Endoscopic stapling devices and methods

Information

  • Patent Grant
  • 8864008
  • Patent Number
    8,864,008
  • Date Filed
    Monday, March 21, 2011
    13 years ago
  • Date Issued
    Tuesday, October 21, 2014
    10 years ago
Abstract
Described herein are endoscopic staplers and methods used to apply one or more fasteners to body tissue. In one embodiment, a fastener-applying device, which is preferably a stapler, is passed transorally into the stomach to plicate stomach tissue by engaging tissue from inside the stomach and drawing it inwardly. In the disclosed embodiments, the tissue is drawn into a tissue chamber, causing sections of serosal tissue to be positioned facing one another. The disclosed staplers allow opposed sections of tissue to be moved into contact with another, and preferably deliver staples for maintaining contact between tissue sections at least until serosal bonds form. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention, After one or more plications are formed, medical devices may optionally be coupled to the plication(s) for retention within the stomach.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

None


TECHNICAL FIELD

The present invention relates generally to the field of systems and methods for performing endoscopic surgery, and specifically to systems and methods for endoscopic stapling of tissue within body cavities.


BACKGROUND

An anatomical view of a human stomach S and associated features is shown in FIG. 1A. The esophagus E delivers food from the mouth to the proximal portion of the stomach S. The z-line or gastro-esophageal junction Z is the irregularly-shaped border between the thin tissue of the esophagus and the thicker tissue of the stomach wall. The gastro-esophageal junction region G is the region encompassing the distal portion of the esophagus E, the z-line, and the proximal portion of the stomach S.


Stomach S includes a fundus F at its proximal end and an antrum A at its distal end. Antrum A feeds into the pylorus P which attaches to the duodenum D, the proximal region of the small intestine. Within the pylorus P is a sphincter that prevents backflow of food from the duodenum D into the stomach. The middle region of the small intestine, positioned distally of the duodenum D, is the jejunum J.



FIG. 1B illustrates the tissue layers forming the stomach wall. The outermost layer is the serosal layer or “serosa” S and the innermost layer, lining the stomach interior, is the mucosal layer or “mucosa” MUC. The submucosa SM and the multi-layer muscularis M lie between the mucosa and the serosa.


There are a number of applications for endoscopic application of fasteners such as staples to tissue within a body cavity. Some of those applications involve forming tissue structures such as plications or folds in tissue of the body cavity.


Several prior applications, including International Application No. WO 2005/037152 having an international filing date of Oct. 8, 2004 and U.S. application Ser. No. 11/439,461, filed May 23, 2006 (both incorporated herein by reference) describe methods according to which medical implants are coupled to tissue structures formed within the stomach. According to these applications, devices for inducing weight loss (e.g. by restricting and/or obstructing flow of food into the stomach, and/or by occupying a portion of the stomach volume) may be coupled to tissue tunnels or plications formed from stomach tissue.


For example, U.S. application Ser. No. 11/439,461 describes a restrictive and/or obstructive implant system for inducing weight loss. In one embodiment, flexible loops are coupled to tissue plications formed in the gastroesophageal junction region of the stomach. An implant, such as a flow restrictive and/or obstructive implant, is passed through the loops 2 and thus retained in the stomach.


In other instances, tissue plications may themselves be sufficient to provide the necessary treatment. For example, the plications may be used to reduce stomach volume or form a flow restriction within the stomach as disclosed in WO 2005/037152 and in Applicants' co-pending application Ser. No. 11/542,457, filed Oct. 3, 2006, U.S. Publication No. 2007-0219571, which is incorporated herein by reference.


Other types of implants may be coupled to such plications or other tissue structures for a variety of purposes. These implants include, but are not limited to prosthetic valves for the treatment of gastro-esophageal reflux disease, gastric stimulators, pH monitors and drug eluting devices that release drugs, biologics or cells into the stomach or elsewhere in the GI tract. Such drug eluting devices might include those which release leptin (a hormone which creates feelings of satiety), Ghrelin (a hormone which creates feelings of hunger), octreotide (which reduces Ghrelin levels and thus reduces hunger), Insulin, chemotherapeutic agents, natural biologics (e.g. growth factor, cytokines) which aid in post surgery trauma, ulcers, lacerations etc. Still other implants might be of a type which might provide a platform to which specific cell types can adhere, grow and provide biologically-active gene products to the GI tract, and/or a platform for radiation sources that can provide a local source of radiation for therapeutic purposes, or provide a platform whereby diagnostic ligands are immobilized and used to sample the GI tract for evidence of specific normal or pathological conditions, or provide an anchor point for imaging the GI tract via cameras and other image collecting devices.


The prior applications listed above, address the desirability of forming tissue plications, pockets or tunnels in a way that regions of serosal tissue (i.e. the tissue on the exterior surface of the stomach) are retained in contact with one another. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication/pocket/tissue over extended durations, despite the forces imparted on them by stomach movement and implanted devices.


Regardless of the application for which a plication is being formed, it is highly desirable to form that plication using steps carried out from within the stomach using instruments passed down the esophagus, rather than using more invasive surgical or laparoscopic methods. The present application describes endoscopic staplers which may be passed transorally into the stomach and used to form serosal-to-serosal plications in a stomach wall.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic illustration of a human stomach and a portion of the small intestine.



FIG. 1B is a cross-sectional perspective view of a portion of a stomach wall, illustrating the layers of tissue forming the wall.



FIG. 2 illustrates an endoscopic stapling system.



FIGS. 3A-3C are perspective views showing the stapler head of the stapling system of FIG. 2 in three different positions.



FIG. 4 is a perspective view of the stapler head, with the membrane removed.



FIG. 5 is a perspective view of the proximal end of the staple housing of the stapler head of FIG. 4.



FIG. 6 is a perspective view of the distal end of the staple housing of the stapler head of FIG. 4.



FIG. 7 is an exploded perspective view showing elements advanceable within the staple housing during compression and stapling operations.



FIG. 8 is a plan view of a staple reinforcement device.



FIG. 9 is a side elevation view of a staple cartridge.



FIG. 10 is a perspective view of the staple housing similar to FIG. 6, but showing some of the elements of FIG. 7 within the housing.



FIGS. 11A-11D are a series of schematic representations of the hydraulic chamber and pistons, illustrating operation of an exemplary hydraulic system during tissue compression and stapling.



FIG. 11E is similar to FIG. 11D and shows an alternative piston configuration.



FIG. 12 is a perspective view of the anvil housing of the stapler head of FIG. 4.



FIG. 13 is a perspective view of the anvil support.



FIG. 14 is a plan view of the anvil.



FIG. 15A is a cross-sectional side view of the cutting device and a first embodiment of a cutting board.



FIG. 15B is a cross-sectional side view of the cutting device and a second embodiment of a cutting hoard.



FIG. 16 is a perspective view of the hinged arm assemblies of the stapler head of FIG. 4.



FIG. 17 is a top plan view of the stapler head of FIG. 4 in the streamlined position for introduction into the body. Both the membrane and the membrane raiser are not shown for purposes of clarity.



FIG. 18 is similar to FIG. 17 and illustrates hidden features of FIG. 17.



FIG. 19 is a perspective view of the stapler head in an intermediate, partially expanded, position.



FIG. 20 is a plan view similar to FIG. 17 but showing the stapler head in the intermediate position.



FIG. 21 is similar to FIG. 20 and illustrates hidden features of FIG. 20.



FIG. 22 is a perspective view of the stapler head in a fully expanded, full compression position.



FIG. 23 is a plan view similar to FIG. 20 but showing the stapler head in the full compression position.



FIG. 24 is similar to FIG. 23 and illustrates hidden features of FIG. 24.



FIGS. 25A-25C are perspective views showing the staple housing, cartridge and a portion of the membrane raiser. These figures illustrate the steps of detaching a staple cartridge from the staple housing.



FIG. 26 is a perspective view of the stapler of FIG. 2, with the staple head removed.



FIG. 27A is a plan view of the articulating section of the stapler of FIG. 2, showing the drive fluid lines.



FIG. 27B shows a drive fluid line having an alternate longitudinally expandable shape.



FIG. 28 is a cross-sectional side view of the handle of the stapler of FIG. 2.



FIG. 29 is a perspective view of the handle of the stapler of FIG. 2.



FIGS. 30A and 30B are plan views of the proximal face of the staple housing, showing a method for attaching the end plate of the stapler handle to the staple housing.



FIGS. 31A-31E are a series of drawings schematically illustrating use of the system of FIG. 2 to form a plication in a stomach.



FIGS. 32A-32C are a series of perspective views illustrating use of the stapler of FIG. 2 to acquire, compress, and then staple stomach wall tissue to form a plication in the stomach. The membrane is not shown in these drawings.



FIG. 33 is a top plan view of a plication formed in body tissue.



FIGS. 34 and 35 are perspective views of an alternative stapler head equipped to carry additional tools.





DETAILED DESCRIPTION

The present application describes endoscopic fastener-applying devices which in preferred embodiments may be passed transorally into the stomach and used to plicate stomach tissue.


