Endothelin antagonists

Information

  • Patent Grant
  • 7365093
  • Patent Number
    7,365,093
  • Date Filed
    Wednesday, February 23, 2005
    19 years ago
  • Date Issued
    Tuesday, April 29, 2008
    16 years ago
Abstract
A compound of the formula (I):
Description
TECHNICAL FIELD

The present invention relates to compounds which are endothelin antagonists, processes for making such compounds, synthetic intermediates employed in these processes and methods and compositions for antagonizing endothelin.


BACKGROUND OF THE INVENTION

Endothelin (ET) is a 21 amino acid peptide that is produced by endothelial cells. ET is produced by enzymatic cleavage of a Trp-Val bond in the precursor peptide big endothelin (Big ET). This cleavage is caused by an endothelin converting enzyme (ECE). Endothelin has been shown to constrict arteries and veins, increase mean arterial blood pressure, decrease cardiac output, increase cardiac contractility in vitro, stimulate mitogenesis in vascular smooth muscle cells in vitro, contract non-vascular smooth muscle including guinea pig trachea, human urinary bladder strips and rat uterus in vitro, increase airway resistance in vivo, induce formation of gastric ulcers, stimulate release of atrial natriuretic factor in vitro and in vivo, increase plasma levels of vasopressin, aldosterone and catecholamines, inhibit release of renin in vitro and stimulate release of gonadotropins in vitro.


It has been shown that vasoconstriction is caused by binding of endothelin to its receptors on vascular smooth muscle (Nature 332 411 (1988), FEBS Letters 231 440 (1988) and Biochem. Biophys. Res. Commun. 154 868 (1988)). An agent which suppresses endothelin production or an agent which binds to endothelin or which inhibits the binding of endothelin to an endothelin receptor will produce beneficial effects in a variety of therapeutic areas. In fact, an anti-endothelin antibody has been shown, upon intrarenal infusion, to ameliorate the adverse effects of renal ischemia on renal vascular resistance and glomerular filtration rate (Kon, et al., J. Clin. Invest. 83 1762 (1989)). In addition, an anti-endothelin antibody attenuated the nephrotoxic effects of intravenously administered cyclosporin (Kon, et al., Kidney Int. 37 1487 (1990)) and attenuated infarct size in a coronary artery ligation-induced myocardial infarction model (Watanabe, et al., Nature 344 114 (1990)).


Clozel et al. (Nature 365: 759-761 (1993)) report that Ro 46-2005, a nonpeptide ET-A/B antagonist, prevents post-ischaemic renal vasoconstriction in rats, prevents the decrease in cerebral blood flow due to subarachnoid hemorrhage (SAH) in rats, and decreases MAP in sodium-depleted squirrel monkeys when dosed orally. A similar effect of a linear tripeptide-like ET-A antagonist, BQ-485, on arterial caliber after SAH has also been recently reported (S. Itoh, T. Sasaki, K. Ide, K. Ishikawa, M. Nishikibe, and M. Yano, Biochem. Biophys. Res. Comm., 195: 969-75 (1993). These results indicate that agents which antagonize ET/ET receptor binding will provide therapeutic benefit in the indicated disease states.


Agents with the ability to antagonize ET/ET receptor binding have been shown to be active in a number of animal models of human disease. For example, Hogaboam et al (EUR. J. Pharmacol. 1996, 309, 261-269), have shown that an endothelin receptor antagonist reduced injury in a rat model of colitis. Aktan et al (Transplant Int 1996, 9, 201-207) have demonstrated that a similar agent prevents ischemia-reperfusion injury in kidney transplantation. Similar studies have suggested the use of endothelin antagonists in the treatment of angina, pulmonary hypertension, Raynaud's disease, and migraine. (Ferro and Webb, Drugs 1996, 51, 12-27).


Abnormal levels of endothelin or endothelin receptors have also been associated with a number of disease states, including prostate cancer (Nelson et al, Nature Medicine 1995, 1, 944-949), suggesting a role of endothelin in the pathophysiology of these diseases.


Wu-Wong et al (Lfe Sciences 1996, 58, 1839-1847) have shown that both endothelin and endothelin antagonists bind tightly to plasma proteins, e.g., serum albumin. This plasma protein binding can decrease the effectiveness with which the antagonists inhibit endothelin's action. Thus, endothelin antagonists with reduced plasma protein binding may be more effective than highly bound congeners.


DISCLOSURE OF THE INVENTION

In accordance with the present invention there are compounds of the formula (I):




embedded image



wherein

  • Z is —C(R18)(R19)— or —C(O)— wherein R18 and R19 are independently selected from hydrogen and loweralkyl;
  • n is 0 or 1;
  • R is —(CH2)m—W wherein m is an integer from 0 to 6 and W is
    • (a) —C(O)2-G wherein G is hydrogen or a carboxy protecting group,
    • (b) —PO3H2,
    • (c) —P(O)(OH)E wherein E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 wherein R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j) alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl, aryl or dialkylamino,
    • (m) —S(O)2NHC(O)R16 wherein R16 is defined as above,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;

  • R3 is (a) R4—C(O)—R5—, R4—R5a—, R4—C(O)—R5—N(R6)—, R6—S(O)2—R7— or R26—S(O)—R27
    • wherein R5 is (i) a covalent bond, (ii) alkylene, (iii) alkenylene, (iv) —N(R20)—R8— or —R8a—N(R20)—R8
    • wherein R8 and R8a are independently selected from the group consisting of alkylene and alkenylene
    • and R20 is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, cylcoalkyl or cycloalkylalkyl or (v) —O—R9— or —R9a—O—R9— wherein R9 and R9a are independently selected from alkylene;
    • R5a is (i) alkylene or (ii) alkenylene;
    • R7 is (i) a covalent bond, (ii) alkylene, (iii) alkenylene or (iv) —N(R21)—R10— or —R10a—N(R21)—R10— wherein R10 and R10a are independently selected from the group consisting of alkylene and alkenylene and R21 is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl or arylalkyl;
    • R4 and R6 are independently selected from the group consisting of
      • (i) (R11)(R12)N— wherein R11 and R12 are independently selected from
        • (1) hydrogen,
        • (2) loweralkyl,
        • (3) haloalkyl,
        • (4) alkoxyalkyl,
        • (5) haloalkoxyalkyl,
        • (6) alkenyl,
        • (7) alkynyl,
        • (8) cycloalkyl,
        • (9) cycloalkylalkyl,
        • (10) aryl,
        • (11) heterocyclic,
        • (12) arylalkyl,
        • (13) (heterocyclic)alkyl,
        • (14) hydroxyalkyl,
        • (15) alkoxy,
        • (16) aminoalkyl,
        • (17) trialkylaminoalkyl,
        • (18) alkylaminoalkyl,
        • (19) dialkylaminoalkyl, and
        • (20) carboxyalkyl,
      • (ii) loweralkyl,
      • (iii) alkenyl,
      • (iv) alkynyl,
      • (v) cycloalkyl,
      • (vi) cycloalkylalkyl,
      • (vii) aryl,
      • (viii) arylalkyl,
      • (ix) heterocyclic,
      • (x) (heterocyclic)alkyl,
      • (xi) alkoxyalkyl,
      • (xii) hydroxyalkyl,
      • (xiii) haloalkyl,
      • (xiv) haloalkenyl,
      • (xv) haloalkoxyalkyl,
      • (xvi) haloalkoxy,
      • (xvii) alkoxyhaloalkyl,
      • (xviii) alkylaminoalkyl,
      • (xix) dialkylaminoalkyl,
      • (xx) alkoxy, and





embedded image






      • wherein z is 0-5 and R7a is alkylene;



