Endoscopic surgical clip applier with wedge plate

Information

  • Patent Grant
  • 11806021
  • Patent Number
    11,806,021
  • Date Filed
    Thursday, October 14, 2021
    3 years ago
  • Date Issued
    Tuesday, November 7, 2023
    a year ago
Abstract
An apparatus for application of surgical clips to body tissue is provided and includes a handle assembly; a shaft assembly including a housing extending distally from the handle assembly and defining a longitudinal axis; a plurality of surgical clips disposed within the shaft assembly; a jaw mounted adjacent a distal end portion of the shaft assembly, the jaw being movable between an open spaced-apart condition and a closed approximated condition; and a pusher bar reciprocally disposed within the housing of the shaft assembly and being detachably connectable to the housing of the shaft assembly, the pusher bar being configured to load a distal-most surgical clip into the jaws during distal movement and remain connected to the housing of the shaft assembly and in a distally advanced position during an approximation of the jaws.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical clip appliers and, more particularly, to a novel endoscopic surgical clip applier.


2. Background of Related Art

Endoscopic staplers and clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures. Typically, a tube or cannula device is extended into the patient's body through the entrance incision to provide an access port. The port allows the surgeon to insert a number of different surgical instruments therethrough using a trocar and for performing surgical procedures far removed from the incision.


During a majority of these procedures, the surgeon must often terminate the flow of blood or another fluid through one or more vessels. The surgeon will often apply a surgical clip to a blood vessel or another duct to prevent the flow of body fluids therethrough during the procedure. An endoscopic clip applier is known in the art for applying a single clip during an entry to the body cavity. Such single clip appliers are typically fabricated from a biocompatible material and are usually compressed over a vessel. Once applied to the vessel, the compressed clip terminates the flow of fluid therethrough.


Endoscopic clip appliers that are able to apply multiple clips in endoscopic or laparoscopic procedures during a single entry into the body cavity are described in commonly-assigned U.S. Pat. Nos. 5,084,057 and 5,100,420 to Green et al., which are both incorporated by reference in their entirety. Another multiple endoscopic clip applier is disclosed in commonly-assigned U.S. Pat. No. 5,607,436 to Pratt et al., the contents of which is also hereby incorporated by reference herein in its entirety. These devices are typically, though not necessarily, used during a single surgical procedure. U.S. patent application Ser. No. 08/515,341 now U.S. Pat. No. 5,695,502 to Pier et al., the disclosure of which is hereby incorporated by reference herein, discloses a resterilizable surgical clip applier. The clip applier advances and forms multiple clips during a single insertion into the body cavity. This resterilizable clip applier is configured to receive and cooperate with an interchangeable clip magazine so as to advance and form multiple clips during a single entry into a body cavity. One significant design goal is that the surgical clip be loaded between the jaws without any compression of the clip from the loading procedure. Such bending or torque of the clip during loading often has a number of unintended consequences. Such compression during loading may alter slightly the alignment of the clip between the jaws. This will cause the surgeon to remove the clip from between the jaws for discarding the clip. Additionally such preloading compression may slight compress parts of the clip and change a geometry of the clip. This will cause the surgeon to remove the compressed clip from between the jaws for discarding the clip.


Endoscopic or laparoscopic procedures are often performed remotely from the incision. Consequently, application of clips may be complicated by a reduced field of view or reduced tactile feedback for the user at the proximal end of the device. It is therefore desirable to improve the operation of the instrument by providing indication to the user of a firing of an individual clip, the depletion of the clips contained in the loading unit, or any other surgical event. It is also desirable to provide a surgical clip applier that promotes a successful loading of the clip and that wedges the jaws of the surgical clip applier open, then loads the clip between the jaws in order to prevent any damage or excessive compression of the clip and prevents compression of the jaws on the clip before firing.


SUMMARY

The present disclosure relates to novel endoscopic surgical clip appliers.


According to an aspect of the present disclosure, an apparatus for application of surgical clips to body tissue is provided. The apparatus includes a handle assembly; a shaft assembly extending distally from the handle assembly and defining a longitudinal axis; a plurality of surgical clips disposed within the shaft assembly; a jaw mounted adjacent a distal end portion of the shaft assembly, the jaw being movable between an open spaced-apart condition and a closed approximated condition; and a pusher bar reciprocally disposed within the shaft assembly, the pusher bar being configured to load a distal-most surgical clip into the jaws while the jaws are in the open condition and remain in contact with the loaded surgical clip during an approximation of the jaws.


The pusher bar may include a pusher formed at a distal end thereof. The pusher may have a narrow profile for contacting the loaded surgical staple at a single location. The pusher may define a plane that is oriented substantially orthogonal to a plane of the loaded surgical staple.


The apparatus may further include a connector plate reciprocally disposed within the shaft assembly. The connector plate may be selectively connected to the pusher bar. In use, during an initial distal movement of the connector plate, the pusher bar may be distally advanced and during a further distal movement of the connector plate the connector plate may be disconnected from the pusher bar.


The pusher bar may include a first spring clip supported thereon for selectively engaging a feature of the shaft assembly when the pusher bar is in an advanced position for selectively maintaining the pusher bar in the advanced position. The pusher bar may further include a second spring clip supported thereon for selectively engaging a first feature of the connector plate. The first feature of the connector plate may selectively disengage from the second spring clip following the initial distal movement of the connector plate.


The apparatus may further include an advancer plate reciprocally disposed within the shaft assembly. The advancer plate may include at least one fin selectively engageable by a shoulder of the pusher bar. In use, the shoulder of the pusher bar may engage the at least one fin of the advancer plate during a distal and a proximal movement of the pusher bar to effectuate one of a distal and proximal movement of the advancer plate.


The apparatus may further include a clip follower slidably supported in the shaft assembly for urging the plurality of surgical clips in a distal direction. The clip follower may include a first tab projecting from a first surface thereof and a second tab projecting from a second surface thereof. In use, the first tab of the clip follower may engage the advancer plate as the advancer plate is moved distally such that the clip follower is moved distally to advance the plurality of surgical clips, and wherein the second tab of the clip follower may engage a stationary feature as the advancer plate is moved proximally such that the clip follower remains stationary.


The apparatus may further include a clip carrier disposed in the shaft assembly, wherein the clip carrier is configured to retain the plurality of surgical clips and the clip follower, and wherein the second tab of the clip follower may engage features formed in the clip carrier.


The clip follower may be incrementally advanced through the shaft assembly. The clip follower may include a catch extending from a surface thereof, wherein the catch may engage the pusher bar following firing of a last surgical clip and may prevent movement of the pusher bar in a proximal direction.


The apparatus may further include a ratchet assembly disposed in the handle assembly. The ratchet assembly may be prevented from re-setting when the pusher bar does not return to a proximal position.


The apparatus may further include a counter supported in the housing assembly. The counter may provide an indication when a surgical clip has been fired.


The apparatus may further include an indicator supported in the housing assembly. The indicator may provide at least one of an audible and a tactile indication when at least one of a surgical clip is loaded into the jaws, a surgical clip is fired and the apparatus is reset.


The apparatus may further include a wedge plate reciprocally disposed within the shaft assembly. The wedge plate may be movable between a position where a distal end thereof is disposed in the jaws and a position where the distal end thereof is free from said jaws. The wedge plate may further include a third spring clip supported thereon for selectively engaging a second feature of the connector plate, wherein the second feature of the connector plate selectively disengages from the third spring clip following an initial distal movement of the connector plate.


The apparatus may further include a drive bar actuatable by the handle assembly and connected to the connector plate for effecting movement of the connector plate. The apparatus may further include a drive channel reciprocally disposed within the shaft assembly, wherein the drive bar selectively engages the drive channel to effect translation of the drive channel. A distal end of the drive channel may engage a surface of the jaws upon distal advancement thereof to effectuate approximation of the jaws.


The drive channel may actuate a wedge lock release upon distal advancement thereof to cause proximal movement of the wedge plate to withdraw the distal end of the wedge plate from the jaws and permit the drive channel to approximate the jaws.


The shaft assembly may be rotatable, about the longitudinal axis, with respect to the handle assembly. The shaft assembly may include a guard supported therein, wherein the guard may prevent the third spring clip from splaying outwardly as the third spring clip translates thereacross.


The wedge plate and/or the drive channel may be biased to a proximal position.


According to another aspect of the present disclosure, an apparatus for application of surgical clips to body tissue is provided. The apparatus includes a handle assembly; a shaft assembly extending distally from the handle assembly and defining a longitudinal axis; a plurality of surgical clips disposed within the shaft assembly; a jaw mounted adjacent a distal end portion of the shaft assembly, the jaw being movable between an open spaced-apart condition and a closed approximated condition; and a clip follower slidably supported in the shaft assembly for urging the plurality of surgical clips in a distal direction. The clip follower includes a first tab projecting from a first surface thereof and a second tab projecting from a second surface thereof. The first tab of the clip follower engages the advancer plate as the advancer plate is moved distally such that the clip follower is moved distally to advance the plurality of surgical clips, and the second tab of the clip follower engages a stationary feature as the advancer plate is moved proximally such that the clip follower remains stationary.


The apparatus may further include an advancer plate reciprocally disposed within the shaft assembly. The advancer plate may define a plurality of windows formed along a length thereof. In use, the first tab of the clip follower may selectively engage a window of the plurality of windows as the advancer plate reciprocates.


The apparatus may further include a pusher bar reciprocally disposed within the shaft assembly. The pusher bar may be configured to load a distal-most surgical clip into the jaws while the jaws are in the open condition and remain in contact with the loaded surgical clip during an approximation of the jaws.


The advancer plate may include at least one fin selectively engageable by a shoulder of the pusher bar. The shoulder of the pusher bar may engage the at least one fin of the advancer plate during a distal and a proximal movement of the pusher bar to effectuate one of a distal and proximal movement of the advancer plate.


The pusher bar may include a pusher formed at a distal end thereof, wherein the pusher has a narrow profile for contacting the loaded surgical staple at a single location. The pusher may define a plane that is oriented substantially orthogonal to a plane of the loaded surgical staple.


The apparatus may further include a connector plate reciprocally disposed within the shaft assembly. The connector plate may be selectively connected to the pusher bar. In use, during an initial distal movement of the connector plate the pusher bar may be distally advanced and during a further distal movement of the connector plate the connector plate may be disconnected from the pusher bar.


The pusher bar may include a first spring clip supported thereon for detachably connecting to a feature of the shaft assembly when the pusher bar is in an advanced position for maintaining the pusher bar in the advanced position. The pusher bar may further include a second spring clip supported thereon for detachably connecting to a first feature of the connector plate, wherein the first feature of the connector plate disconnects from the second spring clip following the initial distal movement of the connector plate.


The apparatus may further include a clip carrier disposed in the shaft assembly. The clip carrier may be configured to retain the plurality of surgical clips and the clip follower. The second tab of the clip follower may engage features formed in the clip carrier. The clip follower may be incrementally advanced through the shaft assembly. The clip follower may include a catch extending from a surface thereof. The catch may engage the pusher bar following firing of a last surgical clip and may prevent movement of the pusher bar in a proximal direction.


The apparatus may further include a ratchet assembly disposed in the handle assembly. The ratchet assembly may be prevented from re-setting when the pusher bar does not return to a proximal position.


The apparatus may further include a counter supported in the housing assembly, wherein the counter may provide an indication when a surgical clip has been loaded or fired. The apparatus may further include an indicator supported in the housing assembly, wherein the indicator may provide at least one of an audible and a tactile indication when at least one of a surgical clip is loaded into the jaws, a surgical clip is fired and the apparatus is reset.


The apparatus may further include a wedge plate reciprocally disposed within the shaft assembly. The wedge plate may be movable between a position where a distal end thereof is disposed in the jaws and a position where the distal end thereof is free from said jaws. The wedge plate may further include a third spring clip supported thereon for selectively engaging a second feature of the connector plate, wherein the second feature of the connector plate may selectively disengage from the third spring clip following an initial distal movement of the connector plate.


The apparatus may further include a drive bar actuatable by the handle assembly and connected to the connector plate for effecting movement of the connector plate. The apparatus may further include a drive channel reciprocally disposed within the shaft assembly, wherein the drive bar may selectively engage the drive channel to effect translation of the drive channel, and wherein a distal end of the drive channel may engage a surface of the jaws upon distal advancement thereof to effectuate approximation of the jaws. The drive channel may actuate a wedge lock plate upon distal advancement thereof to cause proximal movement of the wedge plate to withdraw the distal end of the wedge plate from the jaws and may permit the drive channel to approximate the jaws.


The shaft assembly may be rotatable, about the longitudinal axis, with respect to the handle assembly. The shaft assembly may include a cuff supported therein, wherein the cuff may prevent the third spring clip from splaying outwardly as the third spring clip translates thereacross.


The wedge plate and/or drive channel may be biased to a proximal position.


According to a further aspect of the present disclosure an apparatus for application of surgical clips to body tissue is provided wherein the apparatus includes a handle assembly and a shaft assembly extending distally from the handle assembly and defining a longitudinal axis. The handle assembly includes a trigger and a drive bar reciprocally translatable by the trigger upon an actuation thereof. The shaft assembly includes a housing; a plurality of surgical clips disposed within the housing; a jaw mounted adjacent a distal end portion of the housing, the jaw being movable between an open spaced-apart condition and a closed approximated condition; a pusher bar reciprocally disposed within the housing, the pusher bar being configured to load a distal-most surgical clip into the jaws while the jaws are in the open condition and remain in contact with the loaded surgical clip during an approximation of the jaws; an advancer plate reciprocally disposed within the housing, adjacent to the pusher bar, the advancer plate including at least one fin selectively engageable by a shoulder of the pusher bar, wherein the shoulder of the pusher bar engages the at least one fin of the advancer plate during a distal and a proximal movement of the pusher bar to effectuate one of a distal and proximal movement of the advancer plate; a clip carrier disposed within the housing adjacent the advancer plate, wherein the clip carrier is configured to retain the plurality of surgical clips; a clip follower slidably supported in the clip carrier at a location proximal of the plurality of surgical clips, the clip follower being configured to urge the plurality of surgical clips in a distal direction, the clip follower including a first tab projecting from a first surface thereof and a second tab projecting from a second surface thereof, wherein the first tab of the clip follower engages the advancer plate as the advancer plate is moved distally such that the clip follower is moved distally to advance the plurality of surgical clips, and wherein the second tab of the clip follower engages the clip carrier as the advancer plate is moved proximally such that the clip follower remains stationary; a drive channel reciprocally disposed within the housing adjacent the clip carrier, wherein the drive bar selectively engages the drive channel to effect translation of the drive channel, wherein a distal end of the drive channel engages a surface of the jaws upon distal advancement thereof to effectuate approximation of the jaws; and a wedge plate reciprocally disposed within the housing adjacent the drive channel, the wedge plate being movable between a position where a distal end thereof is disposed in the jaws and a position where the distal end thereof is free from said jaws.


The pusher bar may include a pusher formed at a distal end thereof. The pusher may have a narrow profile for contacting the loaded surgical staple at a single location. The pusher may define a plane that is oriented substantially orthogonal to a plane of the loaded surgical staple. The pusher bar may include a first spring clip supported thereon for selectively engaging a feature of the housing of shaft assembly when the pusher bar is in an advanced position for selectively maintaining the pusher bar in the advanced position. The pusher bar may further include a second spring clip supported thereon for selectively engaging a first feature of the connector plate, wherein the first feature of the connector plate selectively disengages from the second spring clip following the initial distal movement of the connector plate.


The clip follower may be incrementally advanced through the shaft assembly. The clip follower may include a catch extending from a surface thereof. In use, the catch may engage the pusher bar following firing of a last surgical clip and may prevent movement of the pusher bar in a proximal direction.


The handle assembly may further include a ratchet assembly disposed therein. In use, the ratchet assembly may be prevented from re-setting when the pusher bar does not return to a proximal position. The handle assembly may further include a counter supported in the housing assembly, wherein the counter may provide an indication when a surgical clip has been fired. The handle assembly may still further include an indicator supported therein. The indicator may provide at least one of an audible and a tactile indication indicating an event. For example, the event may be at least one of a surgical clip is loaded into the jaws, a surgical clip is fired and the apparatus is reset.


