The present invention generally relates to an endoscopic medical device and, more particularly, to an endoscopic medical device with a locking mechanism.
A conventional endoscope is a medical device comprising a flexible tube, and a camera and a light source mounted on the distal end of the flexible tube. The endoscope is insertable into an internal body cavity through a body orifice to examine the body cavity and tissues for diagnosis. The tube of the endoscope has one or more longitudinal channels, through which an instrument can reach the body cavity to take samples of suspicious tissues or to perform other surgical procedures such as polypectomy.
There are many types of endoscopes, and they are named in relation to the organs or areas with which they are used. For example, gastroscopes are used for examination and treatment of the esophagus, stomach and duodenum; colonoscopes for the colon; bronchoscopes for the bronchi; laparoscopes for the peritoneal cavity; sigmoidoscopes for the rectum and the sigmoid colon; arthroscopes for joints; cystoscopes for the urinary bladder; and angioscopes for the examination of blood vessels.
Each endoscope has a single forward viewing camera mounted at the distal end of the flexible tube to transmit an image to an eyepiece or video camera at the proximal end. The camera is used to assist a medical professional in advancing the endoscope into a body cavity and looking for abnormalities. The camera provides the medical professional with a two-dimensional view from the distal end of the endoscope. To capture an image from a different angle or in a different portion, the endoscope must be repositioned or moved back and forth. Repositioning and movement of the endoscope prolongs the procedure and causes added discomfort, complications, and risks to the patient. Additionally, in an environment similar to the lower gastrointestinal tract, flexures, tissue folds and unusual geometries of the organ may prevent the endoscope's camera from viewing all areas of the organ. The unseen area may cause a potentially malignant (cancerous) polyp to be missed.
This problem can be overcome by providing an auxiliary camera and an auxiliary light source. The auxiliary camera and light source can be oriented to face the main camera and light source, thus providing an image of areas not viewable by the endoscope's main camera. This arrangement of cameras and light sources can provide both front and rear views of an area or an abnormality. In the case of polypectomy where a polyp is excised by placing a wire loop around the base of the polyp, the camera arrangement allows better placement of the wire loop to minimize damage to the adjacent healthy tissue.
Since the main camera and light source face the auxiliary camera and light source, the main light source interferes with the auxiliary camera, and the auxiliary light source interferes with the main camera. Light interference is the result of the light from a light source being projected directly onto the lens of a camera. This may cause light glare, camera blooming, or over saturation of light, resulting in inferior image quality.
Additionally, because of space constraint, the auxiliary camera and auxiliary light source are typically smaller than the main camera and main light source and use different technologies. Different types of cameras often require different levels of illumination. For example, the main camera generally requires a higher level of illumination and needs a more powerful light source. As a result, the auxiliary camera is often exposed to a significant amount of glare caused by the powerful main light source. The glare can be reduced with the use of polarizing filters which must have a particular orientation.
The use of multiple endoscopic medical devices is often necessary or desirable during a surgical or other procedure. For example, an endoscope can be used for viewing and an endoscopic medical device can be inserted into one of the working channels of the endoscope. The endoscopic medical device can be another endoscope, an auxiliary camera, or other device. Examples of other endoscopic medical devices include without limitation cutting, ablation, grasping, snaring, retracting, manipulating, suturing, suction, and irrigation tools. It is often necessary to fix the rotational position of the inserted endoscopic device to prevent it from moving longitudinally or rotationally from its desired position or orientation.
Accordingly, there is a need for a mechanism for selectively locking the rotational orientation of a polarizing filter of an auxiliary camera and a polarizing filter attached at the distal end of an endoscope. There is also a need for a locking mechanism that allows for locking of the relative rotational orientation of an endoscope and other types of endoscopic medical devices inserted into the endoscope. The present invention satisfies these and other needs.
In accordance with an aspect of the invention, an endoscopic medical device comprises n endoscopic medical device comprises a tubular body comprising a central longitudinal axis, an inner locking device attached to the tubular body and comprising an inner locking member that is radially movable relative to the tubular body, and an outer locking device having an opening sized to allow the tubular body to pass through the outer locking device, the outer locking device comprising an outer locking member sized to engage the inner locking member such that the tubular body is prevented from rotating about the longitudinal axis relative to the outer locking device.