In the disclosed embodiments, tissue is drawn inwardly into a vacuum chamber, although tissue may be drawn inwardly using other components (e.g. graspers) that do not involve the use of a vacuum. When a portion of the interior stomach wall is drawn inwardly, sections of serosal tissue on the exterior of the stomach are positioned facing one another. The disclosed fastener applying device allows the opposed sections of tissue to be moved into contact with one another, and delivers fasteners that will hold the tissue sections together until at least such time as serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or more plications is formed, medical devices (including, but not limited to any of the types listed above) may be coupled to the plication(s) for retention within the stomach.


The disclosed embodiments include an optional feature that forms a hole or cut in a plication using the fastener-applying device. This hole or cut might be formed so that a portion of a medical implant may be passed through or linked to the hole/cut, or it may be formed so as to provoke a healing response that will contribute to the strength of the resulting tissue bond.


In the description of the embodiments given below, the fastener-applying devices are described as being staplers, and exemplary methods are given with respect to the formation of plications in stomach tissue. It should be understood, however, that the embodiments described herein include features having equal applicability for applying other types of fasteners, and for applying staples or other fasteners for purposes other than formation of plications. The disclosed embodiments and methods will also find use in parts of the body outside the GI system. Additionally, although the disclosed embodiment features circular stapling and cutting of a concentric hole, modifications are conceivable in which linear stapling can be accomplished, as well as circular or linear stapling without cutting.



FIG. 2 illustrates one embodiment of a system 10 for tissue stapling that is suitable for endoscopic use, as well as surgical or laparoscopic use if desired.


Generally speaking, system 10 includes a stapler 12 having a stapler head 14 positioned on a distal portion of a shaft 16. A handle 18 on the shaft 16 controls articulation of the stapler head 14 and actuation of the tissue acquisition, tissue compression, and stapling functions of the stapler head 14. Vacuum and fluid sources 20, 25 are fluidly coupled to the handle 18 for use in tissue acquisition, compression and stapling as discussed below. The vacuum source 20 may be the “house vacuum” accessible through a coupling on the wall of the operating room, or an auxiliary suction pump. The stapler may include a switch 21 allowing the user to control airflow between the vacuum source and stapler.


The fluid source 25 may be a single source of drive fluid (e.g. water, saline, oil, gas) or multiple sources, but in each case the fluid source preferably includes two actuators separately used to control flow into each of two hydraulic lines (one for tissue compression and one for stapling). An endoscope 22 insertable through a lumen in the shaft 16 permits visualization of the plication procedure. The system may optionally include an overtube, such an endoscopic guide tube 23, having a lumen for receiving the stapler 12.


Referring to FIG. 3A, a covering or membrane 24 encloses the stapler head 14 to form a vacuum chamber within the stapler head 14. The side exposed to the tissue to be plicated remains uncovered by the membrane 24 to allow tissue to be drawn into the chamber during use. For example, the membrane 24 may include a side opening 26 as shown in FIG. 3B. Membrane 24 is preferably formed of silicone, elastomeric material, or any other inelastic or elastic flexible or deformable biocompatible material capable of forming a vacuum chamber that will expand in volume to accommodate tissue drawn into the chamber.


At least a portion of the membrane is at least partially transparent. In being at least partially transparent, the membrane is formed of a material, or includes sections of material, that will allow the user to see through the membrane well enough to confirm (via endoscopic observation) that an appropriate volume of tissue has been acquired into the stapler head prior to staple application. The opening 26 may be surrounded by a reinforced section 27 formed of material that will strengthen the area around the opening 26. Reinforced section 27 may be formed of a thicker section of the membrane material, and/or a higher durometer material. Alternatively, reinforcing ribs or other structures or elements may be formed into or onto the membrane material, or embedded in the membrane material.


Stapler Head


The stapler head 14 is designed to have a minimum profile during insertion to the plication site, and to then transform into a much larger profile device having a large internal volume. For example, in one embodiment the vacuum chamber might have an initial internal volume of 0.2 cubic inches, and an expanded volume of 0.6 cubic inches (i.e. the internal chamber volume after subtracting the volume occupied by the stapler head components positioned within the vacuum chamber). This large internal volume allows a large volume of tissue to be drawn into the vacuum chamber and stapled. In this way, the stapler head creates a large plication without requiring invasive techniques for insertion. The unique features of the stapler head allow in situ volumetric expansion of the stapler head using a minimum of motion and force input.


Features of the stapler head are shown in FIGS. 4-10. For clarity, the membrane is not shown in these figures. Referring to FIG. 4, stapler head 14 generally includes a first member comprising a proximal staple housing 28, a second member comprising a distal anvil housing 30, and at least one elongate member but preferably a pair of hinged arm assemblies 32.


The staple housing and anvil housing are arranged to allow tissue to be compressed between contact surfaces on each of the staple housing and the anvil housing. In the disclosed embodiment, the contact surfaces are on a staple holding portion of the staple housing and an anvil on the anvil housing.


The arm assemblies 32 extend between the staple housing 28 and anvil housing 30 on opposite sides of the stapler head 14. Proximal and distal pins 34, 36 pivotally couple each arm assembly 32 to the staple housing 28 and the anvil housing 30. An expansion member comprising a membrane raiser 37 also extends between the staple housing 28 and the anvil housing 30. Although the membrane 24 is not shown in FIG. 4, it should be understood that the membrane raiser 37 is positioned opposite the opening 26 (FIG. 3B) in the membrane. In the illustrated embodiment, membrane raiser 37 includes a link 38 pivotally mounted to the staple housing by a pin 42, a corresponding link 40 pivotally mounted to the anvil housing by pin 44, and spring wires 46 coupling the links 38, 40 to one another.


Staple Housing


Turning to a more detailed discussion of the stapler head components, the staple housing 28 can be seen separated from other components in FIGS. 5 and 6. As shown in FIG. 5, proximal face 48 of the staple housing includes input ports 50a, 50b through which fluid is directed for hydraulic actuation of the tissue compression, stapling, and optional cutting operations of the stapler head. Seals 51 surround the ports 50a, 50b to minimize fluid leakage.


Vacuum ports 52 are fluidly coupled to a vacuum source 20 (FIG. 2) that is selectively activated to create negative pressure in the vacuum chamber for tissue acquisition. The vacuum ports 52 are connected to the vacuum source 20 by flexible tubing (not shown) in the stapler shaft 16 (FIG. 2). Mounting holes 54 are used to mount the stapler head 14 to the shaft 16.


The staple housing 28 includes upper and lower sections 58a, 58b above and below open side sections 56. The upper section 58a includes a recess 60 within which the pivot pin 42 for link 38 (FIG. 4) is mounted. As best shown in FIG. 6, bores 62 are positioned in the upper and lower sections 58a, 58b to receive pins 34 (FIG. 4) that serve as the proximal pivot points for arm assemblies 32. Guide slots 64 extend longitudinally through the upper and lower sections 58a, 58b.


Referring to FIG. 6, a hydraulic chamber 66 is disposed within the staple housing 28. Within the hydraulic chamber 66 (FIG. 6) is a dedicated hydraulic circuit for driving the tissue compression and stapling functions of the stapler. Chamber 66 is fluidly coupled to the fluid input ports 50a, 50b (FIG. 5). As will be discussed in detail in connection with FIGS. 11A-11D, fluid driven into the hydraulic chamber 66 via input ports 50a, 50b sequentially advances a system of hydraulic pistons (not shown) that act on other components to compress the tissue, and that drive the staples and cutting element through the compressed tissue.



FIG. 7 illustrates components of the stapler head that are driven by the hydraulic system for compression, stapling, and cutting. For clarity, these components are shown separated from the staple housing and from each other. In this discussion, the components that are driven by the hydraulic system will be described. The hydraulic system itself is described in a later section in connection with FIGS. 1A-11D.


In particular, FIG. 7 illustrates a drive member which takes the form of a disk 68 in the staple housing. In the assembled housing, disk 68 is positioned such that it will be pushed distally by a hydraulic compression piston (not shown). The drive member is coupled to the arm assemblies 32, anvil housing, and staple housing so that advancing the drive member distally effects tissue compression by bringing the contact surfaces of the staple housing and anvil housing relatively towards one another.


Disk 68 includes mounting bores 70, a central opening 72, and alignment posts 74. Referring briefly to FIG. 10, in the assembled stapler head, disk 68 is coupled to the stapler housing 28 using pins 84 that extend through the housing's guide slots 64 and through mounting bores 70 in the disk 68.


A portion of the staple housing 28 contains staples to be fired into the tissue. The staples are contained within a staple holder on the staple housing. The staple holder may have a number of different configurations. For example, it may be an integral portion of the staple housing, or a separate part mounted or attached to the staple housing, and/or it may be moveable relative to the body of the staple housing to effect tissue compression prior to stapling. In any of these examples, the staple holder may be a removeable/replaceable cartridge, and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.


In the disclosed embodiment, the staple holder is a removeable staple cartridge 78 that can be replaced with another cartridge after staple filing. In this embodiment, the staple cartridge is moveable relative to the body of the staple housing to compress the tissue prior to staple firing.