The wedge plate may further include a third spring clip supported thereon for selectively engaging a second feature of the connector plate. In use, the second feature of the connector plate may selectively disengage from the third spring clip following an initial distal movement of the connector plate.


The shaft assembly may include a wedge plate lock. In use, the drive channel may actuate the wedge plate lock upon distal advancement thereof to cause proximal movement of the wedge plate to withdraw the distal end of the wedge plate from the jaws and permit the drive channel to approximate the jaws.


The shaft assembly may be rotatable, about the longitudinal axis, with respect to the handle assembly. The shaft assembly may include a cuff supported in the housing, wherein the cuff prevents the third spring clip from splaying outwardly as the third spring clip translates thereacross.


The wedge plate and/or the drive channel may be biased to a proximal position.





BRIEF DESCRIPTION OF THE DRAWINGS

The present clip applier will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the following drawings, in which:



FIG. 1 is a front, perspective view of a surgical clip applier according to an embodiment of the present disclosure;



FIG. 2 is a rear, perspective view of the clip applier of FIG. 1 illustrating a rotation of a shaft assembly thereof;



FIG. 3 is a front, perspective view of a distal end of the shaft assembly of the clip applier of FIGS. 1 and 2;



FIG. 4 is a top, plan view of the clip applier of FIGS. 1 and 2;



FIG. 5 is a side, elevational view of the clip applier of FIGS. 1 and 2;



FIG. 6 is a perspective view of a handle assembly of the clip applier of FIG. 1-5, illustrated with a left side housing half-section removed therefrom;



FIG. 7 is a perspective view of a handle assembly of the clip applier of FIG. 1-5, illustrated with a right side housing half-section removed therefrom;



FIG. 8 is a perspective view, with parts separated, of the handle assembly of the clip applier of FIGS. 1-5;



FIG. 8A is a perspective view of the handle assembly of FIGS. 6-8, with a trigger removed therefrom;



FIG. 8B is a perspective view of a feedback member of the handle assembly of FIGS. 6-8;



FIG. 9 is a perspective view, with parts separated, of the shaft assembly of the clip applier of FIGS. 1-5;



FIG. 10 is a right side, front perspective view of the shaft assembly of FIG. 9, shown in an assembled condition;



FIG. 11 is an enlarged view of the indicated area of detail of FIG. 10;



FIG. 12 is a right side, front perspective view of the shaft assembly of FIGS. 9-11, shown with an upper housing removed therefrom;



FIG. 13 is an enlarged view of the indicated area of detail of FIG. 12;



FIG. 14 is an enlarged view of the indicated area of detail of FIG. 12;



FIG. 15 is an enlarged view of the indicated area of detail of FIG. 12;



FIG. 16 is a perspective view, with parts separated, of a proximal end of a pusher bar and a snap clip of the shaft assembly of FIGS. 9-15;



FIG. 17 is a bottom, plan view of the shaft assembly of FIGS. 9-15, illustrating the proximal end of the pusher bar and the snap clip disposed in the upper housing;



FIG. 18 is a right side, front perspective view of the shaft assembly of FIGS. 9-17, shown with an upper housing and the pusher bar removed therefrom;



FIG. 19 is an enlarged view of the indicated area of detail of FIG. 18;



FIG. 20 is an enlarged view of the indicated area of detail of FIG. 18;



FIG. 21 is a right side, front perspective view of the shaft assembly of FIGS. 9-20, shown with an upper housing, the pusher bar and an advancer plate removed therefrom;



FIG. 22 is an enlarged view of the indicated area of detail of FIG. 21;



FIG. 23 is a perspective view, with parts separated, of a clip follower and lock-out plate;



FIG. 23A is a top, perspective view of the assembled clip follower and lock-out plate of FIG. 23;



FIG. 24 is a bottom, perspective view of the clip follower of FIG. 23;



FIG. 25 is a right side, front perspective view of a distal end of the shaft assembly of FIGS. 9-23, shown with an upper housing, the pusher bar, the advancer plate and a clip carrier removed therefrom;



FIG. 26 is a right side, front perspective view of the distal end of the shaft assembly of FIG. 25, shown with an upper housing, the pusher bar, the advancer plate, the clip carrier and a drive channel removed therefrom;



FIG. 27 is a left side, front perspective view of the shaft assembly of FIGS. 9-26, shown with an upper housing, the pusher bar, the advancer plate, the clip carrier, the drive channel and a wedge plate removed therefrom;



FIG. 28 is an enlarged view of the indicated area of detail of FIG. 27;



FIG. 29 is an enlarged view of the indicated area of detail of FIG. 27;



FIG. 30 is a left side, front perspective view of a lower housing of the shaft assembly of FIGS. 9-29;



FIG. 31 is an enlarged view of the indicated area of detail of FIG. 30;



FIG. 31A is an enlarged view of the indicated area of detail of FIG. 30;



FIG. 32 is a longitudinal, cross-sectional view of the clip applier of FIGS. 1-31A, illustrating the clip applier in an unactuated condition;



FIG. 33 is an enlarged view of the indicated area of detail of FIG. 32;



FIG. 34 is a longitudinal, cross-sectional view of a distal end of the shaft assembly of the clip applier of FIGS. 1-31A;



FIG. 35 is a cross-sectional view as taken through 35-35 of FIG. 34;



FIG. 36 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 37 is a cross-sectional view as taken through 37-37 of FIG. 36;



FIG. 38 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 39 is a cross-sectional view as taken through 39-39 of FIG. 38;



FIG. 40 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 41 is a cross-sectional view as taken through 41-41 of FIG. 40;



FIG. 42 is an enlarged view of the indicated area of detail of FIG. 34;



FIG. 43 is a cross-sectional view as taken through 43-43 of FIG. 42;



FIG. 44 is a longitudinal, cross-sectional view of the clip applier of FIGS. 1-43, illustrating the clip applier during an initial actuation thereof;



FIG. 45 is an enlarged view of the indicated area of detail of FIG. 44;



FIG. 46 is an enlarged view of the indicated area of detail 36 of FIG. 34, during the initial actuation of the clip applier;



FIG. 47 is an enlarged view of the indicated area of detail 40 of FIG. 34, during the initial actuation of the clip applier;



FIG. 47A is a top, plan view of the pusher bar, illustrating a movement of the pusher bar during the initial actuation of the clip applier;



FIGS. 47B and 47C are each longitudinal, cross-sectional views of the shaft assembly, illustrating a movement of the wedge plate during the initial actuation of the clip applier;



FIGS. 48 and 49 are enlarged views of the cross-section taken through 41-41 of FIG. 40 of the shaft assembly, during the initial actuation of the clip applier;



FIG. 50 is an enlarged view of the indicated area of detail 42 of FIG. 34, during the initial actuation of the clip applier;



FIG. 51 is a bottom, left side perspective view of a distal end of the shaft assembly, during the initial actuation of the clip applier;



FIGS. 52-54 are each longitudinal, cross-sectional views of the shaft assembly, illustrating a further movement of the wedge plate during the initial actuation of the clip applier and a disengagement of a stem of a connector plate from a snap clip of the wedge plate;



FIG. 55 is a longitudinal, cross-sectional view of the clip applier of FIGS. 1-54, illustrating the clip applier during a further actuation thereof;



FIG. 56 is an enlarged view of the indicated area of detail of FIG. 55;



FIG. 56A is a right side, perspective view of the shaft assembly, with the upper housing removed, illustrating a movement of the pusher bar during the further actuation of the clip applier;



FIGS. 56B and 56C are each bottom plan views of the advancer plate illustrating a movement of the advancer plate during the further actuation of the clip applier;



FIG. 57 is an enlarged view of the indicated area of detail 36 of FIG. 34, during the further actuation of the clip applier;



FIG. 58 is an enlarged view of the indicated area of detail 40 of FIG. 34, during the further actuation of the clip applier;



FIGS. 59 and 60 are longitudinal, cross-sectional views of the shaft assembly illustrating a movement of the pusher bar during the further actuation of the clip applier, and a connection of a clip supported thereon to a boss of the upper housing;



FIG. 61 is an enlarged view of the indicated area of detail 40 of FIG. 34, during the further actuation of the clip applier;



FIG. 62 is an enlarged view of the indicated area of detail 42 of FIG. 34, during the further actuation of the clip applier;



FIG. 63 is a longitudinal cross-sectional view of the shaft assembly illustrating a movement of the drive bar during a further actuation of the clip applier;



FIGS. 64 and 65 are enlarged views of the cross-section taken through 41-41 of FIG. 40 of the shaft assembly, during the further actuation of the clip applier;



FIG. 66 is a top, left side perspective view of a distal end of the shaft assembly, during the further actuation of the clip applier;



FIGS. 67-69 are longitudinal cross-sectional views of the shaft assembly illustrating a movement of a connector plate during the further actuation of the clip applier;



FIGS. 67A-69A are longitudinal cross-sectional views of the shaft assembly illustrating a movement of a connector plate during the further actuation of the clip applier, according to an alternate embodiment of the present disclosure;



FIG. 70 is a longitudinal, cross-sectional view of the clip applier of FIGS. 1-69, illustrating the clip applier during a final actuation thereof;



FIG. 71 is an enlarged view of the indicated area of detail of FIG. 70;



FIG. 72 is an enlarged view of the indicated area of detail 42 of FIG. 34, during the final actuation of the clip applier;



FIGS. 73 and 74 are front, perspective views of the distal end of the shaft assembly illustrating an actuation of the jaws during the final actuation of the clip applier;



FIG. 75 is a perspective view illustrating a surgical clip applied to a vessel;



FIG. 76 is an enlarged view of the indicated area of detail 71 of FIG. 70, during a release of the trigger of the clip applier;



FIG. 76A is a side, elevational view of the handle assembly during a release of the trigger following a full actuation thereof;



FIG. 77 is a longitudinal cross-sectional view of the shaft assembly illustrating a movement of the connector plate during the release of the trigger;



FIG. 78 is a longitudinal, cross-sectional view of the shaft assembly illustrating a movement of the pusher bar during the release of the trigger, and a disconnection of the clip supported thereon from the boss of the upper housing;



FIG. 79 is a right side, perspective view of the shaft assembly, with the upper housing removed, illustrating a movement of the pusher bar during the release of the trigger;



FIG. 80 is an enlarged view of the indicated area of detail 40 of FIG. 34, during the release of the trigger;



FIG. 81 is a longitudinal cross-sectional view of the shaft assembly illustrating a reconnection of a stem of the connector plate to a snap clip of the pusher bar, during the release of the trigger;



FIGS. 82 and 83 are each longitudinal, cross-sectional views of the shaft assembly, illustrating a movement of the wedge plate during the release of the trigger and a reengagement of the stem of the connector plate to a snap clip of the wedge plate;



FIG. 84 is front, perspective view of a distal end of the shaft assembly when the clip applier is in a locked-out condition;



FIG. 85 is an enlarged view of the indicated area of detail 42 of FIG. 34, when the clip applier is in a locked-out condition; and



FIG. 86 is an enlarged view of the indicated area of detail 71 of FIG. 70, when the clip applier is in a locked-out condition.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of surgical clip appliers in accordance with the present disclosure will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user.


Referring now to FIGS. 1-5, a surgical clip applier in accordance with an embodiment of the present disclosure is generally designated as 100. Clip applier 100 includes a handle assembly 102 and an endoscopic portion including a shaft assembly 104 extending distally from handle assembly 102.


Shaft assembly 104 has an outer diameter of about 10 mm. Shaft assembly 104 may have various elongated or shortened lengths depending on intended use, such as, for example, in bariatric surgery.


As seen in FIGS. 1-5, surgical clip applier 100 includes a pair of jaws 106 mounted on a distal end of shaft assembly 104 and actuatable by a trigger 108 of handle assembly 102. Jaws 106 are formed of a suitable biocompatible material such as, for example, stainless steel or titanium and define a channel 106a therebetween for receipt of a surgical clip “C” therein. When jaws 106 are in an open or un-approximated condition relative to each other, a width of jaws 106 measures greater than an outer diameter of shaft assembly 104.


Jaws 106 are mounted in the distal end of shaft assembly 104 such that they are longitudinally stationary relative thereto. A knob 110 may be rotatably mounted on a distal end of handle assembly 102 and affixed to shaft assembly 104 to transmit and/or provide 360° rotation to shaft assembly 104 and jaws 106 about a longitudinal axis thereof (see FIG. 2).


Referring now to FIGS. 1-8, handle assembly 102 of surgical clip applier 100 is shown. Handle assembly 102 includes a housing 103 having a first or right side half-section 103a and a second or left side half-section 103b. Handle assembly 102 includes a trigger 108 pivotably supported between right side half-section 103a and left side half-section 103b. Handle assembly 102 defines a window 103c formed in housing 103 for supporting and displaying a counter mechanism, as will be discussed in greater detail below. Housing 103 of handle assembly 102 may be formed of a suitable plastic material.


Housing 103 supports a drive assembly 120 between right side half-section 103a and left side half-section 103b. Drive assembly 120 includes a wishbone link 122 having a first end pivotally connected to trigger 108, and a second end pivotally connected to a crank plate 124. As seen in FIGS. 6-9, drive assembly 120 further includes a drive connector 134 rotatably connected to crank plate 124, a plunger 135 interconnected to drive connector 134, and a spring 136 supported on drive connector 134. Plunger 135 defines a longitudinal slot 135a configured and adapted to receive a proximal end of a drive bar 140 therein.


Drive bar 140 is connected to plunger 135 via an integral pin 135b (see FIG. 9). A cap 144 is provided through which plunger 135 extends. A seal (not shown) is provided to create an air-tight seal between plunger 135 and an outer tube 150.


As seen in FIGS. 6-8, handle assembly 102 further includes a rack 124a formed in/on crank plate 124 such that rack 124a is movable therewith. Rack 124a includes a plurality of teeth interposed between a distal recess 124b and a proximal recess 124c defined in crank plate 124. Recesses 124b and 124c are provided to allow pawl 224 to reverse and advance back over the teeth of rack 124a when crank plate 124 changes between proximal and distal movement.


Handle assembly 102 further includes a pawl 224 pivotally connected to housing 103 by a pawl pin 226 at a location wherein pawl 224 is in substantial operative engagement with rack 124a of crank plate 124. Pawl 224 includes a pawl tooth 224a which is selectively engageable with the teeth of rack 124a of crank plate 124. Pawl tooth 224a is engageable with the rack teeth to restrict longitudinal movement of rack 124a and, in turn, crank plate 124 within handle assembly 102. A pawl spring 228 is provided to bias pawl 224 into operative engagement with rack 124a of crank plate 124.


As seen in FIGS. 6-8, crank plate 124 is pivotably connected to wishbone link 122 via a pin 123. Crank plate 124 defines a series of ratchet teeth 124a formed therein for selective engagement with pawl 224.


As seen in FIGS. 8, 8A and 8B, handle assembly 102 further includes an audible/tactile feedback member 126 operatively associated with trigger 108 so as to rotate together with and about a common axis as trigger 108 is actuated. Feedback member 126 defines a race 126a defining a plurality of ratchets or steps 126b. A deflectable arm 127 is provided and includes a first end operative connected or disposed in race 126a, in contact with steps 126b, of feedback member 126 and a second end connected to housing 103. In operation, as trigger 108 is actuated, arm 127 rides through and/or along race 126a formed in feedback member 126. As will be discussed in greater detail below, as arm 127 moves over steps 126b of feedback member 126, arm 127 snaps over steps 126b and creates an audible sound/click and/or a tactile vibration.


Audible/tactile feedback member 126 includes sufficient steps 126b so as to create an audible/tactile indication after a clip has been fully loaded into the jaws of surgical clip applier 100, after the loaded clip has been formed by the jaws of surgical clip applier 100, and when surgical clip applier 100 is reset to the home position and ready to fire/form another clip.


