Endoscopic surgical clip applier

Information

  • Patent Grant
  • 10653429
  • Patent Number
    10,653,429
  • Date Filed
    Monday, July 23, 2018
    6 years ago
  • Date Issued
    Tuesday, May 19, 2020
    4 years ago
Abstract
A shaft assembly of an apparatus for applying surgical clips to body tissue includes a pair of jaws movable between a spaced-apart position and an approximated position, an elongated spindle, a shaft, a slidable member, and a pusher bar fixed to the slidable member. The slidable member is movable through longitudinally-extending channels of the spindle and the shaft. The pusher bar is configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.
Description
BACKGROUND
Technical Field

The present application relates generally to surgical clip appliers. More particularly, the present disclosure relates to endoscopic surgical clip appliers having a clip pusher bar that maintains a surgical clip between jaws of the surgical clip applier during clip formation.


Description of Related Art

Endoscopic surgical staplers and surgical clip appliers are known in the art and are used for a number of distinct and useful surgical procedures. In the case of a laparoscopic surgical procedure, access to the interior of an abdomen is achieved through narrow tubes or cannulas inserted through a small entrance incision in the skin. Minimally invasive procedures performed elsewhere in the body are often generally referred to as endoscopic procedures. Typically, a tube or cannula device is extended into the patient's body through the entrance incision to provide an access port. The port allows the surgeon to insert a number of different surgical instruments therethrough using a trocar and for performing surgical procedures far removed from the incision.


During a majority of these procedures, the surgeon must often terminate the flow of blood or another fluid through one or more vessels. The surgeon will often use a particular endoscopic surgical clip applier to apply a surgical clip to a blood vessel or another duct to prevent the flow of body fluids therethrough during the procedure.


Endoscopic surgical clip appliers having various sizes (e.g., diameters) that are configured to apply a variety of diverse surgical clips are known in the art, and which are capable of applying a single or multiple surgical clips during an entry to the body cavity. Such surgical clips are typically fabricated from a biocompatible material and are usually compressed over a vessel. Once applied to the vessel, the compressed surgical clip terminates the flow of fluid therethrough.


Endoscopic surgical clip appliers that are able to apply multiple clips in endoscopic or laparoscopic procedures during a single entry into the body cavity are described in commonly-assigned U.S. Pat. Nos. 5,084,057 and 5,100,420, which are both incorporated by reference herein in their entirety. Another multiple endoscopic surgical clip applier is disclosed in commonly-assigned U.S. Pat. No. 5,607,436, the contents of which are also hereby incorporated by reference herein in its entirety. These devices are typically, though not necessarily, used during a single surgical procedure. U.S. Pat. No. 5,695,502, the disclosure of which is hereby incorporated by reference herein, discloses a resterilizable endoscopic surgical clip applier. The endoscopic surgical clip applier advances and forms multiple clips during a single insertion into the body cavity. This resterilizable endoscopic surgical clip applier is configured to receive and cooperate with an interchangeable clip magazine so as to advance and form multiple clips during a single entry into a body cavity.


Sometimes prior to or during formation of the clip, the clip may be prematurely dislocated from between the jaws of the clip applier by, for example, the vessel being closed. Accordingly, a need exists for a clip applier having an improved mechanism that prevents clip dislocation during use.


SUMMARY

Accordingly, the present application provides an apparatus for application of surgical clips to body tissue. The apparatus includes a handle assembly and a shaft assembly selectively connectable to the handle assembly and actuatable upon actuation of the handle assembly. The shaft assembly includes a pair of jaws movable between a spaced-apart position and an approximated position, an elongated spindle, a first shaft disposed alongside the spindle, a slidable member, and a pusher bar having a proximal portion fixed to the slidable member. The spindle has a proximal portion configured to be coupled to an actuator of the handle assembly, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal movement of the spindle. The spindle defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion. The first shaft defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft. The slidable member extends through each of the channels, and a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft. A second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle. A third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member. The pusher bar has a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.


In embodiments, the first portion of the channel of each of the spindle and the first shaft may have a linear configuration and extend parallel to a longitudinal axis defined by the spindle, and the second portion of the channel of each of the spindle and the first shaft may extend at a non-parallel angle relative to the longitudinal axis of the spindle.


It is contemplated that the shaft assembly may further include a second shaft disposed on an opposite side of the proximal portion of the spindle as the first shaft. The second shaft may be fixedly coupled to the first shaft and define a longitudinally-extending channel in mirrored relation with the channel of the first shaft. The slidable member may have a first end portion movably disposed within the channel of the first shaft, and a second end portion movably disposed within the channel of the second shaft.


It is envisioned that the first portion of the channel of the spindle may define a first plane, and the first portion of the channel of the first shaft may define a second plane offset from the first plane of the first portion of the channel of the spindle. A distal region of the second portion of the channel of the first shaft may be coplanar with the first plane of the first portion of the channel of the spindle.


In embodiments, the second portion of the channel of the spindle may have a proximal limit defined by a proximal wall. The proximal wall may be configured to contact the slidable member during the first distal movement of the spindle to distally move the slidable member relative to the first shaft.


It is contemplated that the second portion of the channel of the spindle may have a distal limit defined by a distal wall. The distal wall may be configured to contact the slidable member during proximal movement of the spindle relative to the first shaft.


It is envisioned that the first shaft may include a ramped inner surface that defines the second portion of the channel of the first shaft. The ramped inner surface may be configured to move the slidable member upwardly from the second portion of the channel of the spindle into the first portion of the channel of the spindle during the second distal movement of the spindle.


In embodiments, the slidable member may be axially restrained within the second portion of the channel of the first shaft during the third distal movement of the spindle, such that the pusher bar is axially fixed relative to the pair of jaws during the third distal movement of the spindle.


It is contemplated that the slidable member may ride within the first portion of the channel of the spindle during the third distal movement of the spindle.


In another aspect of the present disclosure, a shaft assembly of an apparatus for applying surgical clips to body tissue is provided. The shaft assembly includes a pair of jaws movable between a spaced-apart position and an approximated position, an elongated spindle, a first shaft disposed alongside the spindle, a slidable member, and a pusher bar having a proximal portion fixed to the slidable member. The spindle has a proximal portion configured to be coupled to an actuator, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal movement of the spindle. The spindle defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion. The first shaft defines a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft. The slidable member extends through each of the channels, and a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft. A second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle. A third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member. The pusher bar has a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.





BRIEF DESCRIPTION OF THE DRAWINGS

A particular embodiment of a surgical clip applier is disclosed herein with reference to the drawings wherein:



FIG. 1 is a perspective view of a reposable endoscopic surgical clip applier including a reusable handle assembly and a shaft assembly connected thereto;



FIG. 2 is a perspective view of the handle assembly of FIG. 1 with at least a housing half-section removed therefrom;



FIG. 3 is a perspective view of the shaft assembly of the endoscopic surgical clip applier of FIG. 1;



FIG. 4 is a perspective view, with parts separated, of the shaft assembly of FIG. 3;



FIG. 5A is a perspective view of a proximal portion of a spindle and left and right shafts of the shaft assembly of FIG. 3;



FIG. 5B is a perspective view, with a left shaft shown in phantom, of a proximal portion of the spindle and a slidable member of the shaft assembly of FIG. 3;



FIG. 6 is a perspective view, with parts separated, of the spindle, the slidable member, and left and right shafts of the shaft assembly of FIG. 5B;



FIG. 7 is a side view of the proximal portion of the spindle and the slidable member of FIG. 5B, illustrating the spindle in a first, starting position;



FIG. 8 is a side view of the proximal portion of the spindle and the slidable member of FIG. 5B, illustrating the spindle in a second, staple loading position;



FIG. 9 is a side view of the proximal portion of the spindle and the slidable member of FIG. 5B, illustrating the spindle in a third, stapling forming position;



FIG. 10 is a side view of the proximal portion of the spindle and the slidable member of FIG. 5B, illustrating the spindle in a retracting position;



FIG. 11 is a side view of the proximal portion of the spindle and the slidable member of FIG. 5B, illustrating the spindle in a reset position;



FIG. 12 is an enlarged view, with an outer tube removed, of a distal portion of the shaft assembly of FIG. 3; and



FIG. 13 is a schematic illustration of a robotic surgical system configured for use in accordance with the present disclosure.





DETAILED DESCRIPTION

Embodiments of endoscopic surgical clip appliers and shaft assemblies thereof, in accordance with the present disclosure, will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user.


With reference to FIGS. 1 and 2, an apparatus for application of surgical clips to body tissue is illustrated and designated 10. The apparatus or surgical clip applier 10 generally includes a reusable handle assembly 200 and a disposable shaft assembly 100 operably coupled to the handle assembly 200. The handle assembly 200 includes a housing 202 having a first or right side half-section 202a and a second or left side half-section 202b. Housing 202 of handle assembly 200 further includes or defines a nose 202c dimensioned for receipt of a hub 130 of shaft assembly 100. Housing 202 of handle assembly 200 may be formed of a suitable plastic or thermoplastic material. It is further contemplated that housing 202 of handle assembly 200 may be fabricated from stainless steel of the like.


