The present application relates generally to surgical clip appliers. More particularly, the present disclosure relates to endoscopic surgical clip appliers having a clip pusher bar that maintains a surgical clip between jaws of the surgical clip applier during clip formation.
Endoscopic surgical staplers and surgical clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures. Typically, a tube or cannula device is extended into the patient's body through the entrance incision to provide an access port. The port allows the surgeon to insert a number of different surgical instruments therethrough using a trocar and for performing surgical procedures far removed from the incision.
During a majority of these procedures, the surgeon must often terminate the flow of blood or another fluid through one or more vessels. The surgeon will often use a particular endoscopic surgical clip applier to apply a surgical clip to a blood vessel or another duct to prevent the flow of body fluids therethrough during the procedure.
Endoscopic surgical clip appliers having various sizes (e.g., diameters) that are configured to apply a variety of diverse surgical clips are known in the art, and which are capable of applying a single or multiple surgical clips during an entry to the body cavity. Such surgical clips are typically fabricated from a biocompatible material and are usually compressed over a vessel. Once applied to the vessel, the compressed surgical clip terminates the flow of fluid therethrough.
Endoscopic surgical clip appliers that are able to apply multiple clips in endoscopic or laparoscopic procedures during a single entry into the body cavity are described in commonly-assigned U.S. Pat. Nos. 5,084,057 and 5,100,420, which are both incorporated by reference herein in their entirety. Another multiple endoscopic surgical clip applier is disclosed in commonly-assigned U.S. Pat. No. 5,607,436, the contents of which are also hereby incorporated by reference herein in its entirety. These devices are typically, though not necessarily, used during a single surgical procedure. U.S. Pat. No. 5,695,502, the disclosure of which is hereby incorporated by reference herein, discloses a resterilizable endoscopic surgical clip applier. The endoscopic surgical clip applier advances and forms multiple clips during a single insertion into the body cavity. This resterilizable endoscopic surgical clip applier is configured to receive and cooperate with an interchangeable clip magazine so as to advance and form multiple clips during a single entry into a body cavity.
Sometimes prior to or during formation of the clip, the clip may be prematurely dislocated from between the jaws of the clip applier by, for example, the vessel being closed. Accordingly, a need exists for a clip applier having an improved mechanism that prevents clip dislocation during use.
Accordingly, the present application provides an apparatus for application of surgical clips to body tissue. The apparatus includes a handle assembly and a shaft assembly selectively connectable to the handle assembly and actuatable upon actuation of the handle assembly. The shaft assembly includes a pair of jaws movable between a spaced-apart position and an approximated position, an elongated spindle, a first shaft disposed alongside the spindle, a slidable member, and a pusher bar having a proximal portion fixed to the slidable member. The spindle has a proximal portion configured to be coupled to an actuator of the handle assembly, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal movement of the spindle. The spindle defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion. The first shaft defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft. The slidable member extends through each of the channels, and a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft. A second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle. A third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member. The pusher bar has a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.
In embodiments, the first portion of the channel of each of the spindle and the first shaft may have a linear configuration and extend parallel to a longitudinal axis defined by the spindle, and the second portion of the channel of each of the spindle and the first shaft may extend at a non-parallel angle relative to the longitudinal axis of the spindle.
It is contemplated that the shaft assembly may further include a second shaft disposed on an opposite side of the proximal portion of the spindle as the first shaft. The second shaft may be fixedly coupled to the first shaft and define a longitudinally-extending channel in mirrored relation with the channel of the first shaft. The slidable member may have a first end portion movably disposed within the channel of the first shaft, and a second end portion movably disposed within the channel of the second shaft.
It is envisioned that the first portion of the channel of the spindle may define a first plane, and the first portion of the channel of the first shaft may define a second plane offset from the first plane of the first portion of the channel of the spindle. A distal region of the second portion of the channel of the first shaft may be coplanar with the first plane of the first portion of the channel of the spindle.
In embodiments, the second portion of the channel of the spindle may have a proximal limit defined by a proximal wall. The proximal wall may be configured to contact the slidable member during the first distal movement of the spindle to distally move the slidable member relative to the first shaft.
It is contemplated that the second portion of the channel of the spindle may have a distal limit defined by a distal wall. The distal wall may be configured to contact the slidable member during proximal movement of the spindle relative to the first shaft.
It is envisioned that the first shaft may include a ramped inner surface that defines the second portion of the channel of the first shaft. The ramped inner surface may be configured to move the slidable member upwardly from the second portion of the channel of the spindle into the first portion of the channel of the spindle during the second distal movement of the spindle.
In embodiments, the slidable member may be axially restrained within the second portion of the channel of the first shaft during the third distal movement of the spindle, such that the pusher bar is axially fixed relative to the pair of jaws during the third distal movement of the spindle.
It is contemplated that the slidable member may ride within the first portion of the channel of the spindle during the third distal movement of the spindle.
In another aspect of the present disclosure, a shaft assembly of an apparatus for applying surgical clips to body tissue is provided. The shaft assembly includes a pair of jaws movable between a spaced-apart position and an approximated position, an elongated spindle, a first shaft disposed alongside the spindle, a slidable member, and a pusher bar having a proximal portion fixed to the slidable member. The spindle has a proximal portion configured to be coupled to an actuator, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal movement of the spindle. The spindle defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion. The first shaft defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft. The slidable member extends through each of the channels, and a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft. A second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle. A third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member. The pusher bar has a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.
A particular embodiment of a surgical clip applier is disclosed herein with reference to the drawings wherein:
Embodiments of endoscopic surgical clip appliers and shaft assemblies thereof, in accordance with the present disclosure, will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user.
With reference to
Handle assembly 200 includes a trigger 204 pivotably supported between right side half-section 202a and left side half-section 202b of housing 202. Trigger 204 is biased by a biasing member (not explicitly shown) to bias or urge trigger 204 to the un-actuated condition. Trigger 204 includes a drive arm 204b extending therefrom. Drive arm 204b may be integrally formed therewith or may be separately and fixedly secured to trigger 204. Drive arm 204b may define a curved, radiused or filleted upper distal surface.
Handle assembly 200 further includes a drive plunger 220 operatively connected to trigger 204. Drive plunger 220 defines a proximally extending trigger slot 220b formed in a proximal portion thereof for operatively receiving drive arm 204b of trigger 204. Trigger slot 220b defines a distal surface or wall 220c against which a distal surface of drive arm 204b of trigger 204 contacts in order to distally advance drive plunger 220 during an actuation of trigger 204. Drive plunger 220 has a distal end operably coupled to a proximal end of a spindle 124 (
For a more detailed description of the components and operation of the handle assembly 200 of clip applier 10, reference may be made to, for example, U.S. Patent Application Publication No. 2017/0128071, the entire contents of which being incorporated by reference herein.
With reference to
The outer tube 122 of the shaft assembly 100 has a proximal portion 122a supported and secured to a hub 130, and a distal portion 122b supporting the jaws 120. The hub 130 may be configured to be coupled to the handle assembly 200 (
With reference to
The proximal portion 124a of the spindle 124 defines an elongate channel 132 extending longitudinally along the spindle 124. The channel 132 of the spindle 124 is dimensioned for slidable receipt of the slidable member 126, and has a first portion or proximal portion 132a and a second portion or distal portion 132b extending at a non-zero angle relative to the first portion 132a. The first portion 132a of the channel 132 has a linear configuration and extends parallel to a longitudinal axis “X” defined by the spindle 126. The second portion 132b of the channel 132 extends from the first portion 132a of the channel 132 perpendicularly relative to the longitudinal axis “X” of the spindle 126. In some embodiments, the second portion 132b of the channel 132 may extend at any suitable angle relative to the longitudinal axis “X.” In embodiments, the second portion 132b of the channel 132 may be a notch extending laterally from the first portion 132a of the channel 132.
The proximal portion 124a of the spindle 124 has an inner surface 134 that defines the elongate channel 132. The inner surface 134 has a proximal wall 134a that defines a proximal limit of the second portion 132b of the channel 132, and a distal wall 134b that defines a distal limit of the second portion 132b of the channel 132. The second portion 132b of the channel 132 is dimensioned for receipt of the slidable member 126 during a first distal advancement of the spindle 124. The proximal wall 134a of the inner surface 134 is configured to push or urge the slidable member 126 distally therewith as the spindle 126 moves distally, and the distal wall 134b of the inner surface 134 is configured to push or urge the slidable member 126 proximally as the spindle 124 moves proximally, as will be described in greater detail.