As seen in FIGS. 6, 7, 8 and 8A, handle assembly 102 of surgical clip applier 100 further includes a counter mechanism 132 supported in housing 103 and visible through window 103c defined in housing 103. Counter mechanism 132 includes a display 132a, a processor 132b, and an energy source (not shown) in the form of a battery or the like.


Display 132a may be any device known in the art to provide an indication of an event. The event may be related to the procedure or the operation of the clip applier 100. Display 132a is a liquid crystal display (LCD).


Display 132a displays one or more operating parameters of clip applier 100 to the surgeon. The operating parameter displayed by display 132a includes an amount or number of clips remaining, a number of clips that have been used, a position parameter, a surgical time of usage, or any other parameter of the procedure.


A Mylar or another polymeric insulating material is disposed between battery or energy source and a contact of processor 132b which prevents the battery or energy source from becoming drained during storage. The tab extends out of housing 103 of surgical clip applier 100 in order to allow for easy removal of the tab therefrom. Once the tab is removed, battery or energy source comes into electrical contact with the contact of processor 132b and in turn energizes display 132a.


As seen in FIGS. 6, 7, 8 and 8A, handle assembly 102 of surgical clip applier 100 further includes a counter actuation mechanism including a counter actuation lever 130 having a first arm 130a configured and adapted to operatively, selectively engage processor 132b of counter mechanism 132. Counter actuation lever 130 further includes a second arm 130b configured and adapted to operatively, slidably engage a slot 128a formed in an actuator plate 128 slidably supported in housing 103.


In operation, as will be described in greater detail below, as trigger 108 is squeezed, trigger 108 causes wishbone link 122 to be advanced distally, causing crank plate 124 to be advanced distally. When arm 124d of crank plate 124 is advanced a predetermined distance, arm 124d engages or contacts finger 128b of actuator plate 128. As crank plate 124 is further advanced distally, crank plate 124 forces or pulls actuator plate 128 in a distal direction thereby actuating counter actuation lever 130 to activate counter mechanism 132.


In particular, when actuator plate 128 is moved distally a sufficient distance, second arm 130b of counter actuation lever 130 is cammed within slot 128b thereof and rotates counter actuation lever 130 resulting in first arm 130a. When actuator plate 128 is moved proximally a sufficient distance, second arm 130b of counter actuation lever 130 is returned to a home position resulting in first arm 130a of counter actuation lever 130 disengaging counter mechanism 132.


Turning now to FIGS. 9-31A, shaft assembly 104 of surgical clip applier 100 is shown and described hereinbelow. Shaft assembly 104 and the components thereof may be formed of suitable biocompatible materials, such as, for example, stainless steel, titanium, plastics and the like. Shaft assembly 104 includes an outer tube 150 having a proximal end 150a supported within housing 103, a distal end 150b, and a lumen 150c extending therethrough. Outer tube 150 is secured within housing 103 by a flange projecting from an outer surface thereof. Shaft assembly 104 further includes an upper housing 152a and a lower housing 152b, each disposed within lumen 150c of outer tube 150. A rear upper housing 154 is disposed within outer tube 150 and proximal of upper housing 152a.


As seen in FIGS. 9, 12 and 13, shaft assembly 104 further includes a pusher bar 156 slidably disposed within upper housing 152a and a rear upper housing 154. Pusher bar 156 includes a distal end 156a defining a narrow-profile pusher 156c configured and adapted to selectively engage/move (i.e., distally advance) a distal-most clip “C1” of a stack of clips “C” and to remain in contact with the distal-most clip “C1” during an initial formation thereof. Pusher bar 156 further includes a proximal end 156b. Pusher bar 156 defines a distal window 156d having a catch 156e, a pair of recesses 156f located proximal of distal window 156d and formed in each side edge thereof, an elongate slot 156g located proximal of side recesses 156f, and a proximal-most window 156h located proximal of slot 156g.


As seen in FIGS. 9 and 14, pusher bar 156 supports a first snap clip 157a along an upper surface thereof at a location distal of side recesses 156f of pusher bar 156. First snap clip 157a is configured in such a manner that the tines thereof project or are spaced an amount from an upper surface of pusher bar 156.


As seen in FIGS. 9 and 15, pusher bar 156 supports a second snap clip 157b along a lower surface thereof at a location proximal of a proximal-most window 156h of pusher bar 156. Second snap clip 157b is oriented in such a manner that the tines thereof project an amount sufficient to overlie proximal-most window 156h of pusher bar 156. The tines of second snap clip 157b are spaced from one another by an amount that is less than a width of proximal-most window 156h of pusher bar 156.


As seen in FIGS. 9 and 16-20, shaft assembly 104 further includes an advancer plate 162 reciprocally supported beneath pusher bar 156. As seen in FIGS. 16 and 17, a fourth snap clip 157d is supported at a proximal end of advancer plate 162. Snap clip 157d includes a pair of tines that are detachably connected in proximal retaining grooves 152m and distal retaining grooves 152n formed in upper housing 152a. In this manner, in use, snap clip 157d detachably engage retaining grooves 152m and distal retaining grooves 152n to maintain advancer plate 162 in a proximal or a distal position. Upon distal advancement of advancer plate 162, the tines of snap clip 157d cam inward and allow advancer plate 162 to continue to move distally.


As seen in FIGS. 18-20, advancer plate 162 includes a series of windows 162a formed therein and extending along a length thereof. As seen in FIG. 19, each window 162a defines a proximal edge that extends below a surface of advancer plate 162 so as to define a lip or ledge 162c. Advancer plate 162 further includes a pair of side fin 162b extending from a side edge thereof, in a direction toward upper housing 152a. As seen in FIG. 15, a pair of side fins 162b are slidably disposed within side recesses 156f of pusher bar 156.


As seen in FIGS. 9 and 21-22, shaft assembly 104 further includes a clip carrier 164 disposed within upper housing 152a, and beneath advancer plate 162. Clip carrier 164 is generally a box-like structure having an upper wall, a pair of side walls and a lower wall defining a channel therethrough. Clip carrier 164 includes a plurality of spaced apart windows 164a (see FIG. 9) formed in the lower wall and extending longitudinally along a length thereof. Clip carrier 164 includes an elongate window formed in the upper wall and extending longitudinally along a length thereof.


As seen in FIGS. 9 and 21, a stack of surgical clips “C” is loaded and/or retained within the channel of clip carrier 164 in a manner so as to slide therewithin and/or therealong. The channel of clip carrier 164 is configured and dimensioned to slidably retain a stack or plurality of surgical clips “C” in tip-to-tail fashion therewithin.


As seen in FIG. 19, a distal end of clip carrier 164 includes a pair of spaced apart, resilient tangs 164b. Tangs 164b are configured and adapted to detachably engage a backspan of a distal-most surgical clip “C1” of the stack of surgical clips “C” retained within clip carrier 164.


As seen in FIGS. 9 and 21-24, shaft assembly 104 of clip applier 100 further includes a clip follower 166 slidably disposed within the channel of clip carrier 164. As will be described in greater detail below, clip follower 166 is positioned behind the stack of surgical clips “C” and is provided to urge the stack of clips “C” forward during an actuation of clip applier 100. As will be described in greater detail below, clip follower 166 is actuated by the reciprocating forward and backward motion of advancer plate 162.


As seen in FIGS. 23, 23A and 24, clip follower 166 includes body portion 166a, a distal tab 166b extending substantially upwardly and rearwardly from body portion 166a, and a proximal tab 166c extending substantially downwardly and rearwardly from body portion 166a.


Distal tab 166b of clip follower 166 is configured and dimensioned to selectively engage ledges 162c of windows 162a of advancer plate 162. In use, engagement of distal tab 166b of clip follower 166 against ledges 162c of windows 162a of advancer plate 162 causes clip follower 166 to incrementally advance or travel distally as advancer plate 162 is advanced or moved in a distal direction.


Proximal tab 166c is configured and dimensioned to selectively engage windows 164a formed in clip carrier 164. In use, engagement of proximal tab 166c of clip follower 166 in a window 164a formed clip carrier 164 prevents clip follower 166 from traveling or moving in a proximal direction.


Clip follower 166 includes a lock-out plate 165 supported thereon or alternatively, integrally formed therewith. Lock-out plate 165 includes a resilient tail 165a, defining a window 165b, extending therefrom, in a direction upwardly and rearwardly from body portion 166a of clip follower 166.


As seen in FIGS. 9, 25 and 38, shaft assembly 104 further includes a drive channel 168 reciprocally supported in channel assembly 104 at a location below clip carrier 164. Drive channel 168 is a substantially U-shaped channel including a pair of spaced apart side walls 168b extending from a backspan 168c thereof, in a direction away from clip carrier 164 and towards lower housing 152b. Drive channel 168 further includes a tab 168d projecting from backspan 168c, at a location proximal of slot 168a, and extending in the direction of side walls 168b. As seen in FIG. 41, drive channel 168 defines a slot or window 168e formed in one of side walls 168b for selectively receiving a tooth 194c of wedge plate release 194.


As seen in FIGS. 9 and 25, shaft assembly 104 of clip applier 100 includes a drive channel strap 167 secured to drive channel 168. Strap 167 is secured to side walls 168b of drive channel 168 so as to extend transversely thereacross. Strap 167 is secured to drive channel 168 at a location distal of elongate slot 168a. Strap 167 is secured to drive channel 168 such that wedge plate 172 extends between backspan 168c of drive channel 168 and jaws 106.


As seen in FIGS. 9, 26 and 27, clip applier 100 includes a pair of jaws 106 mounted on or at a distal end of shaft assembly 104 and actuatable by trigger 108. Jaws 106 are formed of a suitable biocompatible material such as, for example, stainless steel or titanium.


Jaws 106 are mounted adjacent a distal end of drive channel 168, via bosses formed in lower housing 152b that engage receiving slots formed in jaws 106, such that jaws 106 are held stationary relative to drive channel 168. As seen in FIG. 25, jaws 106 define a channel 106a therebetween for receipt of a surgical clip “C” therein.


As seen in FIGS. 9, 25 and 26, shaft assembly 104 of clip applier 100 further includes a wedge plate 172 having a distal end interposed between drive channel 168 and jaws 106 and a proximal end extending through shaft assembly 104. Wedge plate 172 includes a substantially tapered distal end 172a for selective operative interposition between jaws 106. As seen in FIG. 26, wedge plate 172 defines a fin or tab 172b projecting from a lower surface thereof. As seen in FIG. 22, wedge plate 172 defines a proximal-most slot 172c formed therein for slidably receiving a second stem 174c of a connector plate 174 therein.


As seen in FIG. 22, a third snap clip 157c is supported at a proximal end of wedge plate 172. Third snap clip 157c is oriented in such a manner that the tines thereof project an amount sufficient to overlie proximal-most window 172c formed in wedge plate 172. The tines of third snap clip 157c are spaced from one another by an amount that is less than a width of proximal-most window 172c of wedge plate 172.


As seen in FIGS. 9, 18, 20 and 36, shaft assembly 104 of clip applier 100 further includes a connector plate 174 slidably interposed between pusher bar 156 and wedge plate 172 and detachably connectable to each of pusher bar 156 and wedge plate 172. Connector plate 174 includes a tapered distal end 174a, a first stem 174b extending from an upper surface thereof and a second stem 174c extending from a bottom surface thereof. Each stem 174b, 174c has a substantially tear-drop shaped profile wherein a distal end of each stem 174b, 174c is larger than a proximal end thereof.


In operation, first stem 174b of connector plate 174 is configured and dimensioned for detachable connection with second snap clip 157b that is secured to pusher bar 156, and second stem 174c of connector plate 174 is configured and dimensioned for detachable connection with third snap clip 157c that is secured to wedge plate 172.


As seen in FIGS. 22, 36 and 37, second stem 174c of connector plate 174 extends into a window 140b defined in drive bar 140. In this manner, as drive bar 140 is also reciprocated, connector plate 174 is reciprocated therewith.


As seen in FIG. 31A, a guard 198 is supported in lower housing 152b at a location so as to maintain the relative distance between the tines of the third snap-clip 157c during an initial distal advancement thereof. In this manner, second stem 174b of connector plate 174 can not prematurely disengage from third snap clip 157c until third snap clip 157c has surpassed guard 198.


As seen in FIGS. 9, 27, 29 and 41, shaft assembly 104 of clip applier 100 further includes a slider joint 180 slidably supported within a channel of lower housing 152b. Slider joint 180 includes a body portion 182 and a rod 184 extending therefrom. When properly positioned within the channel of lower housing 152b, rod 184 of slider joint 180 extends in a substantially distal direction. Rod 184 of slider joint 180 slidably passes through a stub 152d formed in and extending from the channel of lower housing 152b (see FIG. 29). Shaft assembly 104 further includes a biasing member 186, in the form of a compression spring, supported on rod 184 and interposed between stub 152d of lower housing 152b and body portion 182 of slider joint 180.


Body portion 182 of slider joint 180 includes a boss 182a formed near a proximal end thereof, and configured and adapted for slidable engagement in elongate slot 140a of drive bar 140 (see FIG. 29). Body portion 182 of slider joint 180 further includes a pocket 182b formed near a distal end thereof, and configured and adapted for receiving tab 168d of drive channel 168 therein (see FIGS. 38 and 39).


As seen in FIGS. 9, 27 and 28, shaft assembly 104 of clip applier 100 further includes a wedge plate lock 190 slidably supported in the channel of lower housing 152b and in drive channel 168. Wedge plate lock 190 includes a body portion 190a, a rod 190b extending distally from body portion 190a, a tail 190c extending proximally from body portion 190a, a pocket 190d formed in an upper surface of body portion 190a, and a stem or tooth 190e extending from tail 190c. Shaft assembly 104 further includes a biasing member 192, in the form of a compression spring, supported on rod 190b and interposed between lower housing 152b of and body portion 190a of wedge plate lock 190.


Shaft assembly 104 of clip applier 100 further includes a wedge plate release 194 rotatably supported in the channel of lower housing 152b. Wedge plate release 194 includes a stem 194a configured for engagement with tooth 190e extending from tail 190c of wedge lock plate 190, a hammer 194b extending outwardly from stem 194a in a direction toward tail 190c of wedge plate lock 190, and a tooth 194c extending outwardly from stem 194a in a direction away from tail 190c of wedge plate lock 190.


The operation of surgical clip applier 100, to form or crimp a surgical clip around a target tissue, such as, for example, a vessel, will now be described. With reference to FIGS. 32-43, surgical clip applier 100 is shown prior to any operation or use thereof. As seen in FIGS. 32 and 33, prior to use or firing of clip applier 100, trigger 108 is generally in an uncompressed or unactuated state. As such, crank plate 124 of drive assembly 120 is at a retracted or proximal-most position and thus, plunger 135 and drive bar 140 are also at a retracted position. When crank plate 124 is in the retracted position, pawl 224 is disposed within distal recess 124b defined in crank plate 124.


When drive assembly 120 and drive bar 140 are in the retracted position, as seen in FIGS. 35-37, connector plate 174 is located at a retracted or proximal-most position. With connector plate 174 at a retracted or proximal-most position, pusher bar 156 is also at a retracted or proximal-most position and first tear-drop stem 174b of connector plate 174 is disposed at a proximal end of proximal-most window 156h of pusher bar 156 and retained in snap-fit engagement in the tines of second snap clip 157b. Also, with connector plate 174 at a retracted or proximal-most position, wedge plate 172 is also at a retracted or proximal-most position and second tear-drop stem 174c of connector plate 174 is disposed at a proximal end of proximal-most window 172c of wedge plate 172 and retained in snap-fit engagement in the tines of third snap clip 157c.


As seen in FIGS. 36 and 37, when drive assembly 120 and drive bar 140 are in the retracted position, tab 182a of slider joint 182 is located at a distal-most position in elongate slot 140a of drive bar 140.