Handle assembly 200 includes a trigger 204 pivotably supported between right side half-section 202a and left side half-section 202b of housing 202. Trigger 204 is biased by a biasing member (not explicitly shown) to bias or urge trigger 204 to the un-actuated condition. Trigger 204 includes a drive arm 204b extending therefrom. Drive arm 204b may be integrally formed therewith or may be separately and fixedly secured to trigger 204. Drive arm 204b may define a curved, radiused or filleted upper distal surface.


Handle assembly 200 further includes a drive plunger 220 operatively connected to trigger 204. Drive plunger 220 defines a proximally extending trigger slot 220b formed in a proximal portion thereof for operatively receiving drive arm 204b of trigger 204. Trigger slot 220b defines a distal surface or wall 220c against which a distal surface of drive arm 204b of trigger 204 contacts in order to distally advance drive plunger 220 during an actuation of trigger 204. Drive plunger 220 has a distal end operably coupled to a proximal end of a spindle 124 (FIG. 5) of shaft assembly 100 to effect axial movement of the spindle 124 upon actuation of the trigger 204 of handle assembly 200.


For a more detailed description of the components and operation of the handle assembly 200 of clip applier 10, reference may be made to, for example, U.S. Patent Application Publication No. 2017/0128071, the entire contents of which being incorporated by reference herein.


With reference to FIGS. 3 and 4, the shaft assembly 100 of the clip applier 10 is operably coupled to the handle assembly 200 (FIGS. 1 and 2) for actuation by the handle assembly 200. The shaft assembly 100 stores a stack of surgical clips “C” therein and has a pair of jaws 120 configured to form, in seriatim, the surgical clips “C” received from a pusher bar 128 of the shaft assembly 100 upon actuation of the handle assembly 200. The shaft assembly 100 includes an elongated outer member or outer tube 122, an elongated spindle or inner shaft 124 axially movable within the outer tube 122 for actuating the clip applier 10, and a slidable member 126 movably coupled to the spindle 124 for axially translating the pusher bar 128 to load and hold the surgical clips “C” in the jaws 120 during clip formation, as will be described.


The outer tube 122 of the shaft assembly 100 has a proximal portion 122a supported and secured to a hub 130, and a distal portion 122b supporting the jaws 120. The hub 130 may be configured to be coupled to the handle assembly 200 (FIGS. 1 and 2) or an actuator of a robotic system 1000 (FIG. 13). The outer tube 122 defines a lumen 122c extending longitudinally therethrough dimensioned for slidable receipt of the spindle 124.


With reference to FIGS. 4-11, the spindle or inner shaft 124 of the shaft assembly 100 is slidably supported within the lumen 122c of the outer tube 122 and has a generally elongated configuration. The spindle 124 includes a proximal portion 124a, and a distal portion 124b configured to selectively actuate the pair of jaws 120 during distal advancement of the spindle 124. The proximal portion 124a of the spindle 124 may define a hook, an enlarged head or other translational force coupling feature configured to be coupled to an actuator (e.g., the drive plunger 220 of the handle assembly 200 or an actuator of the robotic surgical system 1000).


The proximal portion 124a of the spindle 124 defines an elongate channel 132 extending longitudinally along the spindle 124. The channel 132 of the spindle 124 is dimensioned for slidable receipt of the slidable member 126, and has a first portion or proximal portion 132a and a second portion or distal portion 132b extending at a non-zero angle relative to the first portion 132a. The first portion 132a of the channel 132 has a linear configuration and extends parallel to a longitudinal axis “X” defined by the spindle 126. The second portion 132b of the channel 132 extends from the first portion 132a of the channel 132 perpendicularly relative to the longitudinal axis “X” of the spindle 126. In some embodiments, the second portion 132b of the channel 132 may extend at any suitable angle relative to the longitudinal axis “X.” In embodiments, the second portion 132b of the channel 132 may be a notch extending laterally from the first portion 132a of the channel 132.


The proximal portion 124a of the spindle 124 has an inner surface 134 that defines the elongate channel 132. The inner surface 134 has a proximal wall 134a that defines a proximal limit of the second portion 132b of the channel 132, and a distal wall 134b that defines a distal limit of the second portion 132b of the channel 132. The second portion 132b of the channel 132 is dimensioned for receipt of the slidable member 126 during a first distal advancement of the spindle 124. The proximal wall 134a of the inner surface 134 is configured to push or urge the slidable member 126 distally therewith as the spindle 126 moves distally, and the distal wall 134b of the inner surface 134 is configured to push or urge the slidable member 126 proximally as the spindle 124 moves proximally, as will be described in greater detail.


With continued reference to FIGS. 4-11, the shaft assembly 100 further includes a pair of longitudinal half-sections or shafts 136a, 136b disposed on opposite sides of the proximal portion 124a of the spindle 124. The shafts 136a, 136b, when assembled, together may form a unitary tubular member that surrounds the proximal portion 124a of the spindle 124. The shafts 136a, 136b are fixed within the outer tube 122 of the shaft assembly 100, such that the shafts 136a, 136b remain axially fixed relative to the outer tube 122 during distal and proximal movement of the spindle 124 relative to the outer tube 122.


The first shaft 136a defines an elongate channel 138 extending longitudinally along the first shaft 136a and which is disposed adjacent the channel 132 of the spindle 124. The second shaft 136b also defines an elongate channel (not explicitly shown), similar to the channel 138 of the first shaft 136a. The channels 138 of the first and second shafts 136a, 136b are in mirrored relation to one another. The channel 138 of the first shaft 136a is dimensioned for slidable receipt of a first end portion 126a of the slidable member 126, whereas the channel of the second shaft 136b is dimensioned for slidable receipt of a second end portion 126b of the slidable member 126. Since the channels 138 of the first and second shafts 136a, 136b are in mirrored relation to one another, only the channel 138 of the first shaft 132 will be described in further detail herein.


The channel 138 of the first shaft 136a has a first portion or proximal portion 138a and a second portion or distal portion 138b extending at a non-zero angle relative to the first portion 138a. The first portion 138a of the channel 138 has a linear configuration and extends parallel to the longitudinal axis “X” defined by the spindle 124. The first portion 138a of the channel 138 of the first shaft 136a defines a plane that is offset (e.g., disposed above or below) a plane defined by the first portion 132a of the channel 132 of the spindle 124. The second portion 138b of the channel 138 bends or extends upwardly from the first portion 138a of the channel 138, and in some embodiments downwardly from the first portion 138a of the channel 138. In some embodiments, the second portion 138b of the channel 138 may bend or extend relative to the first portion 138a of the channel 138 and may have a linear configuration. In some embodiments, the second portion 138b of the channel 138 may have a curved configuration.


The second portion 138b of the channel 138 has a distal region 138c that is coplanar with the first portion 132a of the channel 132 of the spindle 124. In this way, when the slidable member 126 is disposed within the first portion 132a of the channel 132 of the spindle 124, the slidable member 126 is simultaneously disposed within the second portion 138b of the channel 138 of the shafts 136a, 136b. Similarly, when the slidable member 126 is disposed within the second portion 132b of the channel 132 of the spindle 124, the slidable member 126 is simultaneously disposed with the first portion 138a of the channel 138 of the shafts 136a, 136b.


With reference to FIG. 6, the first shaft 136a has an inner surface 140 that defines the elongate channel 138. The inner surface 140 has a ramped portion 140a that partially defines the second portion 138b of the channel 138 of the first shaft 136a. The ramped portion 140a extends upwardly from the first portion 138a of the channel 138 of the first shaft 136a and is configured to urge or cam the slidable member 126 upwardly into the distal region 138c of the second portion 138b of the channel 138 of the first shaft 136a as the slidable member 126 is moved distally by the proximal wall 134a of the spindle 124. As the ramped portion 140a cams the slidable member 126 upwardly into the distal region 138c of the channel 138 of the first shaft 136a, the slidable member 126 is also moved from the second portion 132b of the channel 132 of the spindle 124 into the first portion 132a of the channel 132 of the spindle 124.


The slidable member 126 of the shaft assembly 100 may be configured as a pin or bar having a first end portion 126a slidably disposed within the channel 138 of the first shaft 136a, an intermediate portion extending through the channel 132 of the spindle 124, and a second end portion 126b slidably disposed within the channel (not explicitly shown) of the second shaft 136b. As briefly mentioned above, when the slidable member 126 is simultaneously disposed within both the first portion 138a of the channel 138 of the shafts 136a, 136b and the second portion 132b of the channel 132 of the spindle 124, the slidable member 126 is axially movable relative to the shafts 136a, 136b in response to axial movement of the spindle 124 via the proximal and distal walls 134a, 134b of the spindle 124. In contrast, when the slidable member 126 is simultaneously disposed within both the second portion 138b of the channel 138 of the shafts 136a, 136b and the first portion 132a of the channel 132 of the spindle 124, the slidable member 126 is axially restrained within the second portion 138b of the channel 138 of the shafts 136a, 136b during axial movement of the spindle 124, whereby the slidable member 126 rides within the first portion 132a of the channel 132 of the spindle 124.