With continued reference to
The first shaft 136a defines an elongate channel 138 extending longitudinally along the first shaft 136a and which is disposed adjacent the channel 132 of the spindle 124. The second shaft 136b also defines an elongate channel (not explicitly shown), similar to the channel 138 of the first shaft 136a. The channels 138 of the first and second shafts 136a, 136b are in mirrored relation to one another. The channel 138 of the first shaft 136a is dimensioned for slidable receipt of a first end portion 126a of the slidable member 126, whereas the channel of the second shaft 136b is dimensioned for slidable receipt of a second end portion 126b of the slidable member 126. Since the channels 138 of the first and second shafts 136a, 136b are in mirrored relation to one another, only the channel 138 of the first shaft 132 will be described in further detail herein.
The channel 138 of the first shaft 136a has a first portion or proximal portion 138a and a second portion or distal portion 138b extending at a non-zero angle relative to the first portion 138a. The first portion 138a of the channel 138 has a linear configuration and extends parallel to the longitudinal axis “X” defined by the spindle 124. The first portion 138a of the channel 138 of the first shaft 136a defines a plane that is offset (e.g., disposed above or below) a plane defined by the first portion 132a of the channel 132 of the spindle 124. The second portion 138b of the channel 138 bends or extends upwardly from the first portion 138a of the channel 138, and in some embodiments downwardly from the first portion 138a of the channel 138. In some embodiments, the second portion 138b of the channel 138 may bend or extend relative to the first portion 138a of the channel 138 and may have a linear configuration. In some embodiments, the second portion 138b of the channel 138 may have a curved configuration.
The second portion 138b of the channel 138 has a distal region 138c that is coplanar with the first portion 132a of the channel 132 of the spindle 124. In this way, when the slidable member 126 is disposed within the first portion 132a of the channel 132 of the spindle 124, the slidable member 126 is simultaneously disposed within the second portion 138b of the channel 138 of the shafts 136a, 136b. Similarly, when the slidable member 126 is disposed within the second portion 132b of the channel 132 of the spindle 124, the slidable member 126 is simultaneously disposed with the first portion 138a of the channel 138 of the shafts 136a, 136b.
With reference to
The slidable member 126 of the shaft assembly 100 may be configured as a pin or bar having a first end portion 126a slidably disposed within the channel 138 of the first shaft 136a, an intermediate portion extending through the channel 132 of the spindle 124, and a second end portion 126b slidably disposed within the channel (not explicitly shown) of the second shaft 136b. As briefly mentioned above, when the slidable member 126 is simultaneously disposed within both the first portion 138a of the channel 138 of the shafts 136a, 136b and the second portion 132b of the channel 132 of the spindle 124, the slidable member 126 is axially movable relative to the shafts 136a, 136b in response to axial movement of the spindle 124 via the proximal and distal walls 134a, 134b of the spindle 124. In contrast, when the slidable member 126 is simultaneously disposed within both the second portion 138b of the channel 138 of the shafts 136a, 136b and the first portion 132a of the channel 132 of the spindle 124, the slidable member 126 is axially restrained within the second portion 138b of the channel 138 of the shafts 136a, 136b during axial movement of the spindle 124, whereby the slidable member 126 rides within the first portion 132a of the channel 132 of the spindle 124.
The shaft assembly 100 may include a fixed pin or rod 142 and a biasing member, such as, for example, an extension spring 143 (
With reference to
The distal portion 128b of the pusher bar 128 defines a pusher 144 configured to position the distal-most surgical clip “DC” between the pair of jaws 120 as the slidable member 126 is advanced toward a distal position, as shown in
With continued reference to
The slider joint 148 is connected, at a proximal portion 148a thereof, to a passageway formed in the distal portion 124b of the spindle 124. A distal portion 148b of the slider joint 148 defines a substantially T-shaped profile, wherein the distal portion 148b thereof is connected to the jaw cam closure wedge 146. The latch member 150 functions as a linkage and is disposed to move through an aperture 148c in the slider joint 148 to link with another fixed member and prevent the slider joint 148 from advancing the jaw cam closure wedge 146, and thus preventing the camming of the jaw cam closure wedge 146 from camming the pair of jaws 120 to a closed condition during an initial actuation of the clip applier 10. The distal portion 124b of the spindle 124 is provided with a camming feature configured to move a cam link 152 (pivotably connected to a filler component 154) in a perpendicular manner relative to a longitudinal axis of the spindle 124 during a distal advancement of the spindle 124.
The shaft assembly 100 further includes a clip channel 156 received within the outer tube 122. The clip channel 156 slidably retains the stack of surgical clips “C” therein for application, in seriatim, to the desired tissue or vessel. A clip follower 158 is provided and slidably disposed within the clip channel 156 at a location proximal of the stack of surgical clips “C.” A spring (not shown) is provided to spring-bias the clip follower 158, and in turn, the stack of surgical clips “C”, distally. A clip channel cover 160 is provided that overlies the clip channel 156 to retain and guide the clip follower 158, the spring, and the stack of surgical clips “C” in the clip channel 156.
The shaft assembly 100 further includes a wedge plate 162 that is biased to a proximal position by a wedge plate spring (not shown). The wedge plate 162 is a flat bar shaped member having a number of windows formed therein. The wedge plate 162 has a distal-most position wherein a tip or nose of the wedge plate 162 is inserted between the pair of jaws 120 to maintain the pair of jaws 120 in an open condition for loading of the distal-most surgical clip “DC” therein. The wedge plate 162 has a proximal-most position, maintained by the wedge plate spring, wherein the tip or nose of the wedge plate 162 is retracted from between the pair of jaws 120.
The wedge plate 162 defines a “U” or “C” shaped aperture or notch 162b in a side edge thereof. The C-shaped aperture or notch 162b of the wedge plate 162 selectively engages the cam link 152 supported on the filler plate 154. The cam link 152 selectively engages a surface of C-shaped aperture or notch 162b of the wedge plate 162 to retain the wedge plate 162 in a distal-most position such that a distal tip 162a of the wedge plate 162 is maintained inserted between the pair of jaws 120 to maintain the pair of jaws 120 splayed apart.
The filler component 154 of the shaft assembly 100 is interposed between the clip channel 156 and the wedge plate 162, at a location proximal of the pair of jaws 120. The filler component 154 pivotably supports the cam link 152 that is engagable with the wedge plate 162. During a distal advancement of the spindle 124, a camming feature of the spindle 124 engages a cam link boss of the cam link 152 to thereby move the cam link 152 out of engagement with the wedge plate 162 and permit the wedge plate 162 to return to the proximal-most position as a result of the spring.
It is contemplated that the clip applier 10 may be configured to close, fire, or form surgical clips similar to those shown and described in U.S. Patent Application Publication No. 2017/0128071, and U.S. Pat. No. 7,819,886 or 7,905,890, the entire contents of each of which are incorporated herein by reference.
In operation, the clip applier 10 is actuated to effect a stapling function thereof. In particular, the handle assembly 200 (
During a first distal movement of the spindle 124, in the direction indicated by arrow “A” in
After completion of the first distal movement of the spindle 124, the spindle 124 undergoes a second distal advancement or movement, via actuation of the handle assembly 200 or the control 1004 (
Upon the slidable member 126 entering the distal region 138c of the channel 138 of the first and second shafts 136a, 136b, the pusher 144 (
To reset the clip applier 10, the spindle 124 is retracted proximally, in the direction indicated by arrow “B” in
It is contemplated, and within the scope of the present disclosure, that other endoscopic assemblies, including a pair of jaws having a unique and diverse closure stroke length thereof, may be provided with a drive assembly, similar to any of the drive assemblies described herein, for accommodating and adapting the closure stroke length for the pair of jaws thereof to the constant trigger stroke length.
Accordingly, various endoscopic assemblies, constructed in accordance with the principles of the present disclosure, may be provided which are also capable of firing or forming or closing surgical clips of various sizes, materials, and configurations, across multiple platforms for multiple different manufactures.
