The invention relates to medical sealing devices, particularly those used in conjunction with endoscopes.
When an endoscope is used to view a passageway, such as the stomach, colon, intestine, bile duct, etc., a gas or liquid is often infused into the passageway to insufflate the passageway. Insufflating the passageway causes the passageway to expand, thus enabling the medical professional to better visualize and maneuver within the area in which the endoscopic procedure is being performed.
When a sufficient amount of fluid (including, but not limited to, gas, bile, blood, and radiopaque contrast fluid) is present in the passageway, back pressure occurs that may cause the fluid to leak out from the working channel of the endoscope; often times blood and bile puddle on the floor or on the person performing the procedure. In addition, surface tension also known as capillary-action can also cause fluid leakage even when no insufflation or backpressure is present. This is because the catheters and wire guides as well as the endoscope channels are small enough that they draw fluid out through the user end, even with no insufflation or backpressure. It is preferred that the fluid not leak from the endoscope while the endoscopic procedure is being performed, because such leakage may interfere with a successful outcome of the procedure and may contaminate the working area.
Seals are typically used to inhibit fluid leakage from the working channel of the endoscope. While traditional seals may seal around a single round-shaped device, most seals are incapable of inhibiting the escape of fluid from around one or more medical devices having a combined irregular cross-sectional profile that are disposed through the working channel of the endoscope. Furthermore, current seals often result in friction around the devices inserted therethrough. Friction inhibits the medical professional from using tactile feedback as a means for determining how the medical devices ought to be manipulated.
A seal device for use with an endoscope having a working channel extending from a working channel port is provided. The device includes a sleeve having a proximal portion, a distal portion, and a lumen extending therethrough. The proximal portion comprises an attachment mechanism that is adapted to attach to the working channel port of the endoscope, and the distal portion is adapted to conform around one or more medical devices that are inserted therethrough when subjected to a sufficient back pressure created by the proximal movement of fluids through the working channel. The one or more medical devices have an irregular cross sectional profile. The sleeve is configured for insertion into the working channel port of an endoscope.
Further, a seal device for use with an endoscope having a working channel extending from a working channel port is provided. The device includes a proximal portion, a distal portion, and a lumen extending therethrough. A diameter of the proximal portion is greater than a diameter of the distal portion. The sleeve is adapted to substantially seal around at least two medical devices inserted therethrough when a back pressure of about 20 mmHg exists within the working channel. The at least two medical devices have different diameters, and the at least two medical devices have a combined irregular cross-sectional profile. The sleeve creates minimal frictional force around the at least two medical devices inserted therethrough so as to not inhibit the movement thereof. The device further includes an attachment mechanism adapted to attach the sleeve to the working channel port of the endoscope.
Also provided is a method for sealing a working channel of an endoscope that extends from a working channel port of the endoscope. The method includes providing a seal sleeve wherein the seal sleeve is adapted to substantially seal around one or more medical devices inserted therethrough when a sufficient back pressure is present, wherein the one or more medical devices have an irregular cross-sectional profile. The method further includes attaching the seal sleeve to the working channel port of the endoscope with an attachment mechanism. The method further includes introducing the one or more medical devices through the seal sleeve, and providing a back pressure sufficient to cause the seal sleeve to conform to the one or more medical devices.
Still further, a seal device for use with an endoscope having a working channel extending from a working channel port is provided. The seal device includes a sleeve having a proximal portion, a distal portion, and a lumen extending therethrough. The proximal portion includes an attachment mechanism that is adapted to attach to the working channel port of the endoscope, and the distal portion is adapted to conform around one or more medical devices that are inserted therethrough when subjected to a sufficient back pressure or a surface tension created by the proximal movement of fluids through the working channel. The one or more medical devices have an irregular cross sectional profile. The sleeve is configured for insertion into the working channel port of an endoscope.
Still further, a seal device for use with an endoscope having a working channel extending from a working channel port is provided. The seal device includes a sleeve having a proximal portion, a distal portion, and a lumen extending therethrough. A diameter of the proximal portion is greater than a diameter of the distal portion. The sleeve is adapted to substantially seal around at least two medical devices inserted therethrough when a back pressure of about 20 mmHg or a surface tension exists within the working channel. The at least two medical devices have different diameters. The at least two medical devices have a combined irregular cross-sectional profile. The sleeve creates minimal frictional force around the at least two medical devices inserted therethrough so as to not inhibit the movement thereof. The device further includes an attachment mechanism adapted to attach the sleeve to the working channel port of the endoscope.
Still further, a method for sealing a working channel of an endoscope that extends from a working channel port of the endoscope is provided. The method includes providing a seal sleeve wherein the seal sleeve is adapted to substantially seal around one or more medical devices inserted therethrough when a sufficient back pressure or a surface tension is present, wherein the one or more medical devices have an irregular cross-sectional profile, attaching the seal sleeve to the working channel port of the endoscope with an attachment mechanism, introducing the one or more medical devices through the seal sleeve, and providing a back pressure or a surface tension sufficient to cause the seal sleeve to conform to the one or more medical devices.
