Endoscopic surgical clip applier

Information

  • Patent Grant
  • 10485538
  • Patent Number
    10,485,538
  • Date Filed
    Monday, May 16, 2016
    8 years ago
  • Date Issued
    Tuesday, November 26, 2019
    4 years ago
Abstract
An apparatus for application of surgical clips to body tissue has a handle portion; a body extending distally from the handle portion; a plurality of surgical clips disposed within the body; and a jaw assembly mounted adjacent a distal end portion of the body. The jaw assembly includes first and second jaw portions movable between a spaced-apart and an approximated position. The apparatus also has a wedge plate longitudinally movable between the first and the second jaw portions, a clip pusher configured to individually distally advance a surgical clip to the jaw assembly while the jaw portions are in the spaced apart position; an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion; and a jaw closure member positioned adjacent the first and second jaw portions to move the jaw portions to the approximated position.
Description
TECHNICAL FIELD

The technical field relates to surgical clip appliers. More particularly, the present disclosure relates to an endoscopic surgical clip applier having a mechanism for stabilizing the jaw structure during the insertion of a surgical clip.


DESCRIPTION OF THE RELATED ART

Endoscopic staplers and clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures. Typically, a tube or cannula device is extended into the patient's body through the entrance incision to provide an access port. The port allows the surgeon to insert a number of different surgical instruments therethrough using a trocar and for performing surgical procedures far removed from the incision.


During a majority of these procedures, the surgeon must often terminate the flow of blood or another fluid through one or more vessels. The surgeon will often apply a surgical clip to a blood vessel or another duct to prevent the flow of body fluids therethrough during the procedure. An endoscopic clip applier is known in the art for applying a single clip during an entry to the body cavity. Such single clip appliers are typically fabricated from a biocompatible material and are usually compressed over a vessel. Once applied to the vessel, the compressed clip terminates the flow of fluid therethrough.


Endoscopic clip appliers that are able to apply multiple clips in endoscopic or laparoscopic procedures during a single entry into the body cavity are described in commonly-assigned U.S. Pat. Nos. 5,084,057 and 5,100,420 to Green et al., which are both incorporated by reference in their entirety. Another multiple endoscopic clip applier is disclosed in commonly-assigned U.S. Pat. No. 5,607,436 by Pratt et al., the contents of which is also hereby incorporated by reference herein in its entirety. These devices are typically, though not necessarily, used during a single surgical procedure. U.S. patent application Ser. No. 08/515,341 (now U.S. Pat. No. 5,695,502) to Pier et al., the disclosure of which is hereby incorporated by reference herein, discloses a resterilizable surgical clip applier. The clip applier advances and forms multiple clips during a single insertion into the body cavity. This resterilizable clip applier is configured to receive and cooperate with an interchangeable clip magazine so as to advance and form multiple clips during a single entry into a body cavity. One significant design goal is that the surgical clip be loaded between the jaws without any compression of the clip from the loading procedure. Such bending or torque of the clip during loading often has a number of unintended consequences. Such compression during loading may alter slightly the alignment of the clip between the jaws. This will cause the surgeon to remove the clip from between the jaws for discarding the clip. Additionally such preloading compression may slight compress parts of the clip and change a geometry of the clip. This will cause the surgeon to remove the compressed clip from between the jaws for discarding the clip.


Endoscopic or laparoscopic procedures are often performed remotely from the incision. Consequently, application of clips may be complicated by a reduced field of view or reduced tactile feedback for the user at the proximal end of the device. It is therefore desirable to improve the operation of the instrument by providing indication to the user of a firing of an individual clip, the depletion of the clips contained in the loading unit, or any other surgical event. It is also desirable to provide a surgical clip applier that promotes a successful loading of the clip and that wedges the jaws of the surgical clip applier open, then loads the clip between the jaws in order to prevent any damage or excessive compression of the clip and prevents compression of the jaws on the clip before firing.


SUMMARY

According to a first aspect of the present disclosure, there is provided an apparatus for application of surgical clips to body tissue has a handle portion and a body extending distally from the handle portion and defining a longitudinal axis. The apparatus also has a plurality of surgical clips disposed within the body, and a jaw assembly mounted adjacent a distal end portion of the body. The jaw assembly includes first and second jaw portions movable between a spaced-apart and an approximated position. The apparatus also has a wedge plate longitudinally movable between the first and the second jaw portions, and a clip pusher configured to individually distally advance a surgical clip to the jaw assembly while the jaw portions are in the spaced apart position. The apparatus still further has an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion and a jaw closure member positioned adjacent the first and second jaw portions to move the jaw portions to the approximated position.


According to another aspect of the present disclosure, the apparatus has a wedge plate that biases the first and the second jaw portions when the wedge plate is longitudinally moved between the first and the second jaw portions. The wedge plate maintains the first and the second jaw portions in a fixed predetermined relationship during loading of the clip. The fixed predetermined relationship prevents flexing of the first and the second jaw members during clip loading.


According to another aspect of the present disclosure, the apparatus has the wedge plate with a rounded distal tip.


According to another aspect of the present disclosure, the apparatus has the wedge plate with a first proximal window. The first proximal window is adapted to be engaged by a member disposed in the body and configured to hold the wedge plate in a distal most position. The distal most position is between the first and the second jaw members.


According to another aspect of the present disclosure, the apparatus has the wedge plate with a second proximal window. The second proximal window is adapted to be engaged by the member and the second proximal window is configured to hold the wedge plate in a proximal most position. The proximal most position is retracted from the first and the second jaw members. The proximal most position of the wedge plate is configured to allow the first and the second jaw members to compress the clip.


According to another aspect of the present disclosure, the member is movable from the second proximal window to first proximal window by the actuator. The actuator moves the wedge plate distally. The member moves from the second proximal window to the first proximal window upon the wedge plate moving distally.


According to another aspect of the present disclosure, the actuator further comprises a cam link. The cam link is engageable with a cam slot in the wedge plate. The cam link moves the wedge plate distally.


According to another aspect of the present disclosure, the member is a flexible leg.


According to another aspect of the present disclosure, the apparatus has a cam slot with a driving edge. The cam link engages the driving edge. The cam link is configured to longitudinally move the wedge plate distally.


According to another aspect of the present disclosure, when the actuator is driven distally the cam link is driven distally. The cam link engages the driving edge of the cam slot. The cam link longitudinally moves the wedge plate to move the rounded distal end between the first and the second jaw members. The member engages the first proximal window to hold the wedge plate between the first and second jaws for loading.


According to another aspect of the present disclosure, when the cam link is driven further distally the cam link disengages the driving edge and traverses in the cam slot. The cam link permits the wedge plate to move the rounded distal end proximally from between the first and the second jaw members. The member engages the second proximal window to hold the wedge plate in the proximal most position.


According to another aspect of the present disclosure, there is provided an apparatus for the application of surgical clips to body tissue. The apparatus has a handle portion, a body extending distally from the handle portion and defining a longitudinal axis, and a plurality of surgical clips disposed within the body. The apparatus also has a jaw assembly mounted adjacent a distal end portion of the body, and a clip pusher configured to individually distally advance a surgical clip to the jaw assembly. The apparatus further includes an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion with a counter mechanism. The counter mechanism is associated with the handle portion and the counter mechanism indexes in response to actuation of the handle portion.


According to another aspect of the present disclosure, the counter mechanism comprises a liquid crystal display.


According to yet another aspect of the present disclosure, the counter mechanism comprises a backlight.


According to another aspect of the present disclosure, the counter mechanism is indexed upon full actuation of the handle portion.


According to another aspect of the present disclosure, the apparatus has a counter mechanism that is triggered by the actuator.


According to another aspect of the present disclosure, the counter mechanism is in the handle and connected to the actuator. The counter mechanism has a member connected to the actuator. The counter mechanism has a liquid crystal display having a display contact. The display contact is activated when the member contacts the display contact.


According to another aspect of the present disclosure, the member is rotatable. The member rotates in response to longitudinal movement of the actuator to contact the display contact.


According to another aspect of the present disclosure, the counter mechanism is a liquid crystal display having a lens. The liquid crystal display displays an image. The lens magnifies the image.


According to another aspect of the present disclosure, the actuator includes an opening. The counter mechanism with the member has a first arm and a second arm. The first arm is connected to the opening. When said actuator longitudinally moves in a distal direction the actuator deflects the first arm and the member rotates in response to the movement. The second arm contacts the display contact in response to the rotation of the member. The display contact is activated when the second arm contacts the display contact.


According to another aspect of the present disclosure, there is provided an apparatus for the application of surgical clips to body tissue. The apparatus has a handle portion, a body extending distally from the handle portion and defining a longitudinal axis, a plurality of surgical clips disposed within the body and a jaw assembly mounted adjacent a distal end portion of the body. The jaw assembly includes first and second jaw portions movable between a spaced-apart and an approximated position. The apparatus also has a clip pusher configured to individually distally advance a surgical clip to the jaw assembly while the jaw portions are in the spaced apart position and an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion. The apparatus also has a jaw closure member positioned adjacent the first and second jaw portions to move the jaw portions to the approximated position and a lockout mechanism configured to engage with the clip pusher to prevent the application of the surgical clips to tissue when the plurality of clips are substantially exhausted.


According to another aspect of the present disclosure, the lockout mechanism has a member. The member is longitudinally movable with the actuator to a distal most position. The member reaches said distal most position and the member engages the clip pusher. The member prevents the clip pusher to distally advance the surgical clip to the jaw assembly.


According to another aspect of the present disclosure, the apparatus further comprises a clip follower. The clip follower distally biases the clips disposed in the body. The lockout mechanism includes a member. The member is longitudinally movable with the actuator to a distal most position. The member reaches the distal most position and the member engages the follower. The member prevents the follower from retracting proximally. Upon retraction of the clip pusher, the clip pusher engages the follower. The member prevents the clip pusher to distally advance the surgical clip to the jaw assembly.


According to another aspect of the present disclosure, the member is a lockout wedge.


According to another aspect of the present disclosure, the member has at least one member angled surface. The actuator has at least one actuator angled surface. As the actuator retracts proximally the at least one actuator angled surface engages the member angled surface. The engagement prevents the actuator from retracting proximal to a proximal most position.


According to another aspect of the present disclosure, there is provided an apparatus for the application of surgical clips to body tissue. The apparatus has a handle portion, and a body extending distally from the handle portion and defining a longitudinal axis. The apparatus also has a plurality of surgical clips disposed within the body, and a jaw assembly mounted adjacent a distal end portion of the body. The jaw assembly includes first and second jaw portions movable between a spaced-apart and an approximated position. The apparatus also has a clip pusher configured to individually distally advance a surgical clip to the jaw assembly while the jaw portions are in the spaced apart position. The apparatus further has an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion. The apparatus also has a jaw closure member positioned adjacent the first and second jaw portions to move the jaw portions to the approximated position, and a rack having a plurality of ratchet teeth being connected to the actuator. The apparatus also has a pawl with at least one tooth configured to engage the ratchet teeth. The pawl is biased in the handle portion. As the actuator is moved longitudinally, the ratchet teeth are passed over the pawl. The pawl is configured to prevent an inadvertent return of the actuator before full actuation of the apparatus. The apparatus also has a wedge plate longitudinally movable between the first and the second jaw portions.


According to another aspect of the present disclosure, the pawl is biased by a pawl spring. The pawl spring biases the pawl into engagement with the rack.


According to another aspect of the present disclosure, the apparatus further comprises a first and a second post connected to an interior side of the handle portion. The first and the second posts are configured to support the pawl spring.


According to another aspect of the present disclosure, there is provided an apparatus for the application of surgical clips to body tissue. The apparatus also has a handle portion, a body extending distally from the handle portion and defining a longitudinal axis, a plurality of surgical clips disposed within the body, and a jaw assembly mounted adjacent a distal end portion of the body. The jaw assembly includes first and second jaw portions movable between a spaced-apart and an approximated position. The apparatus also has a clip pusher configured to individually distally advance a surgical clip to the jaw assembly while the jaw portions are in the spaced apart position, and an actuator at least partially disposed within the body and longitudinally movable in response to actuation of the handle portion. The apparatus further has a jaw closure member positioned adjacent the first and second jaw portions to move the jaw portions to the approximated position. The body portion has an outer diameter. The jaw assembly has a width in the spaced apart position. The width is less than or equal to said outer diameter of the body.


According to another aspect of the present disclosure, the apparatus has the body with a length. The length is suitable to facilitate use in bariatric surgery. According to another aspect of the present disclosure, the apparatus with the length suitable to facilitate use in bariatric surgery has the length being greater than thirty centimeters.





