The present disclosure relates to a treatment device which can be inserted into a body through a natural orifice with an endoscope or other steerable guide member. The present disclosure may be used to perform suturing on the tissue of a mammal, whether human or not, and whether or not alive, but is not limited thereto.
Various endoscopic suturing systems for performing surgical operations are configured to manipulate tissue of a patient. Some systems are configured to grasp tissue and to drive a needle through the grasped tissue. Such systems may add bulk to the overall endoscopic system, which may present challenges during endoscopic procedures. Some endoscopic treatment devices have a structure enabling a small profile for delivery while still effectively performing desired surgical operations. For instance, such devices may perform operations such as tissue approximation and suturing within the body, which may involve relatively wide opening and closing angles of an end effector. Such systems often require association with an endoscope having two instrument channels, and may be limited to use with larger endoscopes with such features. However, smaller endoscopes are gaining favor. Such smaller endoscopes, with their smaller profile, can be more easily advanced through a natural orifice. However, the reduced profile of the smaller endoscopes cannot accommodate the two instrument channels required by some existing suturing system. Further systems have been developed for use with smaller endoscopes having a single or no instrument channel. Such systems may include an end cap adapted to receive the distal end of the endoscope and may be used with an endoscope independent of the number of instrument channels it contains, including the smaller endoscopes that are available in many surgical settings and which can be more easily advanced through a natural orifice. However, improvements to the devices and manners of securing such systems to an endoscope would be welcome. Further, it is generally important that the orientation of the endoscope be proper once the device or system is secured thereto so that imaging is consistent. In addition, different scopes have imaging lenses in different locations. Current systems do not provide a way to be registered consistently with respect to any of the available endoscopes in a suitable rotational orientation relative to the end cap without having the scope be active during attachment to the system. Furthermore, during use, it may be difficult to maneuver the endoscope as a result of constraints on the endoscope imposed by an external system coupled thereto. Desired retroflexion may not always be accomplished as easily as possible. It is with respect to these and other considerations that the present improvements may be useful.
A suturing system is provided for use with smaller endoscopes that have a single or no instrument channel. In some embodiments, the system includes an end cap adapted to receive the distal end of the endoscope. In some embodiments, the end cap includes a base on which is mounted a movable suturing arm holding a needle at its distal end. In some aspects, a transmission assembly extends from a proximal handle and is operably coupled to the suturing arm. In some embodiments, first and second flexible catheters define instrument channels extending from the proximal end of the system to the distal end of the system. In some embodiments, a flexible sheath is provided and defines respective lumens for receiving the catheters, and a side recess for receiving the endoscope. The base on which the suturing arm is mounted may be adapted to extend partially over a distal end of the endoscope and partially to the side of the endoscope.
In accordance with one aspect of the system, the end cap includes a distal stop against which the distal end of the endoscope is adapted to seat. The distal stop has a shape based on analyses of scans of multiple distal ends of endoscopes; the distal stop is adapted to receive the distal end of the endoscope without obstructing the optical lens and other important features regardless of the brand of endoscope used in association with the system. The distal stop includes an indicia, preferably of a contrasting color, relative to which the instrument channel or other feature of the endoscope is aligned. With such alignment, the instrument channel and optical lens of the endoscope are assured to be unobstructed and in appropriate orientation relative to the suturing arm, instrument channel lumen, and needle exchange lumen, regardless of the major manufacturer endoscope utilized with the system.
In accordance with another aspect of the system, the end cap includes first (distal) and second (proximal) longitudinally displaced hooks. The hooks or adjacent indicia are preferably identified with contrasting color relative to surrounding areas of the end cap. In association with the hooks, the system includes one or more tape applicators. Each tape applicator includes a handle and a spool of tape on a distal end of the handle. The spool of tape preferably has a free end provided with a loop for attachment to one of the first and second hooks. The diameter of the spool is preferably less than the diameter of the endoscope. The handle is preferably monolithic, and the spool is rotatably fixed on the handle during use.
In use, the hook loop at the free end of a spool is engaged over the first hook and the handle is maneuvered to wrap the first portion of the tape over a portion of the distal end of the endoscope, and then to wrap the second portion of the tape over the first portion of tape on the endoscope. Tension is applied to the tape to secure the endoscope relative to the end cap. The relative diameters of the tape spool and the endoscope facilitate application of significant tension on the tape during wrapping the endoscope in the tape. After the distal end of the endoscope is wrapped in tape, the depleted spool is removed and a fresh spool of tape is attached to the application and the tape is similarly applied starting from the second hook and over an adjacent area of the endoscope.