The shaft assembly 100 may include a fixed pin or rod 142 and a biasing member, such as, for example, an extension spring 143 (FIG. 4). The extension spring 143 has a proximal loop, and a distal loop having the sliding member 126 extending therethrough. The fixed pin 142 extends through a longitudinally-extending slot 133 defined by the proximal portion 124a of the spindle 124 and through the proximal loop of the extension spring 143. The slot 133 is disposed proximally of the channel 132 of the spindle 124. The fixed pin 142 has a first end portion fixed to the first shaft 136a, and a second end portion fixed to the second shaft 136b, such that the fixed pin 142 rides within the slot 133 of the spindle 124 during axial movement of the spindle 124. The proximal loop of the extension spring 143 is fixed to the fixed pin 142, and the distal loop of the extension spring 143 is fixed to the slidable member 126. As such, the extension spring 143 exerts a proximally-oriented force on the slidable member 126 to urge the slidable member 126, and in turn the pusher bar 128, toward a retracted position.


With reference to FIGS. 4 and 12, the pusher bar 128 of the shaft assembly 100 has a proximal portion 128a, and a distal portion 128b for loading a distal-most surgical clip “DC” of the stack of surgical clips “C” between the jaws 120. The proximal portion 128a of the pusher bar 128 is fixed to the slidable member 126 so that the pusher bar 128 moves axially with axial movement of the slidable member 126. The proximal portion 128a of the pusher bar 128 may be fixed to the slidable member 126 via any suitable fastening engagement, such as, for example, various fasteners, adhesives, snap-fit engagements, or the like. Since the proximal portion 128a of the pusher bar 128 is fixed to the slidable member 126, axial movement of the slidable member 126 results in a corresponding axial movement of the pusher bar 128.


The distal portion 128b of the pusher bar 128 defines a pusher 144 configured to position the distal-most surgical clip “DC” between the pair of jaws 120 as the slidable member 126 is advanced toward a distal position, as shown in FIG. 9. The pusher 144 has a narrow profile for allowing the pair of jaws 120 to move to an approximated position while the pusher 144 is disposed therebetween. For example, the pusher 144 may have a width that is less than a horizontal distance the pair of jaws 120 are spaced from one another after completing a clip formation.


With continued reference to FIG. 4, additional components of the shaft assembly 100 responsible for effecting formation of the surgical clips “C” will be described. The distal portion 124b of the spindle 124 is operatively connected to a jaw cam closure wedge 146 via a slider joint 148. The jaw cam closure wedge 146 is selectively actuatable by the spindle 124 to engage camming features of the pair of jaws 120 to close the pair of jaws 120 and form a surgical clip “C” loaded therewithin. The slider joint 148 supports a latch member 150 for selective engagement with the spindle 124. The latch member 150 may be cammed in a direction toward the spindle 124 during actuation or translation of the spindle 124. In particular, during distal actuation of the spindle 124, at a predetermined distance, the latch member 150 is mechanically forced or cammed into and engaged with a slot in the spindle 124. This engagement of the latch member 150 in the slot of the spindle 124 allows the slider joint 148 to move together with the jaw cam closure wedge 146. The jaw cam closure wedge 146 thus can engage the relevant surfaces of the pair of jaws 120 to close the pair of jaws 120.


The slider joint 148 is connected, at a proximal portion 148a thereof, to a passageway formed in the distal portion 124b of the spindle 124. A distal portion 148b of the slider joint 148 defines a substantially T-shaped profile, wherein the distal portion 148b thereof is connected to the jaw cam closure wedge 146. The latch member 150 functions as a linkage and is disposed to move through an aperture 148c in the slider joint 148 to link with another fixed member and prevent the slider joint 148 from advancing the jaw cam closure wedge 146, and thus preventing the camming of the jaw cam closure wedge 146 from camming the pair of jaws 120 to a closed condition during an initial actuation of the clip applier 10. The distal portion 124b of the spindle 124 is provided with a camming feature configured to move a cam link 152 (pivotably connected to a filler component 154) in a perpendicular manner relative to a longitudinal axis of the spindle 124 during a distal advancement of the spindle 124.


The shaft assembly 100 further includes a clip channel 156 received within the outer tube 122. The clip channel 156 slidably retains the stack of surgical clips “C” therein for application, in seriatim, to the desired tissue or vessel. A clip follower 158 is provided and slidably disposed within the clip channel 156 at a location proximal of the stack of surgical clips “C.” A spring (not shown) is provided to spring-bias the clip follower 158, and in turn, the stack of surgical clips “C”, distally. A clip channel cover 160 is provided that overlies the clip channel 156 to retain and guide the clip follower 158, the spring, and the stack of surgical clips “C” in the clip channel 156.


The shaft assembly 100 further includes a wedge plate 162 that is biased to a proximal position by a wedge plate spring (not shown). The wedge plate 162 is a flat bar shaped member having a number of windows formed therein. The wedge plate 162 has a distal-most position wherein a tip or nose of the wedge plate 162 is inserted between the pair of jaws 120 to maintain the pair of jaws 120 in an open condition for loading of the distal-most surgical clip “DC” therein. The wedge plate 162 has a proximal-most position, maintained by the wedge plate spring, wherein the tip or nose of the wedge plate 162 is retracted from between the pair of jaws 120.


The wedge plate 162 defines a “U” or “C” shaped aperture or notch 162b in a side edge thereof. The C-shaped aperture or notch 162b of the wedge plate 162 selectively engages the cam link 152 supported on the filler plate 154. The cam link 152 selectively engages a surface of C-shaped aperture or notch 162b of the wedge plate 162 to retain the wedge plate 162 in a distal-most position such that a distal tip 162a of the wedge plate 162 is maintained inserted between the pair of jaws 120 to maintain the pair of jaws 120 splayed apart.


The filler component 154 of the shaft assembly 100 is interposed between the clip channel 156 and the wedge plate 162, at a location proximal of the pair of jaws 120. The filler component 154 pivotably supports the cam link 152 that is engagable with the wedge plate 162. During a distal advancement of the spindle 124, a camming feature of the spindle 124 engages a cam link boss of the cam link 152 to thereby move the cam link 152 out of engagement with the wedge plate 162 and permit the wedge plate 162 to return to the proximal-most position as a result of the spring.


It is contemplated that the clip applier 10 may be configured to close, fire, or form surgical clips similar to those shown and described in U.S. Patent Application Publication No. 2017/0128071, and U.S. Pat. No. 7,819,886 or 7,905,890, the entire contents of each of which are incorporated herein by reference.


In operation, the clip applier 10 is actuated to effect a stapling function thereof. In particular, the handle assembly 200 (FIGS. 1 and 2) or a control 1004 of a robotic assembly 1000 (FIG. 13) is actuated to advance the spindle 124 of the shaft assembly 100 in a distal direction within and relative to the outer tube 122. As shown in FIG. 7, when the clip applier 10 is in an initial, un-actuated state, the slidable member 126 of the shaft assembly 100 is disposed in the second portion or notch 132b of the channel 132 of the spindle 124 and the first portion 138a of the channel 138 of each of the first and second shafts 136a, 136b.


During a first distal movement of the spindle 124, in the direction indicated by arrow “A” in FIG. 7, the proximal wall 134a of the spindle 124 urges the slidable member 126 distally and through the first portion 138a of the channel 138 of each of the first and second shafts 136a, 136b. Since the pusher bar 128 is fixed to the slidable member 126, the pusher bar 128 also moves distally, whereby the pusher 144 (FIG. 12) of the distal portion 128b of the pusher bar 128 carries or pushes the distal-most surgical clip “DC” of the surgical clips “C” through the clip channel 156 in a distal direction until the distal-most surgical clip “DC” is disposed proximate the pair of jaws 120, signifying the conclusion of the first distal movement of the spindle 124, slidable member 126, and pusher bar 128.


After completion of the first distal movement of the spindle 124, the spindle 124 undergoes a second distal advancement or movement, via actuation of the handle assembly 200 or the control 1004 (FIG. 13), during which the slidable member 126 engages the ramped portion 140a of each of the first and second shafts 136a, 136b, as shown in FIG. 8. As the slidable member 126 engages the ramped portion 140a, the slidable member 126 is cammed or moved upwardly and into both the distal region 138c of the channel 138 of each of the first and second shafts 136a, 136b and the first portion 132a of the channel 132 of the spindle 124, as shown in FIG. 9.


Upon the slidable member 126 entering the distal region 138c of the channel 138 of the first and second shafts 136a, 136b, the pusher 144 (FIG. 12) of the pusher bar 128 positions the distal-most clip “DC” between the pair of jaws 120. With the slidable member 126 captured within both the distal region 138c of the channel 138 of the first and second shafts 136a, 136b and the first portion 132a of the channel 132 of the spindle 124, a third distal movement of the spindle 124 does not result in axial movement of the slidable member 126. As such, while the spindle 124 moves distally acting on the jaw cam closure wedge 146 to approximate the jaws 120 to form the distal-most surgical clip “DC,” the pusher 144 of the pusher bar 128 remains engaged with the distal-most surgical clip “DC” due to the slidable member 126 being axially restrained within both the distal region 138c of the channel 138 of the first and second shafts 136a, 136b and the first portion 132a of the channel 132 of the spindle 124.