BRIEF DESCRIPTION OF THE DRAWINGS

A particular embodiment of a surgical clip applier is disclosed herein with reference to the drawings wherein;



FIG. 1 is a perspective view of a surgical clip applier;



FIG. 2 is another perspective view of the surgical clip applier of FIG. 1;



FIG. 3 is an enlarged perspective view of the jaw structure of the surgical clip applier;



FIG. 4 is a top view of the surgical clip applier;



FIG. 5 is a side view of the surgical clip applier;



FIG. 6 is a side view, with half of the body removed, of the handle assembly of the surgical clip applier;



FIGS. 6A and 6B are perspective views, with half of the body removed, of the handle assembly of the surgical clip applier;



FIG. 6C is a side view, with half of the body removed, of the handle assembly of the surgical clip applier;



FIG. 6D is a perspective view, taken from the opposite side, of the handle assembly of the surgical clip applier with half the body removed;



FIG. 7 is an exploded perspective view of the handle of the clip applier, with shaft assembly;



FIG. 7A is a perspective view of a drive link and spindle connection;



FIG. 7B is a cross sectional view of the knob, bushing and retention pins;



FIG. 7C is a perspective view of the knob;



FIG. 7D is a perspective view of the proximal end of the outer tube;



FIG. 7E is a perspective view of the proximal end of the outer tube assembled with the bushing;



FIG. 8 is a perspective view of a pawl;



FIG. 9 is a perspective view of a rack;



FIG. 9A is another perspective view of the rack;



FIGS. 9B and 9C are opposite perspective views of an actuator plate;



FIGS. 9D and 9E are opposite perspective views of a toggle arm;



FIGS. 9F and 9G are opposite perspective views of a wishbone link;



FIG. 10 is an exploded perspective view of the shaft assembly of the surgical clip applier;



FIG. 10A is a perspective view of a feed bar;



FIG. 10B is a perspective view of a follower and surgical clips;



FIGS. 10C and 10D are opposite perspective views of a trip block;



FIG. 10E is a perspective view of a spindle;



FIG. 10F is an enlarged area of detail of FIG. 10E;



FIG. 10G is an enlarged area of detail of FIG. 10E;



FIG. 10H is a perspective view of a follower illustrating an abutment surface on the underside of the follower;



FIG. 11 is a perspective view of the distal end of the spindle and a driver;



FIG. 12 is a perspective view of a trip lever mechanism on the spindle and lock out wedge;



FIG. 13 is a perspective view of a wedge plate and biasing spring;



FIGS. 14 and 15 are opposite perspective views of a filler component;



FIG. 16 is a perspective view of the rotation knob and shaft assembly;



FIG. 17 is a perspective view of the overpressure assembly;



FIG. 18 is a perspective view of the spindle and jaw assembly;



FIG. 19 is an enlarged area of detail of the spindle and jaw assembly of FIG. 18;



FIG. 20 is an enlarged area of detail of the spindle and trip lever of FIG. 18;



FIG. 21 is an enlarged view of the distal end of the surgical clip applier with outer tube removed;



FIG. 22 is a perspective view of the surgical clip applier shaft assembly with parts removed;



FIG. 23 is an enlarged area at detail of FIG. 22;



FIG. 24 is an enlarged area of detail of FIG. 22;



FIG. 25 is an enlarged area of detail of FIG. 22;



FIG. 26 is a perspective view of the spindle, driver and jaw assembly;



FIG. 27 is an enlarged area of detail of FIG. 26;



FIG. 28 is a perspective view of the cam link and wedge plate assembly;



FIG. 29 is an enlarged area of detail of FIG. 28;



FIG. 30 is an enlarged area of detail of FIG. 29;



FIG. 31 is a perspective view of the filler component and jaw assembly;



FIG. 32 is an enlarged perspective view of the jaw assembly of FIG. 31;



FIGS. 33 and 34 are perspective views of the distal end of the spindle including wedge plate and driver;



FIG. 35 is a side view, partially shown in section, of the surgical clip applier in a pre-fired condition;



FIG. 36 is in enlarged area of detail of FIG. 35;



FIG. 37 is an enlarged area of detail of FIG. 35;



FIG. 38 is in enlarged area of detail of FIG. 37 showing the trip lever;



FIG. 39 is an enlarged area of detail of FIG. 37 showing the follower;



FIG. 40 is an enlarged the area of detail of FIG. 37;



FIG. 41 is enlarged area of detail of FIG. 40;



FIG. 42 is a side view, shown in section, of the distal end of the surgical clip applier of FIG. 37;



FIG. 42A is a side view, shown in section, of a feedback pusher and lance on a channel;



FIG. 43 is a perspective view of the wedge plate and jaw assembly;



FIG. 44 is an enlarged area of detail of FIG. 43 showing the wedge plate and jaw members;



FIG. 45 is a top view of FIG. 43 taken along line 45-45;



FIG. 46 is an enlarged area of detail of FIG. 45 showing the jaw and the wedge plate;



FIG. 47 is an enlarged area of detail of FIG. 45 showing the wedge plate and cam link;



FIG. 48 is a side view, shown in section, of the handle housing at the beginning of an initial stroke;



FIG. 49 is an enlarged area of detail of FIG. 48 showing the rack and pawl;



FIG. 50 is an enlarged area of detail of FIG. 48 similar to FIG. 49;



FIG. 51 is a side view, shown in section, of the feed bar and trip lever;



FIG. 52 is a side view, shown in section, of the follower;



FIG. 53 is a side view, shown in section, of the endoscopic portion of the surgical clip applier;



FIG. 54 is an enlarged area of detail of FIG. 53 illustrating the spindle movement;



FIG. 55 is a top view of the wedge plate and filler component illustrating the movement of the cam link;



FIG. 56 is a side view, shown in section, illustrating the feed bar advancing a clip;



FIG. 57 is a top view of the wedge plate and cam link moving distally;



FIG. 58 is a side view, shown in section, showing the movement of the flexible leg cammed out of a wedge plate window;



FIG. 59 is a side view, shown in section, illustrating a clip entering the jaws;



FIG. 60 is a further top view of the cam link and wedge plate movement;



FIG. 61 is a side view, shown in section, of the flexible leg and wedge plate disengagement



FIG. 62 is a top view of the wedge plate entering the jaw structure;



FIG. 63 is a perspective view illustrating the wedge plate camming open the jaw structure;



FIG. 64 is a top view illustrating further advancement of the cam link in the wedge plate;



FIG. 65 is a side view, shown in section, illustrating the trip lever engaged with the feed bar;



FIG. 66 is a side view, shown in section, illustrating the spindle camming the flexible leg out of engagement with the wedge plate;



FIG. 67 is a side view, shown in section, illustrating the feed bar loading a clip into the jaw structure;



FIG. 68 is a side view, shown in section, illustrating the trip lever being cammed out of engagement with the feed bar by means of a trip block.



FIG. 69 is a side view, shown in section, illustrating the retraction of the wedge plate and feed bar;



FIG. 69A is a perspective view, with half the body removed, illustrating initial actuation;



FIG. 70 is a side view, shown in section, illustrating further advancement of the spindle;



FIG. 71 is a side view, shown in section, illustrating the retraction of the wedge plate and further advancement of the spindle;



FIG. 72 is a perspective view of the wedge plate retracting from the jaw structure;



FIG. 73 is a side view, shown in section, with the spindle engaging the driver and a latch retractor engaging the spindle;



FIG. 74 is a side view of the handle housing with the trigger at full stroke;



FIG. 75 is an enlarged area of detail of FIG. 74 with the pawl clearing the teeth on the rack;



FIG. 76 is a side view, shown in section, of the driver camming the jaws closed about a surgical clip;



FIGS. 77 to 79 are sequential views of the driver camming the jaws closed about a surgical clip;



FIG. 80 is a view, shown in section, of the overpressure mechanism including the impact spring;



FIG. 81 is a perspective view of a surgical clip formed on a vessel;



FIG. 82 is an enlarged area of detail of the pawl resetting;



FIG. 83 is a side view, shown in section, illustrating the latch retractor resetting;



FIG. 84 is a side view, shown in section, illustrating the spindle retracting; and



FIGS. 85 and 86 are top views illustrating the cam link resetting within the wedge plate.



FIG. 87 is a side view of the distal end of the surgical clip applier illustrating the follower engagement with a lance;



FIG. 88 is a side view, partially showing section, of the lockout wedge engagement with the spindle; and



FIG. 89 is an enlarged view of the pawl and rack in a locked out condition.





DETAILED DESCRIPTION

There is disclosed a novel endoscopic surgical clip applier having a jaw control mechanism configured to maintain jaws of the surgical clip applier in a spaced apart and stable position during insertion of a surgical clip. It should be noted that, while the disclosed jaw control mechanism is shown and described in an endoscopic surgical clip applier, the disclosed jaw control mechanism is applicable to any surgical clip applier or other instrument having a pair of compressible jaws.


Referring now to FIGS. 1-5, surgical clip applier 10 generally includes a handle assembly 12 and an endoscopic portion including an elongated tubular member 14 extending distally from handle assembly 12. Handle assembly 12 is formed of a plastic material while elongated tubular member 14 is formed of a biocompatible material such as stainless steel. Elongated tubular member 14 of surgical clip applier 10 may have various outer diameters such as an outer diameter of 5 m or 10 mm depending on intended use. Further, elongated tubular member may have various elongated or shortened lengths depending on intended use, such as, for example, in bariatric surgery. In one embodiment, the elongated tubular member 14 in bariatric surgery may have a length that is in excess of 30 centimeters. In one preferred embodiment of bariatric surgery, the length of the elongated tubular member 14 is 33 centimeters. In another preferred embodiment, the length of the elongated tubular member 14 for bariatric surgery is 37 centimeters. In still another preferred embodiment, the length of the elongated tubular member 14 for bariatric surgery is 40 centimeters, however one skilled in the art should appreciate that the outer tubular member 14 may have any length in excess of 30 centimeters and the present disclosure is not limited to any of the above embodiments. A pair of jaws 16 is mounted on the distal end of elongated tubular member 14 and is actuated by a trigger 18 movably mounted in handle assembly 12. Jaws 16 are also formed of a biocompatible material such as stainless steel or titanium. Notably, in some embodiments, when jaws 16 are in an open condition relative to each other, the maximum width of jaws 16 measure less than or equal to the outer diameter of elongated tubular member 14 to allow insertion through a trocar or other part in a body in a open condition. This is particularly true of the 10 mm clip applier. Jaws 16 are mounted such that they are longitudinally stationary relative to elongated tubular member 14. A knob 20 is rotatably mounted on a distal end of handle assembly 12 and affixed to elongated tubular member 14 to provide 360 degree rotation of elongated tubular member 14 and jaws 16 about its longitudinal axis. Referring for the moment to FIG. 3, jaws 16 define a channel 22 for receipt of a surgical clip therein.


As best shown in FIGS. 2 and 4 a window 200 is provided in handle assembly 12 to view an indicator, such as, for example, a counter mechanism associated with handle assembly 12.


Referring now to FIGS. 6 through 7, handle assembly 12 of clip applier 10 is shown. Handle assembly 12 includes a longitudinally movable rack 202 which is connected to trigger 18 by means of a wishbone link 204. A pin 206 is provided to connect wishbone link 204 to rack 202. Rack 202 is provided for advancing and crimping a surgical clip between jaws 16 in response to actuation of trigger 18. Rack 202 is biased to a proximal position by a return spring 208 positioned between rack 202 and a bushing 210 that is mounted within journal 36 in housing 12.


In order to prevent inadvertent return of trigger 18 and rack 202 before full actuation of surgical instrument 10, a pawl 212 is movably mounted on a pawl pin 214. Pawl 212 is engageable with rack 202 in a manner discussed in more detail hereinbelow. A pawl spring 216 is provided between spring posts 218 in order to bias pawl 212 into engagement with rack 202.


Referring for the moment to FIG. 8, pawl 212 includes a pawl hole 220 for mounting pawl 212 on pawl pin 214. Pawl 212 also includes pawl teeth 222 engageable with rack 202 in a manner described below.


Referring to FIGS. 7, 9 and 9A, rack 202 generally includes a rack hole 224 for connecting rack 202 to wishbone link 204 by means of pin 206. Rack 202 also includes rack teeth 226 which are engageable with pawl teeth 222 to restrict longitudinal movement of rack 202 within handle assembly 12. Rack 202 is also provided with a distal recess 228 and a proximal recess 230. Recesses 228 and 230 are provided to allow pawl 212 to reverse and advance back over rack 202 when rack 202 reverses to proximal movement. A distal hook 232 is provided on rack 202 to engage rack 202 with the various drive mechanisms in a manner described hereinbelow. Thus, actuation of trigger 18 drives wish bone link 204, thereby driving rack 202 distally through wishbone link 204 and against the bias of return spring 208.


Referring for the moment to FIGS. 9F and 9G, wishbone link 204, as noted above, is provided to connect trigger 18 to rack 202. Specifically, wishbone link 204 includes a snap fit end or locking feature 234 which is engageable with a post (now shown) on trigger 18. Bores 236 formed at an opposing end of wishbone link 204 are provided to mount on rack pin 206. A slot 238 provided in wishbone link 204 allows wishbone link 204 to support rack 202 from opposite sides thereof. Linkage mechanism, including trigger 18 and wish bone link 204, allows for a greater mechanical advantage while minimizing the space the linkage mechanism occupies in handle assembly 12. Knob 20 includes a flange 34 which is also rotatably mounted in a journal 36 in housing 12.