Surgical instruments such as the clip appliers described herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
Referring to
Each of the robot arms 1002, 1003 may include a plurality of members, which are connected through joints, and an attaching device 1009, 1011, to which may be attached, for example, the shaft assembly 100 of
Robot arms 1002, 1003 may be driven by electric drives (not shown) that are connected to control device 1004. Control device 1004 (e.g., a computer) may be set up to activate the drives, in particular by means of a computer program, in such a way that robot arms 1002, 1003, their attaching devices 1009, 1011 and thus the shaft assembly 100, execute a desired movement according to a movement defined by means of manual input devices 1007, 1008. Control device 1004 may also be set up in such a way that it regulates the movement of robot arms 1002, 1003 and/or of the drives.
Medical work station 1000 may be configured for use on a patient 1013 lying on a patient table 1012 to be treated in a minimally invasive manner by means of the shaft assembly 100. Medical work station 1000 may also include more than two robot arms 1002, 1003, the additional robot arms likewise being connected to control device 1004 and being telemanipulatable by means of operating console 1005. A surgical end effector, such as, for example, the shaft assembly 100 (
Reference is made herein to U.S. Pat. No. 8,828,023, the entire content of which is incorporated herein by reference, for a more detailed description of the construction and operation of an exemplary robotic surgical system.
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/557,908 filed Sep. 12, 2017, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3120230 | Skold | Feb 1964 | A |
3363628 | Wood | Jan 1968 | A |
3638847 | Noiles et al. | Feb 1972 | A |
3675688 | Bryan et al. | Jul 1972 | A |
3735762 | Bryan et al. | May 1973 | A |
3867944 | Samuels | Feb 1975 | A |
4242902 | Green | Jan 1981 | A |
4296751 | Blake, III et al. | Oct 1981 | A |
4372316 | Blake, III et al. | Feb 1983 | A |
4408603 | Blake, III et al. | Oct 1983 | A |
4412539 | Jarvik | Nov 1983 | A |
4418694 | Beroff et al. | Dec 1983 | A |
4471780 | Menges et al. | Sep 1984 | A |
4480640 | Becht | Nov 1984 | A |
4480641 | Failla et al. | Nov 1984 | A |
4487204 | Hrouda | Dec 1984 | A |
4487205 | Di Giovanni et al. | Dec 1984 | A |
4491133 | Menges et al. | Jan 1985 | A |
4492232 | Green | Jan 1985 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4509518 | McGarry et al. | Apr 1985 | A |
4512345 | Green | Apr 1985 | A |
4522207 | Klieman et al. | Jun 1985 | A |
4532925 | Blake, III | Aug 1985 | A |
4534351 | Rothfuss et al. | Aug 1985 | A |
4545377 | Cerwin et al. | Oct 1985 | A |
4549544 | Favaron | Oct 1985 | A |
4556058 | Green | Dec 1985 | A |
4557263 | Green | Dec 1985 | A |
4562839 | Blake, III et al. | Jan 1986 | A |
4572183 | Juska | Feb 1986 | A |
4576165 | Green et al. | Mar 1986 | A |
4576166 | Montgomery et al. | Mar 1986 | A |
4590937 | Deniega | May 1986 | A |
4598711 | Deniega | Jul 1986 | A |
4602631 | Funatsu | Jul 1986 | A |
4611595 | Klieman et al. | Sep 1986 | A |
4612932 | Caspar et al. | Sep 1986 | A |
4616650 | Green et al. | Oct 1986 | A |
4616651 | Golden | Oct 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4637395 | Caspar et al. | Jan 1987 | A |
4646740 | Peters et al. | Mar 1987 | A |
4647504 | Kimimura et al. | Mar 1987 | A |
4658822 | Kees, Jr. | Apr 1987 | A |
4660558 | Kees, Jr. | Apr 1987 | A |
4662373 | Montgomery et al. | May 1987 | A |
4662374 | Blake, III | May 1987 | A |
4671278 | Chin | Jun 1987 | A |
4671282 | Tretbar | Jun 1987 | A |
4674504 | Klieman et al. | Jun 1987 | A |
4681107 | Kees, Jr. | Jul 1987 | A |
4696396 | Samuels | Sep 1987 | A |
4702247 | Blake, III et al. | Oct 1987 | A |
4706668 | Backer | Nov 1987 | A |
4712549 | Peters et al. | Dec 1987 | A |
4733666 | Mercer, Jr. | Mar 1988 | A |
4759364 | Boebel | Jul 1988 | A |
4765335 | Schmidt et al. | Aug 1988 | A |
4777949 | Perlin | Oct 1988 | A |
4796625 | Kees, Jr. | Jan 1989 | A |
4799481 | Transue et al. | Jan 1989 | A |
4815466 | Perlin | Mar 1989 | A |
4821721 | Chin et al. | Apr 1989 | A |
4822348 | Casey | Apr 1989 | A |
4834096 | Oh et al. | May 1989 | A |
4850355 | Brooks et al. | Jul 1989 | A |
4854317 | Braun | Aug 1989 | A |
4856517 | Collins et al. | Aug 1989 | A |
4929239 | Braun | May 1990 | A |
4931058 | Cooper | Jun 1990 | A |
4934364 | Green | Jun 1990 | A |
4957500 | Liang et al. | Sep 1990 | A |
4966603 | Focelle et al. | Oct 1990 | A |
4967949 | Sandhaus | Nov 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4988355 | Leveen et al. | Jan 1991 | A |
5002552 | Casey | Mar 1991 | A |
5026379 | Yoon | Jun 1991 | A |
5030224 | Wright et al. | Jul 1991 | A |
5030226 | Green et al. | Jul 1991 | A |
5032127 | Frazee et al. | Jul 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5047038 | Peters et al. | Sep 1991 | A |
5049152 | Simon et al. | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5053045 | Schmidt et al. | Oct 1991 | A |
5059202 | Liang et al. | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5062846 | Oh et al. | Nov 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5100416 | Oh et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5104394 | Knoepfler | Apr 1992 | A |
5104395 | Thornton et al. | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5122150 | Puig | Jun 1992 | A |
5127915 | Mattson | Jul 1992 | A |
5129885 | Green et al. | Jul 1992 | A |
5156608 | Troidl et al. | Oct 1992 | A |
5160339 | Chen et al. | Nov 1992 | A |
5163945 | Ortiz et al. | Nov 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171253 | Klieman | Dec 1992 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5197970 | Green et al. | Mar 1993 | A |
5199566 | Ortiz et al. | Apr 1993 | A |
5201746 | Shichman | Apr 1993 | A |
5201900 | Nardella | Apr 1993 | A |
5207691 | Nardella | May 1993 | A |
5207692 | Kraus et al. | May 1993 | A |
5217473 | Yoon | Jun 1993 | A |
5219353 | Garvey, III et al. | Jun 1993 | A |
5246450 | Thornton et al. | Sep 1993 | A |
5269792 | Kovac et al. | Dec 1993 | A |
5281228 | Wolfson | Jan 1994 | A |
5282807 | Knoepfler | Feb 1994 | A |
5282808 | Kovac et al. | Feb 1994 | A |
5282832 | Toso et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5304183 | Gourlay et al. | Apr 1994 | A |
5306280 | Bregen et al. | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5312426 | Segawa et al. | May 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5340360 | Stefanchik | Aug 1994 | A |
5342373 | Stefanchik et al. | Aug 1994 | A |
5354304 | Allen et al. | Oct 1994 | A |
5354306 | Garvey, III et al. | Oct 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5366458 | Korthoff et al. | Nov 1994 | A |
5366459 | Yoon | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382253 | Hogendijk | Jan 1995 | A |
5382254 | McGarry et al. | Jan 1995 | A |
5382255 | Castro et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5395375 | Turkel et al. | Mar 1995 | A |
5395381 | Green et al. | Mar 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5413584 | Schulze | May 1995 | A |
5423835 | Green et al. | Jun 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5431667 | Thompson et al. | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5431669 | Thompson et al. | Jul 1995 | A |
5439468 | Schulze et al. | Aug 1995 | A |
5441509 | Vidal et al. | Aug 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5462555 | Bolanos et al. | Oct 1995 | A |
5462558 | Kolesa et al. | Oct 1995 | A |
5464416 | Steckel | Nov 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5474567 | Stefanchik et al. | Dec 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487746 | Yu et al. | Jan 1996 | A |