To reset the clip applier 10, the spindle 124 is retracted proximally, in the direction indicated by arrow “B” in FIG. 10, within the outer tube 122 and out of engagement with the jaws 120 to allow the jaws 120 to expand (due to their own spring bias) to their open configuration. Proximal movement of the spindle 124 relative to the slidable member 126 and the pusher bar 128 is continued until the distal wall 134b of the proximal portion 124a of the spindle 124 contacts the slidable member 126, as shown in FIG. 10. As such, a continued proximal retraction of the spindle 124 results in the slidable member 126 and the attached pusher bar 128 moving downwardly and proximally along the ramped portion 140a of the first and second shafts 136a, 136b, and positioning the slidable member 126 in both the second portion 132b of the channel 132 of the spindle 124 and the first portion 138a of the channel 138 of each of the shafts 136a, 136b. Upon moving the slidable member 126 proximally, the pusher 144 of the pusher bar 128 is removed from between the jaws 120, resetting the clip applier 10. In addition, the biasing member that interconnects the slidable member 126 and the fixed pin 142 assists in retracting the slidable member 126.


It is contemplated, and within the scope of the present disclosure, that other endoscopic assemblies, including a pair of jaws having a unique and diverse closure stroke length thereof, may be provided with a drive assembly, similar to any of the drive assemblies described herein, for accommodating and adapting the closure stroke length for the pair of jaws thereof to the constant trigger stroke length.


Accordingly, various endoscopic assemblies, constructed in accordance with the principles of the present disclosure, may be provided which are also capable of firing or forming or closing surgical clips of various sizes, materials, and configurations, across multiple platforms for multiple different manufactures.


Surgical instruments such as the clip appliers described herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.


Referring to FIG. 12, a medical work station is shown generally as robotic system or work station 1000 and generally may include a plurality of robot arms 1002, 1003; a control device 1004; and an operating console 1005 coupled with control device 1004. Operating console 1005 may include a display device 1006, which may be set up in particular to display three-dimensional images; and manual input devices 1007, 1008, by means of which a person (not shown), for example a surgeon, may be able to telemanipulate robot arms 1002, 1003 in a first operating mode.


Each of the robot arms 1002, 1003 may include a plurality of members, which are connected through joints, and an attaching device 1009, 1011, to which may be attached, for example, the shaft assembly 100 of FIGS. 1-11, in accordance with any one of several embodiments disclosed herein, as will be described in greater detail below.


Robot arms 1002, 1003 may be driven by electric drives (not shown) that are connected to control device 1004. Control device 1004 (e.g., a computer) may be set up to activate the drives, in particular by means of a computer program, in such a way that robot arms 1002, 1003, their attaching devices 1009, 1011 and thus the shaft assembly 100, execute a desired movement according to a movement defined by means of manual input devices 1007, 1008. Control device 1004 may also be set up in such a way that it regulates the movement of robot arms 1002, 1003 and/or of the drives.


Medical work station 1000 may be configured for use on a patient 1013 lying on a patient table 1012 to be treated in a minimally invasive manner by means of the shaft assembly 100. Medical work station 1000 may also include more than two robot arms 1002, 1003, the additional robot arms likewise being connected to control device 1004 and being telemanipulatable by means of operating console 1005. A surgical end effector, such as, for example, the shaft assembly 100 (FIGS. 1-11), may also be attached to the additional robot arm. Medical work station 1000 may include a database 1014, in particular coupled to with control device 1004, in which are stored, for example, pre-operative data from patient/living being 1013 and/or anatomical atlases.