    • R26 is (i) loweralkyl, (ii) haloalkyl, (iii) alkenyl, (iv) alkynyl, (v) cycloalkyl, (vi) cycloalkylalkyl, (vii) aryl, (viii) arylalkyl, (ix) heterocyclic, (x) (heterocyclic)alkyl, (xi) alkoxyalkyl or (xii) alkoxy-substituted haloalkyl; and

    • R27 is alkylene or alkenylene;

    • (b) R22—O—C(O)—R23— wherein R22 is a carboxy protecting group or heterocyclic and R23 is (i) a covalent bond, (ii) alkylene, (iii) alkenylene or (iv) —N(R24)—R25— wherein R25 is alkylene and R24 is hydrogen or loweralkyl,

    • (c) loweralkyl,

    • (d) alkenyl,

    • (e) alkynyl,

    • (f) cycloalkyl,

    • (g) cycloalkylalkyl,

    • (h) aryl,

    • (i) arylalkyl,

    • (j) aryloxyalkyl,

    • (k) heterocyclic,

    • (l) (heterocyclic)alkyl,

    • (m) alkoxyalkyl,

    • (n) alkoxyalkoxyalkyl, or

    • (o) R13—C(O)—CH(R14)—
      • wherein R13 is amino, alkylamino or dialkylamino and R14 is aryl or R15—C(O)— wherein R15 is amino, alkylamino or dialkylamino;


        or a pharmaceutically acceptable salt thereof.





A preferred embodiment of the invention is a compound of formula (II)




embedded image



wherein the substituents —R2, —R and —R1 exist in a trans,trans relationship and Z, n, R, R1, R2, and R3 are as defined above.


Another preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0 and Z is —CH2—.


Another preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 1 and Z is —CH2—.


Another preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, and R3 is R4—C(O)—R5—, R6—S(O)2—R7— or R26—S(O)—R27— wherein R4, R5, R6, R7, R26 and R27 are as defined above.


Another preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, and R3 is alkoxyalkyl or alkoxyalkoxyalkyl.


A more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined above and R5 is alkylene or R3 is R6—S(O)2—R7— or R26—S(O)—R27— wherein R7 is alkylene, R27 is alkylene and R6 and R26 are defined as above.


Another more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2— and R3 is R4—C(O)—N(R20)—R8— or R6—S(O)2—N(R21)—R10— wherein R8 and R10 are alkylene and R4, R6, R20 and R21 are defined as above.


An even more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is tetrazolyl or —C(O)2-G wherein G is hydrogen or a carboxy protecting group or R is tetrazolyl or R is —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 and R2 are independently selected from (i) loweralkyl, (ii) cycloalkyl, (iii) substituted aryl wherein aryl is phenyl substituted with one, two or three substituents independently selected from loweralkyl, alkoxy, halo, alkoxyalkoxy and carboxyalkoxy, (iv) substituted or unsubstituted heterocyclic, (v) alkenyl, (vi) heterocyclic (alkyl), (vii) arylalkyl, (viii) aryloxyalkyl, (ix) (N-alkanoyl-N-alkyl)aminoalkyl and (x) alkylsulfonylamidoalkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from loweralkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl, arylalkyl, heterocyclic, hydroxyalkyl, alkoxy, aminoalkyl, and trialkylaminoalkyl, and R5 is alkylene; or R3 is R4—C(O)—N(R20)—R8— or R6—S(O)2—N(R21)—R10— wherein R4 is loweralkyl, aryl, alkoxy, alkylamino, aryloxy or arylalkoxy and R6 is loweralkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl or arylalkyl, R8 and R10 are alkylene and R20 and R21 are loweralkyl; or R3 is R6—S(O)2—R7— or R26—S(O)—R27— wherein R6 is loweralkyl or haloalkyl, R7 is alkylene, R26 is loweralkyl and R27 is alkylene.


A yet more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 is (i) loweralkyl, (ii) alkenyl, (iii) alkoxyalkyl, (iv) cycloalkyl, (v) phenyl, (vi) pyridyl, (vii) furanyl, (viii) substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 3-fluorophenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 3-fluoro-4-methoxyphenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-t-butylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from alkoxy, alkoxyalkoxy and carboxyalkoxy, (ix) heterocyclic (alkyl), (x) arylalkyl, (xi) aryloxyalkyl, (xii) (N-alkanoyl-N-alkyl)aminoalkyl, or (xiii) alkylsulfonylamidoalkyl, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—N(R20)—R8— or R6—S(O)2—N(R21)—R10— wherein R8 and R10 are alkylene, R20 and R21 are loweralkyl, R4 is loweralkyl, aryl, alkoxy, alkylamino, aryloxy or arylalkoxy and R6 is loweralkyl, haloalkyl, alkoxyalkyl, aryl or arylalkyl.


Another yet more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 is (i) loweralkyl, (ii) alkenyl, (iii) alkoxyalkyl, (iv) cycloalkyl, (v) phenyl, (vi) pyridyl, (vii) furanyl, (viii) substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 3-fluorophenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 3-fluoro-4-methoxyphenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-t-butylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from alkoxy, alkoxyalkoxy and carboxyalkoxy, (ix) heterocyclic (alkyl), (x) arylalkyl, (xi) aryloxyalkyl, (xii) (N-alkanoyl-N-alkyl)aminoalkyl, or (xiii) alkylsulfonylamidoalkyl, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from loweralkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl, arylalkyl, heterocyclic, hydroxyalkyl, alkoxy, aminoalkyl, and trialkylaminoalkyl.


Another yet more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 is (i) loweralkyl, (ii) alkenyl, (iii) heterocyclic (alkyl), (iv) aryloxyalkyl, (v) arylalkyl, (vi) aryl, (vii) (N-alkanoyl-N-alkyl)aminoalkyl, or (viii) alkylsulfonylamidoalkyl, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R1)(R12)N— wherein R11 is loweralkyl and R12 is aryl, arylalkyl, hydroxyalkyl, alkoxy, aminoalkyl, trialkylaminoalkyl, or heterocyclic.