The endoscopic medical device in other aspects of the invention further comprises an imaging device, a light source, and a polarizing filter at a distal end of the tubular body, wherein the polarizing filter is disposed over either one or both of the imaging device and the light source.
In other aspects of the invention, the outer locking device comprises a side wall extending longitudinally, a slot formed through the side wall, and an end wall attached to the side wall at an angle, wherein the side wall extends proximally from the end wall and the opening of the outer locking device is formed through the end wall. In further aspects, the end wall has a hole for an imaging device and a hole for a light source, and the outer locking device further comprises a polarizing filter disposed over either one or both of the hole for an imaging device and the hole for a light source.
In yet other aspects of the invention, the outer locking device comprises a cylindrical wall extending longitudinally, and the cylindrical wall is concentric with the opening. The outer locking device in further aspects comprises at least one rib disposed on an inner surface of the cylindrical wall. The cylindrical wall in further aspects has at least one notch formed on an inner surface of the cylindrical wall.
In other aspects of the invention, the inner locking member includes a flexible flap comprising a first end attached to the tubular body and a second end that is radially movable relative to the tubular body, and the outer locking member is sized to engage the second end of the flap. In yet other aspects, the inner locking member is a wire spring comprising a medial portion and at least one end attached to the tubular body, the medial portion being radially movable relative to the tubular body, and the outer locking member is sized to engage the medial portion of the wire spring. In further aspects, the medial portion of the wire spring and the outer locking member are longitudinally oriented. In other further aspects, the medial portion of the wire spring is disposed further away from the longitudinal axis than the rest of the wire spring. In still other further aspects, the inner locking device further comprises a second wire spring comprising a medial portion and at least one end attached to the tubular body, the medial portion of the second wire spring being radially movable relative to the tubular body, the outer locking device further comprises a second inner locking member that is sized to engage the medial portion of the second wire spring.
The endoscopic medical device in other aspects of the invention comprises a position indicator attached to the tubular body, the position indicator being longitudinally aligned with the inner locking member. In further aspects, the position indicator comprises a distal portion, a proximal portion, and at least one end attached to the tubular body, the distal portion oriented at a first acute angle relative to the longitudinal axis, the proximal portion oriented at a second acute angle relative to the longitudinal axis. In other further aspects, the first acute angle is less than the second acute angle.
In other aspects, the medial portion of the wire spring comprises a curved segment that has a peak disposed further away from the longitudinal axis than the rest of the wire spring, and the outer locking member is sized to engage the peak. In yet other aspects, the medial portion of the wire spring comprises a distal segment oriented at a first acute angle to the longitudinal axis, a proximal segment oriented at a second acute angle to the longitudinal axis, and an intermediate segment disposed between the distal segment and the proximal segment, and the outer locking member is sized to engage the intermediate segment.
In still other aspects of the invention, the inner locking member is a leaf spring comprising at least one end attached to the tubular body, the leaf spring being radially movable relative to the tubular body. In further aspects, the leaf spring comprises a distal portion oriented at a first angle to the longitudinal axis, a proximal portion oriented at a second angle to the longitudinal axis, and an intermediate section oriented longitudinally and disposed between the distal portion and the proximal portion, and the outer locking member is longitudinally oriented to engage the intermediate section. In other further aspects, the inner locking device further comprises a second leaf spring comprising at least one end attached to the tubular body, the second leaf spring being radially movable relative to the tubular body, and the outer locking device further comprises a second outer locking member that is sized to engage the second leaf spring.