As seen in FIGS. 38 and 39, when drive assembly 120 and drive bar 140 are in the retracted position, clip follower 166 is located at a proximal-most end of the channel of clip carrier 164, wherein distal tab 166b of clip follower 166 is operatively disposed within a proximal-most window 162a of advancer plate 162 and proximal tab 166c is operatively disposed within a proximal-most window 164a of clip carrier 164.


With continued reference to FIGS. 38 and 39, when drive assembly 120 and drive bar 140 are in the retracted position, slider joint 180 is located at a proximal-most position and since tab 168d of drive channel 168 is disposed within pocket 182b of slider joint 180, drive channel 168 is also located at a proximal-most position. As seen in FIGS. 38 and 39, slider joint 180 abuts against a physical stop 152e (see FIG. 30) projecting from lower housing 152b.


As seen in FIGS. 40 and 41, when drive assembly 120 and drive bar 140 are in the retracted position, wedge plate lock 190 is located at a proximal-most position such that tooth 190e extending from tail 190c thereof is disposed proximal of a ramped ledge 152f formed in lower housing 152b (see FIGS. 30 and 31). As seen in FIG. 41, wedge plate lock 190 abuts against a physical stop 152g projecting from lower housing 152b. Also as seen in FIG. 41, wedge plate release 194 is disposed in a first position such that tooth 194c thereof projects into window 168e formed in side wall 168b of drive channel 168.


As seen in FIGS. 42 and 43, when drive assembly 120 and drive bar 140 are in the retracted position, pusher 156c of pusher bar 156 is disposed proximal of a backspan of a distal-most clip “C” retained in clip carrier 164. Distal-most clip “C” is retained within the channel of clip carrier 164 by tangs 164b thereof. Also, in this position, as described above, wedge plate 172 is located at a proximal-most position such that distal end 172a thereof is positioned proximal of jaws 106.


As seen in FIG. 43, with drive channel 168 at a proximal-most position, a distal end thereof is disengaged from proximal camming surfaces 106b of jaws 106.


Turning now to FIGS. 44-54, as trigger 108 is squeezed or actuated from the initial position, during a first stage of an initial stroke, trigger 108 causes wishbone link 122 to move crank plate 124 in a distal direction which, in turn, causes drive connector 134 and plunger 135 to move distally and to move drive bar 140 distally. As plunger 135 is moved distally, spring 136 is compressed an initial amount.


Simultaneously therewith, as crank plate 124 is moved distally the teeth of rack 124a engage tooth 224a of pawl 224 as pawl 224 is moved out or rotated of distal recess 124a of crank plate 124. In this manner, crank plate 124 can not return to a proximal-most position without completing a full distal stroke.


As seen in FIG. 44, as trigger 108 is squeezed an initial amount, arm 127 begins to translate through race 126a of feedback member 126.


As seen in FIG. 46, as drive bar 140 is moved in a distal direction, drive bar 140 pushes connector plate 174 in a distal direction. Since pusher bar 156 is selectively connected to connector plate 174 via second snap clip 157b, pusher bar 156 is advanced or pulled in a distal direction. Also, since wedge plate 172 is selectively connected to connector plate 174 via third snap clip 157c, wedge plate 172 is also advanced or dragged in a distal direction.


As drive bar 140 is moved in the distal direction, elongate slot 140a thereof is also moved in a distal direction such that tab 182a of slider joint 182 is translated in a proximal direction relative thereto.


As seen in FIG. 47-49, as wedge plate 172 is moved in a distal direction, since tab 172b of wedge plate 172 is retained in pocket 190d of wedge plate lock 190, wedge plate lock 190 is moved or dragged in a distal direction causing tooth 190e of tail 190c thereof to cam over ramped ledge 152f formed in lower housing 152b, thereby moving from a position proximal of ramped ledge 152f to a position distal of ramped ledge 152f. As wedge plate lock 190 is moved in a distal direction, biasing member 192 is compressed an initial amount. As seen in FIG. 49, wedge plate lock 190 is moved in a distal direction until wedge plate lock 190 abuts against a physical stop formed in lower housing 152b.


As seen in FIG. 47A, as pusher bar 156 is moved in a distal direction, fins 162b of advancer plate 162 translate, a predetermined distance, within side recesses 156f of pusher bar 156 until fins 162b contact or engage a proximal end of side recesses 156f of pusher bar 156.


As seen in FIGS. 47B and 47C, as wedge plate 172 is moved in the distal direction, due to the connection of second stem 174c of connector plate 174 with third snap clip 157c, second stem 174c of connector plate 174 is prevented from prematurely disconnecting from third snap clip 157c by guard 198. In particular, guard 198 acts on the tips of the tines of third snap clip 157c to prevent the tines from splaying outward due to the forces acting thereon by the distal forces generated by second stem 174c as connector plate 174 is moved in the distal direction.


As seen in FIG. 50, as pusher bar 156 is moved in a distal direction pusher 156c thereof engages a backspan of a distal-most clip “C” and begins to urge distal-most clip “C” in a distal direction. As pusher bar 156 moves distal-most clip “C” in a distal direction, distal-most clip “C” snaps out from behind tangs 164b of clip carrier 164 and begins to enter into channels 106a of jaws 106.


As seen in FIG. 51, as wedge plate 172 is moved in a distal direction, distal end 172a thereof enters between jaws 106 causing jaws 106 to splay outwardly.


Wedge plate 172 is prevented from further movement in the distal direction, as seen in FIGS. 52-54, once wedge plate lock 190 abuts against the physical stop formed in lower housing 152b. However, drive bar 140 continues to move connector plate 174 in a distal direction. Since connector plate 174 is continued to be forced distally, once the tips of the tines of third snap clip 157c move distally beyond guard 198, the forces acting on second stem 174c are sufficient to cause the tines of third snap clip 157c to splay outward and allow second stem 174c to snap out from therebetween thereby allowing for connector plate 174 to continue to move in a distal direction.


Turning now to FIGS. 55-69, as trigger 108 is further squeezed or actuated from the first stage of the initial stroke through a second stage of the initial stroke, trigger 108 causes wishbone link 122 to further move crank plate 124 in a distal direction which, in turn, causes drive connector 134 and subsequently plunger 135 to further move distally and to further move drive bar 140 distally. As plunger 135 is moved distally, spring 136 is compressed a further amount.


Simultaneously therewith, as crank plate 124 is moved distally the teeth of rack 124a thereof move further proximally with respect to tooth 224a of pawl 224. As such, crank plate 124 still can not return to a proximal-most position without completing a full distal stroke.


As seen in FIG. 55, as crank plate 124 is moved distally, after a predetermine distance, arm 124d thereof engages or contacts finger 128b of actuator plate 128. As crank plate 124 is further advanced distally, crank plate 124 forces or pulls actuator plate 128 in a distal direction thereby actuating counter actuation lever 130 to activate counter mechanism 132.


In particular, when actuator plate 128 is moved distally a sufficient distance, second arm 130b of counter actuation lever 130 is cammed within slot 128b thereof and is urged to rotate resulting in first arm 130a of counter actuation lever 130 engaging counter mechanism 132 and thereby effectuating a change in the display thereof. In particular, the display, which displays the number of clips remaining in surgical clip applier 100, will reduce by one. Alternatively, the clip counter mechanism will increment by one or produce some other change.


As trigger 108 is squeezed further, arm 127 continues to translate through race 126a of feedback member 126. At this point in the squeezing of trigger 108, a surgical clip is loaded into the jaws 106. Accordingly, arm 127 will interact with a step 126b formed in race 126a of feedback member 126 and create an audible/tactile indication advising the user that a clip has been loaded into the jaws.


As seen in FIG. 57, as drive bar 140 is moved further in a distal direction, drive bar 140 continues to push connector plate 174 in a distal direction. Since pusher bar 156 is still selectively connected to connector plate 174 via second snap clip 157b, pusher bar 156 is further advanced or dragged in the distal direction. However, since third snap clip 157c of wedge plate 172 is disconnected from second stem 174c of connector plate 174, wedge plate 172 is not further advanced or dragged in the distal direction.


As seen in FIGS. 56A to 56C, as pusher bar 156 is continued to be moved in a distal direction, with the pair of fins 162b of advancer plate 162 engaged by the proximal end of side recesses 156f of pusher bar 156, pusher bar 156 advances or drags advancer plate 162 in a distal direction.


As seen in FIGS. 56B and 56C, as advancer plate 162 is advanced distally, snap clip 157d disengages proximal retaining grooves 152m and engages distal retaining grooves 152n formed in upper housing 152a.


As seen in FIG. 57, drive bar 140 is moved in the distal direction until tab 182a of slider joint 182 is relatively translated to a proximal-most position in elongate slot 140a of drive bar 140.


As pusher bar 156 continues to move in a distal direction, pusher bar 156 continues to urge advancer plate 162 in a distal direction via fins 162b. As seen in FIG. 58, as advancer plate 162 is moved in a distal direction, distal tab 166b of clip follower 166 is engaged by a proximal edge of a window 162a receiving distal tab 166b of clip follower 166 in order to urge clip follower 166 in a distal direction, relative to clip carrier 164, and thereby advance the stack of clips “C” by an incremental amount. As clip follower 166 is moved in a distal direction, proximal tab 166c thereof is caused to be advanced distally, one window 164a, from a relatively proximal window 164a of clip carrier 164 to a relatively distal window 164a of clip carrier 164.


As seen in FIGS. 58-60, as pusher bar 156 is moved in a distal direction, first snap clip 157a, supported on pusher bar 156, snaps onto boss 152h of upper housing 152a, thus maintaining pusher bar 156 in a forward position.


Additionally, as seen in FIG. 61, as pusher bar 156 continues to move in a distal direction, the stack of clips “C” is caused to move in a distal direction.


As seen in FIG. 62, as pusher bar 156 is moved in a distal direction pusher 156c thereof continues to move a distal-most clip “C1” in a distal direction until distal-most clip “C1” completely enters into channels 106a of jaws 106. In operation, pusher 156c of pusher bar 156 remains in contact with the backspan of the loaded clip “C” during the formation of said clip “C” in order to provide stability thereto and to maintain the proper position thereof.


As seen in FIG. 63, as drive bar 140 is moved further in the distal direction, shoulders 140c thereof contact a proximal-most end of drive channel 168. In this manner, as drive bar 140 is moved further in the distal direction, drive bar 140 moves or urges drive channel 168 in the distal direction.


As seen in FIG. 64, as drive channel 168 is moved in a distal direction, a proximal edge of window 168e formed in side wall 168b of drive channel 168 contacts against tooth 194c of wedge plate release 194 causing wedge plate release 194 to rotate. As wedge plate release 194 rotates, hammer 194b thereof, presses against tooth 190e of wedge plate lock 190 to urge or kick tooth 190e out from behind ramped ledge 152f. In so doing, as seen in FIG. 65, biasing member 192 is permitted to decompress thus moving wedge plate lock 190 in a proximal direction. As seen in FIG. 66, as wedge plate lock 190 is moved in a proximal direction, and since wedge plate 172 is connected thereto, wedge plate 172 is moved in a proximal direction to withdraw distal end 172a thereof out of engagement from jaws 106.


As seen in FIGS. 58 and 67-69, since pusher bar 156 is maintained in the distal position by the connection of first snap clip 157a with boss 152h, as drive bar 140 is moved further in a distal direction, the forces acting on connector plate 174 cause second snap clip 157b to disengage from first stem 174b of connector plate 174 thereby allowing for connector plate 174 to continue to move in a distal direction.


As seen in FIGS. 67A-69A, in an embodiment, the tips of the tines of second snap clip 157b may be configured to project outwardly so as to engage a surface of rear upper housing 154 (see FIG. 9), thereby preventing premature disengagement of second snap clip 157b from first stem 174b of connector plate 174. In this embodiment, recesses may be formed in the surfaces of rear upper housing 154 coinciding with locations at which the tines of second snap clip 157b may splay outward thus allowing first stem 174b of connector plate 174 to disengage an to continue to move in a distal direction.


As seen in FIGS. 70-75, as trigger 108 is actuated through a final stage of the initial stroke, trigger 108 causes wishbone link 122 to further move crank plate 124 in a distal direction which, in turn, causes drive connector 134 and plunger 135 to further move distally and to further move drive bar 140 distally. As drive connector 134 is moved distally, spring 136 is compressed a further amount.


Simultaneously therewith, as crank plate 124 is moved distally the teeth of rack 124a thereof move further proximally with respect to tooth 224a of pawl 224 to a position where the teeth of rack 124a disengage from tooth 224a of pawl 224 as tooth 224a of pawl 224 enters proximal recess 124c of crank plate 124 and thus resets itself. As such, crank plate 124 may return to a proximal-most position upon a release of trigger 108.


As seen in FIGS. 72-74, during the final stage of the initial stroke of trigger 108, drive channel 168 and strap 167 are moved in a distal direction relative to jaws 106 such that a distal edge of drive channel 168 engages against camming surfaces 106b of jaws 106 causing jaws 106 to close and form the clip “C1” positioned therebetween. As seen in FIG. 74, pusher 156c of pusher bar 156 remains at a distal position, in contact with a backspan of said clip “C” during the formation thereof.


As seen in FIG. 55, as trigger 108 is squeezed a final amount, arm 127 continues to translate through race 126a of feedback member 126. At this point in the squeezing of trigger 108, surgical clip “C1” has been fully formed by jaws 106. Accordingly, arm 127 will interact with another step 126b formed in race 126a of feedback member 126 and create an audible/tactile indication advising the user that surgical clip “C1” has been formed by jaws 106.


As seen in FIG. 75, surgical clip “C1” may be formed or crimped onto a vessel “V” or any other biological tissue.


Turning now to FIGS. 76-84, the operation of clip applier 100 as trigger 108 is returned to an un-squeezed or unactuated position, is shown. As seen in FIG. 76, as the trigger is returned to the un-squeezed position, the spring is permitted to uncompress, thus urging crank plate 124 to move in a proximal direction which, in turn, causes the plunger to move proximally and to move the drive bar proximally. Since pawl 224 has been reset, crank plate 124 is now permitted to move proximally until tooth 224a of pawl 224 re-enters the distal recess of crank plate 124.


As seen in FIG. 76A, as crank plate 124 is moved proximally, arm 124d thereof disengages finger 128b of actuator plate 128 allowing actuator plate 128 to move in a proximal direction. As actuator plate 128 is moved proximally, second arm 130b of counter actuation lever 130 is cammed within slot 128b thereof and is urged to rotate resulting in first arm 130a of counter actuation lever 130 disengaging from counter mechanism 132.


As seen in FIG. 77, as drive bar 140 is moved in a proximal direction, drive bar 140 pulls on connector plate 174, via first stem 174b. As connector plate 174 is moved in a proximal direction, first stem 174b engages the tines of second snap clip 157b and urges pusher bar 156 in a proximal direction via second snap clip 157b.


As seen in FIG. 78, as forces act on pusher bar 156 to move pusher bar 156 in a proximal direction, said forces overcome the retention force of first snap clip 157a with boss 152h of upper housing 152a, thus releasing first snap clip 157a from boss 152h and allowing pusher bar 156 to move in the proximal direction.


As seen in FIG. 79, as pusher bar 156 continues to move in the proximal direction, a distal end of side recesses 156f thereof engage fins 162b of advancer plate 162 and cause advancer plate 162 to move in a proximal direction. As pusher bar 156 moves in the proximal direction, pusher bar nose 156c snaps behind a distal-most clip of the remaining stack of clips “C” and thus becomes the new distal-most clip “C1.”


As seen in FIG. 80, as advancer plate 162 is moved in a proximal direction, proximal tab 166c of clip follower 166 engages a proximal edge of a window 164a of clip carrier 164 in order to maintain the relative position of clip follower 166 in clip carrier 164. As advancer plate 162 is moved in a proximal direction, distal tab 166b thereof is caused to be advanced distally, one window 162a, from a relatively proximal window 162a of advancer plate 162 to a relatively distal window 162a of advancer plate 162.