5501693 | Gravener | Mar 1996 | A |
5509920 | Phillips et al. | Apr 1996 | A |
5514149 | Green et al. | May 1996 | A |
5520701 | Lerch | May 1996 | A |
5527318 | McGarry | Jun 1996 | A |
5527319 | Green et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5547474 | Kloeckl et al. | Aug 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582615 | Foshee et al. | Dec 1996 | A |
5584840 | Ramsey et al. | Dec 1996 | A |
5591178 | Green et al. | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5593421 | Bauer | Jan 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601574 | Stefanchik et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5618291 | Thompson et al. | Apr 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5626585 | Mittelstadt et al. | May 1997 | A |
5626586 | Pistl et al. | May 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626592 | Phillips et al. | May 1997 | A |
RE35525 | Stefanchik et al. | Jun 1997 | E |
5634930 | Thornton et al. | Jun 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5645551 | Green et al. | Jul 1997 | A |
5645553 | Kolesa et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5653720 | Johnson et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662676 | Koninckx | Sep 1997 | A |
5662679 | Voss et al. | Sep 1997 | A |
5665097 | Baker et al. | Sep 1997 | A |
5676676 | Porter | Oct 1997 | A |
5681330 | Hughett et al. | Oct 1997 | A |
5683405 | Yacoubian et al. | Nov 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5697938 | Jensen et al. | Dec 1997 | A |
5697942 | Palti | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700271 | Whitfield et al. | Dec 1997 | A |
5702048 | Eberlin | Dec 1997 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5713912 | Porter | Feb 1998 | A |
5720756 | Green et al. | Feb 1998 | A |
5722982 | Ferreira et al. | Mar 1998 | A |
5725537 | Green et al. | Mar 1998 | A |
5725538 | Green et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5733295 | Back et al. | Mar 1998 | A |
5749881 | Sackier et al. | May 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5766189 | Matsuno | Jun 1998 | A |
5769857 | Reztzov et al. | Jun 1998 | A |
5772673 | Cuny et al. | Jun 1998 | A |
5776146 | Sackier et al. | Jul 1998 | A |
5776147 | Dolendo | Jul 1998 | A |
5779718 | Green et al. | Jul 1998 | A |
5779720 | Walder-Utz et al. | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5788698 | Savornin | Aug 1998 | A |
5792149 | Sheds et al. | Aug 1998 | A |
5792150 | Pratt et al. | Aug 1998 | A |
5797922 | Hessel et al. | Aug 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5817116 | Takahashi et al. | Oct 1998 | A |
5827306 | Yoon | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5835199 | Phillips et al. | Nov 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843101 | Fry | Dec 1998 | A |
5846255 | Casey | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5868759 | Peyser et al. | Feb 1999 | A |
5868761 | Nicholas et al. | Feb 1999 | A |
5876410 | Petillo | Mar 1999 | A |
5895394 | Kienzle et al. | Apr 1999 | A |
5897565 | Foster | Apr 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5913862 | Ramsey et al. | Jun 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5921996 | Sherman | Jul 1999 | A |
5921997 | Fogelberg et al. | Jul 1999 | A |
5928251 | Aranyi et al. | Jul 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5972003 | Rousseau et al. | Oct 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6009551 | Sheynblat | Dec 1999 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6053908 | Crainich et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6059799 | Aranyi et al. | May 2000 | A |
6099536 | Petillo | Aug 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6139555 | Hart et al. | Oct 2000 | A |
6210418 | Storz et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6228097 | Levinson et al. | May 2001 | B1 |
6241740 | Davis et al. | Jun 2001 | B1 |
6258105 | Hart et al. | Jul 2001 | B1 |
6261302 | Voegele et al. | Jul 2001 | B1 |
6273898 | Kienzle et al. | Aug 2001 | B1 |
6277131 | Kalikow | Aug 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6318619 | Lee | Nov 2001 | B1 |
6322571 | Adams | Nov 2001 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352541 | Kienzle et al. | Mar 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
6428548 | Durgin et al. | Aug 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464710 | Foster | Oct 2002 | B1 |
6494886 | Wilk et al. | Dec 2002 | B1 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6520972 | Peters | Feb 2003 | B2 |
6527786 | Davis et al. | Mar 2003 | B1 |
6537289 | Kayan et al. | Mar 2003 | B1 |
6546935 | Hooven | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6562051 | Bolduc et al. | May 2003 | B1 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6579304 | Hart et al. | Jun 2003 | B1 |
6599298 | Forster et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6613060 | Adams et al. | Sep 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6626922 | Hart et al. | Sep 2003 | B1 |
6648898 | Baxter | Nov 2003 | B1 |
6652538 | Kayan et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6673083 | Kayan et al. | Jan 2004 | B1 |
6676659 | Hutchins et al. | Jan 2004 | B2 |
6679894 | Damarati | Jan 2004 | B2 |
RE38445 | Pistl et al. | Feb 2004 | E |
6695854 | Kayan et al. | Feb 2004 | B1 |
6706057 | Bidoia et al. | Mar 2004 | B1 |
6716226 | Sixto, Jr. et al. | Apr 2004 | B2 |
6723109 | Solingen | Apr 2004 | B2 |
6733514 | Miser | May 2004 | B2 |
6743240 | Smith et al. | Jun 2004 | B2 |
6743241 | Kerr | Jun 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6773440 | Gannoe et al. | Aug 2004 | B2 |
6776783 | Frantzen et al. | Aug 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6780195 | Porat | Aug 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6793664 | Mazzocchi et al. | Sep 2004 | B2 |
6802848 | Anderson et al. | Oct 2004 | B2 |
6814742 | Kimura et al. | Nov 2004 | B2 |
6818009 | Hart et al. | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6824547 | Wilson, Jr. et al. | Nov 2004 | B2 |
6824548 | Smith et al. | Nov 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6837893 | Miller | Jan 2005 | B2 |
6837894 | Pugsley, Jr. et al. | Jan 2005 | B2 |
6837895 | Mayenberger | Jan 2005 | B2 |
6840945 | Manetakis et al. | Jan 2005 | B2 |
6843794 | Sixto, Jr. et al. | Jan 2005 | B2 |
6849078 | Durgin et al. | Feb 2005 | B2 |
6849079 | Blake, III et al. | Feb 2005 | B1 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6869436 | Wendlandt | Mar 2005 | B2 |
6889116 | Jinno | May 2005 | B2 |
6896676 | Zubok et al. | May 2005 | B2 |
6896682 | McClellan et al. | May 2005 | B1 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6905503 | Gifford, III et al. | Jun 2005 | B2 |
6911032 | Jugenheimer et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6916327 | Northrup, III et al. | Jul 2005 | B2 |
6916332 | Adams | Jul 2005 | B2 |
6923818 | Muramatsu et al. | Aug 2005 | B2 |
6939356 | Debbas | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6942676 | Buelna | Sep 2005 | B2 |
6945978 | Hyde | Sep 2005 | B1 |
6945979 | Kortenbach et al. | Sep 2005 | B2 |
6949107 | McGuckin, Jr. et al. | Sep 2005 | B2 |
6953465 | Dieck et al. | Oct 2005 | B2 |
6955643 | Gellman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960218 | Rennich | Nov 2005 | B2 |
6960221 | Ho et al. | Nov 2005 | B2 |
6962594 | Thevenet | Nov 2005 | B1 |
6963792 | Green | Nov 2005 | B1 |
6964363 | Wales et al. | Nov 2005 | B2 |
6964668 | Modesitt et al. | Nov 2005 | B2 |
6966875 | Longobardi | Nov 2005 | B1 |