In yet other aspects of the invention, the inner locking member is a torsion spring disposed circumferentially around a portion of the tubular body, the torsion spring comprising a first portion attached to the tubular body, a second portion that is radially movable relative to the tubular body, and a locking element on the second portion, and the outer locking member is sized to engage the locking element. In further aspects, the torsion spring is formed from a sheet material that bends around the tubular body, and the locking element is a rib on the movable portion of the torsion spring. In other further aspects, the torsion spring is formed from a wire that bends around the tubular body, the wire comprising a locking segment, and the locking element is the locking segment of the wire. In detailed aspects, the wire of the inner locking device further comprises a second locking segment, and the outer locking device comprises a second outer locking member sized to engage the second locking segment of the wire. In yet other aspects, the inner locking device includes a plurality of torsion springs formed from separate wires, each wire bent around the tubular body and comprising a locking segment, and the outer locking device includes a plurality of outer locking members, each of the outer locking members sized to engage at least one of the locking segments.
In accordance with other aspects of the invention, an endoscopic system comprises an endoscope having a longitudinal channel, an endoscopic medical device including a tubular body, wherein the endoscopic medical device is disposed in the longitudinal channel, and a locking assembly that interlocks the endoscope and the endoscopic medical device to prevent relative rotational movement between the endoscope and the endoscopic medical device.
In accordance with yet other aspects of the invention, a method of configuring an endoscopic system comprises inserting a tubular body of an endoscopic medical device into a channel of an endoscope, wherein an inner locking device is attached to the tubular body, and wherein when the tubular body is inside the channel the inner surface of the channel radially compresses the inner locking device, and continuing to insert the tubular body of the endoscopic medical device until the inner locking device comes out of the channel, wherein the inner locking device extends radially outwards to engage an outer locking device attached to the endoscope, and wherein the engagement prevents the tubular body from rotating relative to the endoscope.
The features and advantages of the invention will be more readily understood from the following detailed description which should be read in conjunction with the accompanying drawings.
Referring now in more detail to the exemplary drawings, wherein like reference numerals designate corresponding or like elements among the several views, there is shown in
The endoscope 10 of
The insertion tube 12 preferably is steerable or has a steerable distal end region 18 as shown in
As shown in
The proximal end 28 of the control handle 22 may include an accessory outlet 30 (
As shown in
The main imaging device 32 at the distal end 36 of the insertion tube 12 may include, for example, a lens, single chip sensor, multiple chip sensor or fiber optic implemented devices. The main imaging device 32, in electrical communication with a processor and/or monitor, may provide still images or recorded or live video images. The light sources 34 may be light emitting diodes (LEDs) or fiber optical delivery of light from an external light source. The light sources 34 preferably are equidistant from the main imaging device 32 to provide even illumination. The intensity of each light source 34 can be adjusted to achieve optimum imaging. The circuits for the main imaging device 32 and light sources 34 may be incorporated into a printed circuit board (PCB). As shown in
The polarizer cap 38, as shown in
The end wall 44 preferably has an opening 52 for accommodating the polarizing filter 48 for each of the light sources 34. The opening 52 may have any arrangement suitable for retaining the polarizing filter 48. One example of such suitable arrangement is the recessed lip described above. The end wall 44 preferably has an opening 54 for each of the instrument channels 16 so that the cap 38 does not block the channels 16.
The end wall 44 may further include an opening 56 for the channel 40 for supplying a liquid to clean the lenses of the imaging device 32 and the light sources 34. Preferably, the cap 38 has one or more features that allow liquid from the channel 40 to reach over the cap 38 to clean the exterior surfaces of polarizing filters 46, 48. For example, the end wall 44 of the cap 38 may be sufficiently thin to allow the liquid from the channel 40 to reach over the cap 38 to clean the exterior surfaces of polarizing filters 46, 48. Alternatively, the cap 38 may have variable thickness and/or angled features that allow liquid from the channel 40 to reach the polarizing filters 46, 48. Furthermore, the cap 38 may have a ramp, plate or channel that allows liquid from the channel 40 to reach the polarizing filters 46, 48. The locations, configurations and sizes of the openings 50, 52, 54, 56 preferably correspond to the locations, configurations and sizes of the main imaging device 32, light sources 34, channels 16, and clean liquid channel 40, respectively.
As shown in
The inside diameter of the ring 58 preferably is slightly smaller than the outer diameter of the insertion tube 12 so that the ring 58 can apply a compressive force to the outer surface of the insertion tube 12. This compressive force preferably is sufficient to create the necessary friction force to ensure that the cap 38 remains in the same position and orientation during a medical procedure, yet to allow the cap 38 to be slide on and off of the insertion tube 12 without difficulty.