Another yet more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 is (i) loweralkyl, (ii) alkenyl, (iii) heterocyclic (alkyl), (iv) aryloxyalkyl, (v) arylalkyl, (vi) (N-alkanoyl-N-alkyl)aminoalkyl, or (vii) alkylsulfonylamidoalkyl, (vii) phenyl, or (ix) substituted or unsubstituted 4-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 3-fluorophenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen and R3 is R6—S(O)2—N(R21)—R10— wherein R10 is alkylene, R6 is loweralkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl or arylalkyl and R21 is loweralkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, aryl or arylalkyl.


Another yet more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl, haloalkyl or aryl, Z is —CH2—, R1 is (i) substituted or unsubstituted 4-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 3-fluorophenyl, 3-fluoro-4-ethoxyphenyl, 4-methoxymethoxyphenyl, 1,3-benzodioxolyl or 1,4-benzodioxanyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy and alkoxyalkoxy, (ii) loweralkyl, (iii) alkenyl, (iv) heterocyclic (alkyl), (v) aryloxyalkyl, (vi) arylalkyl, (vii) (N-alkanoyl-N-alkyl)aminoalkyl, (viii) alkylsulfonylamidoalkyl, or (ix) phenyl, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen and R3 is alkoxycarbonyl or R6—S(O)2—N(R21)—R10— wherein R10 is alkylene, R6 is loweralkyl, haloalkyl, alkoxyalkyl or haloalkoxyalkyl and R21 is loweralkyl, haloalkyl, alkoxyalkyl or haloalkoxyalkyl.


Another yet more preferred embodiment of the invention is a=compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl or haloalkyl, Z is —CH2—, R1 is loweralkyl, alkenyl, heterocyclic (allkyl), aryloxyalkyl, aryalkyl, aryl, (N-alkanoyl-N-alkyl)aminoalkyl, or alkylsulfonylamidoalkyl, and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R1)(R12)N— wherein R11 and R12 are independently selected from alkyl, aryl, hydroxyalkyl, alkoxy, aminoalkyl, trialkylaminoalkyl, and heterocyclic.


A still more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl or haloalkyl, Z is —CH2—, R1 is substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 2-fluorophenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-ethylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from alkoxy, alkoxyalkoxy and carboxyalkoxy, (ii) loweralkyl, (iii) alkenyl, (iv) heterocyclic (alkyl), (v) aryloxyalkyl, (vi) arylalkyl, (vii) (N-alkanoyl-N-alkyl)aminoalkyl, (viii) alkylsulfonylamidoalkyl, or (ix) phenyl, R2 is 1,3-benzodioxolyl, 1,4-benzodioxanyl, dihydrobenzofuranyl, benzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from loweralkyl, aryl, arylalkyl, hydroxyalkyl, alkoxy, aminoalkyl, trialkylaminoalkyl, or heterocyclic.


Another still more preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, tetrazolyl or —C(O)—NHS(O)2R16 wherein R16 is loweralkyl or haloalkyl, Z is —CH2—, R1 is loweralkyl, alkenyl, heterocyclic (alkyl), aryloxyalkyl, arylalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, phenyl, or alkoxyalkyl, R2 is 1,3-benzodioxolyl, 1,4-benzodioxanyl, dihydrobenzofuranyl, benzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from loweralkyl, aryl, arylalkyl, hydroxyalkyl, alkoxy, aminoalkyl, trialkylaminoalkyl, or heterocyclic.


A most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, Z is —CH2—, R1 is substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 2-fluorophenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-ethylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from alkoxy, alkoxyalkoxy and carboxyalkoxy, R2 is 1,3-benzodioxolyl, 1,4-benzodioxanyl, dihydrobenzofuranyl, benzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from loweralkyl.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, Z is —CH2—, R1 is substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 2-fluorophenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-ethylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from alkoxy, alkoxyalkoxy and carboxyalkoxy, R2 is 1,3-benzodioxolyl, 1,4-benzodioxanyl, dihydrobenzofuranyl, benzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 is loweralkyl and R12 is aryl.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, Z is —CH2—, R1 is substituted or unsubstituted 4-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 3-fluorophenyl, 2-fluorophenyl, 3-fluoro-4-ethoxyphenyl, 4-methoxymethoxyphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen and R3 is R6—S(O)2—N(R21)—R10— wherein R10 is alkylene, R6 is loweralkyl, haloalkyl, alkoxyalkyl or haloalkoxyalkyl and R21 is loweralkyl, haloalkyl or alkoxyalkyl.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, Z is —CH2—, R1 is substituted or unsubstituted 4-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 3-fluorophenyl, 2-fluorophenyl, 3-fluoro-4-ethoxyphenyl, 4-methoxymethoxyphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy, R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 is alkyl and R12 is selected from aryl, aminoalkyl, trialkylaminoalkyl, and heterocyclic.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, R is —C(O)2-G wherein G is hydrogen or a carboxy protecting group, Z is —CH2—, R1 is loweralkyl, alkenyl, heterocyclic (alkyl), aryloxyalkyl, aryalkyl, aryl, (N-alkanoyl-N-alkyl)aminoalkyl, or alkylsulfonylamidoalkyl, and R3 is R4—C(O)—R5— wherein R5 is alkylene and R4 is (R11)(R12)N— wherein R11 and R12 are independently selected from alkyl, aryl, hydroxyalkyl, alkoxy, aminoalkyl, trialkylaminoalkyl, and heterocyclic, with the proviso that one or R11 and R12 is alkyl.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, and R3 is R4—C(O)—R5— wherein R4 is (R1)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is loweralkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is alkenyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is heterocyclic (alkyl), and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is aryloxyalkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is arylalkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is aryl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is (N-alkanoyl-N-alkyl)aminoalkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


Another most highly preferred embodiment of the invention is a compound of formula (I) or (II) wherein n is 0, Z is —CH2—, R1 is alkylsulfonylamidoalkyl, and R3 is R4—C(O)—R5— wherein R4 is (R11)(R12)N— as defined therein and R5 is alkylene.


The present invention also relates to processes for preparing the compounds of formula (I) and (II) and to the synthetic intermediates employed in these processes.


The present invention also relates to a method of antagonizing endothelin in a mammal (preferably, a human) in need of such treatment, comprising administering to the mammal a therapeutically effective amount of a compound of formula (I) or (II).


The invention further relates to endothelin antagonizing compositions comprising a pharmaceutical carrier and a therapeutically effective amount of a compound of formula (I) or (II).