Reference is made herein to U.S. Pat. No. 8,828,023, the entire content of which is incorporated herein by reference, for a more detailed description of the construction and operation of an exemplary robotic surgical system.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. An apparatus for application of surgical clips to body tissue, the apparatus comprising: a handle assembly; anda shaft assembly selectively connectable to the handle assembly and actuatable upon actuation of the handle assembly, the shaft assembly including: a pair of jaws movable between a spaced-apart position and an approximated position;an elongated spindle having a proximal portion configured to be coupled to an actuator of the handle assembly, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal movement of the spindle, the spindle defining a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion;a first shaft disposed alongside the spindle and defining a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft;a slidable member extending through each of the channels of the spindle and the first shaft, wherein a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft, and a second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle, such that a third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member; anda pusher bar having a proximal portion fixedly coupled to the slidable member, and a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.
  • 2. The apparatus according to claim 1, wherein the first portion of the channel of each of the spindle and the first shaft has a linear configuration and extends parallel to a longitudinal axis defined by the spindle, and the second portion of the channel of each of the spindle and the first shaft extends at a non-parallel angle relative to the longitudinal axis of the spindle.
  • 3. The apparatus according to claim 1, wherein the shaft assembly further includes a second shaft disposed on an opposite side of the proximal portion of the spindle as the first shaft and being fixedly coupled to the first shaft, the second shaft defining a longitudinally-extending channel in mirrored relation with the channel of the first shaft, wherein the slidable member has a first end portion movably disposed within the channel of the first shaft, and a second end portion movably disposed within the channel of the second shaft.
  • 4. The apparatus according to claim 1, wherein the first portion of the channel of the spindle defines a first plane, and the first portion of the channel of the first shaft defines a second plane offset from the first plane of the first portion of the channel of the spindle.
  • 5. The apparatus according to claim 4, wherein at least a distal region of the second portion of the channel of the first shaft is coplanar with the first plane of the first portion of the channel of the spindle.
  • 6. The apparatus according to claim 1, wherein the second portion of the channel of the spindle has a proximal limit defined by a proximal wall, the proximal wall configured to contact the slidable member during the first distal movement of the spindle to distally move the slidable member relative to the first shaft.
  • 7. The apparatus according to claim 6, wherein the second portion of the channel of the spindle has a distal limit defined by a distal wall, the distal wall configured to contact the slidable member during proximal movement of the spindle relative to the first shaft.
  • 8. The apparatus according to claim 1, wherein the first shaft includes a ramped inner surface that defines the second portion of the channel of the first shaft, the ramped inner surface being configured to move the slidable member upwardly from the second portion of the channel of the spindle into the first portion of the channel of the spindle during the second distal movement of the spindle.
  • 9. The apparatus according to claim 1, wherein the slidable member is axially restrained within the second portion of the channel of the first shaft during the third distal movement of the spindle, such that the pusher bar is axially fixed relative to the pair of jaws during the third distal movement of the spindle.
  • 10. The apparatus according to claim 9, wherein the slidable member rides within the first portion of the channel of the spindle during the third distal movement of the spindle.
  • 11. A shaft assembly of an apparatus for applying surgical clips to body tissue, the shaft assembly comprising: a pair of jaws movable between a spaced-apart position and an approximated position;an elongated spindle having a proximal portion configured to be coupled to an actuator of the handle assembly, and a distal portion operably coupled to the pair of jaws to selectively approximate the pair of jaws during distal advancement of the spindle, the spindle defining a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion;a first shaft disposed alongside the spindle and defining a longitudinally-extending channel having a first portion, and a second portion extending at a non-zero angle relative to the first portion of the channel of the first shaft;a slidable member extending through each of the channels of the spindle and the first shaft, wherein a first distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and through the first portion of the channel of the first shaft, and a second distal movement of the spindle relative to the first shaft moves the slidable member with the spindle and into the second portion of the channel of the first shaft and the first portion of the channel of the spindle, such that a third distal movement of the spindle relative to the first shaft moves the spindle distally relative to the slidable member; anda pusher bar having a proximal portion fixedly coupled to the slidable member, and a distal portion configured to load a distal-most surgical clip into the pair of jaws during distal movement of the slidable member, via the first distal movement of the spindle, and remain in a distally advanced position during approximation of the pair of jaws.
  • 12. The shaft assembly according to claim 11, wherein the first portion of the channel of each of the spindle and the first shaft has a linear configuration and extends parallel to a longitudinal axis defined by the spindle, and the second portion of the channel of each of the spindle and the first shaft extends at a non-parallel angle relative to the longitudinal axis of the spindle.
  • 13. The shaft assembly according to claim 11, further comprising a second shaft disposed on an opposite side of the proximal portion of the spindle as the first shaft and being fixedly coupled to the first shaft, the second shaft defining a longitudinally-extending channel in mirrored relation with the channel of the first shaft, wherein the slidable member has a first end portion movably disposed within the channel of the first shaft, and a second end portion movably disposed within the channel of the second shaft.
  • 14. The shaft assembly according to claim 11, wherein the first portion of the channel of the spindle defines a first plane, and the first portion of the channel of the first shaft defines a second plane offset from the first plane of the first portion of the channel of the spindle.
  • 15. The shaft assembly according to claim 14, wherein at least a distal region of the second portion of the channel of the first shaft is coplanar with the first plane of the first portion of the channel of the spindle.
  • 16. The shaft assembly according to claim 11, wherein the second portion of the channel of the spindle has a proximal limit defined by a proximal wall, the proximal wall configured to contact the slidable member during the first distal movement of the spindle to distally move the slidable member relative to the first shaft.
  • 17. The shaft assembly according to claim 16, wherein the second portion of the channel of the spindle has a distal limit defined by a distal wall, the distal wall configured to contact the slidable member during proximal movement of the spindle relative to the first shaft.
  • 18. The shaft assembly according to claim 11, wherein the first shaft includes a ramped inner surface that defines the second portion of the channel of the first shaft, the ramped inner surface being configured to move the slidable member upwardly from the second portion of the channel of the spindle into the first portion of the channel of the spindle during the second distal movement of the spindle.
  • 19. The shaft assembly according to claim 11, wherein the slidable member is axially restrained within the second portion of the channel of the first shaft during the third distal movement of the spindle, such that the pusher bar is axially fixed relative to the pair of jaws during the third distal movement of the spindle.
  • 20. The shaft assembly according to claim 19, wherein the slidable member rides within the first portion of the channel of the spindle during the third distal movement of the spindle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/557,908 filed Sep. 12, 2017, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (866)
Number Name Date Kind
3120230 Skold Feb 1964 A
3363628 Wood Jan 1968 A
3638847 Noiles et al. Feb 1972 A
3675688 Bryan et al. Jul 1972 A
3735762 Bryan et al. May 1973 A
3867944 Samuels Feb 1975 A
4242902 Green Jan 1981 A
4296751 Blake, III et al. Oct 1981 A
4372316 Blake, III et al. Feb 1983 A
4408603 Blake, III et al. Oct 1983 A
4412539 Jarvik Nov 1983 A
4418694 Beroff et al. Dec 1983 A
4471780 Menges et al. Sep 1984 A
4480640 Becht Nov 1984 A
4480641 Failla et al. Nov 1984 A
4487204 Hrouda Dec 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4491133 Menges et al. Jan 1985 A
4492232 Green Jan 1985 A
4498476 Cerwin et al. Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4509518 McGarry et al. Apr 1985 A
4512345 Green Apr 1985 A
4522207 Klieman et al. Jun 1985 A
4532925 Blake, III Aug 1985 A
4534351 Rothfuss et al. Aug 1985 A
4545377 Cerwin et al. Oct 1985 A
4549544 Favaron Oct 1985 A
4556058 Green Dec 1985 A
4557263 Green Dec 1985 A
4562839 Blake, III et al. Jan 1986 A
4572183 Juska Feb 1986 A
4576165 Green et al. Mar 1986 A
4576166 Montgomery et al. Mar 1986 A
4590937 Deniega May 1986 A
4598711 Deniega Jul 1986 A
4602631 Funatsu Jul 1986 A
4611595 Klieman et al. Sep 1986 A
4612932 Caspar et al. Sep 1986 A
4616650 Green et al. Oct 1986 A
4616651 Golden Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4637395 Caspar et al. Jan 1987 A
4646740 Peters et al. Mar 1987 A
4647504 Kimimura et al. Mar 1987 A
4658822 Kees, Jr. Apr 1987 A
4660558 Kees, Jr. Apr 1987 A
4662373 Montgomery et al. May 1987 A
4662374 Blake, III May 1987 A
4671278 Chin Jun 1987 A
4671282 Tretbar Jun 1987 A
4674504 Klieman et al. Jun 1987 A
4681107 Kees, Jr. Jul 1987 A
4696396 Samuels Sep 1987 A
4702247 Blake, III et al. Oct 1987 A
4706668 Backer Nov 1987 A
4712549 Peters et al. Dec 1987 A
4733666 Mercer, Jr. Mar 1988 A
4759364 Boebel Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4777949 Perlin Oct 1988 A
4796625 Kees, Jr. Jan 1989 A
4799481 Transue et al. Jan 1989 A
4815466 Perlin Mar 1989 A
4821721 Chin et al. Apr 1989 A
4822348 Casey Apr 1989 A
4834096 Oh et al. May 1989 A
4850355 Brooks et al. Jul 1989 A
4854317 Braun Aug 1989 A