Referring again to FIG. 7, staple cartridge 78 is positionable within the staple housing, distal to the disk 68, such that distal advancement of the disk by the compression piston pushes the cartridge distally to compress tissue disposed between the cartridge and anvil. Grooves 79 on the exterior of the cartridge slide over corresponding ones of the alignment posts 74 during insertion of the cartridge into the stapler head. FIG. 10 shows the alignment posts prior to loading of a cartridge into the staple housing. As shown, the alignment posts 74 may have tapered ends to facilitate loading of the cartridge over the posts.


Again referring to FIG. 7, cartridge 78 includes a number of staple locations 80, each housing a staple. The staple cartridge is equipped with bosses 81 to retain a staple line reinforcement device 83 of the type shown in FIG. 8 and disclosed in detail in commonly-owned U.S. application Ser. No. 11/542,457, entitled ENDOSCOPIC PLICATION DEVICES AND METHODS, filed Oct. 3, 2006, and published Sep. 20, 2007 as US 20070219571. To summarize briefly, this type of reinforcement device 83 may be a ring or other element positionable against the distal face of the staple cartridge. When the ring is placed on the cartridge, openings 85 in the ring align with prongs of some of the staples in the cartridge. When staples are driven from the cartridge, these prongs pass through associated ones of the openings 85 and capture the ring 83 against the adjacent body tissue.


Referring to FIGS. 7 and 9, a number of undercut bosses 81 on the anvil-facing side of the cartridge may be used to lock the reinforcement device 83 in place on the face of the staple cartridge. Other positive shapes, such as mushrooms, hooks, and tilted bosses could be used to accomplish the same end. Negative shapes, such as pockets or grooves formed into the surface of the cartridge, may also be employed to engage corresponding features on the reinforcement device 83. As another alternative, the reinforcement device may be held in place on the cartridge using adhesives.


A cutter element 86 extends through the central opening 72 (FIG. 7) of the disk 68. The cutter element is shown as a tubular punch having a sharpened wall and a lumen 87, but may be provided in alternative forms. A staple pusher 76 is mounted to the cutter element, distally of the disk as can be seen in the assembled view of FIG. 10. Staple pusher 76 includes pusher elements 82 proportioned to slide into the cartridge's staple locations 80 as the staple pusher 76 is advanced into the staple cartridge 78, thus driving the staples from the cartridge. A hydraulically-driven staple piston (not shown in FIG. 7) in the hydraulic chamber 66 is coupled to the cutter element 86 such that advancement of the stapler piston advances the staple pusher 76 and cutter element 86 in a distal direction.


Fluid Drive System


The fluid drive system used to actuate compression, stapling and cutting may be configured in various ways. The following paragraphs describe one exemplary configuration for the fluid drive system, which in this embodiment is a hydraulic system. FIGS. 1A and 11B schematically show the fluid flow in the hydraulic chamber 66 of the staple housing 28 during both compression and stapling stages of actuation. Referring to FIG. 11 A, compression piston 106 is disposed within hydraulic chamber 66. Disk 68 (also shown in FIGS. 7 and 10) is positioned in contact with or slightly distal to piston 106. Compression piston 106 is generally cup-shaped, having a rear wall 108 and a side wall 110 enclosing an interior 111. O-ring seals 112 are spaced-apart on a proximal portion of the side wall 110. Channels 114 are formed through the side wall 110, between the o-ring seals 112.


A second piston, referred to as the staple piston 116, is positioned in the interior 111 of compression piston 106, against the rear wall 108. Although not shown in FIGS. 1A-11D, cutting element 86 (FIG. 7), with the staple pusher 76 thereon, is positioned in contact with or slightly distal to the staple piston 116. An o-ring seal 118 surrounds a portion of the staple piston 116 that is distal to the channels 114 in the compression piston.


A first fluid channel 120 extends from fluid port 50a in the stapler housing 28 to a proximal section of the hydraulic chamber 66. A second fluid channel 122 extends from fluid port 50b in the stapler housing to a more distal section of the hydraulic chamber 66. Fluid flow from port 50a and fluid channel 120 against the compression piston cylinder is shown in FIG. 1A. Fluid pressure within the hydraulic chamber 66 advances the compression piston 106, with the stapler piston 116 within in it, in a distal direction. FIG. 11B shows the compression piston 106 approaching the end of its travel. Once the compression piston reaches the end of its travel as shown in FIG. 11C, channel 114 in the compression piston 106 aligns with channel 122 in the housing, allowing fluid introduced through fluid port 50b to enter the interior of the compression piston 106 via channel 122. The fluid entering the interior of the compression piston drives the staple piston distally as shown in FIG. 11D. In an alternative embodiment shown in FIG. 11E, a third piston 117 is provided for separately driving the cutting element 86. In this embodiment, fluid introduced into a third drive fluid port 50c causes advancement of the third piston 117. The pistons 106, 116 and 117 and associated fluid paths may be arranged so that fluid cannot enter the interior of the stapler piston to advance the cutting piston 117 until compression piston 106 has traveled to the tissue-compression position and stapler piston 116 has in turn traveled to the stapling position.


The anvil housing (identified by numeral 30 in FIG. 4) will next be described with reference to FIG. 12. The anvil housing 30 includes mounting bores 88 for receiving pivot pins 36 at the distal end of the hinged arm assemblies 32. The upper section of the anvil housing 30 includes a section 94 through which the pivot pin 44 for link 40 (FIG. 4) is mounted.


A central bore 90 extends longitudinally through the anvil housing 30. An anvil support 92 is longitudinally slidable within the bore. Both the bore 90 and the anvil support 92 are preferably formed to have non-circular cross-sections (such as the illustrated rectangular cross-section) with flat bearing surfaces to prevent rotation of the piston within the bore.



FIG. 13 shows the anvil support 92 separated from the anvil housing 30. The distal portion of the anvil support 92 is split into upper and lower plates 95a, b. Plate 95a has a bore 93 axially aligned with a similar bore in plate 95b. The proximal portion of the anvil support 92 carries the anvil 96. As shown in FIG. 14, anvil 96 includes a plurality of indentations 98 positioned such when staples are driven from the staple cartridge, each staple leg engages one of the indentations, which causes the staple leg to fold. A central opening 97 extends through the anvil 96 and is contiguous with a lumen in the anvil support 92.


The anvil 96 and the staple cartridge 78 (FIG. 7) are the two parts of the stapler head which exert force on the tissue to be stapled. As shown in FIGS. 9 and 14, the preferred anvil and cartridge are designed to use a minimal amount of material surrounding the indentations 98 of the anvil 96 and the staple locations 80 of the cartridge 78—so that the amount of anvil/cartridge surface area contacting the tissue is as small as possible. When subjected to a constant force, a smaller footprint will damage less tissue than would a larger footprint, since a smaller area of tissue is squeezed between the anvil and cartridge. However, the tissue that does get squeezed experiences more pressure from the given force because the force is distributed over a smaller area. In other words, the minimized footprint creates more pressure on the tissue with less force. This is advantageous from a mechanical standpoint because the stapler head need not supply or withstand as much force as would be needed with a larger-footprint cartridge and anvil.


Referring to FIG. 7, in the illustrated embodiments, the staple cartridge 78 has an outer wall that tracks the contours of the staples housed within it, thus forming a number of pedals 73 surrounding the outer staple positions or slots 80a, with the grooves 79 disposed between the pedals, adjacent to the inner staple positions 80b. Rather than providing each staple position to be fully surrounded by cartridge material, the staple positions 80a, 80b preferably each include a back wall 71a and a retaining element attached to the wall and positioned to retain a staple between the retaining element and the back wall. In FIG. 7, the retaining element comprises a pair of wings 71b that curve inwardly from the back wall 71 to define a slot that is sufficiently bounded to retain a staple within the staple position, but that is preferably not bounded around its full circumference. The anvil has a similar pedal arrangement, as shown in FIG. 13.


Referring again to FIG. 13, a plate 99 is positioned on the anvil 96 such that the distally-advancing cutting element 86 will advance into contact with the plate 99 during tissue cutting. In one embodiment, the plate 99 may be seated within the opening 97 in the anvil. The plate 99, which will also be referred to as the “cutting board”, has a hole 101 in it which relieves the pressure of the captured tissue and prevents hydraulic locking, a condition in which the punch and plate create a closed volume. If it is desired to move the cutting element 86 after contact is made, pressure will increase inside this closed volume and it will resist further motion. This may prevent or adversely affect tissue cutting.


The cutting board is preferably designed so as to not serve as a hard stop against advancement of the cutting element 86. If the cutting element 86 is stopped by the cutting board, the stapling piston will also be stopped and incomplete staple formation may result. Therefore, it is preferred that the cutting element 86 is allowed to penetrate or displace the cutting board during and after the tissue is cut.