In accordance with another aspect of the system, strips of tape are used to secure the sheath relative to the endoscope. In accordance with one aspect of the system, the strips have a first portion that is sticky and pre-applied to the sheath, a second portion that is non-sticky to prevent adhesion to the endoscope, and a third portion that is adapted to adhere to the back of the tape when it is wrapped around the endoscope. In accordance with one aspect of the system, the strips have a perforate portion that permits breakaway disassembly after use of the system.
The transmission assembly and sheath are adapted to extend alongside the endoscope and couple along the length of the endoscope. The catheter lumen is adapted to receive a first device that has a distal end effector that can receive and grasp the needle. The second catheter is adapted to receive a second device that has a distal end effector that can engage tissue, and draw the tissue back into the path of the needle so that the tissue can be pierced by the needle as the needle is moved from an open to a closed position. The proximal handle includes a handle coupled to the transmission assembly for operating the transmission assembly, a bracket including first and second ports communicating with the respective first and second connectors coupled to the first and second catheter.
In accordance with another aspect of the system, a pull string extends through the wall of the sheath from the proximal handle to the end cap. The pull string is provided with a pull handle (or loop) to apply manual tension. The pull string exits the sheath, has an exposed length, and then is attached to the end cap. When the pull handle is pulled, tension is applied to the pull string, and the exposed length is caused to shorten between the sheath and the attachment point at the end cap. This, in combination with activated retroflex from the endoscope, results in on-demand retroflexion of the entire system. The proximal handle of the system includes a lock that can secure the pull string in the tensioned state.
Non-limiting embodiments of the present disclosure are described by way of example with reference to the accompanying drawings, which are schematic and not intended to be drawn to scale. The accompanying drawings are provided for purposes of illustration only, and the dimensions, positions, order, and relative sizes reflected in the figures in the drawings may vary. For example, devices may be enlarged so that detail is discernable, but is intended to be scaled down in relation to, e.g., fit within a working channel of a delivery catheter or endoscope. For purposes of clarity and simplicity, not every element is labeled in every figure, nor is every element of each embodiment shown where illustration is not necessary to allow those of ordinary skill in the art to understand the disclosure.
The detailed description will be better understood in conjunction with the accompanying drawings, wherein like reference characters represent like elements, as follows:
The following detailed description should be read with reference to the drawings, which depict illustrative embodiments. It is to be understood that the disclosure is not limited to the particular embodiments described, as such may vary. All apparatuses and systems and methods discussed herein are examples of apparatuses and/or systems and/or methods implemented in accordance with one or more principles of this disclosure. Each example of an embodiment is provided by way of explanation and is not the only way to implement these principles but are merely examples. Thus, references to elements or structures or features in the drawings must be appreciated as references to examples of embodiments of the disclosure, and should not be understood as limiting the disclosure to the specific elements, structures, or features illustrated. Other examples of manners of implementing the disclosed principles will occur to a person of ordinary skill in the art upon reading this disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the present subject matter. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present subject matter covers such modifications and variations as come within the scope of the appended claims and their equivalents.
It will be appreciated that the present disclosure is set forth in various levels of detail in this application. In certain instances, details that are not necessary for one of ordinary skill in the art to understand the disclosure, or that render other details difficult to perceive may have been omitted. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting beyond the scope of the appended claims. Unless defined otherwise, technical terms used herein are to be understood as commonly understood by one of ordinary skill in the art to which the disclosure belongs. All of the devices and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure.