6966917 | Suyker et al. | Nov 2005 | B1 |
6966919 | Sixto, Jr. et al. | Nov 2005 | B2 |
6969391 | Gazzani | Nov 2005 | B1 |
6972023 | Whayne et al. | Dec 2005 | B2 |
6972027 | Fallin et al. | Dec 2005 | B2 |
6973770 | Schnipke et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6974466 | Ahmed et al. | Dec 2005 | B2 |
6974475 | Wall | Dec 2005 | B1 |
6981505 | Krause et al. | Jan 2006 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6991635 | Takamoto et al. | Jan 2006 | B2 |
7001399 | Damarati | Feb 2006 | B2 |
7037315 | Sancoff et al. | May 2006 | B2 |
7041119 | Green | May 2006 | B2 |
7052504 | Hughett | May 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7070602 | Smith et al. | Jul 2006 | B2 |
7108700 | Chan | Sep 2006 | B2 |
7108703 | Danitz et al. | Sep 2006 | B2 |
7141056 | Manetakis | Nov 2006 | B2 |
7144402 | Kuester, III | Dec 2006 | B2 |
7175648 | Nakao | Feb 2007 | B2 |
7179265 | Manetakis et al. | Feb 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7211091 | Fowler et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7214232 | Bowman et al. | May 2007 | B2 |
7223271 | Muramatsu et al. | May 2007 | B2 |
7223272 | Francese et al. | May 2007 | B2 |
7232445 | Kortenbach et al. | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7261724 | Molitor et al. | Aug 2007 | B2 |
7261725 | Binmoeller | Aug 2007 | B2 |
7264625 | Buncke | Sep 2007 | B1 |
7288098 | Huitema et al. | Oct 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7312188 | Kiso | Dec 2007 | B2 |
7316693 | Viola | Jan 2008 | B2 |
7316696 | Wilson, Jr. et al. | Jan 2008 | B2 |
7322995 | Buckman et al. | Jan 2008 | B2 |
7326223 | Wilson, Jr. | Feb 2008 | B2 |
7329266 | Royse et al. | Feb 2008 | B2 |
7331968 | Arp et al. | Feb 2008 | B2 |
7338503 | Rosenberg et al. | Mar 2008 | B2 |
7357805 | Masuda et al. | Apr 2008 | B2 |
7367939 | Smith et al. | May 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422137 | Manzo | Sep 2008 | B2 |
7431724 | Manetakis et al. | Oct 2008 | B2 |
7452327 | Durgin et al. | Nov 2008 | B2 |
7485124 | Kuhns et al. | Feb 2009 | B2 |
7488335 | Sgro | Feb 2009 | B2 |
7510562 | Lindsay | Mar 2009 | B2 |
7552853 | Mas et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7578827 | Gadberry et al. | Aug 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585304 | Hughett | Sep 2009 | B2 |
7615058 | Sixto, Jr. et al. | Nov 2009 | B2 |
7615060 | Stokes et al. | Nov 2009 | B2 |
7621926 | Wixey et al. | Nov 2009 | B2 |
7637917 | Whitfield et al. | Dec 2009 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7686820 | Huitema et al. | Mar 2010 | B2 |
7695482 | Viola | Apr 2010 | B2 |
7717926 | Whitfield et al. | May 2010 | B2 |
7727247 | Kimura et al. | Jun 2010 | B2 |
7727248 | Smith et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7731725 | Gadberry et al. | Jun 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7740639 | Hummel et al. | Jun 2010 | B2 |
7740641 | Huitema | Jun 2010 | B2 |
7744623 | Anderson | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7753250 | Clauson et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766925 | Stokes et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7776058 | Rosenberg et al. | Aug 2010 | B2 |
7780688 | Sakakine et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7806903 | Shibata et al. | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7857828 | Jabba et al. | Dec 2010 | B2 |
7871416 | Phillips | Jan 2011 | B2 |
7875029 | Hausen | Jan 2011 | B1 |
7887553 | Lehman et al. | Feb 2011 | B2 |
7887554 | Stokes et al. | Feb 2011 | B2 |
7892244 | Monassevitch et al. | Feb 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7901420 | Dunn | Mar 2011 | B2 |
7905890 | Whitfield et al. | Mar 2011 | B2 |
7914544 | Nguyen et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7947052 | Baxter, III et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7967831 | Rosenberg et al. | Jun 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7998155 | Manzo | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8021378 | Sixto, Jr. et al. | Sep 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8056565 | Zergiebel | Nov 2011 | B2 |
8062310 | Shibata et al. | Nov 2011 | B2 |
8062311 | Litscher et al. | Nov 2011 | B2 |
8062314 | Sixto, Jr. et al. | Nov 2011 | B2 |
8066720 | Knodel et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8066722 | Miyagi et al. | Nov 2011 | B2 |
8070760 | Fujita | Dec 2011 | B2 |
8074857 | Peterson et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8080021 | Griego | Dec 2011 | B2 |
8083668 | Durgin et al. | Dec 2011 | B2 |
8088061 | Wells et al. | Jan 2012 | B2 |
8091755 | Kayan et al. | Jan 2012 | B2 |
8100926 | Filshie et al. | Jan 2012 | B1 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8133240 | Damarati | Mar 2012 | B2 |
8137368 | Kayan et al. | Mar 2012 | B2 |
8142451 | Boulnois et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157149 | Olson et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8172859 | Matsuno et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8182529 | Gordon et al. | May 2012 | B2 |
8187290 | Buckman et al. | May 2012 | B2 |
8192449 | Maier et al. | Jun 2012 | B2 |
8211119 | Palmer et al. | Jul 2012 | B2 |
8211120 | Itoh | Jul 2012 | B2 |
8211124 | Ainsworth et al. | Jul 2012 | B2 |
8216255 | Smith et al. | Jul 2012 | B2 |
8216257 | Huitema et al. | Jul 2012 | B2 |
8236012 | Molitor et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8246634 | Huitema et al. | Aug 2012 | B2 |
8246635 | Huitema | Aug 2012 | B2 |
8262678 | Matsuoka et al. | Sep 2012 | B2 |
8262679 | Nguyen | Sep 2012 | B2 |
8267944 | Sorrentino et al. | Sep 2012 | B2 |
8267945 | Nguyen et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8282655 | Whitfield et al. | Oct 2012 | B2 |
8287559 | Barker et al. | Oct 2012 | B2 |
8308743 | Matsuno et al. | Nov 2012 | B2 |
8313497 | Walberg et al. | Nov 2012 | B2 |
8328822 | Huitema et al. | Dec 2012 | B2 |
8336556 | Zergiebel | Dec 2012 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8357171 | Whitfield et al. | Jan 2013 | B2 |
8366709 | Schechter et al. | Feb 2013 | B2 |
8366726 | Dennis | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8372095 | Viola | Feb 2013 | B2 |
8382773 | Whitfield et al. | Feb 2013 | B2 |
8398655 | Cheng et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8419752 | Sorrentino et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8444660 | Adams et al. | May 2013 | B2 |
8465460 | Yodfat et al. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8475473 | Vandenbroek et al. | Jul 2013 | B2 |
8480688 | Boulnois et al. | Jul 2013 | B2 |
8486091 | Sorrentino et al. | Jul 2013 | B2 |
8491608 | Sorrentino et al. | Jul 2013 | B2 |
8496673 | Nguyen et al. | Jul 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8512357 | Viola | Aug 2013 | B2 |
8518055 | Cardinale et al. | Aug 2013 | B1 |
8523882 | Huitema et al. | Sep 2013 | B2 |
8529585 | Jacobs et al. | Sep 2013 | B2 |
8529586 | Rosenberg et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8545486 | Malkowski | Oct 2013 | B2 |
8545519 | Aguirre et al. | Oct 2013 | B2 |
8556920 | Huitema et al. | Oct 2013 | B2 |
8568430 | Shipp | Oct 2013 | B2 |
8579918 | Whitfield et al. | Nov 2013 | B2 |
8585716 | Roskopf et al. | Nov 2013 | B2 |
8585717 | Sorrentino et al. | Nov 2013 | B2 |
8603109 | Aranyi et al. | Dec 2013 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628547 | Weller et al. | Jan 2014 | B2 |
8632520 | Otley | Jan 2014 | B2 |
8636191 | Meagher | Jan 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8652152 | Aranyi et al. | Feb 2014 | B2 |
8663247 | Menn et al. | Mar 2014 | B2 |
8685048 | Adams et al. | Apr 2014 | B2 |