Referring now to FIGS. 6A and 6B, and as noted above, handle assembly 12 is provided with a window 200 at a proximal end thereof revealing an indicator mechanism associated with handle assembly 12. Thus, there is provided a novel counter mechanism 240 which is configured to provide an indication of either the number of clips fired or the number of clips remaining within surgical instrument 10. Counter mechanism 240 is triggered by an actuator 242 associated with handle assembly 12 via a toggle arm 244 pivotally mounted to handle assembly 12. Counter mechanism 240 generally includes a counter 246 having an actuation feature 248, such as, a leaf spring and contact, button, etc. which is tripped or actuated by toggle arm 244 in response to actuation of trigger 18. A lens 250 is provided in between counter 246 and counter window 200 to protect counter 246 or enhance magnification of alpha-numeric digits during operation. Counter 246 can be of the liquid crystal display (LCD) light emitting diode (LED) or analog/mechanical type. Counter 246 may also include a printed circuit board, battery and a backlight or lighted display. Counter 246 can be configured to count down from the total number of surgical clips originally provided in surgical instrument 10 to indicate the number of clips remaining. Alternatively, counter 246 can count up from 0 to the total number of clips already fired. One contemplated counter 246 is an LCD counter module available from Golden View Display, Inc. The counter 246 may be any device known in the art to provide an indication of an event. The event may be related to the procedure or the operation of the clip applier 10. The counter 246 in a preferred embodiment may be various types of liquid crystal displays. However, in another embodiment, the display may be one or more light emitting diodes, a luminescent display, a multi-color display, a digital display, an analog display, a passive display, an active display, a so called “twisted nematic” display, a so called “super twisted nematic” display, a “dual scan” display, a reflective display, a backlit display, an alpha numeric display, a monochrome display, a so called “Low Temperature Polysilicon Thin Film Transistor” or LPTS TFT display, or any other display that indicates a parameter, information or graphics related to the procedure or the clip applier 10. In one embodiment, the display is a liquid crystal display or “LCD”. The LCD may be a black and white or color display that displays one or more operating parameters of the clip applier 10 to the surgeon. In one embodiment, the displayed parameter may be an amount of remaining clips, a number clips that have been used, a position parameter, a surgery time of usage, or any other parameter of the procedure.


Referring for the moment to FIGS. 9B and 9C, the specific structure of actuator 242 will now be described. As noted above, actuator 242 is configured to index counter mechanism 240 in response to movement of trigger 18 thus actuator 242 includes a drive slot 252 which is configured to be positioned about pin 206 extending through rack 202 and wishbone link 204. Drive slot 252 allows surgical instrument 10 to be actuated through a predetermined length of stroke prior to pin 206 engaging actuator 242. A connecting slot 254 is provided to engage a corresponding pin on toggle arm 244 in order to bias toggle arm 244 against counter 246. In order to prevent any flexing or wobbling of actuator 242 during its reciprocal movement within handle assembly 12 actuator 242 is provided with a pair of fingers 256 which are configured to ride along a housing rail 258 formed in handle assembly 12 (FIG. 6B). A tab 260 (FIGS. 6C and 6D) is provided on actuator 242 to engage a return spring in a manner described in more detail hereinbelow.


Referring for the moment to FIGS. 9D and 9E counter lever 244 includes a post 262 which is pivotally mounted into housing assembly 12. A first end of toggle arm 244 includes a pin 264 which is engageable within connecting slot 254 in actuator 242 such that longitudinal movement of actuator 242 within housing assembly 12 pivots counter lever 244 about stud 262. An opposed end of toggle arm 244 includes a contact lever 268 which is configured to engage and depress counter button 248 on counter 246 to trigger or increment counter 246 in any number of predetermined fashions either up or down numerically.


The arrangement of the various components of the counter mechanism 240, actuator 242 and counter lever 244 mounted within handle assembly, is best illustrated in FIGS. 6B to 6D. Referring initially to FIG. 6B, wherein rack 202 has been removed for clarity, it can be seen that fingers 256 of actuator 242 ride along housing rail 258 formed in housing assembly 12. Pin 206 associated with wishbone link 204 rides within drive slot 252. At a proximal end of actuator 242 pin 264 on counter lever 244 is positioned within connecting slot 254.


Referring now to FIGS. 6C and 6D, in order to maintain counter lever 244 out of engagement with counter mechanism 240 prior to actuation of trigger 18 there is provided a compression spring 270 which is engageable with tab 260 on actuator 242. An opposed end of compression spring 270 engages a corresponding projection formed on opposed side of housing handle assembly 12 in order to bias actuator 242 in a proximal most direction.


Combinations of the various elements and mechanisms associated with clip applier 10 will now be described.


Referring to FIG. 10, a bushing 48, including retention pins 50, is provided to secure the bushing 210 to the knob 20. A drive link 272 is connected, to rack 202 (FIGS. 6 and 7) such that a proximal end of drive link 272 engages rack 202. Specifically, distal hook 232 of rack 202 engages a slot 274 in a proximal end of drive link 272. An over pressure mechanism including an impact spring 56 is provided about outer tube 14 between bushing 48 and housed in a bore of knob 20 to prevent over compression of jaws 16 during actuation of the instrument in a manner described in more detail hereinbelow. Drive link 272 extends within a bore 58 in knob 20.


A flange located at a proximal end of elongated tube member 14 abuts a proximal end of bushing 48 (FIGS. 7D and 7E).


With continued reference to FIG. 10, in order to actuate the various components there is provided an actuation mechanism or spindle 60 mounted for longitudinal movement through elongated tubular member 14. Spindle 60 includes a boss 62 at its proximal end which is engageable with a recess 276 on the distal end of spindle link 272. (FIG. 7A) by positioning boss 62 of spindle 60 within a recess 276 of spindle link 272, spindle 60 can rotate with the outer tube assembly independent of the longitudinal motion of spindle link 272 and spindle 60. As best shown in FIG. 7B bushing 48 is positioned within knob 20 and secured therein by means of retention pins 50.


Referring for the moment to FIGS. 7C and 7E, bushing 48 is provided with a pair of opposed longitudinal ribs 278 which fit within corresponding slots 280 in knob 20 for the purpose of orientation.


Referring now to FIGS. 7D and 7E, it can be seen that tabs 282 formed on an inner surface of the proximal end of bushing 48 are configured to engage corresponding cutouts 284 on outer tube 14. Thus, outer tube 14 is allowed to rotate in response to rotation of knob 20.


Referring to FIG. 10, a camming mechanism including a driver 66 and a slider joint 68 extend from a distal end of spindle 60 to cam closed jaws 16 about a surgical clip.


Clip applier 10 is configured to retain a plurality of surgical clips for application to tissue. Clip applier 10 includes an elongated channel member 70 configured to retain a plurality of surgical clips 72 and convey surgical clips 72 to jaws 16. It should be noted that channel member 70 and jaws 16 do not move longitudinally relative to elongated tubular member 14. A follower 74 is biased by a spring 76 to urge surgical clips 72 distally within channel member 70. A channel cover 78 overlies channel 70 to retain and guide spring 76 and surgical clips 72 therein. A nose 80 is provided at a distal end of channel cover 78 to assist in directing surgical clips 72 into jaws 16.


A feeder mechanism including a feed bar 82 is provided for longitudinal movement relative to channel cover 78 in order to advance individual clips 72 into jaws 16. A trip block 84 having a guide pin 86 and a feed bar spring 88 are provided adjacent the proximal end of channel cover 78 to bias feed bar 82 in a proximal direction. Specifically, a proximal end 90 of guide pin 86 is interconnected with a hook 92 on an underside of feed bar 82 and through slot 94 in trip block 84. (See also FIG. 10) In order for spindle 60 to move feed bar 82, spindle 60 is provided with a trip lever 96 and a biasing spring 98. Trip lever 96 is engageable with a proximal end of feed bar 82 in a manner described in more detail herein below.


A notable advantage of presently disclosed clip applier 10 is that it is provided with a wedge plate 100 which is configured to advance into jaws 16 during actuation of surgical clip applier 10 and maintain jaws 16 in a spaced apart condition while receiving a surgical clip 72. Cam slot 136 (FIG. 13), described in detail hereinbelow, formed through wedge plate 100 and a filler component 102 mounted within elongated tubular member 14, cooperate in connection with a cam link 104, provided on spindle 60, to move wedge plate 100 relative to filler component 102 and jaws 16. Filler component 102 is positioned directly behind jaws 16 and does not move relative to elongated tubular member 14.


Turning to FIG. 10A, and as noted above, feed bar 82 is provided to move surgical clips 72 into jaws 16. Feed bar 82 is driven by trip lever 96 on spindle 60. (See FIG. 10.) Specifically, feed bar 82 is provided with an elongated window 106 which is configured to be engaged by trip lever 96 as spindle 60 is driven distally. Feed bar 82 also includes a window 286 for receipt of lockout structure as described herein below. To facilitate insertion of the clip into jaws 16, feed bar 82 is provided with a pusher 108 at its distal end which is configured to advance an individual clip 72 out of the line of clips 72 and into jaws 16. As shown in FIG. 10B, follower 74 is positioned behind the line of clips to advance clips 72 through surgical clip applier 10. As shown in FIG. 10H, follower 74 includes an abutment surface 288 for engagement with further lockout structure located on a distal end of clip channel 70.


Referring to FIG. 10C, as noted above, trip block 84 includes a slot 94 to receive hook 92 of feed bar 82. In order to disengage trip lever 96 from window 106 and thus feed bar 82, trip block 84 is provided with an angled surfaces 110 which is configured to engage trip lever 96 and disengage it from window 106 of feed bar 82 as best shown in FIG. 10D.


Referring now to FIGS. 10E-10G, various features of spindle 60 will now be described. A perspective view of spindle 60, isolated from other components is shown in FIG. 10E. With specific reference to FIG. 10F, at a proximal end, spindle 60 includes a pivot point 112 for attachment of trip lever 96 at its proximal end. Additionally, a boss 114 is provided in spindle 60 for attachment of biasing spring 98 to bias trip lever 96 into engagement with window 106 of feed bar 82. An angled surface 290 is provided to engage spindle 60 with lockout structure and prevent spindle from completely retracting after a final clip has been fired. With respect to FIG. 10G, at a distal end, spindle 60 is provided with a boss 116 for mounting cam link 104. Spindle 60 is additionally provided with a raised feature 118 which functions to disengage filler component 102 from wedge plate 100 in a manner described in hereinbelow.


Referring to FIG. 11, spindle 60 is provided to advance driver 66 into engagement with jaws 16 to close jaws 16 about a surgical clip after the surgical clip has been positioned within jaws 16. A distal end 120 of slider joint 68 resides in a recess 122 in driver 66. A proximal projection 124 of slider joint 68 rides within a longitudinal slot 126 in the distal end of spindle 60. The length of longitudinal slot 126 allows spindle 60 to move a predetermined longitudinal distance before engaging and moving driver 66 longitudinally to close jaws 16 about a clip 72. A latch retractor 128 is integrally formed within a slot 130 in slider joint 68 so as to allow driver 66 to be driven distally after wedge plate 100 has been allowed to retract proximally in a manner described in more detail hereinbelow.


Referring to FIG. 12, clip applier 10 is provided with novel lock out structure to prevent actuation of clip applier 10 after a last clip 72 has been dispensed. Clip applier 10 includes a lockout wedge 292 which is movably mounted within a channel 294 in spindle 60. Lockout wedge 292 includes an angled surface 296 configured to cam against angled surface 290 on spindle 60. A raised projection 298 mates with window 286 in feed bar 82 to affix lockout wedge 292 to feed bar 82 during longitudinal movement thereof.


Referring now to FIG. 13, wedge plate 100 will be described in more detail. As noted above, wedge plate 100 is provided to bias and maintain jaws 16 in a spaced apart condition during loading of a surgical clip 72 within jaws 16. Additionally, the presence of wedge plate 100 provides stability to jaws 16 to prevent them from flexing during loading of surgical clip 72. As shown, wedge plate 100 includes a distal tip 134 which is configured to engage and cam jaws 16 open and maintain them in a spaced condition. Additionally, wedge plate 100 includes a cam slot 136 which is configured to cooperate with cam link 104 mounted on spindle 60 to control the motions of wedge plate 100 as discussed in more detail below. Further, distal and proximal windows 138 and 140, respectively, are provided to engage flexible structure on the filler component 102. A biasing spring 142 is provided on a mount 144 to bias wedge plate 100 generally proximally within elongated tubular member 14. Finally, a stop 146 is configured to engage corresponding structure on filler component 102.


Referring now to FIGS. 14 and 15, various aspects of filler component 102 will now be described. Filler component 102 includes a flexible leg 152 which is configured to engage distal and proximal windows 138 and 140 in wedge plate 100. Filler component 102 also includes an elongated cam slot 148 configured to receive part of cam link 104. A disengaging edge 150 is provided within cam slot 148 to facilitate disengaging cam link 104 from within cam slot 136 in wedge plate 100. Filler component 102 additionally includes a stop 154 for engagement with tongue 146 on wedge plate 100 (FIG. 13), to limit the proximal retraction of wedge plate 100, as well as a longitudinal recess 156 to accommodate the length of return spring 142 of wedge plate 100.



FIGS. 16 and 17 illustrate the position of impact spring 56 relative to rotation knob 20. As noted above, impact spring 56 is provided as an over pressure mechanism to prevent over compression of jaws 16 during the crimping of a surgical clip 72 as described in more detail below with respect to the operation of surgical clip applier 10. The over pressure mechanism is designed to prevent overstroke of trigger 18 applied by the surgeon and ultimately prevent damage to jaws 16.


Referring to FIGS. 18-20, spindle 60 and related drive components are shown with elongated tubular member 14 removed. Specifically, with regard to FIG. 19, pusher 108 of feed bar 82 extends through a slot 158 in nose 80 to engage a surgical clip 72. Similarly, as shown in FIG. 20, at a proximal end of spindle 60, trip lever 96 extends through window 106 in feed bar 82. In this position, trip lever 96 can engage an edge of slot 106 to drive feed bar 82 distally along with spindle 60 through elongated tubular member 14. Lockout wedge 292 is longitudinally movable within channel 294 in spindle 60. Projection 298 on lockout wedge mates with window 286 in feedbar 82.


