1. Field of the Invention
The present invention relates to a natural orifice endoscopic treatment instrument to treat tissue, and a tissue incision method.
2. Background Art
Natural orifice endoscopic treatment necessary for a patient suffering from a bile duct stone includes feeding a treatment instrument from a flexible endoscope inserted through a duodenam and introducing the treatment instrument into a bile duct through a duodenal papilla. Some treatments include EST (Endoscopic sphincterotomy) for incising a constrictor of the duodenal papilla so that a significant opening for the instrument introduction can be obtained by expanding the opening of the duodenal papilla in advance.
A known treatment instrument suitable for EST is a stylet high-frequency treatment instrument called a needle knife. A needle knife has a stylet electrode that is capable of extending and retracting relative to the tip of a catheter. A conventional needle knife is disclosed by, for example Japanese Unexamined Utility Model (Registration) Application Publication No. S62-50610. The needle knife has a stopper structure at the tip of a catheter so as to regulate a protrusion length of an electrode. U.S. Pat. No. 5,536,248 discloses a multi-lumen type needle knife having a lumen allowing a guidewire to be inserted therethrough in addition to a lumen having an electrode passing therethrough. An inserted guidewire facilitates an approach of a needle knife to a duodenal papilla and the introduction of another treatment instrument into a bile duct.
A needle knife of this type for use in EST protrudes an electrode from a tip of a catheter and makes the electrode contact a section where one is willing to incise. One must protrude the electrode farther than required for incision since the thickness of a duodenal papilla constrictor differs patient by patient, and since the protrusion length of the electrode is difficult to identify in images obtained through the endoscope. Operating the endoscope to move the electrode incises the constrictor along the path of the electrode movement. Since cholangiography is inoperative in ordinary EST, an endoscopist conducting sphincterotomy along the bile duct predicts directions in the bile duct and the thickness of the bile duct wall based on experience. Therefore, repeating shallow incisions allows the endoscopist to prevent the occurrence of gastrointestinal tract perforation and bleeding. Repeated shallow incisions are carried out with only a part of the electrode tip protruding from the catheter where incision is added according to necessity.
An endoscopic treatment instrument according to a first embodiment of the present invention includes: a flexible catheter inserted through a channel in an endoscope; a conductive electrode capable of freely extending and retracting through the catheter; and an insulator extending and retracting together with the electrode relative to the catheter so that the insulator isolates, not a distal end portion of the electrode, but the rest of the electrode protruding from the catheter.
A tissue incision method according to a second embodiment of the present invention includes: inserting an endoscope into the body through a natural orifice of a patient; inserting a catheter as an endoscopic treatment instrument through a channel formed in the endoscope; protruding a distal end portion of the electrode together with the insulator from the catheter, the distal end portion of the electrode being exposed and protruding from the insulator; moving together the electrode and the insulator protruding from the catheter; and incising a tissue.
An embodiment will be hereinafter described in detail with reference to the accompanying drawings.
As illustrated in
The flexible insertion section 3 constitutes an insulative catheter 10 having three lumens formed therein. Provided to a distal end of the catheter 10 are a mark 11A and a chip 11B that does not allow X rays to pass therethrough. The distal end portion of the catheter 10 is reduced in diameter and imparted a pre-curve shape for easy approach toward a duodenal papilla. The distal end of the catheter 10 may be without a pre-curve configuration, i.e., with a linear configuration.
Formed in the catheter 10 are a liquid-feeding lumen 12, a guide lumen 13, and a electrode lumen 14, each having an opening on the distal end surface 10A of the catheter 10 as illustrated in
A cylindrical stopper 17 is placed in the electrode lumen 14. The stopper 17 is fixed to the wall surface of the incision section 15 due to the engagement of the periphery wedge-shape protrusions thereof. More specifically, the wedges are configured to have a more significant engagement in a direction in which the stopper 17 is pushed toward the distal end. The electrode 15 passing through an inner hole of the stopper 17 extends toward the distal end. An abutment 18 is fixed closer to a proximal end relative to the position of the disposed stopper 17. The outer diameter of the abutment 18 is greater than the inner hole of the stopper 17 so that the abutment 18 does not hinder the extension and retraction of the electrode 15 in the electrode lumen 14. The electrode 15 can therefore extend until the abutment 18 makes contact with the stopper 17.