4856517 Collins et al. Aug 1989 A
4929239 Braun May 1990 A
4931058 Cooper Jun 1990 A
4934364 Green Jun 1990 A
4957500 Liang et al. Sep 1990 A
4966603 Focelle et al. Oct 1990 A
4967949 Sandhaus Nov 1990 A
4983176 Cushman et al. Jan 1991 A
4988355 Leveen et al. Jan 1991 A
5002552 Casey Mar 1991 A
5026379 Yoon Jun 1991 A
5030224 Wright et al. Jul 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5047038 Peters et al. Sep 1991 A
5049152 Simon et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053045 Schmidt et al. Oct 1991 A
5059202 Liang et al. Oct 1991 A
5062563 Green et al. Nov 1991 A
5062846 Oh et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084057 Green et al. Jan 1992 A
5100416 Oh et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5104395 Thornton et al. Apr 1992 A
5112343 Thornton May 1992 A
5122150 Puig Jun 1992 A
5127915 Mattson Jul 1992 A
5129885 Green et al. Jul 1992 A
5156608 Troidl et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5171252 Friedland Dec 1992 A
5171253 Klieman Dec 1992 A
5192288 Thompson et al. Mar 1993 A
5197970 Green et al. Mar 1993 A
5199566 Ortiz et al. Apr 1993 A
5201746 Shichman Apr 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5207692 Kraus et al. May 1993 A
5217473 Yoon Jun 1993 A
5219353 Garvey, III et al. Jun 1993 A
5246450 Thornton et al. Sep 1993 A
5269792 Kovac et al. Dec 1993 A
5281228 Wolfson Jan 1994 A
5282807 Knoepfler Feb 1994 A
5282808 Kovac et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5300081 Young et al. Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306283 Conners Apr 1994 A
5312426 Segawa et al. May 1994 A
5330442 Green et al. Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5340360 Stefanchik Aug 1994 A
5342373 Stefanchik et al. Aug 1994 A
5354304 Allen et al. Oct 1994 A
5354306 Garvey, III et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5366458 Korthoff et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368600 Failla et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5382253 Hogendijk Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5395375 Turkel et al. Mar 1995 A
5395381 Green et al. Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5413584 Schulze May 1995 A
5423835 Green et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431667 Thompson et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5431669 Thompson et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5441509 Vidal et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5462558 Kolesa et al. Oct 1995 A
5464416 Steckel Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5474572 Hayhurst Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5487746 Yu et al. Jan 1996 A
5501693 Gravener Mar 1996 A
5509920 Phillips et al. Apr 1996 A
5514149 Green et al. May 1996 A
5520701 Lerch May 1996 A
5527318 McGarry Jun 1996 A
5527319 Green et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5542949 Yoon Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5569274 Rapacki et al. Oct 1996 A
5571121 Heifetz Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582615 Foshee et al. Dec 1996 A
5584840 Ramsey et al. Dec 1996 A
5591178 Green et al. Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593421 Bauer Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5626585 Mittelstadt et al. May 1997 A
5626586 Pistl et al. May 1997 A
5626587 Bishop et al. May 1997 A
5626592 Phillips et al. May 1997 A
RE35525 Stefanchik et al. Jun 1997 E
5634930 Thornton et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645551 Green et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653720 Johnson et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662676 Koninckx Sep 1997 A
5662679 Voss et al. Sep 1997 A
5665097 Baker et al. Sep 1997 A
5676676 Porter Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5695502 Pier et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697938 Jensen et al. Dec 1997 A
5697942 Palti Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702048 Eberlin Dec 1997 A
5709706 Kienzle et al. Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5713912 Porter Feb 1998 A
5720756 Green et al. Feb 1998 A
5722982 Ferreira et al. Mar 1998 A
5725537 Green et al. Mar 1998 A
5725538 Green et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5733295 Back et al. Mar 1998 A
5749881 Sackier et al. May 1998 A
5755726 Pratt et al. May 1998 A
5766189 Matsuno Jun 1998 A
5769857 Reztzov et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776146 Sackier et al. Jul 1998 A
5776147 Dolendo Jul 1998 A
5779718 Green et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788698 Savornin Aug 1998 A
5792149 Sheds et al. Aug 1998 A
5792150 Pratt et al. Aug 1998 A
5797922 Hessel et al. Aug 1998 A
5810853 Yoon Sep 1998 A
5817116 Takahashi et al. Oct 1998 A
5827306 Yoon Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5835199 Phillips et al. Nov 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843101 Fry Dec 1998 A
5846255 Casey Dec 1998 A
5849019 Yoon Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5868759 Peyser et al. Feb 1999 A
5868761 Nicholas et al. Feb 1999 A
5876410 Petillo Mar 1999 A
5895394 Kienzle et al. Apr 1999 A
5897565 Foster Apr 1999 A
5904693 Dicesare et al. May 1999 A
5906625 Bito et al. May 1999 A
5913862 Ramsey et al. Jun 1999 A
5913876 Taylor et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5921996 Sherman Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5951574 Stefanchik et al. Sep 1999 A
5972003 Rousseau et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6009551 Sheynblat Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6045560 McKean et al. Apr 2000 A
6053908 Crainich et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6059799 Aranyi et al. May 2000 A
6099536 Petillo Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6139555 Hart et al. Oct 2000 A
6210418 Storz et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6241740 Davis et al. Jun 2001 B1
6258105 Hart et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6273898 Kienzle et al. Aug 2001 B1
6277131 Kalikow Aug 2001 B1
6306149 Meade Oct 2001 B1
6318619 Lee Nov 2001 B1
6322571 Adams Nov 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6391035 Appleby et al. May 2002 B1
6423079 Blake, III Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464710 Foster Oct 2002 B1
6494886 Wilk et al. Dec 2002 B1
6517536 Hooven et al. Feb 2003 B2
6520972 Peters Feb 2003 B2
6527786 Davis et al. Mar 2003 B1
6537289 Kayan et al. Mar 2003 B1
6546935 Hooven Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6579304 Hart et al. Jun 2003 B1
6599298 Forster et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6613060 Adams et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6626922 Hart et al. Sep 2003 B1
6648898 Baxter Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676659 Hutchins et al. Jan 2004 B2
6679894 Damarati Jan 2004 B2
RE38445 Pistl et al. Feb 2004 E
6695854 Kayan et al. Feb 2004 B1
6706057 Bidoia et al. Mar 2004 B1
6716226 Sixto, Jr. et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6733514 Miser May 2004 B2
6743240 Smith et al. Jun 2004 B2
6743241 Kerr Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6776784 Ginn Aug 2004 B2
6780195 Porat Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793664 Mazzocchi et al. Sep 2004 B2
6802848 Anderson et al. Oct 2004 B2
6814742 Kimura et al. Nov 2004 B2
6818009 Hart et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6837894 Pugsley, Jr. et al. Jan 2005 B2
6837895 Mayenberger Jan 2005 B2
6840945 Manetakis et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6849079 Blake, III et al. Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6869435 Blake, III Mar 2005 B2
6869436 Wendlandt Mar 2005 B2
6889116 Jinno May 2005 B2
6896676 Zubok et al. May 2005 B2
6896682 McClellan et al. May 2005 B1
6896684 Monassevitch et al. May 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6911032 Jugenheimer et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6916332 Adams Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6939356 Debbas Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945979 Kortenbach et al. Sep 2005 B2
6949107 McGuckin, Jr. et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6955643 Gellman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960218 Rennich Nov 2005 B2
6960221 Ho et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6966919 Sixto, Jr. et al. Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6972023 Whayne et al. Dec 2005 B2
6972027 Fallin et al. Dec 2005 B2
6973770 Schnipke et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6974475 Wall Dec 2005 B1
6981505 Krause et al. Jan 2006 B2
6981628 Wales Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
7001399 Damarati Feb 2006 B2
7037315 Sancoff et al. May 2006 B2
7041119 Green May 2006 B2
7052504 Hughett May 2006 B2
7056330 Gayton Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7108700 Chan Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7141056 Manetakis Nov 2006 B2
7144402 Kuester, III Dec 2006 B2
7175648 Nakao Feb 2007 B2
7179265 Manetakis et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7211091 Fowler et al. May 2007 B2
7211092 Hughett May 2007 B2
7213736 Wales et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7214232 Bowman et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7223272 Francese et al. May 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7261724 Molitor et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7264625 Buncke Sep 2007 B1
7288098 Huitema et al. Oct 2007 B2
7297149 Vitali et al. Nov 2007 B2
7312188 Kiso Dec 2007 B2
7316693 Viola Jan 2008 B2
7316696 Wilson, Jr. et al. Jan 2008 B2
7322995 Buckman et al. Jan 2008 B2
7326223 Wilson, Jr. Feb 2008 B2
7329266 Royse et al. Feb 2008 B2
7331968 Arp et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
7357805 Masuda et al. Apr 2008 B2
7367939 Smith et al. May 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7419495 Menn et al. Sep 2008 B2
7422137 Manzo Sep 2008 B2
7431724 Manetakis et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7485124 Kuhns et al. Feb 2009 B2
7488335 Sgro Feb 2009 B2
7510562 Lindsay Mar 2009 B2
7552853 Mas et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7572266 Young et al. Aug 2009 B2
7578827 Gadberry et al. Aug 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585304 Hughett Sep 2009 B2
7615058 Sixto, Jr. et al. Nov 2009 B2
7615060 Stokes et al. Nov 2009 B2
7621926 Wixey et al. Nov 2009 B2
7637917 Whitfield et al. Dec 2009 B2
7644848 Swayze et al. Jan 2010 B2
7686820 Huitema et al. Mar 2010 B2
7695482 Viola Apr 2010 B2
7717926 Whitfield et al. May 2010 B2
7727247 Kimura et al. Jun 2010 B2
7727248 Smith et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7731725 Gadberry et al. Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7740639 Hummel et al. Jun 2010 B2
7740641 Huitema Jun 2010 B2
7744623 Anderson Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7753250 Clauson et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766925 Stokes et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7776058 Rosenberg et al. Aug 2010 B2
7780688 Sakakine et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7806903 Shibata et al. Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7857828 Jabba et al. Dec 2010 B2