As seen in FIG. 81, when pusher bar 156 stops its proximal movement, upon engagement thereof with a boss protruding from an inner surface of upper housing half 152a, continued proximal movement of connector plate 174 will cause first stem 174b to re-engage with second snap clip 157b. With proximal movement of pusher bar 156 stopped, continued proximal movement of connector plate 174 will cause first stem 174b to re-engage with second snap clip 157b.


As seen in FIGS. 82 and 83, as connector plate 174 is moved in a proximal direction, as a result of the proximal movement of drive bar 140, second stem 174c engages the tines of third snap clip 157c and urges wedge plate 172 in a proximal direction via third snap clip 157c. As wedge plate 172 is moved in a proximal direction, wedge plate lock 190 is moved in a proximal direction until wedge plate lock 190 contacts a physical stop in lower housing half 152b, thereby stopping proximal movement of wedge plate 172. Once the tips of the tines of third snap clip 157c move proximally past guard 198, when wedge plate 172 stops its proximal movement, continued proximal movement of connector plate 174 will cause second first stem 174c to re-engage with third snap clip 157c.


When trigger 108 is returned to the unactuated position, arm 127 will translate through race 126a of feedback member 126 and interact with another step 126b formed in race 126a of feedback member 126 and create an audible/tactile indication advising the user that surgical clip applier 100 has been reset and is ready to fire again.


Turning now to FIGS. 84-85, the configuration of surgical clip applier 100, following application of the last surgical clip “C”, is shown. As seen in FIGS. 84 and 85, when the last surgical clip has been advanced and formed, with pusher bar 156 still in an advanced or distal position, clip follower 166 has been incrementally advanced, by indexer plate 158, an amount sufficient that lock-out plate 165 thereof biases upwardly through a window 162a of advancer plate 162 and into distal window 156d of pusher bar 156. Positioning of lock-out plate 165 in distal window 156d of pusher bar 156 allows for the catch 156e thereof to enter and engage in window 165b of lock-out plate 165. In this manner, since clip follower 166 is maintained in the distal position by proximal tab 166c thereof engaging in distal window 164a of clip carrier 164, lock-out plate 165 engages catch 156e of pusher bar 156 and prevents pusher bar 156 from returning to a proximal-most position to reset pawl 224.


Since pusher bar 156 can not or is prevented from moving to its fully proximal position, as seen in FIG. 86, pawl 224 remains engaged with rack 124a of crank plate 124 and is not permitted to enter proximal recess 124c and thus reset itself. Since pawl 224 can not reset itself, crank plate 124 is locked or stopped from distal or proximal movement.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. An apparatus for application of surgical clips to body tissue, the apparatus comprising: a handle assembly including a trigger;a shaft assembly including a housing extending distally from the handle assembly and defining a longitudinal axis;a plurality of surgical clips disposed within the shaft assembly;a pair of jaws mounted adjacent a distal end portion of the shaft assembly, the pair of jaws being movable between an open spaced-apart condition and a closed approximated condition, the pair of jaws including: a first jaw defining a clip engaging feature therein, wherein the clip engaging feature of the first jaw is configured to support a first leg of a surgical clip of the plurality of surgical clips; anda second jaw defining a clip engaging feature therein, wherein the clip engaging feature of the second jaw is configured to support a second leg of the surgical clip of the plurality of surgical clips;a pusher bar reciprocally disposed within the housing of the shaft assembly and operatively connected to the trigger, wherein the pusher bar is actuated upon actuation of the trigger, the pusher bar configured to contact a distal-most surgical clip, of the plurality of surgical clips, to load the distal-most surgical clip into the pair of jaws during a distal movement of the pusher bar, whereby a first leg of the distal-most surgical clip is supported by the first jaw and a second leg of the distal-most surgical clip is supported by the second jaw,wherein the pusher bar remains in a distally advanced position, and in contact with the distal-most surgical clip, during an approximation of the first jaw and the second jaw of the pair of jaws to thereby approximate the first leg and the second leg of the distal-most surgical clip; anda connector plate reciprocally disposed within the shaft assembly, wherein the connector plate is detachably connectable to the pusher bar, wherein during an initial distal movement of the connector plate the pusher bar is distally advanced and during a further distal movement of the connector plate the connector plate is disconnected from the pusher bar.
  • 2. The apparatus according to claim 1: wherein the clip engaging feature of the first jaw of the pair of jaws is a recess configured to support at least a portion of the first leg of the distal-most surgical clip; andwherein the clip engaging feature of the second jaw of the pair of jaws is a recess configured to support at least a portion of the second leg of the distal-most surgical clip.
  • 3. The apparatus according to claim 2, wherein the recess of the first jaw of the pair of jaws is a channel; and wherein the recess of the second jaw of the pair of jaws is a channel.
  • 4. The apparatus according to claim 1, the pusher bar includes a pusher supported at a distal end of the pusher bar, and wherein the pusher bar defines a plane;the pusher includes a pair of walls, and each of the pair of walls defines a plane extending transverse to the plane defined by the pusher bar.
  • 5. The apparatus according to claim 4, wherein each of the pair of walls of the pusher are in contact with the distal-most surgical clip.
  • 6. The apparatus according to claim 5, wherein each of the pair of walls of the pusher defines a distally oriented concave profile.
  • 7. The apparatus according to claim 6, wherein the distal-most surgical clip is supported at four points of contact when loaded in the pair of jaws, wherein: a first point of contact of the four points of contact is the first leg of the distal-most surgical clip engaging the first jaw of the pair of jaws;a second point of contact of the four points of contact is the second leg of the distal-most surgical clip engaging the second jaw of the pair of jaws;a third point of contact of the four points of contact is the distal-most surgical clip engaging a first of the pair of walls of the pusher; anda fourth point of contact of the four points of contact is the distal-most surgical clip engaging a second of the pair of walls of the pusher.
  • 8. The apparatus according to claim 4, further comprising an advancer plate reciprocally disposed within the shaft assembly, the advancer plate including at least one fin detachably connectable to a shoulder of the pusher bar, wherein the shoulder of the pusher bar engages the at least one fin of the advancer plate during a distal and a proximal movement of the pusher bar to effectuate one of a distal and proximal movement of the advancer plate.
  • 9. An apparatus for application of surgical clips to body tissue, the apparatus comprising: a handle assembly including a trigger;a shaft assembly including a housing extending distally from the handle assembly and defining a longitudinal axis;a plurality of surgical clips disposed within the shaft assembly;a pair of jaws mounted adjacent a distal end portion of the shaft assembly, the pair of jaws being movable between an open spaced-apart condition and a closed approximated condition, the pair of jaws including:a first jaw defining a clip engaging feature therein, wherein the clip engaging feature of the first jaw is configured to support a first leg of a surgical clip of the plurality of surgical clips; anda second jaw defining a clip engaging feature therein, wherein the clip engaging feature of the second jaw is configured to support a second leg of the surgical clip of the plurality of surgical clips; anda pusher bar reciprocally disposed within the housing of the shaft assembly and operatively connected to the trigger, wherein the pusher bar is actuated upon actuation of the trigger, the pusher bar configured to contact a distal-most surgical clip, of the plurality of surgical clips, to load the distal-most surgical clip into the pair of jaws during a distal movement of the pusher bar, whereby a first leg of the distal-most surgical clip is supported by the first jaw and a second leg of the distal-most surgical clip is supported by the second jaw,wherein the pusher bar remains in a distally advanced position, and in contact with the distal-most surgical clip, during an approximation of the first jaw and the second jaw of the pair of jaws to thereby approximate the first leg and the second leg of the distal-most surgical clip, until the first jaw and the second jaw of the pair of jaws are in a fully closed approximated condition.
  • 10. The apparatus according to claim 9: wherein the clip engaging feature of the first jaw of the pair of jaws is a recess configured to support at least a portion of the first leg of the distal-most surgical clip; andwherein the clip engaging feature of the second jaw of the pair of jaws is a recess configured to support at least a portion of the second leg of the distal-most surgical clip.
  • 11. The apparatus according to claim 10, wherein the recess of the first jaw of the pair of jaws is a channel, and wherein the recess of the second jaw of the pair of jaws is a channel.
  • 12. The apparatus according to claim 9, wherein: the pusher bar includes a pusher supported at a distal end of the pusher bar, and wherein the pusher bar defines a plane; andthe pusher includes a pair of walls, and each wall of the pair of walls defines a plane extending transverse to the plane defined by the pusher bar.
  • 13. The apparatus according to claim 12, wherein each wall of the pair of walls of the pusher are in contact with the distal-most surgical clip.
  • 14. The apparatus according to claim 13, wherein each wall of the pair of walls of the pusher defines a distally oriented concave profile.
  • 15. The apparatus according to claim 14, wherein the distal-most surgical clip is supported at four points of contact when loaded in the pair of jaws, wherein: a first point of contact of the four points of contact is the first leg of the distal-most surgical clip engaging the first jaw of the pair of jaws;a second point of contact of the four points of contact is the second leg of the distal-most surgical clip engaging the second jaw of the pair of jaws;a third point of contact of the four points of contact is the distal-most surgical clip engaging a first of the pair of walls of the pusher; anda fourth point of contact of the four points of contact is the distal-most surgical clip engaging a second of the pair of walls of the pusher.
  • 16. The apparatus according to claim 12, further comprising an advancer plate reciprocally disposed within the shaft assembly, the advancer plate including at least one fin detachably connectable to a shoulder of the pusher bar, wherein the shoulder of the pusher bar engages the at least one fin of the advancer plate during a distal and a proximal movement of the pusher bar to effectuate one of a distal and proximal movement of the advancer plate.
  • 17. The apparatus according to claim 9, further comprising a connector plate reciprocally disposed within the shaft assembly, wherein the connector plate is detachably connectable to the pusher bar, wherein during an initial distal movement of the connector plate the pusher bar is distally advanced and during a further distal movement of the connector plate the connector plate is disconnected from the pusher bar.
CROSS REFERENCE TO RELATED APPLICATION

