488,093, filed Jun. 4, 2012, Kristin D. Johnson. |
U.S. Appl. No. 13/491,853, filed Jun. 8, 2012, Jessica E. Olson. |
U.S. Appl. No. 13/537,517, filed Jun. 29, 2012, David N. Heard. |
U.S. Appl. No. 13/537,577, filed Jun. 29, 2012, Tony Moua. |
U.S. Appl. No. 13/550,322, filed Jul. 16, 2012, John J. Kappus. |
U.S. Appl. No. 13/571,055, filed Aug. 9, 2012, Paul Guerra. |
U.S. Appl. No. 13/571,821, filed Aug. 10, 2012, Joseph D. Bucciaglia. |
U.S. Appl. No. 13/584,194, filed Aug. 13, 2012, Sean T. Dycus. |
Number | Date | Country | |
---|---|---|---|
20130338666 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13571821 | Aug 2012 | US |
Child | 13969204 | US | |
Parent | 12499553 | Jul 2009 | US |
Child | 13571821 | US |