FIGS. 15A and 15B illustrate the cutting element 86 advanced into contact with different embodiments of cutting boards. In the FIG. 15A embodiment, the material of cutting hoard 99a is a relatively soft material, such as an elastomeric silicone, which is cut by the advancing cutting element as shown. This material allows the sharp distal end of the cutting element to move into the cutting board during the final stage of staple formation. In the FIG. 15B embodiment, the cutting board 99b can be made of a harder material positioned with a compressible object such as an elastomeric spring 99c behind it. In the figure, this spring is an o-ring. Advancement of the cutting element 86 against the cutting board 99b causes the cutting board to be displaced distally against the spring 99c. The advancing cutting element 86 experiences increasing resistance as the o-ring is compressed. Other spring shapes and materials, such as coiled wire, spring washers and leaf springs can be used to achieve the same result. The chamfer 99d on the surface of the cutting board 99b may help to align the cutting element 86 as it is forced into contact with the cutting board.


Arm Assemblies


Following is a discussion of the features of the arm assemblies 32. FIG. 16 shows the arm assemblies 32 separated from the other elements of the stapler head. In general, each arm assembly has a first arm section pivotally coupled to the staple housing and a second arm section pivotally coupled between the first arm section and the anvil housing. While not present in the illustrated embodiment, additional arm sections may be positioned between the first and second arm sections.


Each arm assembly includes a proximal arm 100 and a distal arm 102 joined to one another to form a hinge 104. Each of the proximal arms 100 has a longitudinal cutout 108 and a spreader arm 110 pivotally mounted within the cutout 108. The distal end of each spreader arm 110 includes a bore 112. Pin 84 is positioned within the bore 112. As disclosed in connection with FIG. 10, this pin 84 extends through the disk 68 and has ends that ride within the slots 64 (FIG. 6) on the lower and upper sections of the stapler housing. Longitudinal movement of the disk 68 within the stapler housing will thus advance the pins 84 within their corresponding slots 64, causing the spreader arms 110 to pivot relative to the pins 84 and to thus drive the arm assemblies 32 outwardly. Additional specifics concerning movement of the arm assemblies 32 is set forth in the section entitled Stapler Head Operation.


Distal arms 102 of the arm assemblies include pins 36 which, as discussed, are pivotally mounted to the anvil housing 30 (FIG. 4). A pair of drive links 114 are provided, each of which has a first end pivotally attached to a corresponding one the distal arms 102 and a second end pivotally coupled to a common pin 116. In the assembled stapler head, pin 116 is positioned in the bores 93 of the upper and lower plates 95a, 95b of the anvil support (see plates 95a, b in FIG. 12). As detailed in the Stapler Head Operation section below, when the spreader arms 110 drove the arm assemblies 32 outwardly, drive links 114 act on the pin 116 to push the anvil support in a proximal direction, causing the anvil to advance proximally towards the staple cartridge.


Stapler Head Operation


The following discussion centers on the manner in which the arm assemblies function to expand the vacuum chamber and to compress tissue that has been drawn into the chamber using suction. As an initial step preceding chamber expansion, the stapler head is positioned with the opening 26 in the membrane 24 in contact with tissue at the location at which plication creation is desired. Vacuum source 20 (FIG. 2) is activated to apply vacuum to the inside of the vacuum chamber defined by the membrane. Tissue in contact with the opening 26 (FIG. 3B) will be drawn into the vacuum chamber between the staple housing 28 and the anvil housing 30. After the tissue is drawn in, the stapler profile is changed, expanding the volume of the chamber within the membrane.


The streamlined position of the stapler head 28 prior to expansion is shown in FIGS. 4, 17 and 18. In particular, the hinged arm assemblies 32 and membrane raisers 37 are in generally straight orientations. The proximal arms 100 serve as the drive arms for chamber expansion and tissue compression. Motion of these arms is initiated when water under pressure is forced into the hydraulic circuit of the staple housing. Referring to FIG. 19, the fluid pressure advances disk 68 (by action of the compression piston 106, not shown in FIG. 19). Disk 68 in turn pushes the staple cartridge 78 toward the anvil 96 as shown in FIGS. 19-21, causing the staple cartridge 78 to extend further from the staple housing 28.


Both the disk 68 and the arm spreaders 110 are coupled to the pins 84. For this reason, the longitudinal movement of the disk 68 within the stapler housing 28 will carry the pins 84 distally within their corresponding slots 64. The arm spreaders 110 will consequently pivot relative to the pins 84, driving the proximal arms 100 outwardly. Outward movement of proximal arms 100 at hinge 104 causes the distal arms 102 to also pivot outwardly at hinge 104, forming an angle between the proximal and distal arms 100, 102. Naturally, formation of the angle between the arms 100, 102 shortens the effective length between the remote ends of the arms, causing the distal pins 36 of the distal arms 102 to carry the anvil housing 30 towards the staple cartridge. The pivoting movement of the distal arms 102 further causes drive links 114 to act on pin 116 to push the anvil support in a proximal direction. This moves the anvil support relative to the anvil housing in a proximal direction at the same time the anvil housing is also moving proximally.


In essence, one motion, that of the hydraulically driven compression piston, creates at least three motions, illustrated by arrows A1, A2 and A3 in FIGS. 19-21. These three motions include: the staple cartridge 78 moving relative to the staple housing in a direction towards the anvil 96 (arrow A1), the anvil housing 30 moving toward the staple housing 28 (arrow A2) and the anvil 96 itself moving relative to the anvil housing 30 in a direction towards the cartridge (arrow A3). This compound motion of the anvil toward the staple cartridge enables a small displacement of the compression piston to quickly compress tissue in the grip of stapler. The multiplication of motion also enhances force transmission between the two housings by keeping the angle at hinge 104, between the proximal (driven) arm and the distal (drive) arm, as large as possible.


The relative motion of the two housings 28, 30 toward each other also drives upward links 38, 40 and their interconnecting spring wires 46 on the top of the stapler head 14. Together, the links and spring wires raise the top of the membrane, creating more volume to accommodate expansion of the tissue during compression.


Compression of the tissue is halted when the pins 84 traveling in slots 64 in the staple housing 28 reach the limit of travel, as shown in FIGS. 22-24. Thus, the slots and associated components are dimensioned to set the desired separation distance between the tissue contact surfaces on the stapler side and the anvil side of the stapler head. Exemplary separation distances for use in stomach wall plications might include approximately 0.06-0.07 inches (e.g. for use with staples having legs of 5.5 mm length) or 0.109 inches for 6.5 mm leg length staples. Application of additional pressure into the hydraulic circuit will not compress the tissue any further.


Moreover, because of the piston arrangement, the stapling function is effectively locked out until tissue compression is complete. With this arrangement, fluid introduced via the fluid port 50b (FIG. 11A) into the staple fluid channel 122 prior to completion of tissue compression will leak until the two o-rings 112 of the compression piston 106 are straddling the inlet 114. This design prevents premature staple firing.


At the fully compressed position, the arm spreaders 110 are nearly perpendicular to the longitudinal centerline of the stapler head. Once tissue is compressed between cartridge 78 and anvil 96, the tissue is ready for stapling.


Stapling is initiated by introducing hydraulic fluid through port 50b (FIG. 5). The staple piston advances, pushing cutting element 86 (FIGS. 7 and 10) towards the anvil 96. Because the staple pusher 76 is mounted to the cutter 86, this action carries the staple pusher 76 through the cartridge 78 where it simultaneously pushes all staples through the tissue. Staple piston travel is limited by internal stops, and is preset to yield optimal staple formation.


During compression, as the angle at the hinge 104 of arm assemblies 32 reaches its minimum, the force required to resist separation of the staple and anvil housings increases. These forces increase further when the forces of staple crushing are exerted on the anvil by the staple piston. To compensate, the arm spreaders 110 serve as displacement struts to channel at least a portion of these forces into the disk 68. These forces, if not reacted by the pusher disk, would pull in the arms 100, 102 and potentially release the compression on the tissue, causing incomplete staple formation or tissue cutting. In this way, a truss-like structure is created for force displacement.


When staples have been formed, staple pressure is released and a spring (not shown) returns the staple pusher 72 to its base position. Releasing fluid pressure will allow the deflected spring wires 46 on membrane raiser 37 to return the staple head to its minimum profile configuration and release the plication from the stapler. Once outside the patient, the used staple cartridge can be ejected and a new one installed.



FIGS. 25A-25C illustrate one method for retaining a removable staple cartridge 78 within the staple housing. The cartridge is spring-loaded into the staple housing and retained by two latches 170 (one visible), each pivotable relative to a fulcrum 172. As shown, the fulcrum 172 may be coupled to the disk 68 by pin 84. Each latch 170 includes a catch 174 which engages a corresponding catch 176 on the cartridge. The latch 170 is preferably spring biased to urge the catch 174 inwardly towards the cartridge.


Depressing the proximal end 175 of each latch 170 as shown by arrow P in FIG. 25B pivots the latch against this bias, causing ejection of the staple cartridge. A new staple cartridge may then be positioned with its grooves 79 aligned with alignment posts 74 as shown in FIG. 25C and then pushed towards the staple housing. As the new cartridge slides into position, catch 174 rides over the tapered proximal portion 178 of the catch 176. Once catch 174 passes over the distal end 180 of the catch 176, it drops inwardly towards the cartridge due to its spring bias, thus engaging the cartridge. When the cartridge is properly seated, a click will be felt or heard as the latches engage the new cartridge.