Referring to FIG. 21, there is a view similar to FIG. 19, however, nose 80 has been removed to illustrate pusher 108 engaging a surgical clip 72 located in channel 70. T-shaped tabs 300 are provided on channel 70 to hold channel cover 78 and nose 80 securely to channel 70.


Referring now to FIG. 22, spindle 60 and associated components are shown with feed bar 82 removed.


Referring to FIG. 23, there are illustrated multiple clips 72 positioned within channel 70 for supply to jaws 16 at a distal end of spindle 60. Clips 72 are arranged in longitudinal alignment within channel 70. Retention fingers 71 are provided at a distal end of channel 70 to restrain a stack of clips 72 within channel 70 until advanced into jaws 16 by feedbar 82. A lance 302 on channel 70 is configured to engage abutment surface 288 on feed bar 82.


Referring to FIG. 24, there is illustrated an intermediate section of spindle 60 assembled with follower 74 and follower spring 76. As noted, spring 76 biases follower 74 distally relative to spindle 60.


With reference to FIG. 25, there is illustrated spindle 60 assembled with trip lever 96 and biasing spring 98, with trip lever 96 being biased into an upward most position by biasing spring 98. Lockout wedge 292 is positioned within channel 294.


Referring to FIGS. 26 and 27, an opposed side of spindle 60 assembled with driver 66 about jaws 16 is illustrated. As noted above, driver 66 is configured to cam jaws 16 closed about a surgical clip. Thus, jaws 16 include angled camming surfaces 160 for receipt of corresponding camming surfaces 184 (FIG. 34) of driver 66. A pocket 187 (FIG. 31) in the proximal end of jaws 16 limits the retraction of driver 66. Specifically, protrusion 186 of slider joint 68 engages pocket 187 of jaws 16. (See FIGS. 31 & 34).


Referring to FIGS. 28-30, the relative assembled positions of channel 70, trip lock 84, wedge plate 100 and filler component 102 will now be described. Referring initially to FIGS. 29 and 30, filler component 102 is positioned on channel 70. Proximal end of filler component 102 abuts a stop 162 positioned on channel 70. The wedge plate 100 lies over filler component 102 in the manner shown. As best shown in FIG. 30, filler component 102 includes a cam slot 148 having a disengaging edge 150 formed within cam slot 148. Similarly, wedge plate 100 includes a cam slot 136. As noted above, a cam link 104 is provided attached to spindle 60 (not shown) in order to drive wedge plate 100 distally. To facilitate driving wedge plate 100, cam link 104 is provided with a cam link boss 164 which rides in cam slots 136 and 148 of wedge plate 100 and filler component 102 respectively. As cam link 104 is advanced distally relative to wedge plate 100 cam link boss 164 engages a driving edge 166 of wedge plate 100 to drive wedge plate 100 distally. In the manner described hereinafter, once cam link 104, and in particular cam link boss 164, engages disengaging edge 150 of filler component 102 cam link boss 164 is cammed out of engagement of driving edge 166.


Referring to FIG. 30, filler component 102 is provided with a flexible leg 152 which is movable between distal and proximal windows 138, 140, respectively, of wedge plate 100. In order to cam flexible leg 152 out of one of the proximal or distal windows, there is provided a cam surface 168 on flexible leg 152 which cams flexible leg 152 out of the windows in response to relative movement of wedge plate 100 relative to filler component 102.


As noted hereinabove, jaws 16 are provided to receive and crimp surgical clips 72 positioned therein. Referring to FIGS. 31 and 32, jaws 16 generally include a pair of flexible legs 170 fixed to a base 172. Jaw members 16a and 16b are located at a distal end of flexible legs 170. A pair of locking arms 174 extends distally from base 172 and terminates in tabs 176. Tabs 176 are configured to engage corresponding holes 177 on elongated tube 14 (FIG. 10) to secure jaws 16 to elongated tube 14. Jaws 16 include channel 22 for receipt of surgical clips 72. As shown, filler component 102 is positioned directly behind jaws 16 and, as with jaws 16, does not move longitudinally relative to outer tubular member 14.


Referring for the moment to FIG. 32, jaws 16 are configured to receive wedge plate 100 such that the distal tip 134 of wedge plate 100 is used to initially separate jaws section 16a and 16b and maintain them in a separated and aligned configuration during insertion of a surgical clip into jaws 16. As noted, this prevents any torquing or flexing of jaw 16a relative to jaw 16b while a surgical clip 72 is being loaded therein. Each of flexible legs 170 includes a cam edge 178 (see FIGS. 44 & 63) to guide distal tip 134 of wedge plate 100 within jaws 16.


Referring to FIG. 33, wedge plate 100 is illustrated positioned on spindle 60 such that latch retractor 128 extends through a slot 182 in wedge plate 100. As best shown in FIG. 34, with wedge plate 100 removed, it can be seen that a distal end of driver 66 is provided with camming surfaces 184. Camming surfaces 184 cooperate with cam surfaces 160 on jaws 16, (see FIG. 27), to cam jaws 16 together in response to longitudinal movement of driver 66 relative to jaws 16. Protrusion 186 on slider joint 68 extends through a slot 188 in wedge plate 100 to limit retraction of slider joint 68 relative to jaws 16.


The operation of surgical clip applier 10 to crimp a surgical clip around a target tissue, such as, for example, a vessel, will now be described. With reference to FIGS. 35 and 36, trigger 18 is in a generally uncompressed state with rack 202 and thus spindle 60 biased to a proximal most position by return spring 208. Additionally, actuator 242 is in a proximal most position holding counter lever 244 away from counter 246. Pawl 212 is positioned in distal recess 228 on rack 202. As best shown in FIGS. 37-42, and with initial reference to FIG. 38, in an unfired state, trip lever 96 carried by spindle 60, biased upwardly by biasing spring 98, is positioned adjacent to, and in contact with, a slot in feed bar 82. Trip block 84 is in a distal position relative to trip lever 96. Lockout wedge, affixed to feed bar 82, is in a proximal position.


Referring to FIG. 39, follower 74 is biased distally by a spring 76 such that clips 72 are biased in a distal direction.


Referring to FIG. 40, spindle 60 and feed bar 82 are stationery with latch retractor 128 biased to an upward position.


Referring to FIG. 41, flexible leg 152 of filler component 102 is in the distal window 138 of wedge plate 100. Raised feature 118 on spindle 60 is proximal of flexible leg 152.


As best shown in FIG. 42, at the distal end of surgical clip applier 10, when at rest in an unfired state, wedge plate 100 and feed bar 82 are in a proximal-most position relative to jaws 16. Pusher 108 is distal of lance 302 (FIG. 42A).



FIGS. 43-47 illustrate the initial at rest position of the wedge plate 100, jaws 16 and filler component 102.


Referring initially to FIGS. 43 and 44, as shown, wedge plate 100 is in a proximal-most position relative to jaws 16. As shown in FIG. 43, flexible leg 152 is in distal window 138 of wedge plate 100, while cam link 104 is in a proximal-most position relative to cam slot 136 in wedge plate 100.


As best shown in FIGS. 45 and 46, wedge plate 100 is in a proximal most position relative to jaws 16 with distal tip 134 proximal of cam edges 178 of jaws 16.


Referring to FIG. 47, wedge plate 100 is in a proximal-most position relative to filler component 102, such that driving edge 166 of wedge plate 100 is proximal of disengaging edge 150 of filler component 102.


Referring to FIG. 48, to initiate actuation of clip applier 10, trigger 18 is moved through an initial swing wishbone link 204 drives rack 202 distally thereby driving spindle 60 distally. Actuator 242 remains in a proximal most position as pin 206 moves through drive slot 252 in actuator 242. With reference for the moment to FIG. 50, if the trigger 18 is released at this point, rack teeth 226 would restrain pawl teeth 222 against proximal motion, preventing release of trigger 18 and partial or inadvertent partial actuation of surgical clip applier 10.


During the initial stroke, spindle 60 moves a predetermined distance. With regard to FIG. 51, as spindle 60 is driven an initial distal distance, trip lever 96 engages elongated window 106 feed bar 82 and moves feed bar 82 distally a similar distance. Lockout wedge 292 is carried distally by feed bar 82. As shown in FIGS. 42 & 51, as feed bar 82 is driven distally and a clip 72 is driven into jaws 16, follower 74 moves distally (FIG. 52) due to the bias of spring 76 to urge the stack of surgical clips 72 distally.


With reference to FIG. 49, as rack 202 moves distally pawl 212 rotates clockwise such that pawl teeth 222 move out of distal recess 228 and begin to ride over rack teeth 226.


Referring to FIGS. 53 and 54, as spindle 60 and feed bar 82 moves distally, spindle 60 drives cam link 104 distally an initial distance such that cam link boss 164 on cam link 104 engages wedge plate 100. As shown, flexible leg 152 of filler component 102 is positioned in distal-most window 138 of wedge plate 100.


As shown in FIG. 55, as cam link 104 moves distally with spindle 60, cam link boss 164 engages driving edge 166 on wedge plate 100 to urge wedge plate 100 distally relative to filler component 102.


Referring to FIG. 56, as feed bar 82 moves distally, pusher 108 at the distal end of feed bar 82 engages a clip 72 and begins to urge clip 72 into jaws 16. Notably, at this point, spindle 60 has not yet contacted driver 66, thereby preventing compression of jaws 16 prior to full insertion of surgical clip 72.


Turning again to FIG. 55, as surgical clip applier 10 is actuated through a further second predetermined distance, cam boss 164 on cam link 104 continues to drive wedge plate 100 distally and flexible leg 152 is cammed out of distal window 138 and into proximal window 140 by cam surface 168 to engage wedge plate 100 with filler component 102. As shown in FIGS. 57 & 58, at this point, feed bar 82, wedge plate 100, spindle 60, clips 72 and follower 74 (FIG. 52) are all moving in a distal-most direction.


Referring to FIG. 59, feed bar 82 continues to urge pusher 108 at the distal end of feed bar 82 against a surgical clip 72 to urge clip 72 into channel 22 in jaws 16. Surgical clips 72 contained in channel 70 are biased in a distal direction by follower 74 (FIG. 52) and wedge plate 100 (FIG. 54) continues to move distally while driver 66 remains stationery relative to elongated tubular member 14.


Referring to FIG. 60, as spindle 60 is moved further, cam boss 164 of cam link 104 is cammed out of engagement with driving edge 166 of wedge plate 100 by means of disengaging edge 150 formed in filler component 102 as best shown by the arrows in FIG. 60. During this further stroke of a predetermined distance, flexible leg 152 of filler component 102 snaps into proximal window 140 of wedge plate 100, thereby preventing retraction of wedge plate 100 from its distal-most position.


As shown in FIG. 61, flexible leg 152 is positioned within proximal window 140 of wedge plate 100, thereby restraining wedge plate 100 against retraction, while feed bar 82 and spindle 60 continue to move in a distal direction as shown by the arrows.


As shown in FIGS. 62-63, distal tip 134 of wedge plate 100 urges jaw members 16a and 16b apart by engaging cam surfaces 178 in jaw members 16a and 16b. As noted above, by positioning wedge plate 100 in cam surfaces 178 of jaw members 16a and 16b, wedge plate 100 not only spreads the jaws 16 apart to properly receive surgical slip 72, but additionally restrains each individual jaw member 16a and 16b from flexing with respect to each other, thereby preventing any torque of clip 72 as it is being inserted into jaws 16.


Referring to FIG. 64, as noted above, flexible leg 152 restrains wedge plate 100 from proximal retraction while cam link 104 continues to advance through slots 148 and 136 in filler component 102 and wedge plate 100 (FIG. 64).


As best shown in FIG. 65, as spindle 60 continues to move distally through the stroke, trip lever 96 is urged distally with spindle 60 until trip lever 96 engages camming surface 110 (See FIG. 10D) of trip block 84. As camming surface 110 (FIG. 10D) of trip block 84 is urged against trip lever 96, trip lever 96 will be cammed out of engagement with elongated window 106 of feed bar 82 allowing feed bar 82 to return to a proximal position due to the bias of feed bar spring 88 (see FIG. 10).


Referring for the moment to FIG. 66, as spindle 60 continues to move through its stroke, raised feature 118 on spindle 60 begins to cam flexible leg 152 out of proximal window 140 of wedge plate 100, so that the wedge plate 100 will be able to retract prior to, and so that, surgical clip 72 is crimped between jaws 16. This is best illustrated in FIG. 67 where feed bar 82 has fully inserted clip 72 within jaws 16 and wedge plate 100 has retracted to a proximal-most position.



FIG. 68 illustrates trip lever 96 being cammed out of engagement with feed bar 82 by camming surface 110 of trip block 84 and against the bias of biasing spring 98 such that feed bar 82 is disengaged from trip lever 96 and feed bar 82 can start to retract proximally. As shown, in FIG. 69, pusher 108 of feed bar 82 is retracted to a proximal position behind the next distal-most clip 72 as wedge plate 100 retracts leaving clip 72 inserted into jaws 16.


Referring to FIG. 69A, as trigger 18 is continued to be compressed, pin 206 advances distally within drive slot 252 on actuator 242 until pin 206 engages a distal end 304 of drive slot 252. Thereafter, as trigger 18 is further compressed, pin 206 moves actuator 242 distally. Pin 264 on toggle arm 244 is rotated clockwise within connecting slot 254 thereby driving contact arm 268 on toggle arm 244 towards actuation feature 248.