7871416 Phillips Jan 2011 B2
7875029 Hausen Jan 2011 B1
7887553 Lehman et al. Feb 2011 B2
7887554 Stokes et al. Feb 2011 B2
7892244 Monassevitch et al. Feb 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7942890 D'Agostino et al. May 2011 B2
7947052 Baxter, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967831 Rosenberg et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
7998155 Manzo Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8021378 Sixto, Jr. et al. Sep 2011 B2
8038686 Huitema et al. Oct 2011 B2
8056565 Zergiebel Nov 2011 B2
8062310 Shibata et al. Nov 2011 B2
8062311 Litscher et al. Nov 2011 B2
8062314 Sixto, Jr. et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8066722 Miyagi et al. Nov 2011 B2
8070760 Fujita Dec 2011 B2
8074857 Peterson et al. Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8080021 Griego Dec 2011 B2
8083668 Durgin et al. Dec 2011 B2
8088061 Wells et al. Jan 2012 B2
8091755 Kayan et al. Jan 2012 B2
8100926 Filshie et al. Jan 2012 B1
8128643 Aranyi et al. Mar 2012 B2
8133240 Damarati Mar 2012 B2
8137368 Kayan et al. Mar 2012 B2
8142451 Boulnois et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8172859 Matsuno et al. May 2012 B2
8172870 Shipp May 2012 B2
8177797 Shimoji et al. May 2012 B2
8182529 Gordon et al. May 2012 B2
8187290 Buckman et al. May 2012 B2
8192449 Maier et al. Jun 2012 B2
8211119 Palmer et al. Jul 2012 B2
8211120 Itoh Jul 2012 B2
8211124 Ainsworth et al. Jul 2012 B2
8216255 Smith et al. Jul 2012 B2
8216257 Huitema et al. Jul 2012 B2
8236012 Molitor et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8246634 Huitema et al. Aug 2012 B2
8246635 Huitema Aug 2012 B2
8262678 Matsuoka et al. Sep 2012 B2
8262679 Nguyen Sep 2012 B2
8267944 Sorrentino et al. Sep 2012 B2
8267945 Nguyen et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282655 Whitfield et al. Oct 2012 B2
8287559 Barker et al. Oct 2012 B2
8308743 Matsuno et al. Nov 2012 B2
8313497 Walberg et al. Nov 2012 B2
8328822 Huitema et al. Dec 2012 B2
8336556 Zergiebel Dec 2012 B2
8348130 Shah et al. Jan 2013 B2
8357171 Whitfield et al. Jan 2013 B2
8366709 Schechter et al. Feb 2013 B2
8366726 Dennis Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372095 Viola Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8398655 Cheng et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8419752 Sorrentino et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8444660 Adams et al. May 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8475473 Vandenbroek et al. Jul 2013 B2
8480688 Boulnois et al. Jul 2013 B2
8486091 Sorrentino et al. Jul 2013 B2
8491608 Sorrentino et al. Jul 2013 B2
8496673 Nguyen et al. Jul 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8512357 Viola Aug 2013 B2
8518055 Cardinale et al. Aug 2013 B1
8523882 Huitema et al. Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8529586 Rosenberg et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8545486 Malkowski Oct 2013 B2
8545519 Aguirre et al. Oct 2013 B2
8556920 Huitema et al. Oct 2013 B2
8568430 Shipp Oct 2013 B2
8579918 Whitfield et al. Nov 2013 B2
8585716 Roskopf et al. Nov 2013 B2
8585717 Sorrentino et al. Nov 2013 B2
8603109 Aranyi et al. Dec 2013 B2
8623044 Timm et al. Jan 2014 B2
8628547 Weller et al. Jan 2014 B2
8632520 Otley Jan 2014 B2
8636191 Meagher Jan 2014 B2
8652151 Lehman et al. Feb 2014 B2
8652152 Aranyi et al. Feb 2014 B2
8663247 Menn et al. Mar 2014 B2
8685048 Adams et al. Apr 2014 B2
8690899 Kogiso et al. Apr 2014 B2
8708210 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709027 Adams et al. Apr 2014 B2
8715299 Menn et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8747423 Whitfield et al. Jun 2014 B2
8753356 Vitali et al. Jun 2014 B2
8758392 Crainich Jun 2014 B2
8771169 Whitman et al. Jul 2014 B2
8795302 Wild Aug 2014 B2
8808310 Jones et al. Aug 2014 B2
8814884 Whitfield et al. Aug 2014 B2
8821516 Huitema Sep 2014 B2
8828023 Neff et al. Sep 2014 B2
8839954 Disch Sep 2014 B2
8845659 Whitfield et al. Sep 2014 B2
8894665 Sorrentino et al. Nov 2014 B2
8894666 Schulz et al. Nov 2014 B2
8900253 Aranyi et al. Dec 2014 B2
8915930 Huitema et al. Dec 2014 B2
8915931 Boudreaux et al. Dec 2014 B2
8939974 Boudreaux et al. Jan 2015 B2
8945151 Salas Feb 2015 B2
8950646 Viola Feb 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968342 Wingardner, III et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8986343 Bourque et al. Mar 2015 B2
8998935 Hart Apr 2015 B2
9011464 Zammataro Apr 2015 B2
9011465 Whitfield et al. Apr 2015 B2
9028511 Weller et al. May 2015 B2
9060779 Martinez Jun 2015 B2
9084604 Litscher et al. Jul 2015 B2
9089334 Sorrentino et al. Jul 2015 B2
9113892 Malkowski et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9119629 Cardinale et al. Sep 2015 B2
9186136 Malkowski et al. Nov 2015 B2
9186153 Zammataro Nov 2015 B2
9208429 Thornton et al. Dec 2015 B2
9220507 Patel et al. Dec 2015 B1
9226825 Starksen et al. Jan 2016 B2
9232947 Brenner et al. Jan 2016 B2
9265486 Hughett, Sr. et al. Feb 2016 B2
9271737 Castro et al. Mar 2016 B2
9282973 Hughett, Sr. et al. Mar 2016 B2
9358011 Sorrentino et al. Jun 2016 B2
9364216 Rockrohr et al. Jun 2016 B2
9364240 Whitfield et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9393024 Whitfield et al. Jul 2016 B2
9408610 Hartoumbekis Aug 2016 B2
9414844 Zergiebel et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9433422 Crainich et al. Sep 2016 B2
9439654 Sorrentino et al. Sep 2016 B2
9445820 Whiting Sep 2016 B2
9456824 Willett et al. Oct 2016 B2
9468444 Menn et al. Oct 2016 B2
9480477 Aranyi et al. Nov 2016 B2
9480480 Santilli et al. Nov 2016 B2
9486225 Michler et al. Nov 2016 B2
9498227 Zergiebel et al. Nov 2016 B2
9504472 Kamler Nov 2016 B2
9517064 Sarradon Dec 2016 B2
9526501 Malkowski Dec 2016 B2
9532787 Zammataro Jan 2017 B2
9545254 Sorrentino et al. Jan 2017 B2
9549741 Zergiebel Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9566066 Kasvikis Feb 2017 B2
9597089 Menn Mar 2017 B2
9642627 Zammataro May 2017 B2
9681877 Blake, III et al. Jun 2017 B2
9687247 Aranyi et al. Jun 2017 B2
9700324 Mazzucco et al. Jul 2017 B2
9717504 Huitema Aug 2017 B2
9717505 Whitfield et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9737310 Whitfield et al. Aug 2017 B2
9750500 Malkowski Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9763669 Griego Sep 2017 B2
9775623 Zammataro et al. Oct 2017 B2
9775624 Rockrohr et al. Oct 2017 B2
9782164 Mumaw et al. Oct 2017 B2
9782181 Vitali et al. Oct 2017 B2
9808257 Armenteros et al. Nov 2017 B2
9848886 Malkowski et al. Dec 2017 B2
9855043 Malkowski Jan 2018 B2
9883866 Roundy et al. Feb 2018 B2
9931124 Gokharu Apr 2018 B2
9968361 Aranyi et al. May 2018 B2
9968362 Malkowski et al. May 2018 B2
10004502 Malkowski et al. Jun 2018 B2
10159484 Sorrentino et al. Dec 2018 B2
10159491 Gokharu Dec 2018 B2
10159492 Zammataro Dec 2018 B2
10166027 Aranyi et al. Jan 2019 B2
20030014060 Wilson, Jr. Jan 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030229360 Gayton Dec 2003 A1
20040133215 Baxter Jul 2004 A1
20040138681 Pier Jul 2004 A1
20040167545 Sadler et al. Aug 2004 A1
20040176783 Edoga et al. Sep 2004 A1
20040176784 Okada Sep 2004 A1
20040193213 Aranyi et al. Sep 2004 A1
20040232197 Shelton et al. Nov 2004 A1
20050010242 Lindsay Jan 2005 A1
20050090837 Sixto et al. Apr 2005 A1
20050096670 Wellman et al. May 2005 A1
20050096671 Wellman et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050216036 Nakao Sep 2005 A1
20050216056 Valdevit et al. Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228416 Burbank et al. Oct 2005 A1
20050256529 Yawata et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273122 Theroux et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277958 Levinson Dec 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20060004388 Whayne et al. Jan 2006 A1
20060009789 Gambale et al. Jan 2006 A1
20060009790 Blake et al. Jan 2006 A1
20060009792 Baker et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060085015 Whitfield et al. Apr 2006 A1
20060100649 Hart May 2006 A1
20060163312 Viola et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060190013 Menn Aug 2006 A1
20060217749 Wilson et al. Sep 2006 A1
20060224165 Surti et al. Oct 2006 A1
20060224170 Duff Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060259045 Damarati Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20070021766 Belagali et al. Jan 2007 A1
20070038233 Martinez et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070049949 Manetakis Mar 2007 A1
20070049950 Theroux et al. Mar 2007 A1
20070049951 Menn Mar 2007 A1
20070083218 Morris Apr 2007 A1
20070093790 Downey et al. Apr 2007 A1
20070093856 Whitfield Apr 2007 A1
20070112365 Hilal et al. May 2007 A1
20070118161 Kennedy et al. May 2007 A1
20070118174 Chu May 2007 A1
20070173866 Sorrentino et al. Jul 2007 A1
20070185504 Manetakis et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070276417 Mendes, Jr. et al. Nov 2007 A1
20070282355 Brown et al. Dec 2007 A1
20070288039 Aranyi et al. Dec 2007 A1
20070293875 Soetikno et al. Dec 2007 A1
20080045981 Margolin et al. Feb 2008 A1
20080051808 Rivera et al. Feb 2008 A1
20080103510 Taylor et al. May 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080167665 Arp et al. Jul 2008 A1
20080228199 Cropper et al. Sep 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255589 Blakeney et al. Oct 2008 A1
20080306492 Shibata et al. Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080312670 Lutze et al. Dec 2008 A1
20090088783 Kennedy et al. Apr 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090228023 Cui Sep 2009 A1
20090326558 Cui et al. Dec 2009 A1
20100274264 Schulz et al. Oct 2010 A1
20100318103 Cheng et al. Dec 2010 A1
20110054498 Monassevitch et al. Mar 2011 A1
20110144662 McLawhorn et al. Jun 2011 A1
20110208211 Whitfield et al. Aug 2011 A1
20110208212 Zergiebel et al. Aug 2011 A1
20110218554 Cheng et al. Sep 2011 A1
20110224700 Schmidt et al. Sep 2011 A1
20110295290 Whitfield Dec 2011 A1
20110313437 Yeh Dec 2011 A1
20120046671 Matsuoka et al. Feb 2012 A1
20120048759 Disch et al. Mar 2012 A1
20120053402 Conlon et al. Mar 2012 A1
20120226291 Malizia et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120265220 Menn Oct 2012 A1
20120330326 Creston et al. Dec 2012 A1
20130131697 Hartoumbekis May 2013 A1
20130165951 Blake, III Jun 2013 A1
20130172909 Harris Jul 2013 A1
20130172910 Malkowski Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130226200 Kappel et al. Aug 2013 A1
20130253540 Castro et al. Sep 2013 A1
20140074143 Fitzgerald et al. Mar 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20150032131 Sorrentino et al. Jan 2015 A1
20160030044 Zammataro Feb 2016 A1
20160113655 Holsten Apr 2016 A1
20160151071 Tokarz et al. Jun 2016 A1
20160213377 Shankarsetty Jul 2016 A1
20160242767 Kasvikis Aug 2016 A1
20160242789 Sorrentino et al. Aug 2016 A1
20160256157 Rockrohr et al. Sep 2016 A1
20160256158 Whitfield et al. Sep 2016 A1
20160262764 Gokharu Sep 2016 A1
20160296236 Whitfield et al. Oct 2016 A1
20160338695 Hartoumbekis Nov 2016 A1
20160338699 Sorrentino et al. Nov 2016 A1
20170027581 Zergiebel et al. Feb 2017 A1
20170049449 Aranyi et al. Feb 2017 A1
20170065277 Malkowski Mar 2017 A1
20170065281 Zammataro Mar 2017 A1
20170086846 Sorrentino et al. Mar 2017 A1
20170086850 Zergiebel Mar 2017 A1
20170128071 Holsten May 2017 A1