Stapler Shaft and Handle


Referring again to FIG. 2, the stapler shaft 16 connecting the handle 18 and the stapler head 14 is flexible enough to conform to the curvature of the upper digestive tract, yet maintains the ability to transmit enough torque to rotate the stapler head. The shaft is formed with sufficient stiffness to allow it to be pushed down esophageal guide tube 23. Suitable materials include



FIG. 26 shows a distal portion of the shaft 16, with the stapler head removed from the shaft. As shown, shaft 16 includes an endoscope lumen 124 through which an endoscope is advanced to allow visualization of a stapling operation. Side lumens 126 may also be provided for receiving other instruments useful during the procedure.


An articulating section 128 is positioned at the distal end of the shaft 16, between the shaft 16 and the stapler head 14 so as to allow the stapler head to be articulated relative to the shaft. Tubing coupled to the vacuum source and the source of hydraulic fluid extends from the handle and through the shaft 16 and the articulating section 128.



FIG. 27A shows one configuration that may be used for the hydraulic fluid lines 130. During use, the hydraulic fluid lines are subjected to significant deflection and elongation in the articulating section of the stapler. They are also subjected at times to fluid pressure which may be in excess of 1000 psi. Typically, hydraulic lines in industrial applications are flexible and have a working loop of extra tubing that accommodates length changes during use. The illustrated configuration for the hydraulic lines is a lower profile solution particularly suitable for an endoscopic device having space constraints. A preferred hydraulic line is a tube 130 having a portion that is shaped into a longitudinally expandable shape so that it can accommodate effective length changes during bending. The longitudinally expandable portion of the tube is preferably disposed within the articulating section 128 of the stapler 12. In a preferred design, the longitudinally expandable shape is a coil shape as shown in FIG. 27A. In alternate embodiments, the tube 130 may be formed into other longitudinally expandable shapes, such as regular or irregular undulating shapes (FIG. 27B).


The preferred material for the tubes 130 is stainless steel hypotube, although other materials may instead be used. In the preferred stapler configuration, two drive fluid lines are provided, one for actuating tissue compression, and the other for staple application (and cutting when used). In the present embodiment, the tubes are coiled together as shown in FIG. 27A. In alternate embodiments, two or more coiled tubes may be nested one inside the other. As the articulating section bends, it forces the coiled tubes 130 to bend and to change length in response to bending. The coiled tubes behave just as coiled wires would during these motions and are thus able to change length, deflect, and follow the contour of the articulating section without compromising flow through the lumens of the tubes or imparting undue stress to the connections at either end of the hydraulic system.


The longitudinally expandable shapes for the fluid lines may be suitable for use in allowing delivery of fluid to the operative ends of other types of articulating medical devices, such as catheters or endoscopic devices for delivering therapeutic agents or irrigation fluids past an articulating or bendable section of the device.


Referring again to FIG. 26, articulating section 128 is comprised of a spine formed of a plurality of links 132 strung over a pair of pull cables 134 (only one shown in FIG. 26). In one embodiment, engagement of the pull cables allows the stapler head 14 to be articulated in two directions through a range of motion of approximately 90 degrees in one direction (see FIG. 3B) to 175 degrees in the opposite direction (see FIG. 3C). Each pull cable is anchored at or near the stapler head, such as at the distalmost link 132 of the stapler housing 28.


The more proximal portions of the pull cables 134 extend the length of the shaft 16 and terminate in the handle 18. Referring to FIG. 28, the handle 18 includes a rotating knob 136 that may be selectively rotated in a clockwise or counterclockwise to articulate the stapler head up or down. Rotation in one direction applies tension to one of the pull cables to cause the stapler head to bend downwardly, whereas rotation in the opposite direction puts tension on the other cable, causing the head to bend upwardly.


In a preferred handle configuration, the knob 136 includes an internal threaded bore 138. Knob 136 is partially restrained within the handle 18 so that it remains fixed within the handle but can rotate freely. A carriage 140 having a threaded exterior surface is positioned within the threaded bore 128 of the knob. The threads within the bore 138 are engaged with the threads on the carriage 140 so that rotation of the knob causes the carriage 140 to translate, but not rotate, within the handle.


Each of the two pull cables, identified in FIG. 28 as cables 134a and 134b, is terminated on a different member in the handle. Cable 134a is mounted on the sliding carriage and cable 134b is mounted to a stationary part of the handle 18. Each cable extends through a corresponding sheath. Cable 134a extends through a sheath 135a having a proximal end fixed to a stationary part of the handle 18. Cable 134b extends through a sheath 135b having a proximal end mounted to the sliding carriage.


The cables 134a, b and sheaths 135a, b are arranged such that translation of the carriage in one direction will cause deflection of the stapler head in one direction, and translation of the carriage on the other direction will deflect the stapler head in another direction.


Referring to FIG. 28, if knob 136 is rotated to causes the carriage 140 to translate to the left of the page, cable 134a will be tensioned and cable 134b will slacken, causing the stapler head to articulate in a first direction (e.g. upwardly). Rotation of the knob 136 in the opposite direction will advance the carriage to the right of the page, releasing tension on cable 134a and pushing sheath 135b over the cable 134b towards the distal end of the staple head, causing articulation in the second direction (e.g. downwardly) as the sheath 135b is advanced against a distal portion of the shaft 16. The proximal portion of sheath 135b is provided with sufficient working length prevent it from being placed under tension when the carriage moves distally. The positioning of the knob is advantageous in that the hand movement required for stapler articulation is always the same, regardless of the rotational orientation of the stapler. Also, the use of the threaded knob can prevent unintentional relaxation of the deflection angle, even if the knob is provided without a lock to retain its rotational position.


Referring to FIGS. 28 and 29, the endoscope lumen 124 extends along the center axis of the stapler. The positioning of the lumen and the coaxial relationship of the articulation knob in relative to the endoscope 124 allows the endoscope and stapler to be rotated independently without one interfering with one another. Thus, if the user chooses to change the rotational orientation of the stapler head 14 within the body, s/he may rotate the handle 18 and shaft 16 while maintaining the rotational position of the endoscope.


For cost efficiency, the stapler 12 may be designed to permit the stapler head 14 to be discarded while allowing the shaft 16 and handle 18 to be sterilized and re-used. One mechanism for removably coupling the stapler head to the shaft 16 is illustrated, although others are readily conceivable (e.g. a slip coupling type arrangement). Referring to FIG. 26, an end plate 142 is mounted to the distalmost one of the links 132. Each of the end plate 142 and the corresponding rear surface of the stapler head are provided with latch features that allow the end plate and stapler head to be engaged to one another.


End plate 142 includes a cantilevered pin 144 having a peg 145 (which may be a spring pin), a central opening 146, and a pair of u-shaped catches 148 along its edges. Hydraulic feed holes 156a, b are formed through the end plate 142. The hydraulic tubes that deliver hydraulic fluid to the stapler head (see tubes 130 of FIG. 27) are preferably welded to the end plate to allow fluid from the tubes to be directed through the feed holes 156a, b.



FIGS. 30A and 30B show the rear surface 48a of the staple housing, which has been somewhat modified relative to FIG. 5. In this variation of the rear surface 48a, the hydraulic input ports 50a, 50b are repositioned as shown. Additionally, the rear surface 48a has been modified to include a pair of catches in the form of undercut bosses 150, plus an aligning pin 152, and a hole 154.



FIGS. 30A and 30B show the end plate 142 positioned against the rear surface 48a of the staple housing. The other features of the articulating section 128 are not shown in FIGS. 30A and 30B for clarity. To attach the stapler head to the shaft 16, the plate 142, attached to the handle assembly, is pressed against the rear surface 48a of the staple housing as shown in FIG. 30A. As the plate is pushed, it is rotated in a clockwise direction, causing the peg 145 (FIG. 26) of the cantilevered pin 144 to engage hole 154 in the rear surface of the staple housing. When this latch is engaged, hydraulic feed holes 156a, b of the end plate 142 are lined up with the hydraulic inlets 50a, 50b on the staple head as shown in FIG. 30B. At the same time, portions of the end plate surrounding u-shaped catches 148 slide beneath the undercut bosses 152. Pressing the plate compresses the face-sealing o-rings surrounding the hydraulic input ports 50a, 50b. Compression on the o-rings is maintained by engagement of the catches and the undercut bosses overhanging the end plate. To remove the stapler head from the housing, the stapler housing is twisted in a counterclockwise direction to disengage the end plate 142 from the rear surface 48a. The stapler shaft and handle may then be sterilized in preparation for mounting of a fresh stapler head.


Exemplary Procedure


One example of a method for using the system 10 will next be described in the context of formation of plications in stomach wall tissue.


As an initial step (FIG. 2), endoscopic guide tube 23 is advanced into the stomach via the mouth and esophagus. The endoscope 22 is inserted into the endoscope channel in the stapler handle (not shown) and advanced down the lumen of the stapler handle. The stapler/endoscope are simultaneously passed through the endoscopic guide tube towards the stomach. Once the stapler and endoscope reach the gastroesophageal junction region of the stomach, the position of the stapler is maintained while the endoscope is advance further into the stomach.