Referring to FIG. 70, trip lever 96 is completely cammed down by cam surface 110 on trip block 84 and spindle 60 continues to move distally through a further predetermined stroke.


Referring for the moment to FIG. 71, as wedge plate 100 retracts proximally while spindle 60 continues to move distally, flexible leg 152 on filler component 102 snaps into distal window 138 of wedge plate 100. As shown in FIG. 72, wedge plate 100 is retracted to a proximal position relative to jaws 16.


Referring to FIG. 73, when latch retractor 128 is cammed downwardly relative to spindle 60, spindle 60 has moved distally to a predetermined distance. The action of spindle 60, now engaging driver 66, pushes driver 66 distally. Driver 66 draws slider joint 68 and simultaneously slider joint 68 drags latch retractor 128 distally mechanically forcing cam surface no. of latch retractor 128 downward to underside of jaw pad 172 and engaging latch retractor 128 with slot 126 of spindle 60.


Referring to FIGS. 74-75, as trigger 18 is fully compressed to drive spindle 60 to a distal-most position, upon complete compression of trigger 18 and fully forming of clip 72, and with reference to FIG. 74, counter lever is fully rotated clockwise driving bumper 268 against counter button 248 to thereby increment the number displayed by counter 246.


As noted hereinabove, the incrementation of the number illustrated in counter 246 can be either down from a full complement of surgical clips 72 contained within an original surgical stapler 10 or can be counted up to indicate the number of clips dispensed by surgical instrument 10.


Referring for the moment to FIG. 75, on full firing of surgical instrument 10, pawl teeth 222 disengage from rack teeth 226 and reside within proximal recess 230. Notably, a full stroke of the spindle 60 is required to take a clip 72 from an initial position to a fully inserted position in the jaws 16. As spindle 60 moves through its distal-most position, it moves driver 66 in the manner described hereinabove to crimp a surgical clip 72. For example, referring to FIGS. 76-79, driver 66 advances distally relative to camming surfaces 160 on jaws 16a and 16b, such that camming surfaces 184 on driver 66 cam jaws 16a and 16b closed thereby closing surgical clip 72 contained therebetween.


Referring for the moment to FIG. 80, a security mechanism is provided to prevent an overstroke condition and thereby excessive compression of clip 72 from damaging tissue, jaws 16 or driver 66. If trigger 18 is continued to be squeezed past a stroke required for a full forming of clip 72 impact spring 56 compresses within the space defined between knob 20 and bushing 48 thereby preventing any further distal movement of spindle 60.


A fully formed clip formed about vessel V is illustrated in FIG. 81.


Referring to FIG. 82, as trigger 18 is released (not shown), pawl 212 now rotates counter-clockwise against the bias of pawl spring 216 such that pawl teeth 222 ride along rack teeth 226 to reset the handle assembly. As shown in FIG. 83, when driver 66 retracts, latch retractor 128 is again biased up into its upper-most position, thereby, resetting the drive mechanism.


Referring to FIGS. 84-86, as spindle 60 retracts, raised feature 118 of spindle 60 moves past flexible leg 152 in filler component 102. It should be noted that wedge plate 100 does not move as it has already fully retracted. As spindle 60 retracts, it draws cam link 104 proximally within slots 136 and 148 of wedge plate 100 and filler component 102 to its initial position. As best seen in FIG. 86, in this position, clip applier 10 is again in an initial position to be refired and thus to attach another clip to a vessel.


Referring now to FIGS. 87 to 89 with initial reference to FIG. 87, once all surgical clips 72 have been discharged from surgical clip applier 10, follower 74 is in a distal-most position such that abutment surface 288 engages lance 302 on channel 70 thereby locking out or preventing proximal retraction of follower 74. As shown, pusher 108 on feed bar 82 upon retraction engages follower 74 and wedges between nose 80 and follower 74 such that feedbar 82 cannot retract proximally.


As shown in FIG. 88, since feed bar 82 is restrained in a distal-most position, lockout wedge 292, affixed to feed bar 82, is also restrained in a distal-most position. Thus, as spindle 60 attempts to retract proximally, angled surface 296 on lockout wedge 292 engages angled surface 290 on spindle 60 thereby preventing further retraction of spindle 60.


Referring to FIG. 89, because spindle 60 cannot retract completely proximally rack 202 cannot retract completely proximally. Rack teeth 226 engage pawl teeth 222 and prevent pawl 212 from rotating back into distal recess 228 thereby preventing resetting of the clip applier 10. In this manner, clip applier 10 is completely locked out from any further attempted firings after the last surgical clip 72 has been dispensed. Because pawl teeth 222 and rack teeth 226 prevent any distal movement of the drive mechanism, specifically trigger 18 is prevented from being squeezed further.

Claims
  • 1. A method of applying surgical fasteners to tissue during a surgical procedure, the method comprising: moving, in a distal direction, a spindle of a surgical fastener applying apparatus, thereby urging a driver and an attached slider of the surgical fastener applying apparatus in the distal direction;moving, in a proximal direction, a wedge member of the surgical fastener applying apparatus out from in between first and second jaw portions of the surgical fastener applying apparatus; andengaging the wedge member with a latch retractor of the slider, thereby camming the latch retractor into engagement with the spindle; andurging the driver by engaging the driver with the first and second jaw portions to approximate the first and second jaw portions and form a surgical fastener about the tissue.
  • 2. The method according to claim 1, further comprising fixedly coupling the slider and, in turn, the driver with the spindle in response to camming the latch retractor into engagement with the spindle.
  • 3. The method according to claim 1, further comprising moving a projection of the slider through a slot formed in the wedge member into engagement with an end wall of the wedge member to prevent further proximal movement of the slider relative to the first and second jaw portions.
  • 4. The method according to claim 1, further comprising: advancing the wedge member between the first and second jaw portions, thereby urging the first and second jaw portions apart; andengaging a pusher of the surgical fastener applying apparatus with a surgical fastener to urge the surgical fastener in between the first and second jaw portions after the wedge member is advanced between the first and second jaw portions.
  • 5. A method of applying surgical fasteners to tissue during a surgical procedure, the method comprising: positioning first and second jaw portions of a surgical fastener applying apparatus in proximity to tissue;moving, in a distal direction, an actuation mechanism of the surgical fastener applying apparatus;engaging a driver of the surgical fastener applying apparatus with the actuation mechanism, thereby distally moving the driver and a slider that is secured to a proximal portion of the driver;moving a wedge member of the surgical fastener applying apparatus out from in between the first and second jaw portions;camming a latch retractor of the slider with the wedge member as the wedge member is moved out from in between the first and second jaw portions, thereby engaging the latch retractor of the slider with the actuation mechanism to fixedly couple the slider to the actuation mechanism; andurging the driver into engagement with the first and second jaw portions to approximate the first and second jaw portions and form a surgical fastener about the tissue.
  • 6. The method of claim 5, wherein moving the wedge member includes moving the wedge member from a distal position, in which a distal portion of the wedge member maintains the first and second jaw portions in a spaced apart position, to a proximal position, in which the distal portion of the wedge member is disposed proximally of the first and second jaw portions to allow the first and second jaw portions to close.
  • 7. The method of claim 5, wherein the actuation mechanism is moved in the distal direction a predetermined longitudinal distance toward the driver before the actuation mechanism engages the driver.
  • 8. The method of claim 7, wherein the wedge member is moved out from in between the first and second jaw portions while the actuation mechanism is being moved in the distal direction the predetermined longitudinal distance.
  • 9. The method of claim 7, wherein the camming of the latch retractor occurs after the actuation mechanism is moved in the distal direction the predetermined longitudinal distance.
  • 10. The method of claim 5, further comprising moving the actuation mechanism in a proximal direction, thereby effecting proximal movement of the slider and, in turn, the driver relative to the first and second jaw portions.
  • 11. The method of claim 5, further comprising moving the actuation mechanism in a proximal direction relative to the wedge member allowing the latch retractor to bias out of engagement with the actuation mechanism such that further proximal movement of the actuation mechanism does not effect proximal movement of the slider and the driver.
  • 12. The method of claim 11, wherein the latch retractor extends upwardly into a slot defined in the wedge member as the latch retractor biases out of engagement with the actuation mechanism.
  • 13. The method of claim 5, further comprising abutting a projection extending outwardly from the slider with an end wall defined by a slot in the wedge member to limit proximal movement of the slider in relation to the first and second jaw portions.
  • 14. The method of claim 5, further comprising moving a projection of the slider through a slot formed in the wedge member into engagement with an end wall defined by the slot, thereby limiting retraction of the slider in relation to the jaw assembly.
  • 15. The method according to claim 5, further comprising advancing the wedge member between the first and second jaw portions, thereby urging the first and second jaw portions apart.
  • 16. The method according to claim 5, further comprising engaging a pusher of the surgical fastener applying apparatus with the surgical fastener to urge the surgical fastener in between the first and second jaw portions while maintaining the wedge member in between the first and second jaw portions.
  • 17. A method of applying surgical fasteners to tissue during a surgical procedure, the method comprising: distally moving an actuation mechanism of a surgical fastener applying apparatus, thereby distally moving a driver and a slider of the surgical fastener applying apparatus;moving a wedge member of the surgical fastener applying apparatus out from in between first and second jaw portions of the surgical fastener applying apparatus;camming a latch retractor of the slider with the wedge member as the wedge member is moved out from in between the first and second jaw portions, thereby engaging the latch retractor of the slider with the actuation mechanism to fixedly couple the slider to the actuation mechanism; andurging the driver into engagement with the first and second jaw portions to approximate the first and second jaw portions and form a surgical fastener about tissue.
  • 18. The method according to claim 17, wherein moving the wedge member includes moving the wedge member from a distal position, in which a distal portion of the wedge member engages the first and second jaw portions to space the first and second jaw portions apart from one another, to a proximal position, in which the distal portion of the wedge member is disposed proximally of the first and second jaw portions to allow the first and second jaw portions to close.
  • 19. The method of claim 17, wherein the wedge member is moved proximally as the driver is moved distally.
CROSS REFERENCE TO RELATED PATENT APPLICATIONS

The instant patent application is a Divisional application that claims the benefit of and priority to U.S. patent application Ser. No. 14/062,338, filed Oct. 24, 2013 (now U.S. Pat. No. 9,364,240), which is a Continuation application that claims the benefit of and priority to U.S. patent application Ser. No. 12/780,993, filed on May 17, 2010 (now U.S. Pat. No. 8,579,918), which is a Continuation application that claims the benefit of and priority to U.S. patent application Ser. No. 11/245,528, filed on Oct. 7, 2005 (now U.S. Pat. No. 7,905,890), that claims the benefit of and priority to each of U.S. Provisional Patent Application Ser. No. 60/617,104, filed on Oct. 8, 2004, and U.S. Provisional Patent Application Ser. No. 60/617,016, filed on Oct. 8, 2004, the entire content of each of which is herein incorporated by reference.