The compounds of the invention comprise two or more asymmetrically substituted carbon atoms. As a result, racemic mixtures, mixtures of diastereomers, as well as single diastereomers of the compounds of the invention are included in the present invention. The terms “S” and “R” configuration are as defined by the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem. (1976) 45, 13-30.


The term “carboxy protecting group” as used herein refers to a carboxylic acid protecting ester group employed to block or protect the carboxylic acid functionality while the reactions involving other functional sites of the compound are carried out. Carboxy protecting groups are disclosed in Greene, “Protective Groups in Organic Synthesis” pp. 152-186 (1981), which is hereby incorporated herein by reference. In addition, a carboxy protecting group can be used as a prodrug whereby the carboxy protecting group can be readily cleaved in vivo, for example by enzymatic hydrolysis, to release the biologically active parent. T. Higuchi and V. Stella provide a thorough discussion of the prodrug concept in “Pro-drugs as Novel Delivery Systems”, Vol 14 of the A.C.S. Symposium Series, American Chemical Society (1975), which is hereby incorporated herein by reference. Such carboxy protecting groups are well known to those skilled in the art, having been extensively used in the protection of carboxyl groups in the penicillin and cephalosporin fields, as described in U.S. Pat. Nos. 3,840,556 and 3,719,667, the disclosures of which are hereby incorporated herein by reference. Examples of esters useful as prodrugs for compounds containing carboxyl groups can be found on pages 14-21 of “Bioreversible Carriers in Drug Design: Theory and Application”, edited by E. B. Roche, Pergamon Press, New York (1987), which is hereby incorporated herein by reference. Representative carboxy protecting groups are C1 to C8 alkyl (e.g., methyl, ethyl or tertiary butyl and the like); haloalkyl; alkenyl; cycloalkyl and substituted derivatives thereof such as cyclohexyl, cylcopentyl and the like; cycloalkylalkyl and substituted derivatives thereof such as cyclohexylmethyl, cylcopentylmethyl and the like; arylalkyl, for example, phenethyl or benzyl and substituted derivatives thereof such as alkoxybenzyl or nitrobenzyl groups and the like; arylalkenyl, for example, phenylethenyl and the like; aryl and substituted derivatives thereof, for example, 5-indanyl and the like; dialkylaminoalkyl (e.g., dimethylaminoethyl and the like); alkanoyloxyalkyl groups such as acetoxymethyl, butyryloxymethyl; valeryloxymethyl, isobutyryloxymethyl, isovaleryloxymethyl, 1-(propionyloxy)-1-ethyl, 1-(pivaloyloxyl)-1-ethyl, 1-methyl-1-(propionyloxy)-1-ethyl, pivaloyloxymethyl, propionyloxymethyl and the like; cycloalkanoyloxyalkyl groups such as cyclopropylcarbonyloxymethyl, cyclobutylcarbonyloxymethyl, cyclopentylcarbonyloxymethyl, cyclohexylcarbonyloxymethyl and the like; aroyloxyalkyl, such as benzoyloxymethyl, benzoyloxyethyl and the like; arylalkylcarbonyloxyalkyl, such as benzylcarbonyloxymethyl, 2-benzylcarbonyloxyethyl and the like; alkoxycarbonylalkyl, such as methoxycarbonylmethyl, cyclohexyloxycarbonylmethyl, 1-methoxycarbonyl-1-ethyl, and the like; alkoxycarbonyloxyalkyl, such as methoxycarbonyloxymethyl, t-butyloxycarbonyloxymethyl, 1-ethoxycarbonyloxy-1-ethyl, 1-cyclohexyloxycarbonyloxy-1-ethyl and the like; alkoxycarbonylaminoalkyl, such as t-butyloxycarbonylaminomethyl and the like; alkylaminocarbonylaminoalkyl, such as methylaminocarbonylaminomethyl and the like; alkanoylaminoalkyl, such as acetylaminomethyl and the like; heterocycliccarbonyloxyalkyl, such as 4-methylpiperazinylcarbonyloxymethyl and the like; dialkylaminocarbonylalkyl, such as dimethylaminocarbonylmethyl, diethylaminocarbonylmethyl and the like; (5-(loweralkyl)-2-oxo-1,3-dioxolen-4-yl)alkyl, such as (5-t-butyl-2-oxo-1,3-dioxolen-4-yl)methyl and the like; and (5-phenyl-2-oxo-1,3-dioxolen-4-yl)alkyl, such as (5-phenyl-2-oxo-1,3-dioxolen-4-yl)methyl and the like.


The term “N-protecting group” or “N-protected” as used herein refers to those groups intended to protect the N-terminus of an amino acid or peptide or to protect an amino group against undersirable reactions during synthetic procedures. Commonly used N-protecting groups are disclosed in Greene, “Protective Groups In Organic Synthesis,” (John Wiley & Sons, New York (1981)), which is hereby incorporated by reference. N-protecting groups comprise acyl groups such as formyl, acetyl, propionyl, pivaloyl, t-butylacetyl, 2-chloroacetyl, 2-bromoacetyl, trifluoroacetyl, trichloroacetyl, phthalyl, o-nitrophenoxyacetyl, α-chlorobutyryl, benzoyl, 4-chlorobenzoyl, 4-bromobenzoyl, 4-nitrobenzoyl, and the like; sulfonyl groups such as benzenesulfonyl, p-toluenesulfonyl and the like; carbamate forming groups such as benzyloxycarbonyl, p-chlorobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, 3,5-dimethoxybenzyloxycarbonyl, 2,4-dimethoxybenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitro-4,5-dimethoxybenzyloxycarbonyl, 3,4,5-trimethoxybenzyloxycarbonyl, 1-(p-biphenylyl)-1-methylethoxycarbonyl, α,α-dimethyl-3,5-dimethoxybenzyloxycarbonyl, benzhydryloxycarbonyl, t-butyloxycarbonyl, diisopropylmethoxycarbonyl, isopropyloxycarbonyl, ethoxycarbonyl, methoxycarbonyl, allyloxycarbonyl, 2,2,2,-trichloroethoxycarbonyl, phenoxycarbonyl, 4-nitrophenoxycarbonyl, fluorenyl-9-methoxycarbonyl, cyclopentyloxycarbonyl, adamantyloxycarbonyl, cyclohexyloxycarbonyl, phenylthiocarbonyl and the like; alkyl groups such as benzyl, triphenylmethyl, benzyloxymethyl and the like; and silyl groups such as trimethylsilyl and the like. Preferred N-protecting groups are formyl, acetyl, benzoyl, pivaloyl, t-butylacetyl, phenylsulfonyl, benzyl, t-butyloxycarbonyl (Boc) and benzyloxycarbonyl (Cbz).