The stapler head 14 is advanced to the desired depth and location in the stomach. Using the articulation controls on the stapler handle, the angular orientation of the stapler head is adjusted to allow positioning of the stapler head 12 at the pre-identified target tissue as shown in FIG. 3A. The opening 26 in the membrane 24 is positioned against the target tissue. The endoscope 22 is placed in a retroflexed position as shown.


The vacuum source 20 (FIG. 2) is coupled to the vacuum port on the handle external to the body, and vacuum pressure is applied to draw tissue through the opening 26 and into the vacuum chamber defined by membrane 24 as shown in FIGS. 31B and 32A. Acquisition of the target tissue will be readily identified endoscopically through the wall of transparent membrane 24 on the stapler head.


The fluid source (is shown) is coupled to the handle. Once it has been visually confirmed that a sufficient amount of tissue has been acquired, fluid is introduced to cause compression of the tissue and expansion of the arm assemblies 32 and membrane raiser 37 as shown in FIGS. 32B and 31C. As can been seen, the expansion of the arm assemblies and the membrane allows a large volume of tissue to be acquired into the vacuum chamber and displaced further into the chamber during tissue compression.


Once the tissue has been compressed, additional hydraulic fluid is introduced to cause stapling and cutting of the tissue as shown in FIGS. 31D and 32C, forming a plication P. The compression and stapling hydraulic sources are then deactivated to release fluid pressure within the hydraulic circuit. With the hydraulic pressure relieved, the spring wires of the membrane raiser 37 help to restore the stapler head 14 to its original streamlined configuration, allowing the stapler head to be withdrawn from the tissue as shown in FIG. 31E. The stapler head may be articulated relative to the shaft to assist in moving the stapler head away from the plication P.


In a preferred plication configuration shown in FIG. 33 the staples 158 are arranged in two concentric rings of five staples, with the staple reinforcement device 83 retained by the staples and distributing forces around the staple pattern as shown. The plication P includes a hole H formed by the cutting element, through which various implants or anchors for various implants can be placed.


If multiple plications are needed, the stapler 12 is briefly withdrawn from the endoscopic guide tube and the staple cartridge is replaced in the manner described in connection with FIGS. 25A-25C. The procedure is repeated until all desired plications have been formed.


The system may be packaged with instructions for use instructing the user to use the various disclosed features to perform a stapling procedure using methods disclosed herein.


Alternate Embodiments


The basic architecture of the stapler disclosed above can be used as a foundation for other stapling tools. FIGS. 34-35 show a modified stapler in which the membrane and membrane raiser have been removed, and in which the staple housing 28 has been modified for the attachment of tools. As shown in FIG. 34, the staple housing 28 includes a pair of grooves 160 proportioned to receive tools 162. Tools 162 may be seated in these grooves 160 and mounted to the staple housing as shown in FIG. 35. This attachment will provide for a stable base from which to actuate the tools. The tools may be self-articulating, or the staple housing 28 may be equipped with devices 164 for moving the tools between streamlined positions for insertion of the assembly into a body cavity, and a deployed position such as that shown in FIG. 35. Tools similar to those in FIG. 35 might be used for tissue acquisition, by reaching between the cartridge and anvil and used to engage tissue and pull the tissue into position between the cartridge and anvil so that it may be stapled, or otherwise affected by various features added to or in place of the anvil and cartridge. Procedures which may benefit from adaptation of the stapler include, but are not limited to gastroplasty, stoma adjustment, polypectomy, lead placement, bleeding control, perforation or hole closure, biopsy and tumor removal.


The disclosed systems provide convenient embodiments for carrying out the disclosed compression and stapling functions. However, there are many other widely varying instruments or systems may alternatively be used within the scope of the present invention, Moreover, features of the disclosed embodiments may be combined with one another and with other features in varying ways to produce additional embodiments. Thus, the embodiments described herein should be treated as representative examples of systems useful for forming endoscopic tissue plications, and should not be used to limit the scope of the claimed invention.


Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.

Claims
  • 1. A method of treating a gastrointestinal tract of a patient, comprising intraorally introducing a plication device into the gastrointestinal tract of the patient, the plication device including (i) a staple cartridge housed in a staple housing, (ii) an anvil housing with an anvil, and (iii) an expandable vacuum chamber between the staple housing and the anvil housing; positioning the plication device proximate tissue in the gastrointestinal tract; and operating the plication device remotely from a position outside the patient, wherein the operating includes; drawing a portion of the tissue into the vacuum chamber; and compressing the portion of the tissue by (a) moving the staple cartridge relative to the staple housing in a direction of the anvil, and (b) moving the anvil relative to the staple housing in a direction of the staple cartridge; and stapling the compressed portion of the tissue.
  • 2. The method of claim 1, wherein the plication device further includes: an arm structure connecting the staple housing and the anvil housing; anda flexible membrane extending between the staple housing and the anvil housing and covering the arm structure, said membrane having an opening through which the portion of the tissue can be drawn into the chamber.
  • 3. The method of claim 2, wherein stapling the compressed portion of the tissue includes ejecting one or more staples from the staple cartridge to crimp against the anvil and fasten the portion of the tissue.
  • 4. The method of claim 2, wherein said arm structure includes first and second arms, each of which is pivotally attached to one of the staple housing and the anvil housing at opposite ends.
  • 5. The method of claim 1, wherein the staple housing and the anvil housing are configured to move relatively toward and away from one another.
  • 6. The method of claim 1, wherein the operating step includes operating the plication device remotely from a position outside the patient to form multiple tissue plications.
  • 7. The method of claim 1, wherein operating the plication device includes expanding the size of the chamber while tissue is being drawn into the chamber.
  • 8. A method of treating a gastrointestinal tract of a patient, comprising intraorally introducing a plication device into the gastrointestinal tract of the patient, the plication device including (i) a staple cartridge housed in a staple housing, (ii) an anvil housing with an anvil, and (iii) an expandable vacuum chamber between the staple housing and the anvil housing; positioning the device proximate tissue in the gastrointestinal tract; drawing a portion of the tissue into the vacuum chamber; compressing the portion of the tissue by (a) moving the staple cartridge relative to the staple housing in a direction of the anvil, and (b) moving the anvil relative to the staple housing in a direction of the staple cartridge; and releasing one or more staples from the staple cartridge to fasten the compressed portion of the tissue in the vacuum chamber.
  • 9. The method of claim 8, wherein the plication device further includes a flexible membrane surrounding the chamber, and the step of drawing a portion of the tissue includes drawing the tissue through an opening in the flexible membrane.
  • 10. The method of claim 9, wherein the step of positioning the device includes positioning the opening of the membrane against tissue.
  • 11. The method of claim 9, wherein the plication device includes a membrane raiser covered by the membrane opposite the opening, and wherein the membrane raiser includes a spring wire.
  • 12. The method of claim 8, wherein the step of drawing a portion of the tissue includes expanding the size of the chamber.
  • 13. The method of claim 8, wherein the step of positioning the device includes bending an elongate shaft of the plication device at an articulating section located at a distal end of the elongate shaft.
  • 14. The method of claim 13, wherein bending the elongate shaft includes bending a longitudinally expandable hydraulic line.
  • 15. The method of claim 8, wherein compressing the portion of the tissue includes moving the staple housing and the anvil housing relatively towards each other.
  • 16. A method of treating a gastrointestinal tract of a patient, comprising; introducing a plication device into the gastrointestinal tract of the patient, wherein the plication device includes (i) a staple cartridge housed in a staple housing, (ii) an anvil housing with an anvil, and (iii) a flexible membrane surrounding an expandable vacuum chamber formed between the staple cartridge and the anvil, the flexible membrane including an opening; positioning the opening of the membrane proximate tissue in the gastrointestinal tract; drawing tissue through the opening in the flexible membrane into the vacuum chamber; compressing the tissue by (a) moving the staple cartridge relative to the staple housing in a direction of the anvil, and (b) moving the anvil relative to the staple housing in a direction of the staple cartridge; and fastening the compressed tissue.
  • 17. The method of claim 16, wherein the step of positioning the device includes bending an elongate shaft of the plication device at an articulating section located at a distal end of the elongate shaft.
  • 18. The method of claim 17, wherein bending the elongate shaft includes bending a longitudinally expandable hydraulic line.
  • 19. The method of claim 16, wherein drawing tissue through the opening includes expanding the size of the chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, now pending; this application is also a divisional of U.S. patent application Ser. No. 12/052,997, filed Mar. 21, 2008, now allowed, which is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, now pending; this application is also a divisional of U.S. patent application Ser. No. 12/053,010, filed Mar. 21, 2008, now allowed, which is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, now pending; this application is also a divisional of U.S. patent application Ser. No. 12/053,027, filed Mar. 21, 2008, now allowed, which is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, now pending; this application is also a divisional of U.S. patent application Ser. No. 12/053,066, filed Mar. 21, 2008, now allowed, which is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, now pending; this application is also a divisional of U.S. patent application Ser. No. 12/053,182, filed Mar. 21, 2008, now allowed, which is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, now pending; all of which are incorporated herein by reference in their entirety.