US Referenced Citations (915)
Number Name Date Kind
3120230 Skold Feb 1964 A
3363628 Wood Jan 1968 A
3638847 Noiles et al. Feb 1972 A
3675688 Bryan et al. Jul 1972 A
3867944 Samuels Feb 1975 A
4242902 Green Jan 1981 A
4296751 Blake, III et al. Oct 1981 A
4372316 Blake, III et al. Feb 1983 A
4408603 Blake, III et al. Oct 1983 A
4449531 Cerwin et al. May 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480640 Becht Nov 1984 A
4480641 Failla et al. Nov 1984 A
4487204 Hrouda Dec 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4491133 Menges et al. Jan 1985 A
4492232 Green Jan 1985 A
4498476 Cerwin et al. Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4509518 McGarry et al. Apr 1985 A
4512345 Green Apr 1985 A
4522207 Klieman et al. Jun 1985 A
4532925 Blake, III Aug 1985 A
4534351 Rothfuss et al. Aug 1985 A
4545377 Cerwin et al. Oct 1985 A
4549544 Favaron Oct 1985 A
4556058 Green Dec 1985 A
4557263 Green Dec 1985 A
4562839 Blake, III et al. Jan 1986 A
4572183 Juska Feb 1986 A
4576165 Green et al. Mar 1986 A
4576166 Montgomery et al. Mar 1986 A
4590937 Deniega May 1986 A
4592498 Braun et al. Jun 1986 A
4598711 Deniega Jul 1986 A
4602631 Funatsu Jul 1986 A
4611595 Klieman et al. Sep 1986 A
4612932 Caspar et al. Sep 1986 A
4616650 Green et al. Oct 1986 A
4616651 Golden Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4637395 Caspar et al. Jan 1987 A
4646740 Peters et al. Mar 1987 A
4647504 Kimimura et al. Mar 1987 A
4658822 Kees, Jr. Apr 1987 A
4660558 Kees, Jr. Apr 1987 A
4662373 Montgomery et al. May 1987 A
4662374 Blake, III May 1987 A
4671278 Chin Jun 1987 A
4671282 Tretbar Jun 1987 A
4674504 Klieman et al. Jun 1987 A
4681107 Kees, Jr. Jul 1987 A
4696396 Samuels Sep 1987 A
4702247 Blake, III et al. Oct 1987 A
4706668 Backer Nov 1987 A
4712549 Peters et al. Dec 1987 A
4733664 Kirsch et al. Mar 1988 A
4733666 Mercer, Jr. Mar 1988 A
4759364 Boebel Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4777949 Perlin Oct 1988 A
4777950 Kees, Jr. Oct 1988 A
4796625 Kees, Jr. Jan 1989 A
4799481 Transue et al. Jan 1989 A
4815466 Perlin Mar 1989 A
4817604 Smith, III Apr 1989 A
4821721 Chin et al. Apr 1989 A
4822348 Casey Apr 1989 A
4827930 Kees, Jr. May 1989 A
4834096 Oh et al. May 1989 A
4850355 Brooks et al. Jul 1989 A
4854317 Braun Aug 1989 A
4856517 Collins et al. Aug 1989 A
4929239 Braun May 1990 A
4929240 Kirsch et al. May 1990 A
4931058 Cooper Jun 1990 A
4932955 Merz et al. Jun 1990 A
4934364 Green Jun 1990 A
4943298 Fujita et al. Jul 1990 A
4951860 Peters et al. Aug 1990 A
4957500 Liang et al. Sep 1990 A
4966603 Focelle et al. Oct 1990 A
4967949 Sandhaus Nov 1990 A
4983176 Cushman et al. Jan 1991 A
4988355 Leveen et al. Jan 1991 A
5002552 Casey Mar 1991 A
5026379 Yoon Jun 1991 A
5030224 Wright et al. Jul 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5047038 Peters et al. Sep 1991 A
5049152 Simon et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053045 Schmidt et al. Oct 1991 A
5059202 Liang et al. Oct 1991 A
5062563 Green et al. Nov 1991 A
5062846 Oh et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084057 Green et al. Jan 1992 A
5100416 Oh et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5104395 Thornton et al. Apr 1992 A
5112343 Thornton May 1992 A
5122150 Puig Jun 1992 A
5127915 Mattson Jul 1992 A
5129885 Green et al. Jul 1992 A
5156608 Troidl et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5171252 Friedland Dec 1992 A
5171253 Klieman Dec 1992 A
5192288 Thompson et al. Mar 1993 A
5197970 Green et al. Mar 1993 A
5199566 Ortiz et al. Apr 1993 A
5201746 Shichman Apr 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5207692 Kraus et al. May 1993 A
5217473 Yoon Jun 1993 A
5219353 Garvey, III et al. Jun 1993 A
5246450 Thornton et al. Sep 1993 A
5269792 Kovac et al. Dec 1993 A
5281228 Wolfson Jan 1994 A
5282807 Knoepfler Feb 1994 A
5282808 Kovac et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5300081 Young et al. Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306283 Conners Apr 1994 A
5312426 Segawa et al. May 1994 A
5330442 Green et al. Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5340360 Stefanchik Aug 1994 A
5342373 Stefanchik et al. Aug 1994 A
5354304 Allen et al. Oct 1994 A
5354306 Garvey, III et al. Oct 1994 A
5366458 Korthoff et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368600 Failla et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5382253 Hogendijk Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5395375 Turkel et al. Mar 1995 A
5395381 Green et al. Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5413584 Schulze May 1995 A
5421835 Harding Jun 1995 A
5423835 Green et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431667 Thompson et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5431669 Thompson et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5441509 Vidal et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5462558 Kolesa et al. Oct 1995 A
5464416 Steckel Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5474572 Hayhurst Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5487746 Yu et al. Jan 1996 A
5501693 Gravener Mar 1996 A
5509920 Phillips et al. Apr 1996 A
5514149 Green et al. May 1996 A
5520701 Lerch May 1996 A
5522823 Kuntz et al. Jun 1996 A
5527318 McGarry Jun 1996 A
5527319 Green et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5542949 Yoon Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5569274 Rapacki et al. Oct 1996 A
5571121 Heifetz Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582615 Foshee et al. Dec 1996 A
5584840 Ramsey et al. Dec 1996 A
5591178 Green et al. Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593421 Bauer Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5626585 Mittelstadt et al. May 1997 A
5626586 Pistl et al. May 1997 A
5626587 Bishop et al. May 1997 A
5626592 Phillips et al. May 1997 A
RE35525 Stefanchik et al. Jun 1997 E
5634930 Thornton et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645551 Green et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653720 Johnson et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662676 Koninckx Sep 1997 A
5662679 Voss et al. Sep 1997 A
5665097 Baker et al. Sep 1997 A
5676676 Porter Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5695502 Pier et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697938 Jensen et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702048 Eberlin Dec 1997 A
5709706 Kienzle et al. Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5713912 Porter Feb 1998 A
5720756 Green et al. Feb 1998 A
5722982 Ferreira et al. Mar 1998 A
5725537 Green et al. Mar 1998 A
5725538 Green et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5733295 Back et al. Mar 1998 A
5749881 Sackier et al. May 1998 A
5755726 Pratt et al. May 1998 A
5766189 Matsuno Jun 1998 A
5769857 Reztzov et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776146 Sackier et al. Jul 1998 A
5776147 Dolendo Jul 1998 A
5779718 Green et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788698 Savornin Aug 1998 A
5792149 Sherts et al. Aug 1998 A
5792150 Pratt et al. Aug 1998 A
5797922 Hessel et al. Aug 1998 A
5810853 Yoon Sep 1998 A
5817116 Takahashi et al. Oct 1998 A
5827306 Yoon Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843101 Fry Dec 1998 A
5846255 Casey Dec 1998 A
5849019 Yoon Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5868759 Peyser et al. Feb 1999 A
5868761 Nicholas et al. Feb 1999 A
5876410 Petillo Mar 1999 A
5895394 Kienzle et al. Apr 1999 A
5897565 Foster Apr 1999 A
5904693 Dicesare et al. May 1999 A
5906625 Bito et al. May 1999 A
5913862 Ramsey et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5921996 Sherman Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5951574 Stefanchik et al. Sep 1999 A
5972003 Rousseau et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6016448 Busacker et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6045560 McKean et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6059799 Aranyi et al. May 2000 A
6099536 Petillo Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6139555 Hart et al. Oct 2000 A
6210418 Storz et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6241740 Davis et al. Jun 2001 B1
6258105 Hart et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6273898 Kienzle et al. Aug 2001 B1
6277131 Kalikow Aug 2001 B1
6306149 Meade Oct 2001 B1
6318619 Lee Nov 2001 B1
6322571 Adams Nov 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6391035 Appleby et al. May 2002 B1
6423079 Blake, III Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464710 Foster Oct 2002 B1
6494886 Wilk et al. Dec 2002 B1
6517536 Hooven et al. Feb 2003 B2
6520972 Peters Feb 2003 B2
6527786 Davis et al. Mar 2003 B1
6537289 Kayan et al. Mar 2003 B1
6546935 Hooven Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6579304 Hart et al. Jun 2003 B1
6599298 Forster et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6613060 Adams et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6626922 Hart et al. Sep 2003 B1
6648898 Baxter Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676659 Hutchins et al. Jan 2004 B2
6679894 Damarati Jan 2004 B2
RE38445 Pistl et al. Feb 2004 E
6695854 Kayan et al. Feb 2004 B1
6706057 Bidoia et al. Mar 2004 B1
6716226 Sixto, Jr. et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6743240 Smith et al. Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6776784 Ginn Aug 2004 B2
6780195 Porat Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793664 Mazzocchi et al. Sep 2004 B2
6802848 Anderson et al. Oct 2004 B2
6814742 Kimura et al. Nov 2004 B2
6818009 Hart et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6837894 Pugsley, Jr. et al. Jan 2005 B2
6837895 Mayenberger Jan 2005 B2
6840945 Manetakis et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6849079 Blake, III et al. Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6869435 Blake, III Mar 2005 B2
6869436 Wendlandt Mar 2005 B2
6889116 Jinno May 2005 B2
6896682 McClellan et al. May 2005 B1
6905503 Gifford, III et al. Jun 2005 B2
6911032 Jugenheimer et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6939356 Debbas Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945979 Kortenbach et al. Sep 2005 B2
6949107 McGuckin, Jr. et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6955643 Gellman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960218 Rennich Nov 2005 B2
6960221 Ho et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6966919 Sixto, Jr. et al. Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6972023 Whayne et al. Dec 2005 B2
6972027 Fallin et al. Dec 2005 B2
6973770 Schnipke et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6974475 Wall Dec 2005 B1
6981505 Krause et al. Jan 2006 B2
6981628 Wales Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
7052504 Hughett May 2006 B2
7056330 Gayton Jun 2006 B2
7108703 Danitz et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7144402 Kuester, III Dec 2006 B2
7175648 Nakao Feb 2007 B2
7179265 Manetakis et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7211091 Fowler et al. May 2007 B2
7211092 Hughett May 2007 B2
7214230 Brock et al. May 2007 B2
7214232 Bowman et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7223272 Francese et al. May 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7261724 Molitor et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7264625 Buncke Sep 2007 B1
7288098 Huitema et al. Oct 2007 B2
7297149 Vitali et al. Nov 2007 B2
7316693 Viola Jan 2008 B2
7316696 Wilson, Jr. et al. Jan 2008 B2
7326223 Wilson, Jr. Feb 2008 B2
7329266 Royse et al. Feb 2008 B2
7331968 Arp et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
7357805 Masuda et al. Apr 2008 B2
7510562 Lindsay Mar 2009 B2
7552853 Mas et al. Jun 2009 B2
7637917 Whitfield et al. Dec 2009 B2
7644848 Swayze et al. Jan 2010 B2
7686820 Huitema et al. Mar 2010 B2
7695482 Viola Apr 2010 B2
7717926 Whitfield et al. May 2010 B2
7727248 Smith et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7740641 Huitema Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7753250 Clauson et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7887553 Lehman et al. Feb 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7942885 Sixto, Jr. et al. May 2011 B2
7952060 Watanabe et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8021378 Sixto, Jr. et al. Sep 2011 B2
8038686 Huitema et al. Oct 2011 B2
8056565 Zergiebel Nov 2011 B2
8062310 Shibata et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8066722 Miyagi et al. Nov 2011 B2
8070760 Fujita Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8080021 Griego Dec 2011 B2
8083668 Durgin et al. Dec 2011 B2
8088061 Wells et al. Jan 2012 B2
8091755 Kayan et al. Jan 2012 B2
8100926 Filshie et al. Jan 2012 B1
8128643 Aranyi et al. Mar 2012 B2
8133240 Damarati Mar 2012 B2
8142451 Boulnois et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8172859 Matsuno et al. May 2012 B2
8172870 Shipp May 2012 B2
8187290 Buckman et al. May 2012 B2
8211120 Itoh Jul 2012 B2
8211124 Ainsworth et al. Jul 2012 B2
8216255 Smith et al. Jul 2012 B2
8216257 Huitema et al. Jul 2012 B2
8236012 Molitor et al. Aug 2012 B2
8246634 Huitema et al. Aug 2012 B2
8246635 Huitema Aug 2012 B2
8262678 Matsuoka et al. Sep 2012 B2
8262679 Nguyen Sep 2012 B2
8267944 Sorrentino et al. Sep 2012 B2
8267945 Nguyen et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282655 Whitfield et al. Oct 2012 B2
8308743 Matsuno et al. Nov 2012 B2
8328822 Huitema et al. Dec 2012 B2
8336556 Zergiebel Dec 2012 B2
8348130 Shah et al. Jan 2013 B2
8357171 Whitfield et al. Jan 2013 B2
8366709 Schechter et al. Feb 2013 B2
8366726 Dennis Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372095 Viola Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8398655 Cheng et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8419752 Sorrentino et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8444660 Adams et al. May 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8475473 Vandenbroek et al. Jul 2013 B2
8480688 Boulnois et al. Jul 2013 B2
8486091 Sorrentino et al. Jul 2013 B2
8491608 Sorrentino et al. Jul 2013 B2
8496673 Nguyen et al. Jul 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8512357 Viola Aug 2013 B2