The term “alkanoyl” as used herein refers to an alkyl group as previously defined appended to the parent molecular moiety through a carbonyl (—C(O)—) group. Examples of alkanoyl include acetyl, propionyl and the like.


The term “alkanoylamino” as used herein refers to an alkanoyl group as previously defined appended to an amino group. Examples alkanoylamino include acetamido, propionylamido and the like.


The term “alkanoylaminoalkyl” as used herein refers to R43—NH—R44— wherein R43 is an alkanoyl group and R44 is an alkylene group.


The term “alkanoyloxyalkyl” as used herein refers to R30—O—R31— wherein R30 is an alkanoyl group and R31 is an alkylene group. Examples of alkanoyloxyalkyl include acetoxymethyl, acetoxyethyl and the like.


The term “alkenyl” as used herein refers to a straight or branched chain hydrocarbon radical containing from 2 to 15 carbon atoms and also containing at least one carbon-carbon double bond. Alkenyl groups include, for example, vinyl(ethenyl), allyl(propenyl), butenyl, 1-methyl-2-buten-1-yl and the like.


The term “alkenylene” denotes a divalent group derived from a straight or branched chain hydrocarbon containing from 2 to 15 carbon atoms and also containing at least one carbon-carbon double bond. Examples of alkenylene include —CH═CH—, —CH2CH═CH—, —C(CH3)═CH—, —CH2CH═CHCH2—, and the like.


The term “alkenyloxy” as used herein refers to an alkenyl group, as previously defined, connected to the parent molecular moiety through an oxygen (—O—) linkage. Examples of alkenyloxy include allyloxy, butenyloxy and the like.


The term “alkoxy” as used herein refers to R41O— wherein R41 is a loweralkyl group, as defined herein. Examples of alkoxy include, but are not limited to, ethoxy, tert-butoxy, and the like.


The term “alkoxyalkoxy” as used herein refers to R80O—R81O— wherein R80 is loweralkyl as defined above and R81 is alkylene. Representative examples of alkoxyalkoxy groups include methoxymethoxy, ethoxymethoxy, t-butoxymethoxy and the like.


The term “alkoxyalkoxyalkyl” as used herein refers to an alkoxyalkoxy group as previously defined appended to an alkyl radical. Representative examples of alkoxyalkoxyalkyl groups include methoxyethoxyethyl, methoxymethoxymethyl, and the like.


The term “alkoxyalkyl” as used herein refers to an alkoxy group as previously defined appended to an alkyl radical as previously defined. Examples of alkoxyalkyl include, but are not limited to, methoxymethyl, methoxyethyl, isopropoxymethyl and the like.


The term “alkoxycarbonyl” as used herein refers to an alkoxyl group as previously defined appended to the parent molecular moiety through a carbonyl group. Examples of alkoxycarbonyl include methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl and the like.


The term “alkoxycarbonylalkenyl” as used herein refers to an alkoxycarbonyl group as previously defined appended to an alkenyl radical. Examples of alkoxycarbonylalkenyl include methoxycarbonylethenyl, ethoxycarbonylethenyl and the like.


The term “alkoxycarbonylalkyl” as used herein refers to R34—C(O)—R35— wherein R34 is an alkoxy group and R35 is an alkylene group. Examples of alkoxycarbonylalkyl include methoxycarbonylmethyl, methoxcarbonylethyl, ethoxycarbonylmethyl and the like.


The term “alkoxycarbonylaminoalkyl” as used herein refers to R38—C(O)—NH—R39— wherein R38 is an alkoxy group and R39 is an alkylene group.


The term “alkoxycarbonyloxyalkyl” as used herein refers to R36—C(O)—O—R37— wherein R36 is an alkoxy group and R37 is an alkylene group.


The term “(alkoxycarbonyl)thioalkoxy” as used herein refers to an alkoxycarbonyl group as previously defined appended to a thioalkoxy radical. Examples of (alkoxycarbonyl)thioalkoxy include methoxycarbonylthiomethoxy, ethoxycarbonylthiomethoxy and the like.


The term “alkoxyhaloalkyl” as used herein refers to a haloalkyl radical to which is appended an alkoxy group.


The terms “alkyl” and “loweralkyl” as used herein refer to straight or branched chain alkyl radicals containing from 1 to 15 carbon atoms including, but not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl, 1-methylbutyl, 2,2-dimethylbutyl, 2-methylpentyl, 2,2-dimethylpropyl, n-hexyl and the like.


The term “(N-alkanoyl-N-alkyl)aminoalkyl” as used herein refers to R85C(O)N(R86)R87— wherein R85 is an alkanoyl as previously defined, R86 is loweralkyl, and R87 is alkylene.


The term “alkylamino” as used herein refers to R51NH— wherein R51 is a loweralkyl group, for example, ethylamino, butylamino, and the like.


The term “alkylaminoalkyl” as used herein refers to a loweralkyl radical to which is appended an alkylamino group.


The term “alkylaminocarbonyl” as used herein refers to an alkylamino group, as previously defined, appended to the parent molecular moiety through a carbonyl (—C(O)—) linkage. Examples of alkylaminocarbonyl include methylaminocarbonyl, ethylaminocarbonyl, isopropylaminocarbonyl and the like.


The term “alkylaminocarbonylalkenyl” as used herein refers to an alkenyl radical to which is appended an alkylaminocarbonyl group.


The term “alkylaminocarbonylalkyl” as used herein refers to a loweralkyl radical to which is appended an alkylaminocarbonyl group.


The term “alkylaminocarbonylaminoalkyl” as used herein refers to R40—C(O)NH—R41— wherein R40 is an alkylamino group and R41 is an alkylene group.


The term “alkylene” denotes a divalent group derived from a straight or branched chain saturated hydrocarbon having from 1 to 15 carbon atoms by the removal of two hydrogen atoms, for example —CH2—, —CH2CH2—, —CH(CH3)—, —CH2CH2CH2—, —CH2C(CH3)2CH2— and the like.


The term “alkylsulfonylamidoalkyl” as used herein refers R88S(O)2NHR89— wherein R88 is loweralkyl and R89 is alkylene.


The term “alkylsulfonylamino” as used herein refers to an alkyl group as previously defined appended to the parent molecular moiety through a sulfonylamino (—S(O)2—NH—) group. Examples of alkylsulfonylamino include methylsulfonylamino, ethylsulfonylamino, isopropylsulfonylamino and the like.


The term “alkynyl” as used herein refers to a straight or branched chain hydrocarbon radical containing from 2 to 15 carbon atoms and also containing at least one carbon-carbon triple bond. Examples of alkynyl include —C≡C—H, H—C≡C—CH2—, H—C≡C—CH(CH3)— and the like.