As used herein, “proximal” refers to the direction or location closest to the user (medical professional or clinician or technician or operator or physician, etc., such terms being used interchangeably herein without intent to limit, and including automated controller systems or otherwise), etc., such as when using a device (e.g., introducing the device into a patient, or during implantation, positioning, or delivery), and/or closest to a delivery device, and “distal” refers to the direction or location furthest from the user, such as when using the device (e.g., introducing the device into a patient, or during implantation, positioning, or delivery), and/or closest to a delivery device. “Longitudinal” means extending along the longer or larger dimension of an element. A “longitudinal axis” extends along the longitudinal extent of an element, though is not necessarily straight and does not necessarily maintain a fixed configuration if the element flexes or bends, and “axial” generally refers to along the longitudinal axis. However, it will be appreciated that reference to axial or longitudinal movement with respect to the above-described systems or elements thereof need not be strictly limited to axial and/or longitudinal movements along a longitudinal axis or central axis of the referenced elements. “Central” means at least generally bisecting a center point and/or generally equidistant from a periphery or boundary, and a “central axis” means, with respect to an opening, a line that at least generally bisects a center point of the opening, extending longitudinally along the length of the opening when the opening comprises, for example, a tubular element, a channel, a cavity, or a bore. As used herein, a “lumen” or “channel” or “bore” or “passage” is not limited to a circular cross-section. As used herein, a “free end” of an element is a terminal end at which such element does not extend beyond. It will be appreciated that terms such as at or on or adjacent or along an end may be used interchangeably herein without intent to limit unless otherwise stated, and are intended to indicate a general relative spatial relation rather than a precisely limited location. As understood herein, “corresponding” is intended to convey a relationship between components, parts, elements, etc., configured to interact with or to have another intended relationship with one another. Finally, reference to “at” a location or site is intended to include at and/or about the vicinity of (e.g., along, adjacent, proximate, etc.) such location or site.
Referring to
The suturing system 21 includes a suturing device 22 (
Referring to
A transmission assembly 42 includes a transmission sheath 46 and a transmission cable 48 displaceable within the transmission sheath 46, both coupled relative to the handle 24. The transmission sheath 46 is coupled relative to a first portion of the handle (i.e., a stationary member), and the transmission cable 48 is coupled to a second portion of the handle (i.e., a movable lever), such that when the handle 24 is operated the cable 48 is displaced within the transmission sheath 46.
The first and second catheters 34, 36 and the transmission assembly 42 extend from the proximal handle 24, along the outside of the endoscope 12, to a distal cap assembly 50. The distal cap assembly 50 is adapted to be mounted at the distal end 44 of the endoscope 12, and the handle 24 remotely operates the cap assembly 50 via the transmission assembly 42.
Referring to
The needle assembly 70 is coupled to a needle mount 83 at an end of the needle arm 58. The needle assembly 70 includes a tubular needle body 74, a needle tip 76, and suture 78 coupled to the needle body. The needle body 74 includes a side opening 80 through which the suture 78 extends, a first end 82 at which the needle assembly is coupled to the needle mount 83, and a second end 84 to which the tip 76 is coupled. The tip 76 defines a tissue-piercing taper. The suture 78 may be formed of any materials commonly available for surgical suture such as nylon, polyolefins, PLA, PGA, stainless steel, nitinol, and others. One suitable needle assembly is described in more detail in U.S. Pat. No. 9,198,562, which patent is hereby incorporated herein by reference in its entirety for all purposes.
Referring to
Referring to
Referring to
Referring to
Turning to
Referring to
Turning to
Turning now to
Turning to
In light of the above, the suturing device may be prepared for use in conjunction with an endoscope as follows. The distal end 44 of the endoscope 12 is pushed into the resilient clip 104 until seated at or near the distal stop 106 (
Then, referring to
Then, turning to
The collar 28 is properly positioned at the proximal handle 45 of the endoscope 12. The first device, a needle capture instrument 38 loaded with a needle assembly 70, is advanced through the first port 32, into the first lumen 34 and to the cap assembly 50. Suitable needle capture devices 38 are described in detail in U.S. Pat. No. 8,679,136, which patent is hereby incorporated herein by reference in its entirety for all purposes. The needle assembly 70 is loaded onto the needle arm 58, with the suture 78 extending parallel to the needle capture instrument 38 within the first lumen 34.
With reference to
The suturing assembly is then released from over the endoscope by cutting, e.g., with a scissors 190, the two bands of tape 129 coupled to the hooks 120, 122 that secure the endoscope 12 relative to the cap assembly 50, and then unwrapping the tape 129 over the opening of the cap clip 102, as shown by both
In view of the above, in accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus for use with an endoscope has a proximal handle assembly; a distal cap assembly; and a central portion adapted to extend along the endoscope between the handle assembly and the cap assembly. In some aspects, the handle assembly defines a recess in which the distal end of the endoscope is received. In some embodiments, the handle includes at least one hook at one side of the recess for receiving a tensile member that wraps around a portion of the cap assembly and the endoscope.
In some embodiments, the at least one hook is identified with a contrasting color relative to a majority of the cap assembly.