8518055 Cardinale et al. Aug 2013 B1
8523882 Huitema et al. Sep 2013 B2
8525687 Tran Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8529586 Rosenberg et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8545486 Malkowski Oct 2013 B2
8556920 Huitema et al. Oct 2013 B2
8568430 Shipp Oct 2013 B2
8579918 Whitfield et al. Nov 2013 B2
8585717 Sorrentino et al. Nov 2013 B2
8603109 Aranyi et al. Dec 2013 B2
8652151 Lehman et al. Feb 2014 B2
8652152 Aranyi et al. Feb 2014 B2
8663247 Menn et al. Mar 2014 B2
8685048 Adams et al. Apr 2014 B2
8690899 Kogiso et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709027 Adams et al. Apr 2014 B2
8715299 Menn et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8747423 Whitfield et al. Jun 2014 B2
8753356 Vitali et al. Jun 2014 B2
8814884 Whitfield et al. Aug 2014 B2
8821516 Huitema Sep 2014 B2
8839954 Disch Sep 2014 B2
8845659 Whitfield et al. Sep 2014 B2
8894665 Sorrentino et al. Nov 2014 B2
8894666 Schulz et al. Nov 2014 B2
8900253 Aranyi et al. Dec 2014 B2
8915930 Huitema et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8950646 Viola Feb 2015 B2
8961542 Whitfield et al. Feb 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968342 Wingardner, III et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
9011464 Zammataro Apr 2015 B2
9011465 Whitfield et al. Apr 2015 B2
9089334 Sorrentino et al. Jul 2015 B2
9113892 Malkowski et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9119629 Cardinale et al. Sep 2015 B2
9186136 Malkowski et al. Nov 2015 B2
9186153 Zammataro Nov 2015 B2
9208429 Thornton et al. Dec 2015 B2
9220507 Patel et al. Dec 2015 B1
9282961 Whitman et al. Mar 2016 B2
9326776 Gadberry et al. May 2016 B2
9358011 Sorrentino et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9364216 Rockrohr et al. Jun 2016 B2
9364239 Malkowski Jun 2016 B2
9364240 Whitfield et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9393024 Whitfield et al. Jul 2016 B2
9398917 Whitfield et al. Jul 2016 B2
9408610 Hartoumbekis Aug 2016 B2
9414844 Zergiebel et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9439654 Sorrentino et al. Sep 2016 B2
9480477 Aranyi et al. Nov 2016 B2
9498227 Zergiebel et al. Nov 2016 B2
9526501 Malkowski Dec 2016 B2
9532787 Zammataro Jan 2017 B2
9545254 Sorrentino et al. Jan 2017 B2
9549741 Zergiebel Jan 2017 B2
9642627 Zammataro May 2017 B2
9687247 Aranyi et al. Jun 2017 B2
9717505 Whitfield et al. Aug 2017 B2
9737310 Whitfield et al. Aug 2017 B2
9750500 Malkowski Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9775623 Zammataro et al. Oct 2017 B2
9775624 Rockrohr et al. Oct 2017 B2
9848886 Malkowski et al. Dec 2017 B2
9855043 Malkowski Jan 2018 B2
9931124 Gokharu Apr 2018 B2
9968361 Aranyi et al. May 2018 B2
9968362 Malkowski et al. May 2018 B2
20010047178 Peters Nov 2001 A1
20020040226 Laufer et al. Apr 2002 A1
20020068947 Kuhns et al. Jun 2002 A1
20020082618 Shipp et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087170 Kuhns et al. Jul 2002 A1
20020099388 Mayenberger Jul 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20020128668 Manetakis et al. Sep 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20020198537 Smith et al. Dec 2002 A1
20020198538 Kortenbach et al. Dec 2002 A1
20020198539 Sixto et al. Dec 2002 A1
20020198540 Smith et al. Dec 2002 A1
20020198541 Smith et al. Dec 2002 A1
20030014060 Wilson et al. Jan 2003 A1
20030018345 Green Jan 2003 A1
20030023249 Manetakis Jan 2003 A1
20030040759 de Guillebon et al. Feb 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030135224 Blake Jul 2003 A1
20030167063 Kerr Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030225423 Huitema Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040097970 Hughett May 2004 A1
20040097971 Hughett May 2004 A1
20040138681 Pier Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20050010242 Lindsay Jan 2005 A1
20050080440 Durgin et al. Apr 2005 A1
20050085830 Lehman et al. Apr 2005 A1
20050090837 Sixto et al. Apr 2005 A1
20050090838 Sixto et al. Apr 2005 A1
20050096670 Wellman et al. May 2005 A1
20050096671 Wellman et al. May 2005 A1
20050096672 Manetakis et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107807 Nakao May 2005 A1
20050107809 Litscher et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113815 Ritchie et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119677 Shipp Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050149063 Young et al. Jul 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050165415 Wales Jul 2005 A1
20050165418 Chan Jul 2005 A1
20050171560 Hughett Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177177 Viola Aug 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050216036 Nakao Sep 2005 A1
20050216056 Valdevit et al. Sep 2005 A1
20050222588 Vandenbroek et al. Oct 2005 A1
20050222590 Gadberry et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228411 Manzo Oct 2005 A1
20050228416 Burbank et al. Oct 2005 A1
20050234478 Wixey et al. Oct 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050251184 Anderson Nov 2005 A1
20050256529 Yawata et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273122 Theroux et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277953 Francese et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277958 Levinson Dec 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20050288690 Bourque et al. Dec 2005 A1
20060004388 Whayne et al. Jan 2006 A1
20060004390 Rosenberg et al. Jan 2006 A1
20060009789 Gambale et al. Jan 2006 A1
20060009790 Blake et al. Jan 2006 A1
20060009792 Baker et al. Jan 2006 A1
20060020270 Jabba et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060047305 Ortiz et al. Mar 2006 A1
20060047306 Ortiz et al. Mar 2006 A1
20060064117 Aranyi et al. Mar 2006 A1
20060079912 Whitfield et al. Apr 2006 A1
20060079913 Whitfield et al. Apr 2006 A1
20060085015 Whitfield et al. Apr 2006 A1
20060100649 Hart May 2006 A1
20060111731 Manzo May 2006 A1
20060129170 Royce et al. Jun 2006 A1
20060163312 Viola et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060184182 Aranyi et al. Aug 2006 A1
20060190013 Menn Aug 2006 A1
20060195125 Sakakine et al. Aug 2006 A1
20060200179 Barker et al. Sep 2006 A1
20060217749 Wilson et al. Sep 2006 A1
20060224170 Duff Oct 2006 A1
20060235437 Vitali et al. Oct 2006 A1
20060235438 Huitema et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235440 Huitema et al. Oct 2006 A1
20060235441 Huitema et al. Oct 2006 A1
20060235442 Huitema Oct 2006 A1
20060235443 Huitema et al. Oct 2006 A1
20060235444 Huitema et al. Oct 2006 A1
20060259045 Damarati Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20060264987 Sgro Nov 2006 A1
20060271072 Hummel et al. Nov 2006 A1
20070016228 Salas Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027458 Sixto, Jr. et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070035203 Bromfield Feb 2007 A1
20070038233 Martinez et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070049948 Menn et al. Mar 2007 A1
20070049949 Manetakis Mar 2007 A1
20070049950 Theroux et al. Mar 2007 A1
20070049951 Menn Mar 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070073314 Gadberry et al. Mar 2007 A1
20070083218 Morris Apr 2007 A1
20070093856 Whitfield et al. Apr 2007 A1
20070106314 Dunn May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118161 Kennedy et al. May 2007 A1
20070118163 Boudreaux et al. May 2007 A1
20070118174 Chu May 2007 A1
20070123916 Maier et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20070142851 Sixto et al. Jun 2007 A1
20070149988 Michler et al. Jun 2007 A1
20070149989 Santilli et al. Jun 2007 A1
20070162060 Wild Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070185504 Manetakis et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265640 Kortenbach et al. Nov 2007 A1
20070276417 Mendes, Jr. et al. Nov 2007 A1
20070282355 Brown et al. Dec 2007 A1
20070293875 Soetikno et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004637 Klassen et al. Jan 2008 A1
20080004639 Huitema et al. Jan 2008 A1
20080015615 Molitor et al. Jan 2008 A1
20080027465 Vitali et al. Jan 2008 A1
20080027466 Vitali et al. Jan 2008 A1
20080045981 Margolin et al. Feb 2008 A1
20080051808 Rivera et al. Feb 2008 A1
20080065118 Damarati Mar 2008 A1
20080065119 Viola Mar 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080103510 Taylor et al. May 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080154287 Rosenberg et al. Jun 2008 A1
20080167665 Arp et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080228199 Cropper et al. Sep 2008 A1
20080243145 Whitfield et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255589 Blakeney et al. Oct 2008 A1
20080306492 Shibata et al. Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080312665 Shibata et al. Dec 2008 A1
20080312670 Lutze et al. Dec 2008 A1
20080319456 Hart Dec 2008 A1
20090076533 Kayan et al. Mar 2009 A1
20090088777 Miyagi et al. Apr 2009 A1
20090088783 Kennedy et al. Apr 2009 A1
20090171380 Whiting Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090222003 Otley Sep 2009 A1
20090228023 Cui Sep 2009 A1
20090228024 Whitfield et al. Sep 2009 A1
20090264904 Aldrich et al. Oct 2009 A1
20090299382 Zergiebel Dec 2009 A1
20090326558 Cui et al. Dec 2009 A1
20100049216 Zergiebel Feb 2010 A1
20100057105 Sorrentino et al. Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069935 Crainich Mar 2010 A1
20100274262 Schulz et al. Oct 2010 A1
20100274264 Schulz et al. Oct 2010 A1
20110054498 Monassevitch et al. Mar 2011 A1
20110082474 Bindra et al. Apr 2011 A1
20110087241 Nguyen Apr 2011 A1
20110087242 Pribanic et al. Apr 2011 A1
20110087243 Nguyen et al. Apr 2011 A1
20110112552 Lehman et al. May 2011 A1
20110137323 Malkowski et al. Jun 2011 A1
20110137324 Boudreaux et al. Jun 2011 A1
20110144662 McLawhorn et al. Jun 2011 A1
20110144665 Malkowski Jun 2011 A1
20110190791 Jacobs et al. Aug 2011 A1
20110208211 Whitfield et al. Aug 2011 A1
20110208212 Zergiebel et al. Aug 2011 A1
20110218553 Huitema et al. Sep 2011 A1
20110218554 Cheng et al. Sep 2011 A1
20110218555 Huitema Sep 2011 A1
20110218556 Nguyen et al. Sep 2011 A1
20110224696 Huitema et al. Sep 2011 A1
20110224700 Schmidt et al. Sep 2011 A1
20110224701 Menn Sep 2011 A1
20110230900 Sarradon Sep 2011 A1
20110245847 Menn et al. Oct 2011 A1
20110245848 Rosenberg et al. Oct 2011 A1
20110251608 Timm et al. Oct 2011 A1
20110295290 Whitfield Dec 2011 A1
20110313437 Yeh Dec 2011 A1
20120029534 Whitfield et al. Feb 2012 A1
20120041455 Martinez Feb 2012 A1
20120046671 Matsuoka et al. Feb 2012 A1
20120048759 Disch et al. Mar 2012 A1
20120053402 Conlon et al. Mar 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120065647 Litscher et al. Mar 2012 A1
20120109158 Zammataro May 2012 A1
20120116420 Sorrentino et al. May 2012 A1
20120123446 Aranyi et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120197269 Zammataro Aug 2012 A1
20120265220 Menn Oct 2012 A1
20120277765 Zammataro et al. Nov 2012 A1
20120310259 Sorrentino et al. Dec 2012 A1
20120330326 Creston et al. Dec 2012 A1
20130110135 Whitfield et al. May 2013 A1
20130131697 Hartoumbekis May 2013 A1
20130165951 Blake, III Jun 2013 A1
20130165952 Whitfield et al. Jun 2013 A1
20130172909 Harris Jul 2013 A1
20130172910 Malkowski Jul 2013 A1
20130172911 Rockrohr et al. Jul 2013 A1
20130172912 Whitfield et al. Jul 2013 A1
20130190779 Whitfield et al. Jul 2013 A1
20130190780 Whitfield et al. Jul 2013 A1
20130193898 Williams et al. Aug 2013 A1
20130253541 Zergiebel Sep 2013 A1
20130274767 Sorrentino et al. Oct 2013 A1
20130289583 Zergiebel et al. Oct 2013 A1
20130296891 Hartoumbekis Nov 2013 A1
20130296892 Sorrentino et al. Nov 2013 A1
20130310849 Malkowski Nov 2013 A1
20130325040 Zammataro Dec 2013 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140039526 Malkowski Feb 2014 A1
20140052157 Whitfield et al. Feb 2014 A1
20140058412 Aranyi et al. Feb 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140194903 Malkowski et al. Jul 2014 A1
20140207156 Malkowski Jul 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140296879 Menn et al. Oct 2014 A1
20140316441 Zergiebel et al. Oct 2014 A1
20140330291 Whitfield et al. Nov 2014 A1
20150005790 Whitfield et al. Jan 2015 A1
20150032131 Sorrentino et al. Jan 2015 A1
20150045816 Aranyi et al. Feb 2015 A1
20150066057 Rockrohr et al. Mar 2015 A1
20150080916 Aranyi et al. Mar 2015 A1
20150127022 Whitfield et al. May 2015 A1
20150164511 Whitfield et al. Jun 2015 A1
20150190138 Whitfield et al. Jul 2015 A1
20150190139 Zammataro Jul 2015 A1
20150282808 Sorrentino et al. Oct 2015 A1
20150351771 Malkowski et al. Dec 2015 A1
20150351772 Malkowski et al. Dec 2015 A1
20160030044 Zammataro Feb 2016 A1
20160030045 Malkowski et al. Feb 2016 A1
20160113655 Holsten Apr 2016 A1
20160151071 Tokarz et al. Jun 2016 A1
20160192940 Gokharu Jul 2016 A1
20160213377 Shankarsetty Jul 2016 A1
20160242767 Kasvikis Aug 2016 A1
20160242789 Sorrentino et al. Aug 2016 A1
20160256157 Rockrohr et al. Sep 2016 A1
20160256158 Whitfield et al. Sep 2016 A1
20160262764 Gokharu Sep 2016 A1
20160296236 Whitfield et al. Oct 2016 A1
20160338695 Hartoumbekis Nov 2016 A1
20160338699 Sorrentino et al. Nov 2016 A1
20170027581 Zergiebel et al. Feb 2017 A1
20170128071 Holsten et al. May 2017 A1
20170172780 Murthy Aravalli Jun 2017 A1
20170238936 Mujawar Aug 2017 A1
20170258472 Aranyi et al. Sep 2017 A1
20170325814 Malkowski Nov 2017 A1
20170340325 Baril et al. Nov 2017 A1
20170340331 Hu et al. Nov 2017 A1
20170340332 Whitfield et al. Nov 2017 A1
20170360449 Rockrohr et al. Dec 2017 A1
20180008276 Bhatnagar et al. Jan 2018 A1
20180008277 Baril Jan 2018 A1
20180070952 Malkowski et al. Mar 2018 A1
20180116671 Prior May 2018 A1
20180116673 Baril et al. May 2018 A1
20180116674 Baril May 2018 A1
20180116675 Baril May 2018 A1
20180116676 Williams May 2018 A1
Foreign Referenced Citations (96)
Number Date Country
2010200641 Oct 2010 AU
2013254887 Nov 2013 AU
1163889 Mar 1984 CA
2740831 Apr 2010 CA
1994236 Jul 2007 CN
101401737 Apr 2009 CN
101530340 Sep 2009 CN
100571640 Dec 2009 CN
101658437 Mar 2010 CN
101664329 Mar 2010 CN
101664331 Mar 2010 CN
201683954 Dec 2010 CN
103083059 May 2013 CN
103181809 Jul 2013 CN
103181810 Jul 2013 CN
104487006 Apr 2015 CN
104605911 Feb 2017 CN
202007003398 Jun 2007 DE
202009006113 Jul 2009 DE
0000756 Feb 1979 EP