The electrode 15 is made from conductive material having elasticity. Except for a part of the electrode 15, the distal end thereof is covered with an insulating-material-made tube 19. The tube 19 is preferably made from a high-melting-point material, namely a fluorine resin because Joule heat is applied during tissue incision. The proximal end 19A of the tube 19 continuously housed in the electrode lumen 14 is never removed from the distal end surface 10A of the catheter 10 while the abutment 18 makes contact with the stopper 17 as illustrated in
In addition, imparting coloration, e.g., light-blue, to the tube 19 renders the image of the tube 19 obtained through the endoscope distinguishable from other parts in contrast, thereby facilitating observation of the position of the tube 19. The incision depth of the electrode 15 is easily identified by observing the tube 19.
As illustrated in
A first connection section 27 extends from a side of the guidewire insertion section 25 toward the second operation section 23. A receiver 28 is disposed to recess at a distal end portion of the first connection section 27 and supports the second operation section 23. In addition, a second connection section 29 is disposed on the opposite side of the guidewire insertion section 25. The second connection section 29 has a U-shape or C-shape in which a part of an elastic plate member is cut away so that an opening end formed by the cut-away part is formed from a tip of the guidewire insertion section 25 to an outer periphery in a radial direction. The first connection section 27 and the second connection section 29 are disposed in a surface including an axial line of the guidewire insertion section 25.
The second operation section 23 constitutes of the catheter 10 passing and extending through the first branch section 21; and a connector 31 joined to an end of the catheter 10. Formed in the connector 31 are protrusions, not shown in the drawings, that engage the catheter 10 to prevent the catheter 10 from moving relative to the connector 31. As illustrated in
As illustrated in
A manipulation using the needle knife 1 will be explained next.
A side-view endoscope is inserted from a natural orifice of a patient, e.g., a mouth and introduced to a duodenal papilla while observing with an observation apparatus provided to the distal end of the endoscope. Instead of the mouth, another natural orifice, e.g., a nose may be used.
As illustrated in
As illustrated in
Holding of the second operation section 23 with fingers and forwarding the slider 37 along the sliding section 35 allow the electrode 15 together with the tube 19 to move, thereby protruding them from the distal end surface 10A of the catheter 10. For example, the length of the incision section 15A exposed from the electrode 15 that is covered by the tube 19 is 1 to 3 mm even if a manipulation moves the electrode 15 forward by 5 mm. The electrode 15 is located downward at a predetermined incision position of the duodenal papilla Dn by a bending operation, i.e., angle-changing manipulations for the endoscope 41 by the endoscopost observing the electrode 15 in an image obtained by the endoscope.
The plug 38 of the slider 37 is connected to the high frequency power source, and high-frequency voltage is charged to the electrode 15. High frequency electric current flowing from the electrode 15 through a tissue toward the ground, not illustrated in the drawings, disposed in the exterior of the patient's body burns and incises the tissue of the duodenal papilla Dn. The catheter 10 is further raised by manipulating the raising block 44. As illustrated in
Sometimes the tissue moves from a position indicated by a broken line to a position indicated by a continuous line while a manipulation is carried out to a patient as illustrated in
Upon completing the first incision properly, the endoscopist observes the incision part in an image obtained through the endoscope. An additional incision necessitates further forwarding the catheter 10. Alternatively, the electrode 15 should be further forwarded. Although the catheter 10 or the electrode 15 is further protruded, the presence of the tube 19 maintains the length of the exposed electrode 15 at 1 to 3 mm that is equal to the length of the incision section 15A. The electrode 15 is located across the once-incised portion as illustrated in
The slider 37 is drawn back upon obtaining an opening having a significant size by incising from the duodenam to the bile duct. The electrode 15 together with the tube 19 is housed in the catheter 10. As illustrated in
Subsequently the needle knife 1 is retracted from the bile duct Bt while the guidewire 51 remains in the bile duct Bt. Furthermore, another instrument, e.g., a basket forceps is inserted through the bile duct Bt to conduct necessary treatments in place of the needle knife 1 retracted from the operation channel 45 of the endoscope 41. The guidewire 51 guides and introduces the other instrument into the bile duct Bt. Upon completing the treatment, the instruments and the guidewire 51 are retracted from the patient followed by the endoscope 41.