Additionally or alternatively, in some embodiments, the distal cap assembly includes a distal stop against which the distal end of the endoscope is intended to be abutted. In some embodiments, the distal stop includes indicia relative to which a feature of the endoscope is intended to be rotationally aligned. In some embodiments, the indicia include a contrasting color relative to a majority of the cap assembly. In some embodiments the indicia on the distal stop and the at least one hook are identified with a common color. In some embodiments, the feature of the endoscope with which the indicia are to be aligned is an instrument channel of the endoscope.
Additionally or alternatively, in some embodiments, the cap assembly is a suturing assembly including a movably mounted needle holder. In some aspects, operation of the proximal handle assembly moves the needle holder on the cap assembly.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus for use with an endoscope includes a proximal handle assembly; a distal cap assembly; and a central portion adapted to extend along the endoscope between the handle assembly and the cap assembly. In some aspects, the cap assembly defines a recess in which the distal end of the endoscope is received. Additionally or alternatively, the cap assembly includes two longitudinally spaced apart hooks at one side of the recess.
Additionally or alternatively, in some embodiments, each of the hooks are identified by a contrasting color relative to a color of a majority of the cap assembly.
Additionally or alternatively, in some embodiments, each of the hooks are identified by different hook indicia. In some embodiments, the hook indicia indicate an order of operation in which the hooks are intended to be used. In some embodiments, the hook indicia include numbers.
Additionally or alternatively, in some embodiments, the distal cap assembly includes a resilient clip that defines the recess.
Additionally or alternatively, in some embodiments the distal cap assembly includes a distal stop against which the distal end of the endoscope is intended to be abutted, the stop including contrasting alignment indicia relative to which a feature of the endoscope is intended to be rotationally aligned.
Additionally or alternatively, in some embodiments the distal cap assembly includes a distal stop against which the distal end of the endoscope is intended to be abutted, the stop including contrasting alignment indicia relative to which an instrument channel of the endoscope is intended to be rotationally aligned. In some embodiments the distal stop includes first and second recesses, and the alignment indicia is provided at the first recess.
In some embodiments, the cap assembly is a suturing assembly including a movably mounted needle holder, and operation of the proximal handle assembly moves the needle holder on the cap assembly.
In accordance with various principles of the present disclosure, an example of an embodiment of a securing system for use with an endoscope includes an endoscopic apparatus including a proximal handle assembly, a distal cap assembly; a central portion adapted to extend along the endoscope between the handle assembly and the cap assembly; and a spool of tape. In some embodiments, the distal cap assembly defines a recess in which the distal end of the endoscope is received and a hook at a side of the recess. In some embodiments, the spool of tape has a free end provided with a preformed loop adapted to be received over the hook. In some embodiments, the loop is adapted to be attached over the hook. In some embodiments, the tape is adapted to be wrapped about a portion of the cap assembly and the endoscope to couple the cap assembly and endoscope relative to each other.
In some embodiments, the system further includes a tape applicator including a handle and an extension with a spool mount. In some embodiments, the spool is coupled to the spool mount. In some embodiments, the spool is removably coupled to the spool mount.
In some embodiments, the cap assembly includes at least two longitudinally displaced hooks. In some embodiments, the securing system includes at least two spools of tape.
In some embodiments, the hook is identified by a contrasting color from a color of a majority of the cap assembly.
In some embodiments, the cap assembly includes at least two hooks. In some embodiments, each of the hooks is identified by different hook indicia. In some embodiments, the hook indicia identify an order of operation in which the hooks are intended to be used. In some embodiments, the hook indicia include a contrasting color from a majority of the cap assembly.
In some embodiments, the cap assembly is a suturing assembly including a movably mounted needle holder. In some embodiments, operation of the proximal handle assembly moves the needle holder on the cap assembly.
In accordance with various principles of the present disclosure, a method includes coupling a cap assembly of an endoscopic apparatus to an endoscope having a distal end. In some aspects, the cap assembly defines a recess in which the distal end of the endoscope is received. Additionally or alternatively, the cap assembly has first and second longitudinally displaced hooks at one side of the recess. In accordance with various principles of the present disclosure, the method includes inserting the distal end of the endoscope into the recess; providing a first length of tape having a first loop at a free end; coupling the first loop to the first hook; and wrapping at least a portion of the first length of tape about the cap assembly and the distal end of the endoscope.