8690899 | Kogiso et al. | Apr 2014 | B2 |
8708210 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709027 | Adams et al. | Apr 2014 | B2 |
8715299 | Menn et al. | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8734469 | Pribanic et al. | May 2014 | B2 |
8747423 | Whitfield et al. | Jun 2014 | B2 |
8753356 | Vitali et al. | Jun 2014 | B2 |
8758392 | Crainich | Jun 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8795302 | Wild | Aug 2014 | B2 |
8808310 | Jones et al. | Aug 2014 | B2 |
8814884 | Whitfield et al. | Aug 2014 | B2 |
8821516 | Huitema | Sep 2014 | B2 |
8828023 | Neff et al. | Sep 2014 | B2 |
8839954 | Disch | Sep 2014 | B2 |
8845659 | Whitfield et al. | Sep 2014 | B2 |
8894665 | Sorrentino et al. | Nov 2014 | B2 |
8894666 | Schulz et al. | Nov 2014 | B2 |
8900253 | Aranyi et al. | Dec 2014 | B2 |
8915930 | Huitema et al. | Dec 2014 | B2 |
8915931 | Boudreaux et al. | Dec 2014 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8945151 | Salas | Feb 2015 | B2 |
8950646 | Viola | Feb 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968342 | Wingardner, III et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8986343 | Bourque et al. | Mar 2015 | B2 |
8998935 | Hart | Apr 2015 | B2 |
9011464 | Zammataro | Apr 2015 | B2 |
9011465 | Whitfield et al. | Apr 2015 | B2 |
9028511 | Weller et al. | May 2015 | B2 |
9060779 | Martinez | Jun 2015 | B2 |
9084604 | Litscher et al. | Jul 2015 | B2 |
9089334 | Sorrentino et al. | Jul 2015 | B2 |
9113892 | Malkowski et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9119629 | Cardinale et al. | Sep 2015 | B2 |
9186136 | Malkowski et al. | Nov 2015 | B2 |
9186153 | Zammataro | Nov 2015 | B2 |
9208429 | Thornton et al. | Dec 2015 | B2 |
9220507 | Patel et al. | Dec 2015 | B1 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9232947 | Brenner et al. | Jan 2016 | B2 |
9265486 | Hughett, Sr. et al. | Feb 2016 | B2 |
9271737 | Castro et al. | Mar 2016 | B2 |
9282973 | Hughett, Sr. et al. | Mar 2016 | B2 |
9358011 | Sorrentino et al. | Jun 2016 | B2 |
9364216 | Rockrohr et al. | Jun 2016 | B2 |
9364240 | Whitfield et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9393024 | Whitfield et al. | Jul 2016 | B2 |
9408610 | Hartoumbekis | Aug 2016 | B2 |
9414844 | Zergiebel et al. | Aug 2016 | B2 |
9433411 | Racenet et al. | Sep 2016 | B2 |
9433422 | Crainich et al. | Sep 2016 | B2 |
9439654 | Sorrentino et al. | Sep 2016 | B2 |
9445820 | Whiting | Sep 2016 | B2 |
9456824 | Willett et al. | Oct 2016 | B2 |
9468444 | Menn et al. | Oct 2016 | B2 |
9480477 | Aranyi et al. | Nov 2016 | B2 |
9480480 | Santilli et al. | Nov 2016 | B2 |
9486225 | Michler et al. | Nov 2016 | B2 |
9498227 | Zergiebel et al. | Nov 2016 | B2 |
9504472 | Kamler | Nov 2016 | B2 |
9517064 | Sarradon | Dec 2016 | B2 |
9526501 | Malkowski | Dec 2016 | B2 |
9532787 | Zammataro | Jan 2017 | B2 |
9545254 | Sorrentino et al. | Jan 2017 | B2 |
9549741 | Zergiebel | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9566066 | Kasvikis | Feb 2017 | B2 |
9597089 | Menn | Mar 2017 | B2 |
9642627 | Zammataro | May 2017 | B2 |
9681877 | Blake, III et al. | Jun 2017 | B2 |
9687247 | Aranyi et al. | Jun 2017 | B2 |
9700324 | Mazzucco et al. | Jul 2017 | B2 |
9717504 | Huitema | Aug 2017 | B2 |
9717505 | Whitfield et al. | Aug 2017 | B2 |
9724163 | Orban | Aug 2017 | B2 |
9737310 | Whitfield et al. | Aug 2017 | B2 |
9750500 | Malkowski | Sep 2017 | B2 |
9763668 | Whitfield et al. | Sep 2017 | B2 |
9763669 | Griego | Sep 2017 | B2 |
9775623 | Zammataro et al. | Oct 2017 | B2 |
9775624 | Rockrohr et al. | Oct 2017 | B2 |
9782164 | Mumaw et al. | Oct 2017 | B2 |
9782181 | Vitali et al. | Oct 2017 | B2 |
9808257 | Armenteros et al. | Nov 2017 | B2 |
9848886 | Malkowski et al. | Dec 2017 | B2 |
9855043 | Malkowski | Jan 2018 | B2 |
9883866 | Roundy et al. | Feb 2018 | B2 |
9931124 | Gokharu | Apr 2018 | B2 |
9968361 | Aranyi et al. | May 2018 | B2 |
9968362 | Malkowski et al. | May 2018 | B2 |
10004502 | Malkowski et al. | Jun 2018 | B2 |
10159484 | Sorrentino et al. | Dec 2018 | B2 |
10159491 | Gokharu | Dec 2018 | B2 |
10159492 | Zammataro | Dec 2018 | B2 |
10166027 | Aranyi et al. | Jan 2019 | B2 |
20030014060 | Wilson, Jr. | Jan 2003 | A1 |
20030114867 | Bolduc et al. | Jun 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20030229360 | Gayton | Dec 2003 | A1 |
20040133215 | Baxter | Jul 2004 | A1 |
20040138681 | Pier | Jul 2004 | A1 |
20040167545 | Sadler et al. | Aug 2004 | A1 |
20040176783 | Edoga et al. | Sep 2004 | A1 |
20040176784 | Okada | Sep 2004 | A1 |
20040193213 | Aranyi et al. | Sep 2004 | A1 |
20040232197 | Shelton et al. | Nov 2004 | A1 |
20050010242 | Lindsay | Jan 2005 | A1 |
20050090837 | Sixto et al. | Apr 2005 | A1 |
20050096670 | Wellman et al. | May 2005 | A1 |
20050096671 | Wellman et al. | May 2005 | A1 |
20050107810 | Morales et al. | May 2005 | A1 |
20050107811 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050125010 | Smith et al. | Jun 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050175703 | Hunter et al. | Aug 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050216036 | Nakao | Sep 2005 | A1 |
20050216056 | Valdevit et al. | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050228416 | Burbank et al. | Oct 2005 | A1 |
20050256529 | Yawata et al. | Nov 2005 | A1 |
20050267495 | Ginn et al. | Dec 2005 | A1 |
20050273122 | Theroux et al. | Dec 2005 | A1 |
20050277956 | Francese et al. | Dec 2005 | A1 |
20050277958 | Levinson | Dec 2005 | A1 |
20050288689 | Kammerer et al. | Dec 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20060004388 | Whayne et al. | Jan 2006 | A1 |
20060009789 | Gambale et al. | Jan 2006 | A1 |
20060009790 | Blake et al. | Jan 2006 | A1 |
20060009792 | Baker et al. | Jan 2006 | A1 |
20060020271 | Stewart et al. | Jan 2006 | A1 |
20060085015 | Whitfield et al. | Apr 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060163312 | Viola et al. | Jul 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060190013 | Menn | Aug 2006 | A1 |
20060217749 | Wilson et al. | Sep 2006 | A1 |
20060224165 | Surti et al. | Oct 2006 | A1 |
20060224170 | Duff | Oct 2006 | A1 |
20060235439 | Molitor et al. | Oct 2006 | A1 |
20060241655 | Viola | Oct 2006 | A1 |
20060259045 | Damarati | Nov 2006 | A1 |
20060259049 | Harada et al. | Nov 2006 | A1 |
20070021766 | Belagali et al. | Jan 2007 | A1 |
20070038233 | Martinez et al. | Feb 2007 | A1 |
20070049947 | Menn et al. | Mar 2007 | A1 |
20070049949 | Manetakis | Mar 2007 | A1 |
20070049950 | Theroux et al. | Mar 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070083218 | Morris | Apr 2007 | A1 |
20070093790 | Downey et al. | Apr 2007 | A1 |
20070093856 | Whitfield | Apr 2007 | A1 |
20070112365 | Hilal et al. | May 2007 | A1 |
20070118161 | Kennedy et al. | May 2007 | A1 |
20070118174 | Chu | May 2007 | A1 |
20070173866 | Sorrentino et al. | Jul 2007 | A1 |
20070185504 | Manetakis et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070276417 | Mendes, Jr. et al. | Nov 2007 | A1 |
20070282355 | Brown et al. | Dec 2007 | A1 |
20070288039 | Aranyi et al. | Dec 2007 | A1 |
20070293875 | Soetikno et al. | Dec 2007 | A1 |
20080045981 | Margolin et al. | Feb 2008 | A1 |
20080051808 | Rivera et al. | Feb 2008 | A1 |
20080103510 | Taylor et al. | May 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080167665 | Arp et al. | Jul 2008 | A1 |
20080228199 | Cropper et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255589 | Blakeney et al. | Oct 2008 | A1 |
20080306492 | Shibata et al. | Dec 2008 | A1 |
20080306493 | Shibata et al. | Dec 2008 | A1 |
20080312670 | Lutze et al. | Dec 2008 | A1 |
20090088783 | Kennedy et al. | Apr 2009 | A1 |