The term “alkynylene” refers to a divalent group derived by the removal of two hydrogen atoms from a straight or branched chain acyclic hydrocarbon group containing from 2 to 15 carbon atoms and also containing a carbon-carbon triple bond. Examples of alkynylene include —C≡C—, —C≡C—CH2—, —C≡C—CH(CH3)— and the like.


The term “aminoalkyl” as used herein refers to a —NH2, alkylamino, or dialkylamino group appended to the parent molecular moiety through an alkylene.


The term “aminocarbonyl” as used herein refers to H2N—C(O)—.


The term “aminocarbonylalkenyl” as used herein refers to an alkenyl radical to which is appended an aminocarbonyl (NH2C(O)—) group.


The term “aminocarbonylalkoxy” as used herein refers to H2N—C(O)— appended to an alkoxy group as previously defined. Examples of aminocarbonylalkoxy include aminocarbonylmethoxy, aminocarbonylethoxy and the like.


The term “aminocarbonylalkyl” as used herein refers to a loweralkyl radical to which is appended an aminocarbonyl (NH2C(O)—) group.


The term “trialkylaminoalkyl” as used herein refers to (R90)(R91)(R92)N(R93)— wherein R90, R91, and R92 are independently selected from loweralkyl and R93 is alkylene.


The term “aroyloxyalkyl” as used herein refers to R32—C(O)—O—R33— wherein R32 is an aryl group and R33 is an alkylene group. Examples of aroyloxyalkyl include benzoyloxymethyl, benzoyloxyethyl and the like.


The term “aryl” as used herein refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl and the like. Aryl groups can be unsubstituted or substituted with one, two or three substituents independently selected from loweralkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, alkenyloxy, alkoxy, alkoxyalkoxy, alkoxycarbonyl, alkoxycarbonylalkenyl, (alkoxycarbonyl)thioalkoxy, thioalkoxy, amino, alkylamino, dialkylamino, aminoalkyl, trialkylaminoalkyl, aminocarbonyl, aminocarbonylalkoxy, alkanoylamino, arylalkoxy, aryloxy, mercapto, cyano, nitro, carboxaldehyde, carboxy, carboxyalkenyl, carboxyalkoxy, alkylsulfonylamino, cyanoalkoxy, (heterocyclic)alkoxy, hydroxy, hydroxalkoxy, phenyl and tetrazolylalkoxy. In addition, substituted aryl groups include tetrafluorophenyl and pentafluorophenyl.


The term “arylalkenyl” as used herein refers to an alkenyl radical to which is appended an aryl group, for example, phenylethenyl and the like.


The term “arylalkoxy” as used herein refers to R42O— wherein R42 is an arylalkyl group, for example, benzyloxy, and the like.


The term “arylalkoxyalkyl” as used herein refers to a loweralkyl radical to which is appended an arylalkoxy group, for example, benzyloxymethyl and the like.


The term “arylalkyl” as used herein refers to an aryl group as previously defined, appended to a loweralkyl radical, for example, benzyl and the like.


The term “aryloxy” as used herein refers to R45O— wherein R45 is an aryl group, for example, phenoxy, and the like.


The term “arylalkylcarbonyloxyalkyl” as used herein refers to a loweralkyl radical to which is appended an arylalkylcarbonyloxy group (i.e., R62C(O)O— wherein R62 is an arylalkyl group).


The term “aryloxyalkyl” refers to an aryloxy group as previously defined appended to an alkyl radical. Examples of aryloxyalkyl include phenoxymethyl, 2-phenoxyethyl and the like.


The term “carboxaldehyde” as used herein refers to a formaldehyde radical, —C(O)H.


The term “carboxy” as used herein refers to a carboxylic acid radical, —C(O)OH.


The term “carboxyalkenyl” as used herein refers to a carboxy group as previously defined appended to an alkenyl radical as previously defined. Examples of carboxyalkenyl include 2-carboxyethenyl, 3-carboxy-1-ethenyl and the like.


The term “carboxyalkoxy” as used herein refers to a carboxy group as previously defined appended to an alkoxy radical as previously defined. Examples of carboxyalkoxy include carboxymethoxy, carboxyethoxy and the like.


The term “cyanoalkoxy” as used herein refers to an alkoxy radical as previously defined to which is appended a cyano (—CN) group. Examples of cyanoalkoxy include 3-cyanopropoxy, 4-cyanobutoxy and the like.


The term “cycloalkanoyloxyalkyl” as used herein refers to a loweralkyl radical to which is appended a cycloalkanoyloxy group (i.e., R60—C(O)—O— wherein R60 is a cycloalkyl group).


The term “cycloalkyl” as used herein refers to an aliphatic ring system having 3 to 10 carbon atoms and 1 to 3 rings including, but not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl, and the like. Cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from loweralkyl, haloalkyl, alkoxy, thioalkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, mercapto, nitro, carboxaldehyde, carboxy, alkoxycarbonyl and carboxamide.


The term “cycloalkylalkyl” as used herein refers to a cycloalkyl group appended to a loweralkyl radical, including but not limited to cyclohexylmethyl.


The term “dialkylamino” as used herein refers to R56R57N— wherein R56 and R57 are independently selected from loweralkyl, for example diethylamino, methyl propylamino, and the like.


The term “dialkylaminoalkyl” as used herein refers to a loweralkyl radical to which is appended a dialkylamino group.


The term “dialkylaminocarbonyl” as used herein refers to a dialkylamino group, as previously defined, appended to the parent molecular moiety through a carbonyl (—C(O)—) linkage. Examples of dialkylaminocarbonyl include dimethylaminocarbonyl, diethylaminocarbonyl and the like.


The term “dialkylaminocarbonylalkenyl” as used herein refers to an alkenyl radical to which is appended a dialkylaminocarbonyl group.


The term “dialkylaminocarbonylalkyl” as used herein refers to R50—C(O)—R51— wherein R50 is a dialkylamino group and R51 is an alkylene group.


The term “halo” or “halogen” as used herein refers to 1, Br, Cl or F.


The term “haloalkenyl” as used herein refers to an alkenyl radical to which is appended at least one halogen substituent.


The term “haloalkoxy” as used herein refers to an alkoxy radical as defined above, bearing at least one halogen substituent, for example, 2-fluoroethoxy, 2,2,2-trifluoroethoxy, trifluoromethoxy, 2,2,3,3,3-pentafluoropropoxy and the like.


The term “haloalkoxyalkyl” as used herein refers to a loweralkyl radical to which is appended a haloalkoxy group.


The term “haloalkyl” as used herein refers to a lower alkyl radical, as defined above, to which is appended at least one halogen substituent, for example, chloromethyl, fluoroethyl, trifluoromethyl or pentafluoroethyl and the like.