In some aspects, the method further includes providing a second length of tape having a second loop at a free end; coupling the second loop to the second hook; and wrapping at least a portion of the second length of tape about the cap assembly and the distal end of the endoscope. In some aspects, the first hook is distally displaced from the second hook. In some aspects, the endoscopic apparatus includes a proximal handle and a central longitudinal sheath portion extending between the handle and the cap assembly. In some aspects, the central longitudinal portion includes a concave recess along its length. In some aspects, the method further includes inserting the endoscope into the recess of the central longitudinal sheath portion; and securing the central longitudinal sheath portion to the endoscope. In some aspects, the sheath portion is secured to the endoscope with a plurality of longitudinally spaced apart pieces of tape positioned at least partially circumferentially about the sheath portion and the endoscope. In some aspects, the central longitudinal sheath portion is crescent shaped and defines at least one lumen. In some aspects, at least one lumen includes a first lumen through which a flexible first catheter extends to the cap assembly, and a second lumen through which a flexible second catheter extends to the cap assembly. In some aspects, the cap assembly includes an actuation arm movably mounted thereon. In some aspects, the central longitudinal sheath portion includes a third lumen through which an actuation assembly extends. In some aspects, the actuation assembly is coupled between the proximal handle and the actuation arm and adapted for moving the actuation arm on the cap assembly upon operation of the proximal handle. In some aspects, the endoscopic apparatus includes a pull string having a proximal end and a distal end, the pull string extending from the proximal handle, through the central longitudinal sheath portion, and fixed to the cap assembly. In some aspects, the proximal end of the pull string is retracted relative to the proximal handle, and the distal end of the pull string is tensioned to cause the first and second catheters to flex and draw the cap assembly into retroflexion.
In some aspects, the cap assembly is a suturing assembly including a movably mounted needle holder.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus for use with an endoscope includes a proximal handle assembly; a distal cap assembly; a sheath portion; and a securing system. In some aspects, the cap assembly defines an assembly for positioning adjacent the distal end of the endoscope. In some aspects, the sheath portion defines a longitudinal recess. In some aspects, the sheath portion is adapted to extend along a portion of an exterior of the endoscope between the handle assembly and the cap assembly. In some aspects, the sheath portion is adapted to extend at least partially about the endoscope at the recess. In some aspects, the recess has a first side and a second side. In some aspects, the securing system is configured to secure the central portion to the exterior of the endoscope during in vivo operation of the endoscope. In some aspects, the securing system includes a plurality of longitudinally spaced apart lengths of tape pre-applied to the sheath portion on the first side of the recess. In some aspects, at least some of or each of the lengths of tape has an adhesive first portion at which the tape is adhered to the sheath on the first side of the recess, and a non-adhesive second portion extending from the first portion. In some aspects, at least some of or each of the lengths of tape has an adhesive third portion extending from the second portion and terminating in a free end.
In some aspects, the securing system further includes a removable non-adhesive protective strip over the third portion.
In some aspects, the protective strip extends into a tab with a free end protruding between the free end and the first portion.
Additionally or alternatively, the protective strip extends into an L-shaped non-adhesive tab. Additionally or alternatively, the tab has indicia indicating a direction in which the tab should be pulled to expose the third portion.
Additionally or alternatively, the protective strip has a contrasting color to the sheath portion.
In some aspects, each length of tape has a perforation between the, at, or near a junction of the second and third portions of the tape.
In some aspects, the securing system includes a first length of tape pre-applied at a distal end of the sheath portion, a second length of tape pre-applied at a central portion of the sheath portion, and a third length of tape pre-applied to the sheath portion between the first and second lengths of tape.
In some aspects, the sheath portion defines at least one lumen in a wall of the sheath portion.
In some aspects, the cap assembly is a suturing assembly including a movably mounted needle holder. In some aspects, operation of the proximal handle assembly moves the needle holder on the cap assembly.
In accordance with various principles of the present disclosure, a method of securing an endoscopic apparatus to an endoscope includes securing an endoscope having an external sheath to an endoscope. In some aspects, the endoscope has a circumference and a first length, and the sheath has a second length configured to extend about at least a portion of the circumference of the endoscope along at least a portion of the first length of the endoscope. In some aspects, the method includes providing the sheath with pre-applied portions of tape along second length; extending the sheath about the portion of the circumference of the endoscope along the first length; and wrapping the pre-applied portions of tape about a periphery of the endoscope and sheath to secure the sheath to the endoscope.