20090182193 | Whitman et al. | Jul 2009 | A1 |
20090209946 | Swayze et al. | Aug 2009 | A1 |
20090228023 | Cui | Sep 2009 | A1 |
20090326558 | Cui et al. | Dec 2009 | A1 |
20100274264 | Schulz et al. | Oct 2010 | A1 |
20100318103 | Cheng et al. | Dec 2010 | A1 |
20110054498 | Monassevitch et al. | Mar 2011 | A1 |
20110144662 | McLawhorn et al. | Jun 2011 | A1 |
20110208211 | Whitfield et al. | Aug 2011 | A1 |
20110208212 | Zergiebel et al. | Aug 2011 | A1 |
20110218554 | Cheng et al. | Sep 2011 | A1 |
20110224700 | Schmidt et al. | Sep 2011 | A1 |
20110295290 | Whitfield | Dec 2011 | A1 |
20110313437 | Yeh | Dec 2011 | A1 |
20120046671 | Matsuoka et al. | Feb 2012 | A1 |
20120048759 | Disch et al. | Mar 2012 | A1 |
20120053402 | Conlon et al. | Mar 2012 | A1 |
20120226291 | Malizia et al. | Sep 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120265220 | Menn | Oct 2012 | A1 |
20120330326 | Creston et al. | Dec 2012 | A1 |
20130131697 | Hartoumbekis | May 2013 | A1 |
20130165951 | Blake, III | Jun 2013 | A1 |
20130172909 | Harris | Jul 2013 | A1 |
20130172910 | Malkowski | Jul 2013 | A1 |
20130175320 | Mandakolathur Vasudevan et al. | Jul 2013 | A1 |
20130226200 | Kappel et al. | Aug 2013 | A1 |
20130253540 | Castro et al. | Sep 2013 | A1 |
20140074143 | Fitzgerald et al. | Mar 2014 | A1 |
20140263565 | Lytle, IV et al. | Sep 2014 | A1 |
20140276970 | Messerly et al. | Sep 2014 | A1 |
20150032131 | Sorrentino et al. | Jan 2015 | A1 |
20160030044 | Zammataro | Feb 2016 | A1 |
20160113655 | Holsten | Apr 2016 | A1 |
20160151071 | Tokarz et al. | Jun 2016 | A1 |
20160213377 | Shankarsetty | Jul 2016 | A1 |
20160242767 | Kasvikis | Aug 2016 | A1 |
20160242789 | Sorrentino et al. | Aug 2016 | A1 |
20160256157 | Rockrohr et al. | Sep 2016 | A1 |
20160256158 | Whitfield et al. | Sep 2016 | A1 |
20160262764 | Gokharu | Sep 2016 | A1 |
20160296236 | Whitfield et al. | Oct 2016 | A1 |
20160338695 | Hartoumbekis | Nov 2016 | A1 |
20160338699 | Sorrentino et al. | Nov 2016 | A1 |
20170027581 | Zergiebel et al. | Feb 2017 | A1 |
20170049449 | Aranyi et al. | Feb 2017 | A1 |
20170065277 | Malkowski | Mar 2017 | A1 |
20170065281 | Zammataro | Mar 2017 | A1 |
20170086846 | Sorrentino et al. | Mar 2017 | A1 |
20170086850 | Zergiebel | Mar 2017 | A1 |
20170128071 | Holsten | May 2017 | A1 |
20170172780 | Murthy Aravalli | Jun 2017 | A1 |
20170238936 | Mujawar | Aug 2017 | A1 |
20170258472 | Aranyi et al. | Sep 2017 | A1 |
20170325814 | Malkowski | Nov 2017 | A1 |
20170340325 | Baril et al. | Nov 2017 | A1 |
20170340331 | Hu et al. | Nov 2017 | A1 |
20170340332 | Whitfield et al. | Nov 2017 | A1 |
20170360449 | Rockrohr et al. | Dec 2017 | A1 |
20180008276 | Bhatnagar et al. | Jan 2018 | A1 |
20180008277 | Baril | Jan 2018 | A1 |
20180070952 | Malkowski et al. | Mar 2018 | A1 |
20180116671 | Prior | May 2018 | A1 |
20180116673 | Baril et al. | May 2018 | A1 |
20180116674 | Baril | May 2018 | A1 |
20180116675 | Baril | May 2018 | A1 |
20180116676 | Williams | May 2018 | A1 |
20180168660 | Gokharu | Jun 2018 | A1 |
20180214156 | Baril et al. | Aug 2018 | A1 |
20180221028 | Williams | Aug 2018 | A1 |
20180228492 | Aranyi et al. | Aug 2018 | A1 |
20180228567 | Baril et al. | Aug 2018 | A1 |
20180235632 | Mujawar et al. | Aug 2018 | A1 |
20180235633 | Baril et al. | Aug 2018 | A1 |
20180235637 | Xu et al. | Aug 2018 | A1 |
20180242977 | Tan et al. | Aug 2018 | A1 |
20180263624 | Malkowski et al. | Sep 2018 | A1 |
20180271526 | Zammataro | Sep 2018 | A1 |
20180317927 | Cai et al. | Nov 2018 | A1 |
20180317928 | P V R | Nov 2018 | A1 |
20180325519 | Baril et al. | Nov 2018 | A1 |
20190000449 | Baril et al. | Jan 2019 | A1 |
20190000482 | Hu et al. | Jan 2019 | A1 |
20190000584 | Baril | Jan 2019 | A1 |
20190076149 | Baril | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2013254887 | Nov 2013 | AU |
1163889 | Mar 1984 | CA |
104605911 | Feb 2017 | CN |
202005001664 | May 2005 | DE |
202007003398 | Jun 2007 | DE |
202009006113 | Jul 2009 | DE |
0000756 | Feb 1979 | EP |
0406724 | Jan 1991 | EP |
0514139 | Nov 1992 | EP |
0732078 | Sep 1996 | EP |
1769757 | Apr 2007 | EP |
2609877 | Jul 2013 | EP |
2073022 | Oct 1981 | GB |
2003033361 | Feb 2003 | JP |
2006154230 | Jun 2006 | JP |
2006277221 | Oct 2006 | JP |
2008017876 | Jan 2008 | JP |
0042922 | Jul 2000 | WO |
0166001 | Sep 2001 | WO |
0167965 | Sep 2001 | WO |
2015069719 | May 2015 | WO |
2016192096 | Dec 2016 | WO |
2016192718 | Dec 2016 | WO |
2016197350 | Dec 2016 | WO |
2016206015 | Dec 2016 | WO |
Entry |
---|
The extended European Search Report corresponding to European Application No. EP 07 25 3905.9, completed Jan. 29, 2008; dated Feb. 7, 2008; (7 Pages). |
International Search Report corresponding to International Application No. PCT-US08-58185, completed Sep. 4, 2008; dated Sep. 9, 2008; (2 Pages). |
The International Search Report corresponding to International Application No. PCT-US08-59859, completed Sep. 14, 2008; dated Sep. 18, 2008; (2 Pages). |
The extended European Search Report corresponding to European Application No. EP 07 25 3807.7, completed Nov. 7, 2008; dated Nov. 26, 2008; (11 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2049.3, completed Dec. 11, 2009; dated Jan. 12, 2010; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2050.1, completed Dec. 23, 2009; dated Jan. 21, 2010; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2051.9, completed Dec. 21, 2009; dated Jan. 28, 2010; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2052.7, completed Nov. 16, 2009; dated Nov. 24, 2009; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2053.5, completed Nov. 24, 2009; dated Dec. 1, 2009; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2054.3, completed Jan. 7, 2010; dated Jan. 22, 2010; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 09 25 2056.8, completed Jan. 8, 2010; dated Feb. 5, 2010; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 10 25 0497.4, completed May 4, 2010; dated May 12, 2010; (6 Pages). |
The extended European Search Report corresponding to European Application No. EP 10 25 2079.8, completed Mar. 8, 2011; dated Mar. 17, 2011; (3 Pages). |
The European Search Report corresponding to European Application No. EP 05 81 0218.7, completed Apr. 18, 2011; dated May 20, 2011; (3 pages). |
The European Search Report corresponding to European Application No. EP 05 80 7612.6, completed May 2, 2011; dated May 20, 2011; (3 pages). |
The extended European Search Report corresponding to European Application No. EP 10 25 1737.2, completed May 9, 2011; dated May 20, 2011; (4 pages). |
The extended European Search Report corresponding to European Application No. EP 11 25 0214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 pages). |
The extended European Search Report corresponding to European Application No. EP 11 00 2681.2, completed May 31, 2011; dated Jun. 10, 2011; (3 Pages). |
The European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and dated Jul. 7, 2012; (6 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 Pages). |
The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages). |
The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages). |
The Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 Pages). |
The Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 Pages). |
The Extended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013; (10 Pages). |
The Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 Pages). |
The Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 Pages). |
The Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 Pages). |
The Extended European Search Report corresponding to EP 10 25 1798.4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 Pages). |