This application is a Continuation of Ser. No. 16/260,372, filed on Jan. 29, 2019, which is a Divisional of U.S. patent application Ser. No. 15/145,192 filed May 3, 2016, now U.S. Pat. No. 10,231,738, which is a Continuation of U.S. patent application Ser. No. 12/539,766 filed Aug. 12, 2009, now U.S. Pat. No. 9,358,015, which claims benefit of and priority to U.S. Provisional Application No. 61/092,804 filed Aug. 29, 2008, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (1151)
Number Name Date Kind
3120230 Skold Feb 1964 A
3363628 Wood Jan 1968 A
3638847 Noiles et al. Feb 1972 A
3675688 Bryan et al. Jul 1972 A
3735762 Bryan et al. May 1973 A
3867944 Samuels Feb 1975 A
4226242 Jarvik Oct 1980 A
4242902 Green Jan 1981 A
4296751 Blake, III et al. Oct 1981 A
4372316 Blake, III et al. Feb 1983 A
4408603 Blake, III et al. Oct 1983 A
4412539 Jarvik Nov 1983 A
4449531 Gerwin et al. May 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480640 Becht Nov 1984 A
4480641 Failla et al. Nov 1984 A
4487204 Hrouda Dec 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4491133 Menges et al. Jan 1985 A
4492232 Green Jan 1985 A
4498476 Gerwin et al. Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4509518 McGarry et al. Apr 1985 A
4512345 Green Apr 1985 A
4522207 Klieman et al. Jun 1985 A
4532925 Blake, III Aug 1985 A
4534351 Rothfuss et al. Aug 1985 A
4545377 Gerwin et al. Oct 1985 A
4549544 Favaron Oct 1985 A
4556058 Green Dec 1985 A
4557263 Green Dec 1985 A
4562839 Blake, III et al. Jan 1986 A
4572183 Juska Feb 1986 A
4576165 Green et al. Mar 1986 A
4576166 Montgomery et al. Mar 1986 A
4590937 Deniega May 1986 A
4592498 Braun et al. Jun 1986 A
4598711 Deniega Jul 1986 A
4602631 Funatsu Jul 1986 A
4611595 Klieman et al. Sep 1986 A
4612932 Caspar et al. Sep 1986 A
4616650 Green et al. Oct 1986 A
4616651 Golden Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4637395 Caspar et al. Jan 1987 A
4646740 Peters et al. Mar 1987 A
4647504 Kimimura et al. Mar 1987 A
4658822 Kees, Jr. Apr 1987 A
4660558 Kees, Jr. Apr 1987 A
4662373 Montgomery et al. May 1987 A
4662374 Blake, III May 1987 A
4671278 Chin Jun 1987 A
4671282 Tretbar Jun 1987 A
4674504 Klieman et al. Jun 1987 A
4681107 Kees, Jr. Jul 1987 A
4696396 Samuels Sep 1987 A
4702247 Blake, III et al. Oct 1987 A
4706668 Backer Nov 1987 A
4712549 Peters et al. Dec 1987 A
4726372 Perlin Feb 1988 A
4733664 Kirsch et al. Mar 1988 A
4733666 Mercer, Jr. Mar 1988 A
4759364 Boebel Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4777949 Perlin Oct 1988 A
4777950 Kees, Jr. Oct 1988 A
4796625 Kees, Jr. Jan 1989 A
4799481 Transue et al. Jan 1989 A
4815466 Perlin Mar 1989 A
4817604 Smith, III Apr 1989 A
4821721 Chin et al. Apr 1989 A
4822348 Casey Apr 1989 A
4827930 Kees, Jr. May 1989 A
4834096 Oh et al. May 1989 A
4850355 Brooks et al. Jul 1989 A
4854317 Braun Aug 1989 A
4856517 Collins et al. Aug 1989 A
4929239 Braun May 1990 A
4929240 Kirsch et al. May 1990 A
4931058 Cooper Jun 1990 A
4932955 Merz et al. Jun 1990 A
4934364 Green Jun 1990 A
4943298 Fujita et al. Jul 1990 A
4951860 Peters et al. Aug 1990 A
4957500 Liang et al. Sep 1990 A
4966603 Focelle et al. Oct 1990 A
4967949 Sandhaus Nov 1990 A
4983176 Cushman et al. Jan 1991 A
4988355 Leveen et al. Jan 1991 A
5002552 Casey Mar 1991 A
5026379 Yoon Jun 1991 A
5030224 Wright et al. Jul 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5047038 Peters et al. Sep 1991 A
5049152 Simon et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053045 Schmidt et al. Oct 1991 A
5062563 Green et al. Nov 1991 A
5062846 Oh et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084057 Green et al. Jan 1992 A
5100416 Oh et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5104395 Thornton et al. Apr 1992 A
5112343 Thornton May 1992 A
5122150 Puig Jun 1992 A
5127915 Mattson Jul 1992 A
5129885 Green et al. Jul 1992 A
5156608 Troidl et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5171252 Friedland Dec 1992 A
5171253 Klieman Dec 1992 A
5192288 Thompson et al. Mar 1993 A
5197970 Green Mar 1993 A
5199566 Ortiz et al. Apr 1993 A
5201746 Shichman Apr 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5207692 Kraus et al. May 1993 A
5217473 Yoon Jun 1993 A
5219353 Garvey, III et al. Jun 1993 A
5246450 Thornton et al. Sep 1993 A
5259366 Reydel et al. Nov 1993 A
5269792 Kovac et al. Dec 1993 A
5281228 Wolfson Jan 1994 A
5282807 Knoepfler Feb 1994 A
5282808 Kovac et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5300081 Young et al. Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306283 Conners Apr 1994 A
5312426 Segawa et al. May 1994 A
5330442 Green et al. Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5340360 Stefanchik Aug 1994 A
5342373 Stefanchik et al. Aug 1994 A
5354304 Allen et al. Oct 1994 A
5354306 Garvey, III et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366458 Korthoff et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368600 Failla et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5382253 Hogendijk Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5395375 Turkel et al. Mar 1995 A
5395381 Green et al. Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5409498 Braddock Apr 1995 A
5413584 Schulze May 1995 A
5423835 Green et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431667 Thompson et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5431669 Thompson et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5441509 Vidal et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5448042 Robinson et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5462558 Kolesa et al. Oct 1995 A
5464416 Steckel Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5474572 Hayhurst Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5487746 Yu et al. Jan 1996 A
5501693 Gravener Mar 1996 A
5509920 Phillips et al. Apr 1996 A
5514149 Green et al. May 1996 A
5520701 Lerch May 1996 A
5522823 Kuntz et al. Jun 1996 A
5527318 McGarry Jun 1996 A
5527319 Green et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5542949 Yoon Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5562655 Mittelstadt et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571121 Heifetz Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582615 Foshee et al. Dec 1996 A
5584840 Ramsey et al. Dec 1996 A
5591178 Green et al. Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593421 Bauer Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5626585 Mittelstadt et al. May 1997 A
5626586 Pistl et al. May 1997 A
5626587 Bishop et al. May 1997 A
5626592 Phillips et al. May 1997 A
RE35525 Stefanchik et al. Jun 1997 E
5634930 Thornton et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645551 Green et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653720 Johnson et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662676 Koninckx Sep 1997 A
5662679 Voss et al. Sep 1997 A
5665097 Baker et al. Sep 1997 A
5676676 Porter Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5695502 Pier et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697938 Jensen et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702048 Eberlin Dec 1997 A
5709706 Kienzle et al. Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5713912 Porter Feb 1998 A
5720756 Green et al. Feb 1998 A
5722982 Ferreira et al. Mar 1998 A
5725537 Green et al. Mar 1998 A
5725538 Green et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5733295 Back et al. Mar 1998 A
5743310 Moran Apr 1998 A
5749881 Sackier et al. May 1998 A
5755726 Pratt et al. May 1998 A
5766189 Matsuno Jun 1998 A
5769857 Reztzov et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776146 Sackier et al. Jul 1998 A
5776147 Dolendo Jul 1998 A
5779718 Green et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788698 Savornin Aug 1998 A
5792149 Sherts et al. Aug 1998 A
5792150 Pratt et al. Aug 1998 A
5797922 Hessel et al. Aug 1998 A
5810853 Yoon Sep 1998 A
5817116 Takahashi et al. Oct 1998 A
5827306 Yoon Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5833700 Berg et al. Nov 1998 A
5835199 Phillips et al. Nov 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843101 Fry Dec 1998 A
5846255 Casey Dec 1998 A
5849019 Yoon Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5868759 Peyser et al. Feb 1999 A
5868761 Nicholas et al. Feb 1999 A
5876410 Petillo Mar 1999 A
5895394 Kienzle et al. Apr 1999 A
5897565 Foster Apr 1999 A
5904693 Dicesare et al. May 1999 A
5906625 Bito et al. May 1999 A
5913862 Ramsey et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5921991 Whitehead et al. Jul 1999 A
5921996 Sherman Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5951574 Stefanchik et al. Sep 1999 A
5972003 Rousseau et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6009551 Sheynblat Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6044971 Esposito et al. Apr 2000 A
6045560 McKean et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6059799 Aranyi et al. May 2000 A
6099536 Petillo Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6139555 Hart et al. Oct 2000 A
6210418 Storz et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6241740 Davis et al. Jun 2001 B1
6258105 Hart et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6273898 Kienzle et al. Aug 2001 B1
6277131 Kalikow Aug 2001 B1
6306149 Meade Oct 2001 B1
6318619 Lee Nov 2001 B1
6322571 Adams Nov 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6391035 Appleby et al. May 2002 B1
6423079 Blake, III Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6456363 Suzuki Sep 2002 B2
6464710 Foster Oct 2002 B1
6494886 Wilk et al. Dec 2002 B1
6517536 Hooven et al. Feb 2003 B2
6520972 Peters Feb 2003 B2
6527786 Davis et al. Mar 2003 B1
6537289 Kayan et al. Mar 2003 B1
6546935 Hooven Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6579304 Hart et al. Jun 2003 B1
6599298 Forster et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6613060 Adams et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6626922 Hart et al. Sep 2003 B1
6648898 Baxter Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676659 Hutchins et al. Jan 2004 B2
6679894 Damarati Jan 2004 B2
RE38445 Pistl et al. Feb 2004 E
6695854 Kayan et al. Feb 2004 B1
6706057 Bidoia et al. Mar 2004 B1
6716226 Sixto, Jr. et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6743240 Smith et al. Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6776784 Ginn Aug 2004 B2
6780195 Porat Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793664 Mazzocchi et al. Sep 2004 B2
6802848 Anderson et al. Oct 2004 B2
6814742 Kimura et al. Nov 2004 B2
6818009 Hart et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6837894 Pugsley, Jr. et al. Jan 2005 B2
6837895 Mayenberger Jan 2005 B2
6840945 Manetakis et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6849079 Blake, III et al. Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6869435 Blake, III Mar 2005 B2
6869436 Wendlandt Mar 2005 B2
6889116 Jinno May 2005 B2
6896682 McClellan et al. May 2005 B1
6905503 Gifford, III et al. Jun 2005 B2
6911032 Jugenheimer et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6939356 Debbas Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945979 Kortenbach et al. Sep 2005 B2
6949107 McGuckin, Jr. et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6955643 Gellman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960218 Rennich Nov 2005 B2
6960221 Ho et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6966919 Sixto, Jr. et al. Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6972023 Whayne et al. Dec 2005 B2
6972027 Fallin et al. Dec 2005 B2
6973770 Schnipke et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6974475 Wall Dec 2005 B1
6981505 Krause et al. Jan 2006 B2
6981628 Wales Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
7052504 Hughett May 2006 B2
7056330 Gayton Jun 2006 B2
7108703 Danitz et al. Sep 2006 B2
7144402 Kuester, III Dec 2006 B2
7175648 Nakao Feb 2007 B2
7179265 Manetakis et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7211091 Fowler et al. May 2007 B2
7211092 Hughett May 2007 B2
7214230 Brock et al. May 2007 B2
7214232 Bowman et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7223272 Francese et al. May 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7261724 Molitor et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7264625 Buncke Sep 2007 B1
7288098 Huitema et al. Oct 2007 B2
7297149 Vitali et al. Nov 2007 B2
7316693 Viola Jan 2008 B2
7316696 Wilson, Jr. et al. Jan 2008 B2
7320692 Bender et al. Jan 2008 B1
7326223 Wilson, Jr. Feb 2008 B2
7329266 Royse et al. Feb 2008 B2
7331968 Arp et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
7344544 Bender et al. Mar 2008 B2
7357805 Masuda et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7419495 Menn et al. Sep 2008 B2
7431724 Manetakis et al. Oct 2008 B2
7458978 Bender et al. Dec 2008 B1
7473258 Clauson et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7510562 Lindsay Mar 2009 B2
7552853 Mas et al. Jun 2009 B2
7585304 Hughett Sep 2009 B2
7637917 Whitfield et al. Dec 2009 B2
7644848 Swayze et al. Jan 2010 B2
7686820 Huitema et al. Mar 2010 B2
7695482 Viola Apr 2010 B2
7717926 Whitfield et al. May 2010 B2
7727248 Smith et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7740641 Huitema Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7753250 Clauson et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7887553 Lehman et al. Feb 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7942885 Sixto, Jr. et al. May 2011 B2
7952060 Watanabe et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8021378 Sixto, Jr. et al. Sep 2011 B2
8038686 Huitema et al. Oct 2011 B2
8048088 Green et al. Nov 2011 B2
8056565 Zergiebel Nov 2011 B2
8062310 Shibata et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8066722 Miyagi et al. Nov 2011 B2
8070760 Fujita Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8080021 Griego Dec 2011 B2
8083668 Durgin et al. Dec 2011 B2
8088061 Wells et al. Jan 2012 B2
8091755 Kayan et al. Jan 2012 B2
8100926 Filshie et al. Jan 2012 B1
8128643 Aranyi et al. Mar 2012 B2
8133240 Damarati Mar 2012 B2
8142451 Boulnois et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8172859 Matsuno et al. May 2012 B2
8172870 Shipp May 2012 B2
8187290 Buckman et al. May 2012 B2
8211120 Itoh Jul 2012 B2
8211124 Ainsworth et al. Jul 2012 B2
8216255 Smith et al. Jul 2012 B2
8216257 Huitema et al. Jul 2012 B2
8236012 Molitor et al. Aug 2012 B2
8246634 Huitema et al. Aug 2012 B2
8246635 Huitema Aug 2012 B2
8262678 Matsuoka et al. Sep 2012 B2
8262679 Nguyen Sep 2012 B2
8267944 Sorrentino et al. Sep 2012 B2
8267945 Nguyen et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282655 Whitfield et al. Oct 2012 B2
8308743 Matsuno et al. Nov 2012 B2
8328822 Huitema et al. Dec 2012 B2
8336556 Zergiebel Dec 2012 B2
8348130 Shah et al. Jan 2013 B2
8357171 Whitfield et al. Jan 2013 B2
8366709 Schechter et al. Feb 2013 B2
8366726 Dennis Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372095 Viola Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8398655 Cheng et al. Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8419752 Sorrentino et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8444660 Adams et al. May 2013 B2
8465460 Yodat et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8475473 Vandenbroek et al. Jul 2013 B2
8480688 Boulnois et al. Jul 2013 B2
8486091 Sorrentino et al. Jul 2013 B2
8491608 Sorrentino et al. Jul 2013 B2
8496673 Nguyen et al. Jul 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8512357 Viola Aug 2013 B2
8518055 Cardinale et al. Aug 2013 B1
8523882 Huitema et al. Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8529586 Rosenberg et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8545486 Malkowski Oct 2013 B2
8556920 Huitema et al. Oct 2013 B2
8568430 Shipp Oct 2013 B2
8579918 Whitfield et al. Nov 2013 B2
8585717 Sorrentino et al. Nov 2013 B2
8603109 Aranyi et al. Dec 2013 B2
8609109 Donnelly et al. Dec 2013 B2
8652151 Lehman et al. Feb 2014 B2
8652152 Aranyi et al. Feb 2014 B2
8663247 Menn et al. Mar 2014 B2
8685048 Adams et al. Apr 2014 B2
8690899 Kogiso et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709027 Adams et al. Apr 2014 B2
8715299 Menn et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8747423 Whitfield et al. Jun 2014 B2
8753356 Vitali et al. Jun 2014 B2
8814884 Whitfield et al. Aug 2014 B2
8821516 Huitema Sep 2014 B2
8839954 Disch Sep 2014 B2
8845659 Whitfield et al. Sep 2014 B2
8894665 Sorrentino Nov 2014 B2
8894666 Schulz et al. Nov 2014 B2
8900253 Aranyi et al. Dec 2014 B2
8915930 Huitema et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8950646 Viola Feb 2015 B2
8961542 Whitfield et al. Feb 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968342 Wingardner, III et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
9011464 Zammataro Apr 2015 B2
9011465 Whitfield et al. Apr 2015 B2
9089334 Sorrentino et al. Jul 2015 B2
9113892 Malkowski et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9119629 Cardinale et al. Sep 2015 B2
9186136 Malkowski et al. Nov 2015 B2
9186153 Zammataro Nov 2015 B2
9208429 Thornton et al. Dec 2015 B2
9220507 Patel et al. Dec 2015 B1
9282961 Whitman et al. Mar 2016 B2
9282972 Patel et al. Mar 2016 B1
9326776 Gadberry et al. May 2016 B2