Alternatively, the cap 38 may have any other type of arrangement for attachment to the insertion tube 12. For example, the cap 38 may have clasps which snap on to the insertion tube 12. In some embodiments, the attachment may be similar to the way in which a suction cap for endoscopic mucosal resection is attached to a colonoscope, as is well known in the art.
The terms “polarizing filter” and “polarizer” as used in this specification refer to any device that blocks one or more components of light while allowing one or more other components to pass through. In some cases, polarizing filters may be made from a material that blocks light waves traveling in all planes from passing through the filter except for light waves propagating in one specific plane of orientation, often referred to as the plane of polarization or the plane of transmission. Polarizing filters may be constructed using various techniques that use light absorption, reflection, scattering or birefringence to block light from passing through the filter that is not orientated parallel with the plane of transmission.
When one polarizing filter is placed in front of another polarizing filter and non-coherent natural white light is passed through the two polarizing filters, the amount of light that passes through the two polarizing filters is proportional to the relative angle of orientation of the two filters. This is because when the polarization plane of the two filters is at the same angle of orientation, the majority of light waves in the plane of transmission will pass through both filters. As one of the filters is rotated, light that is polarized by the first filter is then attenuated or blocked by the second filter. The maximum amount of light reduction or extinction occurs when the polarizing planes of the two filters are orientated at 90° relative to each other. It is common to find polarizing filters that when orientated at 90° provide 99% or greater extinction of light transmission.
As shown in
As shown in
As shown in
The endoscope 10 preferably includes a polarizing filter 76 placed in front of the auxiliary imaging device 64. The polarizing filter 76 may be placed inside the lens barrel 72. Alternatively, the polarizing filter 76 may be placed directly onto the image sensor itself, or incorporated at various other locations in the lens barrel 72 such as at the end closest to the imaging sensor, or even between the lenses 74. Furthermore, the polarizing filter 76 may be simply placed in front of the auxiliary imaging device.
When the imaging assembly 14 is properly installed in the insertion tube 12, the auxiliary imaging device 64 of the imaging assembly 14 preferably faces backwards towards the main imaging device 32 as illustrated in
As shown in
In the illustrated embodiment, the auxiliary light source 70 (as well as other components) of the imaging assembly 14 is placed on the flexible link 66, in particular on the curved concave portion of the flexible link 66. The auxiliary light source 70 provides illumination for the auxiliary imaging device 64 and may face substantially the same direction as the auxiliary imaging device 64 as shown in
The endoscope 10 includes another polarizing filter 78 placed in front of the auxiliary light source 70. The polarizing filter 78 may be attached to the auxiliary light source 70 by any suitable means such as adhesive bonding or welding.
The flexible link 66 may be encapsulated or shrouded by flexible tubing, heat-shrinkable tubing, urethanes, rubber or silicon so as to allow smooth profile transition from the tubular body 60 to the imaging device 64. This encapsulation may be translucent to allow light from the light source 70 to project through the encapsulation, or the encapsulation may include a window section around the light source 70.
Since the main imaging device 32 and its light source 34 face the auxiliary imaging device 64 and its light source 70, the light sources 34, 45 of the imaging devices 32, 64 may interfere with the opposing imaging device 64, 32. That is, the main light source 34 may shine directly into auxiliary imaging device 64 and the auxiliary light source 70 may shine directly into the main imaging device 32, degrading both images.
To eliminate or reduce the light interference, the polarization plane of the polarizing filter 46 for the main imaging device 32 may be set at a substantially 90° angle from the polarization plane of the polarizing filter 78 for the auxiliary light source 70. With this arrangement, the light, which is emitted from the auxiliary light source 70 and passes though the polarizing filter 78, may be filtered out by the polarizing filter 46 and may not reach the main imaging device 32. Additionally or alternatively, the polarization plane of the polarizing filter 76 for the auxiliary imaging device 64 may be set at a substantially 90° angle from the polarization plane of the polarizing filters 48 for the main light sources 34. With this arrangement, the light, which is emitted from the main light sources 34 and passes though the polarizing filters 48, may be filtered out by the polarizing filter 76 and may not reach the auxiliary imaging device 64.