“Salute II Disposable Fixation Device”, Technique Guide—Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; (7 Pages). |
The Extended European Search Report corresponding to EP 10 25 2112.7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp). |
The Extended European Search Report corresponding to EP 14 15 1673.2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp). |
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014. |
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015. |
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015. |
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015. |
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015. |
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015. |
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015. |
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015. |
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015. |
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015. |
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015. |
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015. |
International Search Report and Written Opinion issued by the Korean Intellectual Property Office, acting as the International Searching Authority, dated Jan. 21, 2019 in corresponding International Application No. PCT/US2018/050349. |
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015. |
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015. |
Chinese Office Action corresponding to Int'l Appln No. CN 201210212642.9 dated Jun. 3, 2015. |
European Office Action corresponding to Int'l Appln No. EP 04 719 757.9 dated Jun. 12, 2015. |
European Office Action corresponding to Int'l Appln No. EP 13 166 382.5 dated Jun. 19, 2015. |
Japanese Office Action corresponding to Int'l Application No. JP 2010-226908 dated Jun. 26, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 15 15 5024.1 dated Jul. 17, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015. |
Japanese Office Action corresponding to Int'l Application No. JP 2011-160126 dated Aug. 10, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 11 25 0675.3 dated Oct. 7, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015. |
Canadian Office Action corresponding to Int'l Application No. CA 2,675,875 dated Oct. 26, 2015. |
Japanese Office Action corresponding to Int'l Application No. JP 2015-005629 dated Oct. 28, 2015. |
Japanese Office Action corresponding to Int'l Application No. JP 2014-245081 dated Oct. 28, 2015. |
Canadian Office Action corresponding to Int'l Application No. CA 2,675,921 dated Oct. 30, 2015. |
Chinese Office Action corresponding to Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015. |
Canadian Office Action corresponding to Int'l Application No. CA 2,676,309 dated Nov. 3, 2015. |
Canadian Office Action corresponding to Int'l Application No. CA 2,676,211 dated Nov. 24, 2015. |
Canadian Office Action corresponding to Int'l Application No. CA 2,676,547 dated Nov. 25, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015. |
Chinese Office Action corresponding to Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015. |
Extended European Search Report corresponding to Int'l Application No. EP 12 17 2940.4 dated Dec. 14, 2015. |
Chinese First Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Dec. 30, 2015. |
Extended European Search Report corresponding to Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016. |
Extended European Search Report corresponding to Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016. |
Canadian Office Action corresponding to Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016. |
Japanese Office Action corresponding to Int'l Appln. No. JP 2014-245081 dated Mar. 18, 2016. |
Japanese Office Action corresponding to Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016. |
Extended European Search Report corresponding to Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016. |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016. |
Extended European Search Report corresponding to Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016. |
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016. |
Canadian Office Action corresponding to Int'l Appln. No. CA 2,716,672 dated May 31, 2016. |
Canadian Office Action corresponding to Int'l Appln. No. CA 2,717,448 dated May 31, 2016. |
Canadian Office Action corresponding to Int'l Appln. No. CA 2,721,951 dated Jun. 1, 2016. |
Partial European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016. |
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016. |
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Jan. 23, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 16 18 3184.7 dated Jan. 24, 2017. |
Japanese Office Action corresponding to Japanese Appln. No. JP 2016-097807 dated Feb. 14, 2017. |
European Office Action corresponding to European Appln. No. EP 12 19 3447.5 dated Apr. 4, 2017. |
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410008877.5 dated Apr. 6, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 17 15 3714.5 dated May 11, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 17 15 8519.3 dated May 19, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 17 15 7606.9 dated May 22, 2017. |
European Office Action corresponding to European Appln. No. EP 11 25 0674.6 dated May 23, 2017. |
Canadian Office Action corresponding to Canadian Appln. No. CA 2,743,402 dated May 30, 2017. |
European Office Action corresponding to European Appln. No. EP 16 15 9324.9 dated Aug. 7, 2017. |
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014104295806 dated Aug. 31, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 17 17 3508.7 dated Sep. 29, 2017. |
Chinese Second Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Oct. 10, 2017. |
Extended European Search Report corresponding to European Appln. No. EP 17 18 0570.8 dated Dec. 6, 2017. |
Extended European Search Report corresponding to Patent Application EP 18154617.7 dated Jun. 25, 2018. |
Extended European Search Report corresponding to Patent Application EP 18155158.1 dated Jun. 28, 2018. |
Extended European Search Report corresponding to Patent Application EP 15877428.1 dated Jul. 2, 2018. |
Extended European Search Report corresponding to Patent Application EP 18157789.1 dated Jul. 5, 2018. |
Canadian Office Action corresponding to Patent Application CA 2,972,444 dated Aug. 9, 2018. |
Extended European Search Report corresponding to Patent Application EP 18156458.4 dated Sep. 3, 2018. |
Extended European Search Report corresponding to Patent Application EP 18171682.0 dated Sep. 18, 2018. |
Extended European Search Report corresponding to Patent Application EP 15878354.8 dated Sep. 19, 2018. |
Extended European Search Report corresponding to Patent Application EP 18183394.8 dated Sep. 28, 2018. |
Extended European Search Report corresponding to Patent Application EP 18163041.9 dated Sep. 28, 2018. |
Extended European Search Report corresponding to Patent Application EP 18170524.5 dated Oct. 1, 2018. |
Japanese Office Action corresponding to Patent Application JP 2017-536546 dated Oct. 15, 2018. |
Extended European Search Report corresponding to Patent Application EP 18187640.0 dated Nov. 30, 2018. |
Extended European Search Report corresponding to Patent Application EP 18187690.5 dated Nov. 30, 2018. |
Chinese First Office Action corresponding to Patent Application CN 201510696298.9 dated Dec. 3, 2018. |
Extended European Search Report corresponding to Patent Application EP 18158143.0 dated Dec. 5, 2018. |
Number | Date | Country | |
---|---|---|---|
20190076149 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62557908 | Sep 2017 | US |