9358011 Sorrentino et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9364216 Rockrohr et al. Jun 2016 B2
9364239 Malkowski Jun 2016 B2
9364240 Whitfield et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9393024 Whitfield et al. Jul 2016 B2
9398917 Whitfield et al. Jul 2016 B2
9408610 Hartoumbekis Aug 2016 B2
9414844 Zergiebel et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9439654 Sorrentino et al. Sep 2016 B2
9445810 Cappola Sep 2016 B2
9480477 Aranyi et al. Nov 2016 B2
9498227 Zergiebel et al. Nov 2016 B2
9526501 Malkowski Dec 2016 B2
9526565 Strobl Dec 2016 B2
9532787 Zammataro Jan 2017 B2
9545254 Sorrentino et al. Jan 2017 B2
9549741 Zergiebel Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9642627 Zammataro May 2017 B2
9687247 Aranyi et al. Jun 2017 B2
9717504 Huitema Aug 2017 B2
9717505 Whitfield et al. Aug 2017 B2
9737310 Whitfield et al. Aug 2017 B2
9750500 Malkowski Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9775623 Zammataro et al. Oct 2017 B2
9775624 Rockrohr et al. Oct 2017 B2
9782181 Vitali et al. Oct 2017 B2
9848886 Malkowski et al. Dec 2017 B2
9855043 Malkowski Jan 2018 B2
9931124 Gokharu Apr 2018 B2
9968361 Aranyi et al. May 2018 B2
9968362 Malkowski et al. May 2018 B2
10136939 Minnelli et al. Nov 2018 B2
10231732 Racenet et al. Mar 2019 B1
10231735 Sorrentino et al. Mar 2019 B2
10231738 Sorrentino et al. Mar 2019 B2
10258346 Zergiebel et al. Apr 2019 B2
10271854 Whitfield et al. Apr 2019 B2
10292712 Shankarsetty May 2019 B2
10349936 Rockrohr et al. Jul 2019 B2
10349950 Aranyi et al. Jul 2019 B2
10357250 Zammataro Jul 2019 B2
10363045 Whitfield et al. Jul 2019 B2
10368876 Bhatnagar et al. Aug 2019 B2
10390831 Holsten et al. Aug 2019 B2
10426489 Baril Oct 2019 B2
10470765 Malkowski Nov 2019 B2
10485538 Whitfield et al. Nov 2019 B2
10492795 Williams Dec 2019 B2
10537329 Malkowski Jan 2020 B2
10542999 Zergiebel Jan 2020 B2
10548602 Baril et al. Feb 2020 B2
10568635 Whitfield et al. Feb 2020 B2
10582931 Mujawar Mar 2020 B2
10603038 Mujawar et al. Mar 2020 B2
10610236 Baril Apr 2020 B2
10639032 Baril et al. May 2020 B2
10639044 Prior May 2020 B2
10653429 Baril et al. May 2020 B2
10660639 Hartoumbekis May 2020 B2
10660651 Baril et al. May 2020 B2
10660652 Tan et al. May 2020 B2
10660723 Baril May 2020 B2
10660725 Baril et al. May 2020 B2
10675043 P V R Jun 2020 B2
10675112 Baril et al. Jun 2020 B2
10682135 Sorrentino et al. Jun 2020 B2
10682146 Rockrohr et al. Jun 2020 B2
10702278 Tokarz et al. Jul 2020 B2
10702279 Xu et al. Jul 2020 B2
10702280 Cai et al. Jul 2020 B2
10709455 Baril et al. Jul 2020 B2
10722235 Baril et al. Jul 2020 B2
10722236 Zammataro Jul 2020 B2
10743851 Swayze et al. Aug 2020 B2
10743886 Malkowski et al. Aug 2020 B2
10743887 P V R Aug 2020 B2
10758234 Malkowski et al. Sep 2020 B2
10758244 Williams Sep 2020 B2
10758245 Baril et al. Sep 2020 B2
10765431 Hu et al. Sep 2020 B2
10765435 Gokharu Sep 2020 B2
10786262 Baril et al. Sep 2020 B2
10786263 Baril et al. Sep 2020 B2
10786273 Baril et al. Sep 2020 B2
10806463 Hartoumbekis Oct 2020 B2
10806464 Raikar et al. Oct 2020 B2
10828036 Baril et al. Nov 2020 B2
10835260 Baril et al. Nov 2020 B2
10835341 Baril et al. Nov 2020 B2
10849630 P V R Dec 2020 B2
10863992 Czernik et al. Dec 2020 B2
10932791 P V R Mar 2021 B2
10932793 Yi et al. Mar 2021 B2
10945734 Baril et al. Mar 2021 B2
10959737 P V R Mar 2021 B2
10993721 Baril et al. May 2021 B2
11026696 Zammataro Jun 2021 B2
11033256 Zammataro et al. Jun 2021 B2
11051827 Baril et al. Jul 2021 B2
11051828 Baril et al. Jul 2021 B2
11058432 Bhatnagar et al. Jul 2021 B2
11071553 Raikar et al. Jul 2021 B2
11116513 Dinino et al. Sep 2021 B2
11116514 Yue et al. Sep 2021 B2
11134956 Shankarsetty Oct 2021 B2
11147566 Pilletere et al. Oct 2021 B2
11213298 Sorrentino et al. Jan 2022 B2
11213299 Whitfield et al. Jan 2022 B2
20010047178 Peters Nov 2001 A1
20020040226 Laufer et al. Apr 2002 A1
20020068947 Kuhns et al. Jun 2002 A1
20020082618 Shipp et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087170 Kuhns et al. Jul 2002 A1
20020099388 Mayenberger Jul 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20020123742 Baxter et al. Sep 2002 A1
20020128668 Manetakis et al. Sep 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20020198537 Smith et al. Dec 2002 A1
20020198538 Kortenbach et al. Dec 2002 A1
20020198539 Sixto et al. Dec 2002 A1
20020198540 Smith et al. Dec 2002 A1
20020198541 Smith et al. Dec 2002 A1
20030014060 Wilson et al. Jan 2003 A1
20030018345 Green Jan 2003 A1
20030023249 Manetakis Jan 2003 A1
20030040759 de Guillebon et al. Feb 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030135224 Blake Jul 2003 A1
20030167063 Kerr Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030220657 Adams Nov 2003 A1
20030225423 Huitema Dec 2003 A1
20030229360 Gayton Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040044352 Fowler et al. Mar 2004 A1
20040097970 Hughett May 2004 A1
20040097971 Hughett May 2004 A1
20040097972 Shipp et al. May 2004 A1
20040106936 Shipp et al. Jun 2004 A1
20040133215 Baxter Jul 2004 A1
20040138681 Pier Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158266 Damarati Aug 2004 A1
20040162567 Adams Aug 2004 A9
20040167545 Sadler et al. Aug 2004 A1
20040176776 Zubok et al. Sep 2004 A1
20040176783 Edoga et al. Sep 2004 A1
20040176784 Okada Sep 2004 A1
20040193213 Aranyi Sep 2004 A1
20040230198 Manzi et al. Nov 2004 A1
20050010242 Lindsay Jan 2005 A1
20050080440 Durgin et al. Apr 2005 A1
20050085830 Lehman et al. Apr 2005 A1
20050090837 Sixto et al. Apr 2005 A1
20050090838 Sixto et al. Apr 2005 A1
20050096670 Wellman et al. May 2005 A1
20050096671 Wellman et al. May 2005 A1
20050096672 Manetakis et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107807 Nakao May 2005 A1
20050107809 Litscher et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119677 Shipp Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050149063 Young et al. Jul 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050165415 Wales Jul 2005 A1
20050165418 Chan Jul 2005 A1
20050171560 Hughett Aug 2005 A1
20050175703 Hunter Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177177 Viola Aug 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050216036 Nakao Sep 2005 A1
20050216056 Valdevit et al. Sep 2005 A1
20050222588 Vandenbroek et al. Oct 2005 A1
20050222590 Gadberry et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228411 Manzo Oct 2005 A1
20050228416 Burbank et al. Oct 2005 A1
20050234478 Wixey et al. Oct 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050251184 Anderson Nov 2005 A1
20050256529 Yawata et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273122 Theroux et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277953 Francese et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277958 Levinson Dec 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20050288690 Bourque et al. Dec 2005 A1
20060004388 Whayne et al. Jan 2006 A1
20060004390 Rosenberg et al. Jan 2006 A1
20060009789 Gambale et al. Jan 2006 A1
20060009790 Blake et al. Jan 2006 A1
20060009792 Baker et al. Jan 2006 A1
20060020270 Jabba et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060047305 Ortiz et al. Mar 2006 A1
20060047306 Ortiz et al. Mar 2006 A1
20060064117 Aranyi et al. Mar 2006 A1
20060079115 Aranyi Apr 2006 A1
20060079912 Whitfield et al. Apr 2006 A1
20060079913 Whitfield et al. Apr 2006 A1
20060085015 Whitfield et al. Apr 2006 A1
20060085021 Wenzler Apr 2006 A1
20060100649 Hart May 2006 A1
20060111731 Manzo May 2006 A1
20060124485 Kennedy Jun 2006 A1
20060129170 Royce et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060163312 Viola et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060184182 Aranyi et al. Aug 2006 A1
20060190013 Menn Aug 2006 A1
20060195125 Sakakine et al. Aug 2006 A1
20060200179 Barker et al. Sep 2006 A1
20060212050 D'Agostino et al. Sep 2006 A1
20060217749 Wilson et al. Sep 2006 A1
20060224165 Surti et al. Oct 2006 A1
20060224170 Duff Oct 2006 A1
20060235437 Vitali et al. Oct 2006 A1
20060235438 Huitema et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235440 Huitema et al. Oct 2006 A1
20060235441 Huitema et al. Oct 2006 A1
20060235442 Huitema Oct 2006 A1
20060235443 Huitema et al. Oct 2006 A1
20060235444 Huitema et al. Oct 2006 A1
20060259045 Damarati Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20060264987 Sgro Nov 2006 A1
20060271072 Hummel et al. Nov 2006 A1
20070016228 Salas Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027458 Sixto, Jr. et al. Feb 2007 A1
20070034669 De La Torre et al. Feb 2007 A1
20070038233 Martinez et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070049948 Menn et al. Mar 2007 A1
20070049949 Manetakis Mar 2007 A1
20070049950 Theroux et al. Mar 2007 A1
20070049951 Menn Mar 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070066981 Meagher Mar 2007 A1
20070073314 Gadberry et al. Mar 2007 A1
20070083218 Morris Apr 2007 A1
20070106314 Dunn May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118161 Kennedy et al. May 2007 A1
20070118163 Boudreaux et al. May 2007 A1
20070118174 Chu May 2007 A1
20070123916 Maier et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20070142851 Sixto et al. Jun 2007 A1
20070149988 Michler et al. Jun 2007 A1
20070149989 Santilli et al. Jun 2007 A1
20070162060 Wild Jul 2007 A1
20070173866 Sorrentino et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070185504 Manetakis et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265640 Kortenbach et al. Nov 2007 A1
20070276417 Mendes, Jr. et al. Nov 2007 A1
20070282355 Brown et al. Dec 2007 A1
20070288039 Aranyi Dec 2007 A1
20070293875 Soetikno et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004637 Klassen et al. Jan 2008 A1
20080004639 Huitema et al. Jan 2008 A1
20080015615 Molitor et al. Jan 2008 A1
20080027465 Vitali et al. Jan 2008 A1
20080027466 Vitali et al. Jan 2008 A1
20080045978 Kuhns et al. Feb 2008 A1
20080045981 Margolin et al. Feb 2008 A1
20080051808 Rivera et al. Feb 2008 A1
20080065118 Damarati Mar 2008 A1
20080065119 Viola Mar 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080103510 Taylor et al. May 2008 A1
20080114377 Shibata et al. May 2008 A1
20080114378 Matsushita May 2008 A1
20080125796 Graham May 2008 A1
20080132915 Buckman et al. Jun 2008 A1
20080140089 Kogiso et al. Jun 2008 A1
20080140090 Aranyi et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080154287 Rosenberg et al. Jun 2008 A1
20080167665 Arp et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080188872 Duff Aug 2008 A1
20080207995 Kortenbach et al. Aug 2008 A1
20080208217 Adams Aug 2008 A1
20080228199 Cropper et al. Sep 2008 A1
20080228202 Cropper et al. Sep 2008 A1
20080243143 Kuhns et al. Oct 2008 A1
20080243145 Whitfield et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255589 Blakeney et al. Oct 2008 A1
20080294178 Kortenbach et al. Nov 2008 A1
20080306491 Cohen et al. Dec 2008 A1
20080306492 Shibata et al. Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080312665 Shibata et al. Dec 2008 A1
20080312666 Ellingwood et al. Dec 2008 A1
20080312670 Lutze et al. Dec 2008 A1
20080319456 Hart Dec 2008 A1
20090076533 Kayan et al. Mar 2009 A1
20090088777 Miyagi et al. Apr 2009 A1
20090088783 Kennedy et al. Apr 2009 A1
20090171380 Whiting Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090204115 Dees, Jr. et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090222003 Otley Sep 2009 A1
20090228023 Cui Sep 2009 A1
20090228024 Whitfield et al. Sep 2009 A1
20090261142 Milliman et al. Oct 2009 A1
20090264904 Mdrich et al. Oct 2009 A1
20090299382 Zergiebel Dec 2009 A1
20090312775 Gilkey et al. Dec 2009 A1
20090326558 Cui et al. Dec 2009 A1
20100049216 Zergiebel Feb 2010 A1
20100057102 Sorrentino et al. Mar 2010 A1
20100057105 Sorrentino Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069935 Crainich Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100274262 Schulz et al. Oct 2010 A1
20100274264 Schulz et al. Oct 2010 A1
20100331862 Monassevitch et al. Dec 2010 A1
20110028994 Whitfield et al. Feb 2011 A1
20110054498 Monassevitch et al. Mar 2011 A1
20110082474 Bindra et al. Apr 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110087241 Nguyen Apr 2011 A1
20110087242 Pribanic Apr 2011 A1
20110087243 Nguyen et al. Apr 2011 A1
20110087268 Livneh Apr 2011 A1
20110101066 Farascioni et al. May 2011 A1
20110112552 Lehman et al. May 2011 A1
20110137323 Malkowski et al. Jun 2011 A1
20110137324 Boudreaux et al. Jun 2011 A1
20110144662 McLawhorn et al. Jun 2011 A1
20110144665 Malkowski Jun 2011 A1
20110190791 Jacobs et al. Aug 2011 A1
20110208211 Whitfield et al. Aug 2011 A1
20110208212 Zergiebel Aug 2011 A1
20110218553 Huitema et al. Sep 2011 A1
20110218554 Cheng et al. Sep 2011 A1
20110218555 Huitema Sep 2011 A1
20110218556 Nguyen et al. Sep 2011 A1
20110224696 Huitema et al. Sep 2011 A1
20110224700 Schmidt et al. Sep 2011 A1
20110224701 Menn Sep 2011 A1
20110230900 Sarradon Sep 2011 A1
20110245847 Menn et al. Oct 2011 A1
20110245848 Rosenberg et al. Oct 2011 A1
20110251608 Timm et al. Oct 2011 A1
20110295290 Whitfield Dec 2011 A1
20110313437 Yeh Dec 2011 A1
20120022526 Aldridge et al. Jan 2012 A1
20120029534 Whitfield Feb 2012 A1
20120041455 Martinez Feb 2012 A1
20120046671 Matsuoka et al. Feb 2012 A1
20120048759 Disch et al. Mar 2012 A1
20120053402 Conlon et al. Mar 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120065647 Litscher et al. Mar 2012 A1
20120109158 Zammataro May 2012 A1
20120116420 Sorrentino et al. May 2012 A1
20120123446 Aranyi May 2012 A1
20120197269 Zammataro Aug 2012 A1
20120234894 Kostrzewski Sep 2012 A1
20120265220 Menn Oct 2012 A1
20120277765 Zammataro et al. Nov 2012 A1
20120330326 Creston Dec 2012 A1
20130041379 Bodor et al. Feb 2013 A1
20130110135 Whitfield et al. May 2013 A1
20130131697 Hartoumbekis May 2013 A1
20130165951 Blake, III Jun 2013 A1
20130165952 Whitfield et al. Jun 2013 A1
20130172909 Harris Jul 2013 A1
20130172910 Malkowski Jul 2013 A1
20130172911 Rockrohr et al. Jul 2013 A1
20130172912 Whitfield et al. Jul 2013 A1
20130190779 Whitfield et al. Jul 2013 A1
20130190780 Whitfield et al. Jul 2013 A1
20130253541 Zergiebel Sep 2013 A1
20130274767 Sorrentino et al. Oct 2013 A1
20130289583 Zergiebel et al. Oct 2013 A1
20130296891 Hartoumbekis Nov 2013 A1
20130296892 Sorrentino et al. Nov 2013 A1
20130310849 Malkowski Nov 2013 A1
20130325040 Zammataro Dec 2013 A1
20130325057 Larson Dec 2013 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140039526 Malkowski Feb 2014 A1
20140052157 Whitfield et al. Feb 2014 A1
20140058412 Aranyi et al. Feb 2014 A1
20140188159 Steege Jul 2014 A1
20140194903 Malkowski et al. Jul 2014 A1
20140207156 Malkowski Jul 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140296879 Menn et al. Oct 2014 A1
20140309677 Baldwin Oct 2014 A1
20140316441 Zergiebel et al. Oct 2014 A1
20140324074 Crainich et al. Oct 2014 A1
20140330291 Whitfield et al. Nov 2014 A1
20140371728 Vaughn Dec 2014 A1
20150005790 Whitfield et al. Jan 2015 A1
20150032131 Sorrentino et al. Jan 2015 A1
20150045816 Aranyi et al. Feb 2015 A1
20150066057 Rockrohr et al. Mar 2015 A1
20150080916 Aranyi et al. Mar 2015 A1
20150127022 Whitfield et al. May 2015 A1
20150164511 Whitfield et al. Jun 2015 A1
20150190133 Penna et al. Jul 2015 A1
20150190138 Whitfield et al. Jul 2015 A1
20150190139 Zammataro Jul 2015 A1
20150196298 Menn et al. Jul 2015 A1
20150201953 Strobl et al. Jul 2015 A1
20150265282 Miles et al. Sep 2015 A1
20150282808 Sorrentino et al. Oct 2015 A1
20150313452 Hasser et al. Nov 2015 A1
20150314451 Nixon Nov 2015 A1
20150327879 Garrison et al. Nov 2015 A1
20150351771 Malkowski et al. Dec 2015 A1
20150351772 Malkowski et al. Dec 2015 A1
20160000428 Scirica Jan 2016 A1
20160004956 Reynolds et al. Jan 2016 A1
20160030044 Zammataro Feb 2016 A1
20160030045 Malkowski et al. Feb 2016 A1
20160113655 Holsten Apr 2016 A1
20160151071 Tokarz et al. Jun 2016 A1
20160166255 Fischvogt Jun 2016 A1
20160192927 Kostrzewski Jul 2016 A1
20160192940 Gokharu Jul 2016 A1
20160213377 Shankarsetty Jul 2016 A1
20160242767 Kasvikis Aug 2016 A1
20160242789 Sorrentino et al. Aug 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160256157 Rockrohr et al. Sep 2016 A1
20160256158 Whitfield et al. Sep 2016 A1
20160262764 Gokharu Sep 2016 A1
20160296232 Campbell Oct 2016 A1
20160296236 Whitfield et al. Oct 2016 A1
20160338695 Hartoumbekis Nov 2016 A1
20160338699 Sorrentino et al. Nov 2016 A1
20170027581 Zergiebel et al. Feb 2017 A1
20170128071 Holsten et al. May 2017 A1
20170165015 Hess et al. Jun 2017 A1
20170172780 Murthy Aravalli Jun 2017 A1
20170202567 Griffiths et al. Jul 2017 A1
20170238936 Mujawar Aug 2017 A1
20170245921 Joseph et al. Aug 2017 A1
20170252042 Kethman et al. Sep 2017 A1
20170258472 Aranyi et al. Sep 2017 A1
20170290587 Schober et al. Oct 2017 A1
20170325814 Malkowski Nov 2017 A1
20170340325 Baril et al. Nov 2017 A1
20170340331 Hu et al. Nov 2017 A1
20170340332 Whitfield et al. Nov 2017 A1
20170360449 Rockrohr et al. Dec 2017 A1
20180008276 Bhatnagar et al. Jan 2018 A1
20180008277 Baril Jan 2018 A1
20180021041 Zhang et al. Jan 2018 A1
20180070952 Malkowski et al. Mar 2018 A1
20180116671 Prior May 2018 A1
20180116673 Baril et al. May 2018 A1
20180116674 Baril May 2018 A1
20180116675 Baril May 2018 A1
20180116676 Williams May 2018 A1
20180263624 Malkowski et al. Sep 2018 A1