In some aspects, at least one or each pre-applied portion of tape includes an adhesive first portion at which the portion of tape is adhered to the sheath. Additionally or alternatively, at least one or each pre-applied portion of tape includes a non-adhesive second portion extending from the first portion. Additionally or alternatively, at least one or each pre-applied portion of tape includes an adhesive third portion extending from the second portion and terminating in a free end. Additionally or alternatively, at least one or each pre-applied portion of tape includes a removable protective strip over the third portion. In some aspects, the method further includes removing the removable protective strip from other the third portion, extending the second portion into contact with the endoscope, and adhering the third portion into contact with the sheath on an opposite side endoscope relative to the first portion.
In some aspects, the sheath defines a recess, the endoscope is inserted into the recess, and the first and third portions of the tape are located on opposite sides of the recess.
In some aspects, each pre-applied portion of tape includes a perforation. In some aspects, the method further includes releasing the endoscope from the sheath by applying a force to break the tape at the perforation. In some aspects, the tape is broken without cutting. In some aspects, the tape is broken by applying a force parallel to a longitudinal axis of the endoscope. In some aspects, the cap assembly is a suturing assembly including a movably mounted needle holder.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus for use with an endoscope includes a proximal handle assembly; a distal cap assembly; a sheath; a first catheter; a second catheter; and a transmission cable. In some aspects, the distal cap assembly is adapted to be positioned adjacent the distal end of the endoscope. In some aspects, the cap assembly has an end effector movable thereon. In some aspects, the sheath is a crescent-shaped flexible sheath. Additionally or alternatively, the sheath has a longitudinal side-opening recess sized to receive a portion of the endoscope between the handle assembly and the cap assembly. Additionally or alternatively, the sheath defines a first lumen, a second lumen, and a third lumen. In some aspects, the first catheter extends in and distally beyond the first lumen to the cap assembly. In some aspects, the second catheter extends in and distally beyond the second lumen to the cap assembly. In some aspects, the transmission cable extends from the handle assembly. In some aspects, the transmission assembly extends from the handle assembly into the third lumen. In some aspects, the transmission assembly extends distally beyond the third lumen to the cap assembly. In some aspects, the transmission assembly is operably coupled to the end effector. In some aspects, operation of the handle assembly moves the transmission cable to operate the end effector.
In some aspects, the cap assembly is a suturing assembly and the end effector is a needle holder.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus is configured for use with an endoscope having a proximal end and a distal end, an instrument channel, and a lens. In accordance with various principles of the present disclosure, the endoscopic apparatus includes a proximal handle; a distal cap assembly; and a central portion extending between the handle and cap assembly. In some aspects, the distal cap assembly defines an assembly for interacting with tissue. In some aspects, the distal cap assembly is adapted to be positioned adjacent the distal end of the endoscope. In some aspects, the distal cap assembly includes a clip to receive the distal end of the endoscope. In some aspects, the distal cap assembly includes a stop to limit distal travel of the endoscope. In some aspects, the stop has indicia against which a feature of the endoscope is rotationally aligned to ensure appropriate orientation of the lens and instrument channel of the endoscope without obstruction thereof. In some aspects, the central portion extends between the handle and cap assembly.
In some aspects, the stop is adapted to function with endoscopes from multiple manufacturers.
In some aspects, the cap assembly is a suturing assembly including a movably mounted needle holder. In some aspects, operation of the proximal handle moves the needle holder on the cap assembly.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic apparatus for use with an endoscope includes a proximal handle assembly; a distal cap assembly; a sheath; at least one catheter; and a pull string. In some aspects, the distal cap assembly is adapted to couple to the distal end of the endoscope spaced from the handle assembly by a first length. In some aspects, the sheath is a flexible sheath. In some aspects, the sheath has a proximal end and a distal end, the proximal end attached to the handle assembly. In some aspects, the sheath extends a second length less than the first length. In some aspects, the difference between the first length and the second length defines a gap. In some aspects, the sheath is adapted to extend at least partially about an exterior of the endoscope. In some aspects, the sheath defines at least one lumen. In some aspects, the at least one catheter extends through the at least one lumen from the proximal end of the sheath. In some aspects, the at least one catheter extends beyond the distal end of the sheath. In some aspects, the at least one catheter is fixed to the cap assembly. In some aspects, the pull string has a proximal end and a distal end. In some aspects, the pull string extends from the proximal end of the sheath, through the at least one lumen, out of the distal end of the sheath. In some aspects, the distal end of the pull string is fixed to the cap assembly. In some aspects, the proximal end of the pull string extends from an opening in the handle assembly. In some aspects, when the proximal end of the pull string is retracted relative to the handle, the distal end of the pull string is tensioned to cause the catheter to flex and draw the cap assembly into retroflexion across the gap.