US Referenced Citations (390)
Number Name Date Kind
1408865 Codwell Mar 1922 A
3663965 Lee et al. May 1972 A
4134405 Smit Jan 1979 A
4207890 Mamajek et al. Jun 1980 A
4246893 Berson Jan 1981 A
4315509 Smit Feb 1982 A
4331277 Green May 1982 A
4383634 Green May 1983 A
4403604 Wilkinson et al. Sep 1983 A
4416267 Garren et al. Nov 1983 A
4417360 Moasser Nov 1983 A
4441215 Kaster Apr 1984 A
4467804 Hardy et al. Aug 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4607618 Angelchik Aug 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
4617932 Kornberg Oct 1986 A
4641653 Rockey Feb 1987 A
4648383 Angelchik Mar 1987 A
4694827 Weiner et al. Sep 1987 A
4723547 Kullas et al. Feb 1988 A
4747849 Galltier May 1988 A
4846836 Reich Jul 1989 A
4848367 Avant et al. Jul 1989 A
4899747 Garren et al. Feb 1990 A
4925446 Garay et al. May 1990 A
4946440 Hall Aug 1990 A
4969896 Shors Nov 1990 A
4997084 Opie et al. Mar 1991 A
5006106 Angelchik Apr 1991 A
5037021 Mills et al. Aug 1991 A
5061275 Wallsten et al. Oct 1991 A
5084061 Gau et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5163952 Froix Nov 1992 A
5211658 Clouse May 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5259399 Brown Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5290217 Campos Mar 1994 A
5306300 Berry Apr 1994 A
5314473 Godin May 1994 A
5327914 Shlain Jul 1994 A
5345949 Shlain Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5401241 Delany Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405377 Cragg Apr 1995 A
5431673 Summers et al. Jul 1995 A
5486187 Schneck Jan 1996 A
5514176 Bosley, Jr. May 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5562239 Boiarski et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5593434 Williams Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5609624 Kalis Mar 1997 A
5628786 Banas et al. May 1997 A
5630539 Plyley et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653743 Martin Aug 1997 A
5662713 Andersen et al. Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5674241 Bley et al. Oct 1997 A
5706998 Plyley et al. Jan 1998 A
5709657 Zimmon Jan 1998 A
5720776 Chuter et al. Feb 1998 A
5749918 Hogendjijk et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5771903 Jakobsson Jun 1998 A
5785684 Zimmon Jul 1998 A
5792119 Marx Aug 1998 A
5820584 Crabb Oct 1998 A
5839639 Sauer et al. Nov 1998 A
5848964 Samuels Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5856445 Korsmeyer Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5887594 LoCicero, III Mar 1999 A
5897562 Bolanos et al. Apr 1999 A
5910144 Hayashi et al. Jun 1999 A
5922019 Hankh et al. Jul 1999 A
5947983 Solar et al. Sep 1999 A
5993473 Chan et al. Nov 1999 A
5993483 Gianotti Nov 1999 A
6016848 Egrees Jan 2000 A
6051015 Maahs Apr 2000 A
6086600 Kortenbach Jul 2000 A
6098629 Johnson et al. Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6113609 Adams Sep 2000 A
6120534 Ruiz Sep 2000 A
6146416 Andersen et al. Nov 2000 A
6159146 El Gazayerli Dec 2000 A
6159238 Killion et al. Dec 2000 A
6197022 Baker Mar 2001 B1
6206930 Burg et al. Mar 2001 B1
6245088 Lowery Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287334 Moll et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6358197 Silverman et al. Mar 2002 B1
6416522 Strecker Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6460543 Forsell Oct 2002 B1
6461366 Seguin Oct 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494895 Addis Dec 2002 B2
6503264 Birk Jan 2003 B1
6506196 Laufer et al. Jan 2003 B1
6527784 Adams et al. Mar 2003 B2
6540789 Silverman et al. Apr 2003 B1
6544291 Taylor Apr 2003 B2
6547801 Dargent et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6558429 Taylor May 2003 B2
6572627 Gabbay Jun 2003 B2
6572629 Kalloo Jun 2003 B2
6575896 Silverman et al. Jun 2003 B2
6592596 Geitz et al. Jul 2003 B1
6596023 Nunez et al. Jul 2003 B1
6607555 Patterson et al. Aug 2003 B2
6627206 Lloyd Sep 2003 B2
6632227 Adams Oct 2003 B2
6663639 Laufer et al. Dec 2003 B1
6675809 Stack et al. Jan 2004 B2
6733512 McGhan May 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz et al. May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6755869 Geitz Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6790214 Kraemer et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6845776 Stack et al. Jan 2005 B2
6916332 Adams Jul 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6960233 Berg et al. Nov 2005 B1
6966875 Longobardi Nov 2005 B1
6981978 Gannoe Jan 2006 B2
6981980 Sampson et al. Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7011094 Rapackie et al. Mar 2006 B2
7020531 Colliu et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033373 de la Torre et al. Apr 2006 B2
7033384 Gannoe et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7056305 Garza Alvarez Jun 2006 B2
7066945 Hashiba et al. Jun 2006 B2
7083629 Weller et al. Aug 2006 B2
7090699 Geitz Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7097665 Stack et al. Aug 2006 B2
7111627 Stack et al. Sep 2006 B2
7112186 Shah Sep 2006 B2
7120498 Imran et al. Oct 2006 B2
7121283 Stack et al. Oct 2006 B2
7146984 Stack et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7152607 Stack et al. Dec 2006 B2
7160312 Saadat et al. Jan 2007 B2
7172613 Wazne Feb 2007 B2
7175638 Gannoe et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7211114 Bessler et May 2007 B2
7214233 Gannoe et al. May 2007 B2
7220237 Gannoe et al. May 2007 B2
7220284 Kagan et al. May 2007 B2
7223277 DeLegge May 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261722 McGuckin, Jr. et al. Aug 2007 B2
7288101 Deem et al. Oct 2007 B2
7306614 Weller et al. Dec 2007 B2
7315509 Jeong et al. Jan 2008 B2
7316716 Egan Jan 2008 B2
7320696 Gazi et al. Jan 2008 B2
7326207 Edwards Feb 2008 B2
7335210 Smit Feb 2008 B2
7347863 Rothe et al. Mar 2008 B2
7347875 Levine et al. Mar 2008 B2
7354454 Stack et al. Apr 2008 B2
7399304 Gambale et al. Jul 2008 B2
7431725 Stack et al. Oct 2008 B2
7461767 Viola et al. Dec 2008 B2
7470251 Shah Dec 2008 B2
7485142 Milo Feb 2009 B2
7503922 Deem et al. Mar 2009 B2
7520884 Swanstrom et al. Apr 2009 B2
7575586 Berg et al. Aug 2009 B2
7608114 Levine et al. Oct 2009 B2
7615064 Bjerken Nov 2009 B2
7628821 Stack et al. Dec 2009 B2
7662161 Briganti et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7674271 Bjerken Mar 2010 B2
7695446 Levine et al. Apr 2010 B2
7699863 Marco et al. Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717843 Balbierz et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7731757 Taylor et al. Jun 2010 B2
7744613 Ewers et al. Jun 2010 B2
7744627 Orban et al. Jun 2010 B2
7753870 Demarais et al. Jul 2010 B2
7766861 Levine et al. Aug 2010 B2
7819836 Levine et al. Oct 2010 B2
7846138 Dann et al. Dec 2010 B2
7846174 Baker et al. Dec 2010 B2
7881797 Griffin et al. Feb 2011 B2
7892214 Kagan et al. Feb 2011 B2
7892292 Stack et al. Feb 2011 B2
20010011543 Forsell Aug 2001 A1
20010020189 Taylor Sep 2001 A1
20010020190 Taylor Sep 2001 A1
20010021796 Silverman et al. Sep 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20020022851 Kalloo et al. Feb 2002 A1
20020055757 Torre et al. May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020082621 Shurr et al. Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020183767 Adams et al. Dec 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020188354 Peghini Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat et al. May 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030158569 Wazne Aug 2003 A1
20030191476 Smit Oct 2003 A1
20030191525 Thornton Oct 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040030347 Gannoe et al. Feb 2004 A1
20040044353 Gannoe Mar 2004 A1
20040044354 Gannoe et al. Mar 2004 A1
20040044357 Gannoe et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040059289 Garza Alvarez Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040088023 Imran et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093091 Gannoe et al. May 2004 A1
20040098043 Trout May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153167 Stack et al. Aug 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040172142 Stack et al. Sep 2004 A1