here, the endoscopist may manipulate the endoscope 41 while a supporter uses the operation section 2 in turn to manipulate the needle knife 1 in accordance with the endoscopist's instructions. In contrast, the connection between the connector 31 and the first connection section 27 is released when the endoscopist and the supporter share the operation of the needle knife 1 or the endoscopist solely operates the needle knife 1. As illustrated in
In addition, adjustably rotating the connector 31 around the receiver 28 of the first connection section 27 permits easy operation thereof for the endoscopist. Adjusting the direction of connector 31 relative to the receiver 28 is easy due to loose engagement between them. Maintaining the directions thereof is also easy even if they are untouched.
The connection between the first connection section 27 and the connector 31 is released in a case where the endoscopist manipulates the guidewire 51 and the supporter handles extension and retraction of the electrode 15 and the liquid supply. Operation by the supporter is easy since the sliding section 35 and the liquid-feeding section 34 can be disposed separately from the endoscope 41 having disposition freedom, i.e., the flexible catheter 10.
The present embodiment allows the length of the electrode 15 contributing to incision to be maintained at a constant length, thereby providing easy control for the incision depth even if the observation of the electrode 15 in an image obtained through the endoscope necessitates the protrusion thereof more than that of the incision. Extreme caution must be taken in conventional configurations where a deeper incision than planned is likely to be caused by an unexpected movement of a section to be incised because the protrusion of an electrode is longer than the required incision length. The needle knife 1 prevents such unexpected incisions, thereby reducing the endoscopist's stress. The needle knife 1 can solve the problem that delicate treatments were difficult in the conventional configurations since incisions with an electrode having a constant protrusion length require providing additional pushing force to a catheter into a previously-incised portion.
The stopper 17 placed in the catheter 10 prevents excessive protrusion of the electrode 15. Furthermore, an unexpected incision can be avoided since the maximum protrusion of the electrode 15 exposes only the distal end portion of the electrode 15 from the tube 19. The protrusion length of the electrode 15 even bending in the middle of the elongated catheter 10 can be controlled since the stopper 17 is disposed at the distal end portion of the catheter 10. The tube 19 is provided to only a portion of toward a distal end relative to the stopper 17. The catheter 10 having a thinner diameter and sufficient flexibility than can be obtained in a case where a catheter is disposed over an entire length of the electrode lumen 14.
Since the length of the incision section 15A of the electrode 15 exposed from the tube 19 is 1 to 3 mm, an incision or two can provide the necessary opening regardless of a personal difference in thickness of the portion to be incised. Certainly incisions may be divided and carried out in more than three times.
In addition, the catheter 10 may be of a single lumen structure without the guide lumen 13 or the liquid-feeding lumen 12. The catheter 10 may be constituted of the electrode lumen 14 and one of the lumens 12 and 13.
The distal end portion of the needle knife 1 may be in a spatula shape or hook shape in place of the needle-shaped distal end of the stylet high-frequency treatment instrument that has been explained with respect to the electrode 15. In these cases, the tube 19 covers except the distal end portion. The exposure length of the electrode 15 is adjusted so that an incision or two can provide the necessary opening.
The needle knife 1 and the manipulation may be employed in ESD (Endoscopic Submucosal Dissection). The endoscope 41 may be inserted from another natural orifice such as a nose.
Although the preferred embodiment has been explained, note that the present invention is not limited to the above descriptions but is limited only by the appended claims.
The insulative member applied to the needle knife 1 may be coating as long as it imparts insulation to the electrode 15 in place of the tube 19 that was referred to in the previous explanation.