20180325519 Baril et al. Nov 2018 A1
20190000449 Baril et al. Jan 2019 A1
20190000482 Hu et al. Jan 2019 A1
20190000584 Baril Jan 2019 A1
20190021738 Hartoumbekis Jan 2019 A1
20190038375 Baril et al. Feb 2019 A1
20190046202 Baril et al. Feb 2019 A1
20190046203 Baril et al. Feb 2019 A1
20190046207 Czernik et al. Feb 2019 A1
20190046208 Baril et al. Feb 2019 A1
20190053806 Zhang et al. Feb 2019 A1
20190053808 Baril et al. Feb 2019 A1
20190059904 Zammataro Feb 2019 A1
20190076147 Baril et al. Mar 2019 A1
20190076148 Baril et al. Mar 2019 A1
20190076149 Baril et al. Mar 2019 A1
20190076150 Gokharu Mar 2019 A1
20190076210 Baril et al. Mar 2019 A1
20190133583 Baril et al. May 2019 A1
20190133584 Baril et al. May 2019 A1
20190133590 Richard May 2019 A1
20190133593 P V R May 2019 A1
20190133594 Dinino et al. May 2019 A1
20190133595 Baril et al. May 2019 A1
20190150935 Raikar et al. May 2019 A1
20190159782 Kamaraj et al. May 2019 A1
20190175176 Zammataro Jun 2019 A1
20190175187 P V R Jun 2019 A1
20190175188 P V R Jun 2019 A1
20190175189 P V R Jun 2019 A1
20190192139 Rockrohr et al. Jun 2019 A1
20190209177 Whitfield et al. Jul 2019 A1
20190216464 Baril et al. Jul 2019 A1
20190239893 Shankarsetty Aug 2019 A1
20190298377 Castro Oct 2019 A1
20190321048 Dinino et al. Oct 2019 A1
20190328391 Holsten et al. Oct 2019 A1
20190328399 Baril et al. Oct 2019 A1
20200008806 Dinino et al. Jan 2020 A1
20200046329 Baril et al. Feb 2020 A1
20200046359 Thomas et al. Feb 2020 A1
20200046363 Baril et al. Feb 2020 A1
20200046365 Baril et al. Feb 2020 A1
20200046443 Baril et al. Feb 2020 A1
20200060686 Williams Feb 2020 A1
20200113569 Zergiebel Apr 2020 A1
20200129183 Baril et al. Apr 2020 A1
20200146687 Whitfield et al. May 2020 A1
20200170646 Mujawar Jun 2020 A1
20200229825 P V R Jul 2020 A1
20200261095 Yi et al. Aug 2020 A1
20200315629 Xu et al. Oct 2020 A1
20210059681 Zhang et al. Mar 2021 A1
20210169482 Baril et al. Jun 2021 A1
20210204946 Banerjee et al. Jul 2021 A1
20210298758 Thomas et al. Sep 2021 A1
20210401438 Pilletere et al. Dec 2021 A1
Foreign Referenced Citations (105)
Number Date Country
2010200641 Oct 2010 AU
2740831 Apr 2010 CA
1939231 Apr 2007 CN
1994236 Jul 2007 CN
101164502 Apr 2008 CN
101401737 Apr 2009 CN
101530340 Sep 2009 CN
100571640 Dec 2009 CN
101658437 Mar 2010 CN
101664329 Mar 2010 CN
101664331 Mar 2010 CN
201683954 Dec 2010 CN
202699217 Jan 2013 CN
103083059 May 2013 CN
103181809 Jul 2013 CN
103181810 Jul 2013 CN
103251441 Aug 2013 CN
104487006 Apr 2015 CN
29520789 Jun 1996 DE
202005001664 May 2005 DE
202009006113 Jul 2009 DE
0000756 Feb 1979 EP
0073655 Mar 1983 EP
0085931 Aug 1983 EP
0086721 Aug 1983 EP
0089737 Sep 1983 EP
0092300 Oct 1983 EP
0229895 Jul 1987 EP
0324166 Jul 1989 EP
0392750 Oct 1990 EP
0406724 Jan 1991 EP
0409569 Jan 1991 EP
0514139 Nov 1992 EP
0569223 Nov 1993 EP
0576835 Jan 1994 EP
0594003 Apr 1994 EP
0598529 May 1994 EP
0622049 Nov 1994 EP
0685204 Dec 1995 EP
0732078 Sep 1996 EP
0755655 Jan 1997 EP
0760230 Mar 1997 EP
0769274 Apr 1997 EP
0769275 Apr 1997 EP
0834286 Apr 1998 EP
1317906 Jun 2003 EP
1468653 Oct 2004 EP
1609427 Dec 2005 EP
1712187 Oct 2006 EP
1712191 Oct 2006 EP
1757236 Feb 2007 EP
1813199 Aug 2007 EP
1813207 Aug 2007 EP
1894531 Mar 2008 EP
1908423 Apr 2008 EP
1913881 Apr 2008 EP
1939231 Jul 2008 EP
2000102 Dec 2008 EP
2140817 Jan 2010 EP
2263570 Dec 2010 EP
2332471 Jun 2011 EP
2412318 Feb 2012 EP
2412319 Feb 2012 EP
2752165 Jul 2014 EP
3132756 Feb 2017 EP
3476331 May 2019 EP
1134832 Nov 1968 GB
2073022 Oct 1981 GB
2132899 Jul 1984 GB
06054858 Mar 1994 JP
10118083 May 1998 JP
2003033361 Feb 2003 JP
2006501954 Jan 2006 JP
2006154230 Jun 2006 JP
2006209948 Aug 2006 JP
2006277221 Oct 2006 JP
2007250843 Sep 2007 JP
2008017876 Jan 2008 JP
2008047498 Feb 2008 JP
2008055165 Mar 2008 JP
2008515550 May 2008 JP
2008200190 Sep 2008 JP
2009198991 Sep 2009 JP
2011186812 Sep 2011 JP
2013166982 Aug 2013 JP
5499386 May 2014 JP
9003763 Apr 1990 WO
9624294 Aug 1996 WO
0165997 Sep 2001 WO
0166001 Sep 2001 WO
0167965 Sep 2001 WO
03086207 Oct 2003 WO
03092473 Nov 2003 WO
2004032762 Apr 2004 WO
2005091457 Sep 2005 WO
2006042076 Apr 2006 WO
2006042084 Apr 2006 WO
2006042110 Apr 2006 WO
2006042141 Apr 2006 WO
2006135479 Dec 2006 WO
2008118928 Oct 2008 WO
2008127968 Oct 2008 WO
2017084000 May 2017 WO
2017146138 Aug 2017 WO
2018035796 Mar 2018 WO
Non-Patent Literature Citations (170)
Entry
International Search Report and Written Opinion corresponding to International Application No. PCT/US18/050316 dated Dec. 31, 2018.
International Search Report and Written Opinion corresponding to International Application No. PCT/US18/050325 dated Jan. 7, 2019.
International Search Report and Written Opinion corresponding to International Application No. PCT/US2018/057922 dated Feb. 22, 2019.
Chinese First Office Action corresponding to Patent Application CN 2016100558708 dated Aug. 1, 2019.
Japanese Office Action corresponding to Patent Application JP 2015-203499 dated Aug. 16, 2019.
Chinese Second Office Action corresponding to Patent Application CN 201510696298.9 dated Aug. 21, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-516433 mailed Aug. 21, 2019.
Chinese First Office Action corresponding to Patent Application CN 201580072284.8 dated Aug. 29, 2019.
Chinese First Office Action corresponding to Patent Application CN 201580073962.2 dated Sep. 5, 2019.
Extended European Search Report corresponding to Patent Application EP 19151805.9 dated Sep. 5, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-537512 dated Sep. 9, 2019.
Extended European Search Report corresponding to Patent Application EP 19170951.8 dated Sep. 26, 2019.
Extended European Search Report corresponding to Patent Application EP 15908020.9 dated Oct. 9, 2019.
Japanese Office Action corresponding to Patent Application JP 2018-534822 dated Oct. 17, 2019.
Extended European Search Report corresponding to Patent Application EP 16884297.9 dated Oct. 31,2 019.
Extended European Search Report corresponding to Patent Application EP 16885490.9 dated Nov. 12, 2019.
Extended European Search Report corresponding to Patent Application EP 19191203.9 dated Dec. 9, 2019.
Extended European Search Report corresponding to Patent Application EP 19191226.0 dated Dec. 10, 2019.
Extended European Search Report corresponding to Patent Application EP 19172130.7 dated Dec. 19, 2019.
European Office Action corresponding to Patent Application EP 18 187 690.5 dated Mar. 23, 2020.
Extended European Search Report corresponding to Patent Application EP 16912243.9 dated Mar. 25, 2020.
Chinese First Office Action corresponding to Patent Application CN 201610694951.2 dated Apr. 23, 2020.
Partial Supplementary European Search Report corresponding to Patent Application EP 18899075.8 dated Jul. 1, 2021.
Australian Examination Report No. 1 corresponding to Patent Application AU 2015413639 dated Jul. 23, 2020.
Chinese First Office Action corresponding to Patent Application CN 201680078525.4 dated Jul. 28, 2020.
Japanese Office Action corresponding to Patent Application JP 2016-217970 dated Sep. 28, 2020.
Extended European Search Report corresponding to Patent Application EP 17895153.9 dated Dec. 17, 2020.
Extended European Search Report corresponding to Patent Application EP 20215391.2 dated Apr. 30, 2021.
Extended European Search Report corresponding to Patent Application EP 18873112.9 dated Oct. 18, 2021.
Extended European Search Report corresponding to Patent Application EP 21164196.4 dated Dec. 17, 2021.
Extended European Search Report corresponding to EP 10 25 1798 4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 pp).
Extended European Search Report corresponding to EP 10 25 2112 7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 1673 2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp).
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014.
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015.
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015.
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015.
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015.
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015.
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015.
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015.
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015.
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015.
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015.
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015.
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015.
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015.
Japanese Office Action corresponding to JP 2013-229070 dated May 8, 2015.
Japanese Office Action corresponding to JP 2013-229996 dated May 8, 2015.
Japanese Office Action corresponding to JP 2014-190735 dated May 27, 2015; no English translation attached—unavailable.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210212642.9 dated Jun. 3, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 04 719 757.9 dated Jun. 12, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 166 382.5 dated Jun. 19, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2010-226908 dated Jun. 26, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 15 5024A dated Jul. 17, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2011-160126 dated Aug. 10, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0675.3 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,875 dated Oct. 26, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2015-005629 dated Oct. 28, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2014-245081 dated Oct. 28, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,921 dated Oct. 30, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,309 dated Nov. 3, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,211 dated Nov. 24, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,547 dated Nov. 25, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Oct. 4, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510205737A dated Nov. 1, 2016.
European Office Action corresponding to Int'l Appln. No. EP 08 73 2820.9 dated Nov. 3, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 5465.8 dated Dec. 21, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 4652.2 dated Jan. 4, 2017.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510419902.3 dated Jan. 4, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Jan. 23, 2017.
Extended European Search Report corresponding to European Appln. No. EP 16 18 3184.7 dated Jan. 24, 2017.
Japanese Office Action corresponding to Japanese Appln. No. JP 2016-097807 dated Feb. 14, 2017.
European Office Action corresponding to European Appln. No. EP 12 19 34475 dated Apr. 4, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014100088775 dated Apr. 6, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 3714.5 dated May 11, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 8519.3 dated May 19, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 7606.9 dated May 22, 2017.
European Office Action corresponding to European Appln. No. EP 11 25 0674.6 dated May 23, 2017.
Canadian Office Action corresponding to Canadian Appln. No. CA 2,743,402 dated May 30, 2017.
European Search Report for corresponding EP 09252051 dated Jan. 28, 2010 (3 pages).
Extended European Search Report corresponding to EP 10252079.8, dated Mar. 17, 2011; date of completion of Search is Mar. 8, 2011 (3 Pages).
International Search Report for application EP 07 25 3905 dated Feb. 7, 2008.
International Search Report from European Application No. EP 07 25 3807 dated Aug. 1, 2008.
International Search Report from PCT Application No. PCT/US08/58185 dated Sep. 9, 2008.
International Search Report from PCT Application No. PCT/US08/59859 dated Sep. 18, 2008.
The extended European Search Report from Application No. EP 07 25 3807 dated Nov. 26, 2008.
European Search Report corresponding to EP 09252049; dated Jan. 12, 2010; date of completion of Search is Dec. 11, 2009 (3 Pages).
European Search Report corresponding to EP 09252050; dated Jan. 21, 2010; date of completion of Search is Dec. 23, 2009 (3 Pages).
European Search Report corresponding to EP 09252054; dated Jan. 22, 2010; date of completion of Search is Jan. 7, 2010 (3 Pages).
Extended European Search Report corresponding to EP 09252056.8, dated Feb. 5, 2010; date of completion of Search is Jan. 8, 2010 (3 Pages).
Extended European Search Report corresponding to EP 10250497.4, dated May 12, 2010; date of completion of Search is May 4, 2010 (6 Pages).
European Search Report corresponding to EP 09252053; dated Dec. 1, 2009; date of completion of Search is Nov. 24, 2009 (3 Pages).
European Search Report corresponding to EP 05810218.7, dated May 20, 2011; completed on Apr. 18, 2011; 3 pages.
European Search Report corresponding to EP 05807612.6, dated May 20, 2011; completed on May 2, 2011; 3 pages.
Extended European Search Report corresponding to EP 10251737.2, dated May 20, 2011; completed on May 9, 2011; 4 pages.
The extended European Search Report corresponding to European Application No. EP 11250214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 Pages).
Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 pp).
Zxtended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013 (10 pp).
Extended European Search Report corresponding to EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 pp).
European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 12 15 13119, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 1, 2012 and dated Jul. 7, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 Pages).
Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 pp).
Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 pp).
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 17 2940A dated Dec. 14, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210586826.1 dated Dec. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 1313.4 dated Feb. 1, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-245081, dated Mar. 18, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016.
International Search Report and Written Opinion corresponding to counterpart Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,716,672 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,717,448 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,721,951, dated Jun. 1, 2016.
Partial European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/091603 dated Jul. 8, 2016.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050316 dated Dec. 31, 2 018.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050336 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050325 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045306 dated Jan. 16, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050349 dated Jan. 21, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045725 dated Jan. 28, 2019.
Extended European Search Report corresponding to European Patent Application EP 18208630.6 dated Feb. 12, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057910 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057922 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058078 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058603 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057221 dated Mar. 11, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212043.6 dated Apr. 24, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211565.9 dated Apr. 26, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211921.4 dated Apr. 30, 2019.
Chinese First Office Action corresponding to Chinese Patent Application CN 201510868226.8 dated May 29, 2019.
Extended European Search Report corresponding to European Patent Application EP 15905685.2 dated May 29, 2019.
European Office Action corresponding to European Patent Application EP 17157606.9 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 15908025.8 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212054.3 dated Jul. 3, 2019.
Partial Supplementary European Search Report corresponding to European Patent Application EP 16884297.9 dated Jul. 30, 2019.
European Office Action corresponding to European Appln. No. EP 16 15 9324.9 dated Aug. 7, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014104295806 dated Aug. 31, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 17 3508.7 dated Sep. 29, 2017.
Chinese Second Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Oct. 10, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 18 0570.8 dated Dec. 6, 2017.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586814.9 dated Jul. 18, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510093591.6 dated Jul. 25, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/094172 dated Aug. 4, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,728,538 dated Sep. 6, 2016.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Sep. 14, 2016.
Related Publications (1)
Number Date Country
20220031332 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
61092804 Aug 2008 US
Divisions (1)
Number Date Country
Parent 15145192 May 2016 US
Child 16260372 US
Continuations (2)
Number Date Country
Parent 16260372 Jan 2019 US
Child 17501062 US
Parent 12539766 Aug 2009 US
Child 15145192 US