20040186502 Sampson et al. Sep 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20040243223 Kraemer et al. Dec 2004 A1
20040267378 Gazi et al. Dec 2004 A1
20050004430 Lee et al. Jan 2005 A1
20050004681 Stack et al. Jan 2005 A1
20050033326 Briganti et al. Feb 2005 A1
20050033345 DeLegge Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer et al. Apr 2005 A1
20050096673 Stack et al. May 2005 A1
20050096750 Kagan et al. May 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050159769 Alverdy Jul 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050183732 Edwards Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192615 Torre et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050228504 Demarais et al. Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050245965 Orban et al. Nov 2005 A1
20050247320 Stack et al. Nov 2005 A1
20050250980 Swanstrom et al. Nov 2005 A1
20050251158 Sadat et al. Nov 2005 A1
20050251162 Rothe et al. Nov 2005 A1
20050256533 Roth et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050261712 Balbierz et al. Nov 2005 A1
20050267405 Shah Dec 2005 A1
20050267499 Stack et al. Dec 2005 A1
20050267595 Chen et al. Dec 2005 A1
20050267596 Chen et al. Dec 2005 A1
20050273060 Levy et al. Dec 2005 A1
20060015006 Laurence et al. Jan 2006 A1
20060020278 Burnette et al. Jan 2006 A1
20060058829 Sampson et al. Mar 2006 A1
20060129094 Shah Jun 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060155259 MacLay Jul 2006 A1
20060155311 Hashiba et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060178691 Binmoeller Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060253142 Bjerken Nov 2006 A1
20060271076 Weller et al. Nov 2006 A1
20060282095 Stokes et al. Dec 2006 A1
20060287734 Stack et al. Dec 2006 A1
20070010864 Dann et al. Jan 2007 A1
20070027548 Levine et al. Feb 2007 A1
20070032800 Oritz et al. Feb 2007 A1
20070043384 Oritz et al. Feb 2007 A1
20070055292 Ortiz et al. Mar 2007 A1
20070060932 Stack et al. Mar 2007 A1
20070149994 Sosnowski et al. Jun 2007 A1
20070175488 Cox et al. Aug 2007 A1
20070191870 Baker et al. Aug 2007 A1
20070191871 Baker et al. Aug 2007 A1
20070198074 Dann et al. Aug 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070239284 Skerven et al. Oct 2007 A1
20070260327 Case et al. Nov 2007 A1
20070276428 Haller et al. Nov 2007 A1
20070276432 Stack et al. Nov 2007 A1
20080033574 Bessler et al. Feb 2008 A1
20080065122 Stack et al. Mar 2008 A1
20080097510 Albrecht et al. Apr 2008 A1
20080116244 Rethy et al. May 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080195226 Williams et al. Aug 2008 A1
20080208355 Stack et al. Aug 2008 A1
20080208356 Stack et al. Aug 2008 A1
20080269797 Stack et al. Oct 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080319471 Sosnowski et al. Dec 2008 A1
20090018558 Laufer et al. Jan 2009 A1
20090024143 Crews et al. Jan 2009 A1
20090030284 Cole et al. Jan 2009 A1
20090125040 Hambley et al. May 2009 A1
20090171383 Cole et al. Jul 2009 A1
20090177215 Stack et al. Jul 2009 A1
20090182424 Marco et al. Jul 2009 A1
20090236388 Cole et al. Sep 2009 A1
20090236389 Cole et al. Sep 2009 A1
20090236390 Cole et al. Sep 2009 A1
20090236391 Cole et al. Sep 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236394 Cole et al. Sep 2009 A1
20090236396 Cole et al. Sep 2009 A1
20090236397 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20090299487 Stack et al. Dec 2009 A1
20100016988 Stack et al. Jan 2010 A1
20100100109 Stack et al. Apr 2010 A1
20100116867 Balbierz et al. May 2010 A1
20100204719 Balbierz et al. Aug 2010 A1
Foreign Referenced Citations (57)
Number Date Country
629664 Feb 1991 AU
680263 Jul 1992 CH
08708978 Nov 1987 DE
0775471 May 1997 EP
1256318 Nov 2002 EP
1492478 Jan 2005 EP
1602336 Dec 2005 EP
2768324 Mar 1999 FR
09-168597 Jun 1997 JP
WO 9101117 Feb 1991 WO
WO 9525468 Sep 1995 WO
WO 9747231 Dec 1997 WO
WO 0012027 Mar 2000 WO
WO 0032137 Jun 2000 WO
WO 0078227 Dec 2000 WO
WO 0141671 Jun 2001 WO
WO 0145485 Jun 2001 WO
WO 0149359 Jul 2001 WO
WO 0166018 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0189393 Nov 2001 WO
WO 02060328 Aug 2002 WO
WO 03017882 Mar 2003 WO
WO 03086246 Oct 2003 WO
WO 03086247 Oct 2003 WO
WO 03090633 Nov 2003 WO
WO 03094784 Nov 2003 WO
WO 03094785 Nov 2003 WO
WO 03099137 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 2004019765 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004037064 May 2004 WO
WO 2004041133 May 2004 WO
WO 2004064680 Aug 2004 WO
WO 2004064685 Aug 2004 WO
WO 2004080336 Sep 2004 WO
WO 2004110285 Dec 2004 WO
WO 2005037152 Apr 2005 WO
WO 2005079673 Sep 2005 WO
WO 2005096991 Oct 2005 WO
WO 2005105003 Nov 2005 WO
WO 2006016894 Feb 2006 WO
WO 2006055365 May 2006 WO
WO 2006127593 Nov 2006 WO
WO 2007041598 Apr 2007 WO
WO 08033474 Mar 2008 WO
WO 2008030403 Mar 2008 WO
WO 2008033409 Mar 2008 WO
WO 2008141288 Nov 2008 WO
WO 2008011881 Jan 2009 WO
WO 2009011882 Jan 2009 WO
WO 2009086549 Jul 2009 WO
WO 2009117533 Sep 2009 WO
WO 2010054399 May 2010 WO
WO 2010054404 May 2010 WO
Non-Patent Literature Citations (23)
Entry
International Search Report from PCT Patent Application No. PCT/US2008/008726 mailed Oct. 16, 2008.
International Search Report from PCT Patent Application No. PCT/US2008/008729 mailed Aug. 18, 2009.
International Search Report from PCT Patent Application No. PCT/US2008/063440 mailed Aug. 1, 2008.
International Search Report from PCT Patent Application No. PCT/US2008/088581 mailed Feb. 26, 2009.
International Search Report from PCT Patent Application No. PCT/US2009/037586 mailed Sep. 28, 2009.
International Search Report from PCT Patent Application No. PCT/US2009/063925 mailed Jan. 12, 2010.
International Search Report from PCT Patent Application No. PCT/US2009/063930 mailed Jan. 12, 2010.
International Search Report from PCT Patent Application No. PCT/US2002/027177 mailed Feb. 14, 2003.
International Search Report from PCT Patent Application No. PCT/US2003/004378 mailed Aug. 13 2003.
International Search Report from PCT Patent Application No. PCT/US2003/033605 mailed Mar. 29, 2004.
International Search Report from PCT Patent Application No. PCT/US2003/033606 mailed Mar. 29 2004.
International Search Report from PCT Patent Application No. PCT/US2003/004449 mailed Aug. 13, 2003.
International Search Report from PCT Patent Application No. PCT/US2004/006695 mailed Sep. 8, 2004.
International Search Report from PCT Patent Application No. PCT/US2004/033007 mailed Feb. 9, 2005.
International Search Report from PCT Patent Application No. PCT/US2005/014372 mailed Jul. 28, 2005.
International Search Report from PCT Patent Application No. PCT/US2006/019727 mailed Apr. 19, 2007.
International Search Report from PCT Patent Application No. PCT/US2006/038684 mailed Feb. 14, 2007.
International Search Report from PCT Patent Application No. PCT/US2007/019227 mailed Feb. 20, 2008.
International Search Report from PCT Patent Application No. PCT/US2007/019833 mailed Feb. 20, 2008.
International Search Report from PCT Patent Application No. PCT/US2007/019940 mailed Mar. 4, 2008.
Felsher, et al., “Mucosal apposition in endoscopic suturing”, Gastrointestinal Endoscopy, vol. 58. No. 6, pp. 867-870, (2003).
Stecco, et al., “Trans-oral plication formation and gastric implant placement in a canine model”, Stecco Group, San Jose and Barosense, Inc., Redwood City, CA (2004).
Stecco, et al. “Safety of a gastric restrictive implant in a canine model”, Stecco group, San Jose amd Barosense, Inc., Redwood City, CA (2004).
Related Publications (1)
Number Date Country
20110174864 A1 Jul 2011 US
Divisions (14)
Number Date Country
Parent 12052997 Mar 2008 US
Child 12050169 US
Parent 12050169 US
Child 12052997 US
Parent 13053133 US
Child 12052997 US
Parent 12053010 Mar 2008 US
Child 13053133 US
Parent 12050169 US
Child 12053010 US
Parent 13053133 US
Child 12053010 US
Parent 12053027 Mar 2008 US
Child 13053133 US
Parent 12050169 US
Child 12053027 US
Parent 13053133 US
Child 12053027 US
Parent 12053066 Mar 2008 US
Child 13053133 US
Parent 12050169 US
Child 12053066 US
Parent 13053133 US
Child 12053066 US
Parent 12053182 Mar 2008 US
Child 13053133 US
Parent 12050169 US
Child 12053182 US
Continuations (1)
Number Date Country
Parent 12050169 Mar 2008 US
Child 13053133 US