In some aspects, the distal cap assembly is a suturing assembly including a needle movable relative to the at least one catheter. In some aspects, the pull string extends through a common lumen with a transmission cable for operating the suturing assembly.
In some aspects, the apparatus includes a pull handle attached to the proximal end of the pull string. In some aspects, the proximal handle assembly is adapted to releasably store the pull handle.
In some aspects, the apparatus further includes a locking system to temporarily retain the pull string under tension. In some aspects, the proximal handle assembly includes the locking system. In some aspects, the locking system includes a post having a seat and a washer provided over the post on the seat. In some aspects, the proximal end of the pull string is retained in position on the post. In some aspects, the proximal end of the pull string is retained in position on the post when wrapped around the post between the seat and the washer. In some aspects, the washer is made of a resilient material.
In accordance with various principles of the present disclosure, an example of an embodiment of an endoscopic system includes an endoscope and an external instrument channel device couplable to the endoscope. In some aspects, the endoscope has a proximal end and a distal end and an outer surface extending between the proximal and distal ends. In some aspects, the proximal end has a first handle. In some aspects, the distal end is adapted to retroflex upon actuation of the proximal end. In some aspects, the instrument channel device has a second handle. In some aspects, the instrument channel device has a sheath adapted to be coupled in close proximity to the outer surface of the endoscope between the proximal and distal ends. In some aspects, the instrument channel device has a cap removably coupled to the distal end of the endoscope. In some aspects, the instrument channel device has an instrument channel extending from the distal end of the sheath to the cap. In some aspects, the instrument channel device has a pull string extending from the second handle, through the sheath, and fixed relative to the cap. In some aspects, when the pull string is placed under tension, the cap is biased into a retroflex position about the instrument channel.
In some aspects, the cap is part of a suturing assembly.
In some aspects, the system further includes a pull handle attached to the proximal end of the pull string. In some aspects, the external instrument channel device includes a proximal handle assembly. In some aspects, the proximal handle assembly is adapted to releasably store the pull handle.
In some aspects, the system further includes a locking system to temporarily retain the pull string under tension. In some aspects, the external instrument channel device includes a proximal handle assembly, and the proximal handle assembly is provided with the locking system. In some aspects, the locking system includes a post having a seat and a washer provided over the post on the seat. In some aspects, the proximal end of the pull string is retained in position on the post. In some aspects, the proximal end of the pull string is retained in position on the post when wrapped around the post between the seat and the washer.
The suturing assemblies described above are adapted for use with an endoscope that does not necessarily have at least two instrument channels. As such, the suturing system can be used with smaller endoscopes that are available in many surgical settings and which can be more easily advanced through a natural orifice. In addition, as indicated aspects of the system can be used in other surgical treatment settings other than for suturing.
There have been described and illustrated herein embodiments of a suturing system as well as a surgical treatment system, as well as methods of using the same. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular instruments and devices for advancement through the first and second lumen have been disclosed, it will be appreciated that other instruments can also be used through such lumen for like or even different purpose. Also, while the treatment system has been particularly described with respect to a cap assembly having an end effector in the form of a needle arm that carries a needle, it is recognized that alternatively one or more movable end effectors with other structure and purpose can be provided to the cap assembly. Also, while a tissue anchor in the form of a needle assembly has been described, the end effector can deploy different types of tissue anchors, including, e.g., clips. In addition, while a particular needle assembly has been described, other needle assemblies can similarly be used. Also, the size and instrument channel features of the endoscope with which the system is used is not critical, it is appreciated that various prior art systems cannot be properly used in a suturing operation in conjunction with endoscopes having fewer than two instrument channels, one for receiving a needle exchange device and the other for receiving a tissue retractor, whereas the present system is capable of complete operation without the provision of any channels through the endoscope. Further, while it is indicated that various features described herein are not limited to suturing applications, such as the retroflex system, it is specifically recognized that the retroflex system may be used in association with a cap assembly adapted to provide various other surgical applications including, but not limited to, staplers, clip appliers, band ligatures, tissue manipulating instruments, cutting instruments, forceps, biopsy instruments, injection devices, as well as cap assemblies that have no significant function other than to support external catheters for passthrough of instruments. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its scope as claimed.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of illustrative examples of embodiments only, and is not intended as limiting the broader aspects of the present disclosure.