Moreover, to provide illumination, the polarization plane of the polarizing filter 46 for the main imaging device 32 may be substantially aligned with the polarization plane of the polarizing filters 48 for the main light sources 34 so that the light, which is emitted from the main light sources 34 and passes though the polarizing filters 48, may pass through the polarizing filter 46 and may be received by the main imaging device 32. Additionally or alternatively, the polarization plane of the polarizing filter 76 for the auxiliary imaging device 64 may be substantially aligned with the polarization plane of the polarizing filter 78 for the auxiliary light source 70 so that the light, which is emitted from the auxiliary light source 70 and passes though the polarizing filter 78, may pass through the polarizing filter 76 and may be received by the auxiliary imaging device 64.
The desired relative orientations of the polarizing filters' the polarization planes, as set forth above, may be achieved in any suitable manner. For example, the polarization planes of the polarizing filters 46, 48 for the main imaging device 32 and main light sources 34 may be aligned and fixed in the polarizer cap 38, and the polarization planes of the polarizing filters 76, 78 for the auxiliary imaging device 64 and auxiliary light source 70 may be aligned and fixed in the imaging assembly 14. Then the imaging assembly 14 may be rotated within the channel 16 of the insertion tube 12 by means of its handle 62 until the polarization planes of the polarizing filters 76,78 in the imaging assembly 14 are at a substantially 90° angle from the polarization planes of the polarizing filters 46, 48 in the polarizer cap 38.
The orientations of the polarizing filters' the polarization planes may be determined and set during attachment by viewing a light with a known polarization passing through polarizing filters. Alternatively, the polarizing filters may have asymmetrical shapes or other locating features so that the orientations of their polarization planes may be readily determined.
The auxiliary imaging device 64 and its light source 70 may be connected to a control box (not shown) via electrical conductors that extend from the imaging device 64 and light source 70; through the link 66, tubular body 60, and handle 62; to the control box. The electrical conductors may carry power and control commands to the auxiliary imaging device 64 and its light source 70 and image signals from the auxiliary imaging device 64 to the control box.
The control box includes at least an image and signal processing device and a housing in which the image and signal processing device is disposed, although the control box can be configured in any suitable manner. The housing may include a control panel and connectors. The control panel includes buttons and knobs for controlling the functionalities of the control box.
The image and signal processing device may include one or more integrated circuits and memory devices along with associated discrete components. The device allows image signals from the imaging devices 32, 64 to be processed for the enhancement of image quality, extraction of still images from the image signals, and conversion of video format for compatibility with the display device.
The control box preferably processes the video image signal from the auxiliary imaging device 64 and transmits it to a display device such as a television or a monitor such as a liquid crystal display monitor. Still images can be captured from the video image signal. The video image or still image may be displayed on the display device. The display device may also include textual data that are used to display information such as patient information, reference numbers, date, and/or time.
The image signal from the main imaging device 32 may also be processed by the control box in the same way that the image signal from the auxiliary imaging device 64 is processed. The images from the main and auxiliary imaging devices 32, 64 may be displayed on two separate monitors or on the same monitor with a split screen.
The control box may further be used to adjust the parameters of the imaging devices 32, 64 and their light sources 34, 70, such as brightness, exposure time and mode settings. The adjustment can be done by writing digital commands to specific registers controlling the parameters. The registers can be addressed by their unique addresses, and digital commands can be read from and written to the registers to change the various parameters. The control box can change the register values by transmitting data commands to the registers.
The control box may additionally be used as an interface to the patient records database. A large number of medical facilities now make use of electronic medical records. During the procedure relevant video and image data may need to be recorded in the patient electronic medical records (EMR) file. The signal processing circuit can convert image and video data to a format suitable for filing in the patient EMR file such as images in jpeg, tif, or .bmp format among others. The processed signal can be transmitted to the medical professional's computer or the medical facilities server via a cable or dedicated wireless link. A switch on the control panel can be used to enable this transmission. Alternatively the data can be stored with a unique identification for the patient in electronic memory provided in the control box itself. The signal processing circuit can be utilized to convert the video and image data to be compatible with the electronic medical records system used by the medical professional. The processing may include compression of the data. A cable or a wireless link may be used to transmit the data to a computer.