0073655 Mar 1983 EP
0085931 Aug 1983 EP
0086721 Aug 1983 EP
0089737 Sep 1983 EP
0092300 Oct 1983 EP
0324166 Jul 1989 EP
0392750 Oct 1990 EP
0406724 Jan 1991 EP
0409569 Jan 1991 EP
0514139 Mar 1993 EP
0569223 Nov 1993 EP
0598529 May 1994 EP
0 622 049 Nov 1994 EP
0685204 Dec 1995 EP
0732078 Sep 1996 EP
0755655 Jan 1997 EP
0 760 230 Mar 1997 EP
0769274 Apr 1997 EP
0769275 Apr 1997 EP
0834286 Apr 1998 EP
1317906 Jun 2003 EP
1 468 653 Oct 2004 EP
1609427 Dec 2005 EP
1712187 Oct 2006 EP
1712191 Oct 2006 EP
1757236 Feb 2007 EP
1 813 207 Aug 2007 EP
1813199 Aug 2007 EP
1894531 Mar 2008 EP
1908423 Apr 2008 EP
1913881 Apr 2008 EP
1939231 Jul 2008 EP
1943956 Jul 2008 EP
1980215 Oct 2008 EP
2 000 102 Dec 2008 EP
2 140 817 Jan 2010 EP
2229895 Sep 2010 EP
2 263 570 Dec 2010 EP
2 412 319 Feb 2012 EP
2412318 Feb 2012 EP
2 752 165 Jul 2014 EP
1134832 Nov 1968 GB
2073022 Oct 1981 GB
2 132 899 Jul 1984 GB
2010118083 May 1998 JP
2003033361 Feb 2003 JP
2006501954 Jan 2006 JP
2006154230 Jun 2006 JP
2006209948 Aug 2006 JP
2006277221 Oct 2006 JP
2007250843 Sep 2007 JP
2008017876 Jan 2008 JP
2008047498 Feb 2008 JP
2008055165 Mar 2008 JP
2008515550 May 2008 JP
2009198991 Sep 2009 JP
5499386 May 2014 JP
0042922 Jul 2000 WO
0165997 Sep 2001 WO
0166001 Sep 2001 WO
0167965 Sep 2001 WO
03086207 Oct 2003 WO
03092473 Nov 2003 WO
2004032762 Apr 2004 WO
2005091457 Sep 2005 WO
2006042076 Apr 2006 WO
2006042084 Apr 2006 WO
2006042110 Apr 2006 WO
2006042141 Apr 2006 WO
2006135479 Dec 2006 WO
2008118928 Oct 2008 WO
2008127968 Oct 2008 WO
2016192096 Dec 2016 WO
2016192718 Dec 2016 WO
2016197350 Dec 2016 WO
2016206015 Dec 2016 WO
Non-Patent Literature Citations (159)
Entry
European Office Action corresponding to European Appln. No. EP 16 15 9324.9 dated Aug. 7, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014104295806 dated Aug. 31, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 17 3508.7 dated Sep. 29, 2017.
Chinese Second Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Oct. 10, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 18 0570.8 dated Dec. 6, 2017.
The extended International Search Report corresponding to EP 10252079.8; dated Mar. 17, 2011; date of completion Mar. 8, 2011 (3 Pages).
The extended International Search Report corresponding to EP 07 25 3905.9; dated Feb. 7, 2008; date of completion is Jan. 29, 2008 (7 Pages).
Extended European Search Report corresponding to EP 10250497.8, dated Feb. 5, 2010: date of completion of Searth is Jan. 8, 2010 (3 Pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0214.1, completed May 25, 2011 and dated Jun. 1, 2011 (3 pages).
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 12, 2012 (6 pages).
The extended European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 3, 2012, dated Jan. 18, 2012 (3 pages).
Extended European Search Report corresponding to EP 10 25 2112.7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 1673.2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp).
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014.
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015.
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015.
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015.
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015.
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015.
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015.
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015.
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015.
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015.
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015.
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015.
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015.
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015.
Japanese Office Action corresponding to JP 2013-229070 dated May 8, 2015.
Japanese Office Action corresponding to JP 2013-229996 dated May 8, 2015.
Japanese Office Action corresponding to JP 2014-190735 dated May 27, 2015.
European Search Report corresponding to EP 14 16 1540.1, completed Feb. 16, 2015 and dated Feb. 27, 2015; (9 pp).
European Office Action corresponding to counterpart application EP 10 250 497.4 dated Jul. 27, 2015; 6 pp.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210212642.9 dated Jun. 3, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 04 719 757.9 dated Jun. 12, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 166 382.5 dated Jun. 19, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2010-226908 dated Jun. 26, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 15 5024.1 dated Jul. 17, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2011-160126 dated Aug. 10, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0675.3 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,875 dated Oct. 26, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2015-005629 dated Oct. 28, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2014-245081 dated Oct. 28, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,921 dated Oct. 30, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,309 dated Nov. 3, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,211 dated Nov. 24, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,547 dated Nov. 25, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 17 2940.4 dated Dec. 14, 2015.
International Search Report for application EP 07 25 3905 dated Feb. 7, 2008.
Extended European Search Report from Application No. EP 07 25 3807 dated Nov. 26, 2008.
European Search Report corresponding to EP 09252053; dated Dec. 1, 2009; date of completion of Search is Nov. 24, 2009 (3 Pages).
European Search Report corresponding to EP 09252051; dated Jan. 28, 2010; date of completion of Search is Dec. 21, 2009 (3 Pages).
European Search Report corresponding to EP 09252050; dated Jan. 21, 2010; date of completion of Search is Dec. 23, 2009 (3 Pages).
European Search Report corresponding to EP 09252054; dated Jan. 22, 2010; date of completion of Search is Jan. 7, 2010 (3 Pages).
Extended European Search Report corresponding to EP 09252056.8, dated Feb. 5, 2010; date of completion of Search is Jan. 8, 2010 (3 Pages).
Extended European Search Report corresponding to EP 10250497.4, dated May 12, 2010; date of completion of Search is May 4, 2010 (6 Pages).
International Search Report from European Application No. EP 07 25 3807 dated Aug. 1, 2008.
International Search Report from PCT Application No. PCT/US08/58185 dated Sep. 9, 2008.
International Search Report from PCT Application No. PCT/US08/59859 dated Sep. 18, 2008.
The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and dated Jul. 7, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 11250214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 Pages).
European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages).
Extended European Search Report corresponding to EP 10252079.8, dated Mar. 17, 2011; date of completion of Search is Mar. 8, 2011 (3 Pages).
European Search Report corresponding to EP 05810218.7, dated May 20, 2011; completed on Apr. 18, 2011; 3 pages.
European Search Report corresponding to EP 05807612.6, dated May 20, 2011; completed on May 2, 2011; 3 pages.
Extended European Search Report corresponding to EP 10251737.2, dated May 20, 2011; completed on May 9, 2011; 4 pages.
European Search Report for corresponding EP 05 80 7446, date of completion is Oct. 18, 2010 (3 pages).
The extended International Search Report corresponding to EP 07 25 3905.9; dated Feb. 7, 2008; date of completion of Search is Jan. 29, 2008 (7 Pages).
International Search Report corresponding to EP 07 25 3807; dated Aug. 1, 2008; date of completion of Search is Jul. 23, 2008 (3 Pages).
International Search Report corresponding to PCT/US08/58185; dated Sep. 9, 2008; date of completion of Search is Sep. 4, 2008 (2 Pages).
International Search Report corresponding to PCT/US08/59859; dated Sep. 18, 2008; date of completion of Search is Sep. 14, 2008 (2 Pages).
The extended European Search Report corresponding to EP 07 25 3807; dated Nov. 26, 2008; date of completion of Search is Nov. 7, 2008 (11 Pages).
The extended European Search Report corresponding to EP 09252049.3; dated Jan. 12, 2010; date of completion of Search is Dec. 11, 2009 (3 Pages).
The extended European Search Report corresponding to EP 09252050.1; dated Jan. 21, 2010; date of completion of Search is Dec. 23, 2009 (3 Pages).
The extended European Search Report corresponding to EP 09252051.9; dated Jan. 28, 2010; date of completion of Search is Dec. 21, 2009 (3 Pages).
The extended European Search Report corresponding to EP09252053.5, dated Dec. 1, 2009; date of completion of Search is Nov. 24, 2009 (3 Pages).
The extended European Search Report corresponding to EP 09252054.3; dated Jan. 22, 2010; date of completion of Search is Jan. 7, 2010 (3 Pages).
“Salute II Disposable Fixation Device”, Technique Guide—Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; 7 Pages.
The extended European Search Report corresponding to European Application No. EP 11 00 2681.2, completed May 31, 2011; dated Jun. 10, 2011; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages).
The Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 Pages).
The Extended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013; (10 Pages).
The Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 10 25 1798.4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 Pages).
The extended International Search Report corresponding to EP 05810218.7, dated May 20, 2011; date of completion Apr. 18, 2011 (3 Pages).
The extended International Search Report corresponding to EP 05807612.6; dated May 20, 2011; date of completion May 2, 2011 (3 Pages).
The extended International Search Report corresponding to EP 05 80 7446 date of completion Oct. 18, 2010 (3 Pages).
The extended International Search Report corresponding to EP 10251737.2; dated May 20, 2011; date of completion May 9, 2011 (4 Pages).
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586814.9 dated Jul. 18, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510093591.6 dated Jul. 25, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/094172 dated Aug. 4, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,728,538 dated Sep. 6, 2016.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Sep. 14, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Oct. 4, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510205737.1 dated Nov. 1, 2016.
European Office Action corresponding to Int'l Appln. No. EP 08 73 2820.9 dated Nov. 3, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 5465.8 dated Dec. 21, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 4652.2 dated Jan. 4, 2017.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510419902.3 dated Jan. 4, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210586826.1 dated Dec. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 1313.4 dated Feb. 1, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-245081 dated Mar. 18, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016.
International Search Report and Written Opinion corresponding to counterpart Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,716,672 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,717,448 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,721,951 dated Jun. 1, 2016.
Partial European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/091603 dated Jul. 8, 2016.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Jan. 23, 2017.
Extended European Search Report corresponding to European Appln. No. EP 16 18 3184.7 dated Jan. 24, 2017.
Japanese Office Action corresponding to Japanese Appln. No. JP 2016-097807 dated Feb. 14, 2017.
European Office Action corresponding to European Appln. No. EP 12 19 34475 dated Apr. 4, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410008877.5 dated Apr. 6, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 3714.5 dated May 11, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 8519.3 dated May 19, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 7606.9 dated May 22, 2017.
European Office Action corresponding to European Appln. No. EP 11 25 0674.6 dated May 23, 2017.
Canadian Office Action corresponding to Canadian Appln. No. CA 2,743,402 dated May 30, 2017.
Extended European Search Report corresponding to Patent Application EP 18154617.7 dated Jun. 25, 2018.
Extended European Search Report corresponding to Patent Application EP 18155158.1 dated Jun. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 15877428.1 dated Jul. 2, 2018.
Extended European Search Report corresponding to Patent Application EP 18157789.1 dated Jul. 5, 2018.
Canadian Office Action corresponding to Patent Application CA 2,972,444 dated Aug. 9, 2018.
Extended European Search Report corresponding to Patent Application EP 18156458.4 dated Sep. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18171682.0 dated Sep. 18, 2018.
Extended European Search Report corresponding to Patent Application EP 15878354.8 dated Sep. 19, 2018.
Extended European Search Report corresponding to Patent Application EP 18183394.8 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18163041.9 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18170524.5 dated Oct. 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2017-536546 dated Oct. 15, 2018.
Extended European Search Report corresponding to Patent Application EP 18187640.0 dated Nov. 30, 2018.
Extended European Search Report corresponding to Patent Application EP 18187690.5 dated Nov. 30, 2018.
Chinese First Office Action corresponding to Patent Application CN 201510696298.9 dated Dec. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18158143.0 dated Dec. 5, 2018.
European Communication dated Feb. 4, 2019, corresponding to European Application No. 10250497.4; 5 pages.
Related Publications (1)
Number Date Country
20160256158 A1 Sep 2016 US
Provisional Applications (2)
Number Date Country
60617016 Oct 2004 US
60617104 Oct 2004 US
Divisions (1)
Number Date Country
Parent 14062338 Oct 2013 US
Child 15155548 US
Continuations (2)
Number Date Country
Parent 12780993 May 2010 US
Child 14062338 US
Parent 11245528 Oct 2005 US
Child 12780993 US