All apparatuses and methods discussed herein are examples of apparatuses and/or methods implemented in accordance with one or more principles of this disclosure. These examples are not the only way to implement these principles but are merely examples, not intended as limiting the broader aspects of the present disclosure. Thus, references to elements or structures or features in the drawings must be appreciated as references to examples of embodiments of the disclosure, and should not be understood as limiting the disclosure to the specific elements, structures, or features illustrated. Other examples of manners of implementing the disclosed principles will occur to a person of ordinary skill in the art upon reading this disclosure. It should be apparent to those of ordinary skill in the art that variations can be applied to the disclosed devices, systems, and/or methods, and/or to the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the disclosure. It will be appreciated that various features described with respect to one embodiment typically may be applied to another embodiment, whether or not explicitly indicated. The various features hereinafter described may be used singly or in any combination thereof. Therefore, the present invention is not limited to only the embodiments specifically described herein, and all substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the disclosure as defined by the appended claims. Various further benefits of the various aspects, features, components, and structures of devices and systems such as described above, in addition to those discussed above, may be appreciated by those of ordinary skill in the art.
The foregoing discussion has broad application and has been presented for purposes of illustration and description and is not intended to limit the disclosure to the form or forms disclosed herein. It will be understood that various additions, modifications, and substitutions may be made to embodiments disclosed herein without departing from the concept, spirit, and scope of the present disclosure. In particular, it will be clear to those skilled in the art that principles of the present disclosure may be embodied in other forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the concept, spirit, or scope, or characteristics thereof. For example, various features of the disclosure are grouped together in one or more aspects, embodiments, or configurations for the purpose of streamlining the disclosure. However, it should be understood that various features of the certain aspects, embodiments, or configurations of the disclosure may be combined in alternate aspects, embodiments, or configurations. While the disclosure is presented in terms of embodiments, it should be appreciated that the various separate features of the present subject matter need not all be present in order to achieve at least some of the desired characteristics and/or benefits of the present subject matter or such individual features. One skilled in the art will appreciate that the disclosure may be used with many modifications or modifications of structure, arrangement, proportions, materials, components, and otherwise, used in the practice of the disclosure, which are particularly adapted to specific environments and operative requirements without departing from the principles or spirit or scope of the present disclosure. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of elements may be reversed or otherwise varied, the size or dimensions of the elements may be varied. Similarly, while operations or actions or procedures are described in a particular order, this should not be understood as requiring such particular order, or that all operations or actions or procedures are to be performed, to achieve desirable results. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the claimed subject matter being indicated by the appended claims, and not limited to the foregoing description or particular embodiments or arrangements described or illustrated herein. In view of the foregoing, individual features of any embodiment may be used and can be claimed separately or in combination with features of that embodiment or any other embodiment, the scope of the subject matter being indicated by the appended claims, and not limited to the foregoing description.
In the foregoing description and the following claims, the following will be appreciated. The phrases “at least one”, “one or more”, and “and/or”, as used herein, are open-ended expressions that are both conjunctive and disjunctive in operation. The terms “a”, “an”, “the”, “first”, “second”, etc., do not preclude a plurality. For example, the term “a” or “an” entity, as used herein, refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. As used herein, the conjunction “and” includes each of the structures, components, features, or the like, which are so conjoined, unless the context clearly indicates otherwise, and the conjunction “or” includes one or the others of the structures, components, features, or the like, which are so conjoined, singly and in any combination and number, unless the context clearly indicates otherwise. All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, counterclockwise, and/or the like) are only used for identification purposes to aid the reader's understanding of the present disclosure, and/or serve to distinguish regions of the associated elements from one another, and do not limit the associated element, particularly as to the position, orientation, or use of this disclosure. Connection references (e.g., attached, coupled, connected, engaged, joined, etc.) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. Identification references (e.g., primary, secondary, first, second, third, fourth, etc.) are not intended to connote importance or priority, but are used to distinguish one feature from another.
The following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure. In the claims, the terms “comprises”, “comprising”, “includes”, and “including” do not exclude the presence of other elements, components, features, groups, regions, integers, steps, operations, etc. Additionally, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. Reference signs in the claims are provided merely as a clarifying example and shall not be construed as limiting the scope of the claims in any way.
This application claims the benefit of priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 63/464,007, filed May 4, 2023, the entire disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
63464007 | May 2023 | US |