The embodiments will be further described in connection with the attached drawing figures. Throughout the specification, like reference numerals and letters refer to like elements. It is intended that the drawings included as a part of this specification be illustrative of the embodiments and should in no way be considered as a limitation on the scope of the invention.
The embodiments provide an apparatus that is able to maintain a seal around one or more medical devices having a combined irregular cross-sectional profile that are simultaneously inserted through the working channel of the endoscope while at the same time creating minimal or no frictional force.
A more detailed description of the embodiments will now be given with reference to
Seal sleeve 10 is made from a highly flexible, readily collapsible, substantially fluid-impermeable material having a low coefficient of friction, that will not degrade while in the presence of fluids within which it may come in contact. A preferred material is medical grade polyethylene; however seal sleeve 10 may be made from other materials that are flexible, readily collapsible, substantially fluid-impermeable, and that have a low coefficient of friction, including but not limited to, polyurethane, silicone, nylon, polyamides such as urethanes, polypropylene, polytetrafluoroethylene (PTFE), expanded polytetrafluoroethylene (ePTFE), and natural (latex) and polyisoprene rubbers. It is also contemplated that seal sleeve could be made from an elastic material that stretches when at least one medical device is placed therethrough, but then compresses and conforms around the medical device forming a substantially fluid-impermeable seal. Additionally, a removable stiffening insert may be added to seal sleeve 10 for easier placement of seal sleeve 10 within working channel 17.
The thickness of seal sleeve 10 is about 0.001-0.025 inches, although greater and lesser thicknesses are also contemplated depending on the type of material from which seal sleeve 10 is made. The material and thickness of the material from which seal sleeve 10 is made should be such that it is able to conform around one or more medical devices, having a combined irregular cross-sectional profile, inserted therethrough, without becoming permanently deformed or stretched.
A substantially fluid-impermeable seal is formed when a sufficient back pressure or surface tension is present. The back pressure or surface tension causes seal sleeve 10 to collapse and fold back onto itself and conform around the medical devices inserted therethrough. Additionally, the material should be sufficiently stiff so that seal sleeve 10 does not entirely invert into itself. Furthermore, the frictional force exerted by seal sleeve 10 onto a medical instrument inserted therethrough should be low enough so that tactile feedback at proximal portion 10B of seal sleeve 10 is preserved to allow the medical professional to obtain information from the distal end of the medical device inserted therethrough.
Wire guide 16 and catheter 15, collectively having an irregular cross-sectional profile, enter through proximal portion 10A of seal sleeve and exit through exit way 11 located at distal portion 10B of seal sleeve 10. Exit way 11 is large enough to allow medical devices to pass therethrough, but sufficiently small so as to be able to form a seal around each of the devices. Ideally, the diameter of exit way 11 is from about 0.020-0.200 inches, although other diameters are contemplated depending on the dimensions of the medical instrument inserted therethrough. Here, the inner diameter of exit way 11 is slightly larger than the combined outer diameters of the devices that will be placed through seal sleeve 10. Proximal portion 10A of seal sleeve is approximately about 0.157-0.197 inches wide, distal portion is approximately about 0.079-0.118 inches wide and seal sleeve 10 is approximately about 1 inch long; however, other dimensions are contemplated. Seal sleeve 10 is able to be configured so as to maintain a seal around one or more devices having various shapes and sizes that are inserted through working channel 17. Seal sleeve 10 is not limited to having a cone-shape; other shapes include but are not limited to a cylinder and duck-bill shape.
Because seal sleeve 10 is made from a material having a low coefficient of friction, the medical professional is able to use tactile feedback as a means for determining how wire guide 16 and catheter 15 ought to be further manipulated. Because a seal is maintained, the orifice remains insufflated and the area surrounding the working channel will not be contaminated by fluid escape.
As is evident, the embodiments provide a very effective solution for maintaining a seal around one or more devices having an irregular cross-sectional profile that are simultaneously inserted into the working channel of an endoscope. The foregoing description and drawings are provided for illustrative purposes only and are not intended to limit the scope of the invention described herein or with regard to the details of its construction and manner of operation. It will be evident to one skilled in the art that modifications and variations may be made without departing from the spirit and scope of the invention. Changes in form and in the proportion of parts, as well as the substitution of equivalents, are contemplated as circumstances may suggest and render expedience; although specific terms have been employed, they are intended in a generic and descriptive sense only and not for the purpose of limiting the scope of the invention set forth in the following claims.
The present patent document claims the benefit of the filing date under 35 U.S.C. §119(e) of Provisional U.S. Patent Application Ser. No. 60/810,387, filed Jun. 1, 2006, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60810387 | Jun 2006 | US |