During endoscopy, a technician may first install the polarizer cap 38 onto the endoscope's insertion tube 12. A physician may then insert the endoscope into a body cavity through an orifice of the body. Once the endoscope is inserted, the physician may decide to use the imaging assembly 14 in order to obtain a rear-viewing image of a certain tissue. The physician may straighten the flexible link 66 of the imaging assembly 14 and insert the straightened distal end of the imaging assembly 14 into the channel 16 of the endoscope's insertion tube 12 from the handle 22. The imaging assembly 14 can then be pushed towards the distal end 36 of the insertion tube 12. When the auxiliary imaging device 64 and flexible link 66 are pushed out of the distal end 36 of the insertion tube 12, the flexible link 66 resumes its natural bent configuration as shown in
The above-described embodiment is merely one of many alternative embodiments of the present invention. In one other alternate embodiment, polarizing filters are placed over only the auxiliary imaging device 64 of the imaging assembly 14 and the main light sources 34 to reduce light interference between them. In this embodiment, a low intensity auxiliary light source 70 may be used for the auxiliary imaging device 64 to alleviate any bright spots that could be seen by the main imaging device 32. This arrangement allows maximum light intake by the main imaging device 32 without light loss caused by a polarizing filter. Similarly, in another alternative embodiment, polarizing filters are placed over only the main imaging device 32 and the auxiliary imaging device 64. These two embodiments are useful depending on the types of imaging sensors used in the endoscope, specifically their light sensitivities, resistance to blooming, and dynamic ranges, as well as depending on the types of light sources used in the endoscope and their illumination intensities and/or wave length spectrums.
In an alternate embodiment, the orientation features include a feature, such as a pin, rod or geometric feature, affixed to and protruding slightly away from the imaging assembly, and a feature, such as a cup and tube, on the polarizer cap that mates with the corresponding feature on the imaging assembly. The features may be made from a compressive material such as rubber so that when the two features are engaged a substantial force is needed to break the engagement. In this manner, the physician would first slide the imaging assembly past the distal end of the insertion tube and then, under the guidance of the auxiliary imaging device, rotate the imaging assembly to achieve the correct relative orientation between the polarizing filters. When the correct relative orientation between the polarizing filters is achieved, the physician may retract the imaging assembly so that the two features engage and lock together. To later disengage the features, the physician may forcefully advance the imaging assembly.
In yet a further alternate embodiment, the distal end of the imaging assembly includes a mechanism that can fix the position of the imaging assembly in the channel of the insertion tube. Such a mechanism may include the use of inflatable balloons, springs that are actuated via guide-wires, mechanical engagement arrangements, or frictional methods such as large diameter compressive regions incorporating rubber or foam.
In the present application, the terms “insertion tube,” “imaging assembly” and “endoscope” are interchangeable, may have the same or similar meanings, and may have the same or similar features and functions. Different terms are used in the application for ease of identification and description. Additionally, such a description should not be used to limit the breadth of the application. The use of “insertion tube,” “imaging assembly”, or “endoscope” merely refers to possible types of instruments in the broad field of endoscopy and the invention may be applied to many forms of endoscopes and medical imaging devices.
Referring now to
In the illustrated embodiment of
Other types of endoscopic medical devices known in the art may be used in other embodiments. Examples of other types of endoscopic medical devices include without limitation catheters, prosthesis delivery instruments, as well as cutting, ablation, grasping, snaring, retracting, manipulating, suturing, suction, and irrigation tools. As such, the functional device 116 in other embodiments may comprise a cutting blade, electrode, or fluid carrying tube as appropriate for the type of endoscopic medical device.