20170172780 Murthy Aravalli Jun 2017 A1
20170238936 Mujawar Aug 2017 A1
20170258472 Aranyi et al. Sep 2017 A1
20170325814 Malkowski Nov 2017 A1
20170340325 Baril et al. Nov 2017 A1
20170340331 Hu et al. Nov 2017 A1
20170340332 Whitfield et al. Nov 2017 A1
20170360449 Rockrohr et al. Dec 2017 A1
20180008276 Bhatnagar et al. Jan 2018 A1
20180008277 Baril Jan 2018 A1
20180070952 Malkowski et al. Mar 2018 A1
20180116671 Prior May 2018 A1
20180116673 Baril et al. May 2018 A1
20180116674 Baril May 2018 A1
20180116675 Baril May 2018 A1
20180116676 Williams May 2018 A1
20180168660 Gokharu Jun 2018 A1
20180214156 Baril et al. Aug 2018 A1
20180221028 Williams Aug 2018 A1
20180228492 Aranyi et al. Aug 2018 A1
20180228567 Baril et al. Aug 2018 A1
20180235632 Mujawar et al. Aug 2018 A1
20180235633 Baril et al. Aug 2018 A1
20180235637 Xu et al. Aug 2018 A1
20180242977 Tan et al. Aug 2018 A1
20180263624 Malkowski et al. Sep 2018 A1
20180271526 Zammataro Sep 2018 A1
20180317927 Cai et al. Nov 2018 A1
20180317928 P V R Nov 2018 A1
20180325519 Baril et al. Nov 2018 A1
20190000449 Baril et al. Jan 2019 A1
20190000482 Hu et al. Jan 2019 A1
20190000584 Baril Jan 2019 A1
20190076149 Baril Mar 2019 A1
Foreign Referenced Citations (25)
Number Date Country
2013254887 Nov 2013 AU
1163889 Mar 1984 CA
104605911 Feb 2017 CN
202005001664 May 2005 DE
202007003398 Jun 2007 DE
202009006113 Jul 2009 DE
0000756 Feb 1979 EP
0406724 Jan 1991 EP
0514139 Nov 1992 EP
0732078 Sep 1996 EP
1769757 Apr 2007 EP
2609877 Jul 2013 EP
2073022 Oct 1981 GB
2003033361 Feb 2003 JP
2006154230 Jun 2006 JP
2006277221 Oct 2006 JP
2008017876 Jan 2008 JP
0042922 Jul 2000 WO
0166001 Sep 2001 WO
0167965 Sep 2001 WO
2015069719 May 2015 WO
2016192096 Dec 2016 WO
2016192718 Dec 2016 WO
2016197350 Dec 2016 WO
2016206015 Dec 2016 WO
Non-Patent Literature Citations (121)
Entry
The extended European Search Report corresponding to European Application No. EP 07 25 3905.9, completed Jan. 29, 2008; dated Feb. 7, 2008; (7 Pages).
International Search Report corresponding to International Application No. PCT-US08-58185, completed Sep. 4, 2008; dated Sep. 9, 2008; (2 Pages).
The International Search Report corresponding to International Application No. PCT-US08-59859, completed Sep. 14, 2008; dated Sep. 18, 2008; (2 Pages).
The extended European Search Report corresponding to European Application No. EP 07 25 3807.7, completed Nov. 7, 2008; dated Nov. 26, 2008; (11 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2049.3, completed Dec. 11, 2009; dated Jan. 12, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2050.1, completed Dec. 23, 2009; dated Jan. 21, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2051.9, completed Dec. 21, 2009; dated Jan. 28, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2052.7, completed Nov. 16, 2009; dated Nov. 24, 2009; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2053.5, completed Nov. 24, 2009; dated Dec. 1, 2009; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2054.3, completed Jan. 7, 2010; dated Jan. 22, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 09 25 2056.8, completed Jan. 8, 2010; dated Feb. 5, 2010; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 10 25 0497.4, completed May 4, 2010; dated May 12, 2010; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 10 25 2079.8, completed Mar. 8, 2011; dated Mar. 17, 2011; (3 Pages).
The European Search Report corresponding to European Application No. EP 05 81 0218.7, completed Apr. 18, 2011; dated May 20, 2011; (3 pages).
The European Search Report corresponding to European Application No. EP 05 80 7612.6, completed May 2, 2011; dated May 20, 2011; (3 pages).
The extended European Search Report corresponding to European Application No. EP 10 25 1737.2, completed May 9, 2011; dated May 20, 2011; (4 pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 pages).
The extended European Search Report corresponding to European Application No. EP 11 00 2681.2, completed May 31, 2011; dated Jun. 10, 2011; (3 Pages).
The European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages).
The extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and dated Jul. 7, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 Pages).
The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages).
The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages).
The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages).
The Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 Pages).
The Extended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013; (10 Pages).
The Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 Pages).
The Extended European Search Report corresponding to EP 10 25 1798.4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 Pages).
“Salute II Disposable Fixation Device”, Technique Guide—Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; (7 Pages).
The Extended European Search Report corresponding to EP 10 25 2112.7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp).
The Extended European Search Report corresponding to EP 14 15 1673.2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp).
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014.
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015.
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015.
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015.
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015.
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015.
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015.
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015.
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015.
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015.
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015.
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015.
International Search Report and Written Opinion issued by the Korean Intellectual Property Office, acting as the International Searching Authority, dated Jan. 21, 2019 in corresponding International Application No. PCT/US2018/050349.
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015.
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015.
Chinese Office Action corresponding to Int'l Appln No. CN 201210212642.9 dated Jun. 3, 2015.
European Office Action corresponding to Int'l Appln No. EP 04 719 757.9 dated Jun. 12, 2015.
European Office Action corresponding to Int'l Appln No. EP 13 166 382.5 dated Jun. 19, 2015.
Japanese Office Action corresponding to Int'l Application No. JP 2010-226908 dated Jun. 26, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 15 15 5024.1 dated Jul. 17, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015.
Japanese Office Action corresponding to Int'l Application No. JP 2011-160126 dated Aug. 10, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 11 25 0675.3 dated Oct. 7, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015.
Canadian Office Action corresponding to Int'l Application No. CA 2,675,875 dated Oct. 26, 2015.
Japanese Office Action corresponding to Int'l Application No. JP 2015-005629 dated Oct. 28, 2015.
Japanese Office Action corresponding to Int'l Application No. JP 2014-245081 dated Oct. 28, 2015.
Canadian Office Action corresponding to Int'l Application No. CA 2,675,921 dated Oct. 30, 2015.
Chinese Office Action corresponding to Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015.
Canadian Office Action corresponding to Int'l Application No. CA 2,676,309 dated Nov. 3, 2015.
Canadian Office Action corresponding to Int'l Application No. CA 2,676,211 dated Nov. 24, 2015.
Canadian Office Action corresponding to Int'l Application No. CA 2,676,547 dated Nov. 25, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015.
Chinese Office Action corresponding to Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015.
Extended European Search Report corresponding to Int'l Application No. EP 12 17 2940.4 dated Dec. 14, 2015.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Dec. 30, 2015.
Extended European Search Report corresponding to Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016.
Japanese Office Action corresponding to Int'l Appln. No. JP 2014-245081 dated Mar. 18, 2016.
Japanese Office Action corresponding to Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,716,672 dated May 31, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,717,448 dated May 31, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,721,951 dated Jun. 1, 2016.
Partial European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Jan. 23, 2017.
Extended European Search Report corresponding to European Appln. No. EP 16 18 3184.7 dated Jan. 24, 2017.
Japanese Office Action corresponding to Japanese Appln. No. JP 2016-097807 dated Feb. 14, 2017.
European Office Action corresponding to European Appln. No. EP 12 19 3447.5 dated Apr. 4, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410008877.5 dated Apr. 6, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 3714.5 dated May 11, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 8519.3 dated May 19, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 15 7606.9 dated May 22, 2017.
European Office Action corresponding to European Appln. No. EP 11 25 0674.6 dated May 23, 2017.
Canadian Office Action corresponding to Canadian Appln. No. CA 2,743,402 dated May 30, 2017.
European Office Action corresponding to European Appln. No. EP 16 15 9324.9 dated Aug. 7, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 2014104295806 dated Aug. 31, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 17 3508.7 dated Sep. 29, 2017.
Chinese Second Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Oct. 10, 2017.
Extended European Search Report corresponding to European Appln. No. EP 17 18 0570.8 dated Dec. 6, 2017.
Extended European Search Report corresponding to Patent Application EP 18154617.7 dated Jun. 25, 2018.
Extended European Search Report corresponding to Patent Application EP 18155158.1 dated Jun. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 15877428.1 dated Jul. 2, 2018.
Extended European Search Report corresponding to Patent Application EP 18157789.1 dated Jul. 5, 2018.
Canadian Office Action corresponding to Patent Application CA 2,972,444 dated Aug. 9, 2018.
Extended European Search Report corresponding to Patent Application EP 18156458.4 dated Sep. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18171682.0 dated Sep. 18, 2018.
Extended European Search Report corresponding to Patent Application EP 15878354.8 dated Sep. 19, 2018.
Extended European Search Report corresponding to Patent Application EP 18183394.8 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18163041.9 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18170524.5 dated Oct. 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2017-536546 dated Oct. 15, 2018.
Extended European Search Report corresponding to Patent Application EP 18187640.0 dated Nov. 30, 2018.
Extended European Search Report corresponding to Patent Application EP 18187690.5 dated Nov. 30, 2018.
Chinese First Office Action corresponding to Patent Application CN 201510696298.9 dated Dec. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18158143.0 dated Dec. 5, 2018.
Related Publications (1)
Number Date Country
20190076149 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62557908 Sep 2017 US