In
The outer locking device 110 comprises a side wall 128 extending longitudinally, a plurality of slots 130 formed through the side wall 128, and an end wall 132 attached to the side wall 128. The end wall 132 is substantially perpendicular to the side wall 128. The side wall 128 also extends proximally from the end wall 132. The end wall 132 also has a hole 134 for an imaging device of the endoscope 102, a hole 136 for the light source or sources on the endoscope 102, and a hole for an air/water channel of the endoscope 102. In the illustrated embodiment, the holes for the endoscope imaging device, light source, and air/water channel are combined as one opening or cutout. The outer locking device 110 also has a polarizing filter 138 that is disposed over the area of the cutout corresponding to the light sources on the endoscope 102. The area of the cutout corresponding to the imaging device on the endoscope 102 is not covered by the polarizing filter 138.
In other embodiments, the polarizing filter 138 only covers the imaging device on the endoscope 102. In yet other embodiments, the polarizing filter 138 covers both the imaging device and light source on the endoscope 102. In still other embodiments, the various holes for the endoscope's imaging device, light source, and air/water channel are separate or located in other areas of the cap 110 according to the model or type of endoscope the cap is intended to be used with.
Referring again to
In
Referring next to
In
When the endoscopic medical device 103 is slid into an endoscope 102, compression forces from sides of the working channel 105 of the endoscope 102 keep the flap furled against the distal end region 112. When the flap reaches the opening of the cap 110, it unfurls and the movable end 152 of the flap engages the grooves 146 or ribs 142 on the cylindrical wall 140, as shown in
Referring now to
Each wire spring 108 is mounted such that the intermediate segment 162 is radially movable relative to the distal end region 112. Preferably, the ends are loosely connected loosely the distal end region 112 by two slotted mounting blocks firmly attached to the distal end region 112. The loose connections allows each spring 108 to stretch or contract more readily, as appropriate, when its intermediate segment 162 is moved radially away or toward the distal end region 112. The ribs or notches 146 at the cylindrical wall 140 of outer locking device 110 are sized to engage the intermediate segments to prevent a functional device 116 of an endoscopic medical device 103 from rotating relative to the outer locking device 110.
The endoscopic medical device 103 optionally includes a position indicator 164 attached to the distal end region 112. The position indicator 164 may be a wire that is preferably longitudinally aligned with the inner locking members 149. That is, the position indicator 164 and the inner locking members 149 are located at substantially the same longitudinal position along the distal end region 112. The position indicator 164 includes ends which are attached to the distal end region 112. The position indicator 164 also includes a distal portion 166 oriented at a first acute angle 168 and a proximal portion 170 oriented at a second acute angle 172 relative to the longitudinal axis 26. Preferably, the first acute 168 angle is less than the second acute angle 172. In this way, the distal end region 112 may be easily slid in a forward or distal direction through the opening of the outer locking device 110.
In use, the position indicator 164 and the inner locking members 149 on the inner locking device 108 are pushed forward or distally past the distal edge 143 of the opening 114 of the outer locking device 110, such that the inner locking members 149 are not engaged with the outer locking device 110. The rotational position of the functional device 116 may then be adjusted as desired. When the desire rotational position is achieved, the endoscopic medical device 103 is pull backward or proximally until the inner locking members 149 slide into engagement with the outer locking device 110. The position indicator 164 provides tactile feedback to the person pulling the endoscopic medical device 103. When the proximal portion 170 hits the distal edge 143 (
In
Referring now to
In
Referring next to
In
In
Referring to
In
While several particular forms of the invention have been illustrated and described, it will also be apparent that various modifications can be made without departing from the scope of the invention. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
Number | Date | Country | |
---|---|---|---|
60801923 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11673470 | Feb 2007 | US |
Child | 11751605 | May 2007 | US |
Parent | 11672020 | Feb 2007 | US |
Child | 11673470 | Feb 2007 | US |
Parent | 11626189 | Jan 2007 | US |
Child | 11673470 | Feb 2007 | US |
Parent | 11609838 | Dec 2006 | US |
Child | 11673470 | Feb 2007 | US |
Parent | 11215660 | Aug 2005 | US |
Child | 11673470 | Feb 2007 | US |
Parent | 11030559 | Jan 2005 | US |
Child | 11673470 | Feb 2007 | US |