The term “heterocyclic ring” or “heterocyclic” or “heterocycle” as used herein refers to any 3- or 4-membered ring containing a heteroatom selected from oxygen, nitrogen and sulfur; or a 5-, 6- or 7-membered ring containing one, two or three nitrogen atoms; one oxygen atom; one sulfur atom; one nitrogen and one sulfur atom; one nitrogen and one oxygen atom; two oxygen atoms in non-adjacent positions; one oxygen and one sulfur atom in non-adjacent positions; or two sulfur atoms in non-adjacent positions. The 5-membered ring has 0-2 double bonds and the 6- and 7-membered rings have 0-3 double bonds. The nitrogen heteroatoms can be optionally quaternized. The term “heterocyclic” also includes bicyclic groups in which any of the above heterocyclic rings is fused to a benzene ring or a cyclohexane ring or another heterocyclic ring (for example, indolyl, dihydroindolyl, quinolyl, isoquinolyl, tetrahydroquinolyl, tetrahydroisoquinolyl, decahydroquinolyl, decahydroisoquinolyl, benzofuryl, dihydrobenzofuryl or benzothienyl and the like). Heterocyclics include: aziridinyl, azetidinyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, piperidinyl, homopiperidinyl, pyrazinyl, piperazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, morpholinyl, thiomorpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, oxetanyl, furyl, tetrahydrofuranyl, thienyl, thiazolidinyl, isothiazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, pyrrolyl, pyrimidyl and benzothienyl. Heterocyclics also include compounds of the formula




embedded image



where X* is —CH2— or —O— and Y* is —C(O)— or [—C(R″)2-]v where R″ is hydrogen or C1-C4-alkyl and v is 1, 2 or 3 such as 1,3-benzodioxolyl, 1,4-benzodioxanyl and the like. Heterocyclics also include bicyclic rings such as quinuclidinyl and the like.


Heterocyclics can be unsubstituted or monosubstituted or disubstituted with substituents independently selected from hydroxy, halo, oxo (═O), alkylimino (R*N═ wherein R* is a loweralkyl group), amino, alkylamino, dialkylamino, alkoxy, alkoxyalkoxy, aminoalkyl, trialkylaminoalkyl, haloalkyl, cycloalkyl, aryl, arylalkyl, —COOH, —SO3H, alkoxycarbonyl, nitro, cyano and loweralkyl. In addition, nitrogen containing heterocycles can be N-protected.


The term “(heterocyclic)alkoxy” as used herein refers to a heterocyclic group as defined above appended to an alkoxy radical as defined above. Examples of (heterocyclic)alkoxy include 4-pyridylmethoxy, 2-pyridylmethoxy and the like.


The term “(heterocyclic)alkyl” as used herein refers to a heterocyclic group as defined above appended to a loweralkyl radical as defined above.


The term “heterocycliccarbonyloxyalkyl” as used herein refers to R46—C(O)—O—R47— wherein R46 is a heterocyclic group and R47 is an alkylene group.


The term “hydroxy” as used herein refers to —OH.


The term “hydroxyalkenyl” as used herein refers to an alkenyl radical to which is appended a hydroxy group.


The term “hydroxyalkoxy” as used herein refers to an alkoxy radical as previously defined to which is appended a hydroxy (—OH) group. Examples of hydroxyalkoxy include 3-hydroxypropoxy, 4-hydroxybutoxy and the like.


The term “hydroxyalkyl” as used herein refers to a loweralkyl radical to which is appended a hydroxy group.


The term “leaving group” as used herein refers to a halide (for example, Cl, Br or I) or a sulfonate (for example, mesylate, tosylate, triflate and the like).


The term “mercapto” as used herein refers to —SH.


The terms “methylenedioxy” and “ethylenedioxy” refer to one or two carbon chains attached to the parent molecular moiety through two oxygen atoms. In the case of methylenedioxy, a fused 5 membered ring is formed. In the case of ethylenedioxy, a fused 6 membered ring is formed. Methylenedixoy substituted on a phenyl ring results in the formation of a benzodioxolyl radical.




embedded image



Ethylenedioxy substituted on a phenyl ring results in the formation of a benzodioxanyl radical




embedded image


The term “substantially pure” as used herein means 95% or more of the specified compound.


The term “tetrazolyl” as used herein refers to a radical of the formula




embedded image



or a tautomer thereof.


The term “tetrazolylalkoxy” as used herein refers to a tetrazolyl radical as defined above appended to an alkoxy group as defined above. Examples of tetrazolylalkoxy include tetrazolylmethoxy, tetrazolylethoxy and the like.


The term “thioalkoxy” as used herein refers to R70S— wherein R70 is loweralkyl. Examples of thioalkoxy include, but are not limited to, methylthio, ethylthio and the like.


The term “thioalkoxyalkoxy” as used herein refers to R80S—R81O— wherein R80 is loweralkyl as defined above and R81 is alkylene. Representative examples of alkoxyalkoxy groups include CH3SCH2O—, EtSCH2O—, t-BuSCH2O— and the like.


The term “thioalkoxyalkoxyalkyl” as used herein refers to a thioalkoxyalkoxy group appended to an alkyl radical. Representative examples of alkoxyalkoxyalkyl groups include CH3SCH2CH2OCH2CH2—, CH3SCH2OCH2—, and the like.


The term “trans,trans” as used herein refers to the orientation of substituents (R1 and R2) relative to the central substituent R as shown




embedded image


The term “trans,cis” as used herein refers to the orientation of substituents (R1 and R2) relative to the central substituent R as shown




embedded image



This definition encompasses both the case where R and R2 are cis and R and R1 are trans and the case where R2 and R are trans and R and R1 are cis.


The term “cis,cis” as used herein refers to the orientation of substituents (R1 and R2) relative to the central substituent R as shown




embedded image


Preferred compounds of the invention are selected from the group consisting of:

  • trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[3-(N-propyl-N-n-pentanesulfonylamino)propyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(4-Methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)—(2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-hexanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(4-Propoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3,4-Difluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3,4-Difluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-hexanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(3-chloropropanesulfonyl)amino)ethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(3-chloropropanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(4-methylbutanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(n-pentanesulfuonyl)amino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2,2,3,3,3-pentafluoropropoxyethanesulfonyl)-amino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(1,4-Benzodioxan-6-yl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(n-pentanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(pentanesulfonylamino)ethyl)pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(3-chloropropanesulfonyl)amino)-ethyl)pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(pentanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-((2,2,2-trifluoroethoxyethane)sulfonyl)amino)-ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(butanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-methylpropanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(butanesulfonylamino))ethyl)pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-Methylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolide-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxo-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Tetrahydro-2H-pyran)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethyl-3-pentenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxo-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl-N(2methyl-3-fluorophenyl)]amino carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-dimethylpentyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethyl-3-(E)-pentenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • (2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)1-(2-(N-propy-N-pentanesulfonylamino)butyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,4-Trimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-butyl-N-(4-dimethylamino)butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenoxy)-methyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxo 1,2-dihydro pyridin-1-yl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyridin-1-yl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyridin-1-yl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyridin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyridin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyridin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2(-2-Oxopiperidin-1-yl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopiperidin-1-yl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopiperidin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopiperidin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopiperidin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopiperidin-1-yl)-ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-trimethylammoniobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-trimethylammoniobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(3,3-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic-acid;
  • trans,trans-2-(2-(3,3-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(3,3-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(4,4-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(N-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(4,4-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(4,4-Dimethyl-2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-dibutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-propanesultamyl)ethyl)4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-dibutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-(N,N-dibutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-oxazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Oxazol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(5-Methyloxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(5-Methyloxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-hepty-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(5-Methyloxazol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2,5-Dioxopyrrolidin-1-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(propoxy)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyridin-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyrimidin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyrimidin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(Pyrimidin-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-benzodioxol-4-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-benzodioxol-4-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-4-heptyl-N-(4-fluoro-3-methylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid; and
  • trans,trans-2-(2-(1,3-benzodioxol-4-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpent-(E)-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpent-(E)-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2-(2-Methoxyphenyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;


    or a pharmaceutically acceptable salt.


Most preferred compounds of the invention are selected from the group consisting of:

  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl-N-(2-methyl-3-fluorophenyl)]aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2,2-Dimethyl-3-(E)-pentenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2 Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • trans,trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[((N-propyl-N-pentanesulfonyl)amino)ethyl]-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpent-(E)-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-(2,2-Dimethylpent-(E)-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • (2S,3R,4S)-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid; and
  • (2S,3R,4S)-2-(2-(2-Methoxyphenyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;


    or a pharmaceutically acceptable salt thereof.


Methods for preparing the compounds of the invention are shown in Schemes I-XV.


Scheme I illustrates the general procedure for preparing the compounds of the invention when n and m are 0, Z is —CH2— and W is —CO2H. A β-ketoester 1 where E is loweralkyl or a carboxy protecting group is reacted with a nitro vinyl compound 2, in the presence of a base (for example, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or sodium ethoxide or sodium hydride and the like) in an inert solvent such as toluene, benzene, tetrahydrofuran or ethanol and the like. The condensation product 3 is reduced (for example, hydrogenation using a Raney nickel or platinum catalyst). The resulting amine cyclizes to give the dihydro pyrrole 4. Reduction of 4 (for example, sodium cyanoborohydride or catalytic hydrogenation and the like) in a protic solvent such as ethanol or methanol and the like gives the pyrrolidine compound 5 as a mixture of cis-cis, trans,trans and cis,trans products. Chromatographic separation removes the cis-cis isomer leaving a mixture of the trans,trans and cis,trans isomers which is further elaborated. The cis-cis isomer can be epimerized (for example, using sodium ethoxide in ethanol) to give the trans,trans isomer and then carried on as described below. The pyrrolidine nitrogen is (1) acylated or sulfonylated with R3—X (R3 is R4—C(O)— or R6—S(O)2— and X is a leaving group such as a halide (Cl is preferred) or X taken together with R4—C(O)— or R6—S(O)2— forms an activated ester including esters or anhydrides derived from formic acid, acetic acid and the like, alkoxycarbonyl halides, N-hydroxysuccinimide, N-hydroxyphthalimide, N-hydroxybenzotriazole, N-hydroxy-5-norbornene-2,3-dicarboxamide, 2,4,5-trichlorophenol and the like) or (2) alkylated with R3—X where X is a leaving group (for example, X is a halide (for example, Cl, Br or I) or X is a leaving group such as a sulfonate (for example, mesylate, tosylate, triflate and the like)) in the presence of a base such as diisopropyl ethylamine or triethylamine and the like to give the N-derivatized pyrrolidine 6 which is still a mixture of trans,trans and cis,trans isomers. Hydrolysis of the ester 6 (for example, using a base such a sodium hydroxide in EtOH/H2O) selectively hydrolyzes the trans,trans ester to give a mixture of 7 and 8, which are readily separated.


Scheme II illustrates a general procedure for preparing the compounds of the invention when n is 1, m is 0, Z is —CH2— and W is —CO2H. A substituted benzyl chloride 9 is reacted with a lithio dithiane 10 in an inert solvent such as THF or dimethoxyethane to give the alkylated adduct 11. The anion of compound 11 is formed using a base such as n-butyllithium and then reacted with R1—CH2—X′ wherein X′ is a leaving group such as a halide or sulfonate to give compound 12. The dithiane protecting group is cleaved (for example, using a mercuric salt in water) to give the keto compound 13. Reaction of ketone 13 with benzyl amine and formaldehyde gives the keto piperidine compound 14. Treatment of compound 14 with an activated nitrile such as trimethylsilyl cyanide followed by a dehydrating agent such as phosphorous oxychloride provides the isomeric ene nitriles 15. Reduction of the double bond (for example, using sodium borohydride) affords the piperidinyl nitrile 16. Hydrolysis of the nitrile using hydrochloric acid in the presence of a carboxy protecting reagent (for example, an alkyl alcohol) affords ester 17 (where E is a carboxy protecting group). Debenzylation by catalytic hydrogenation under acidic conditions affords the free piperidine compound 18. Compound 18 is further elaborated by the procedures described in Scheme I for compound 5 to give the final product compound 19.


Scheme III illustrates a general procedure for preparing the compounds of the invention when m and n are 0, Z is —C(O)— and W is —CO2H. β-Keto ester 20 (wherein E is loweralkyl or a carboxy protecting group) is reacted with an α-haloester 21 (where J is lower alkyl or a carboxy protecting group and the halogen is bromine, iodine or chlorine) in the presence of a base such as NaH or potassium tert-butoxide or lithium diisopropylamide in an inert solvent such as THF or dimethoxyethane to give diester 22. Treating compound 22 with R3—NH2 and heating in acetic acid gives the cyclic compound 23. The double bond is reduced (for example, by catalytic hydrogenation using a palladium on carbon catalyst or sodium cyanoborohydride reduction) to give pyrrolidone 24. Epimerization with sodium ethoxide in ethanol to give the desired trans,trans configuration, followed by sodium hydroxide hydrolysis of the ester, affords the desired trans,trans carboxylic acid 25.


Scheme IV illustrates a general procedure for preparing the compounds of the invention when n is 0, m is 1, Z is —CH2— and W is —CO2H. The trans,trans compound 7, prepared in Scheme I, is homologated by the Arndt-Eistert synthesis. The carboxy terminus is activated (for example, by making the acid chloride using thionyl chloride) to give compound 52, where L is a leaving group (in the case of an acid chloride, L is Cl). Compound 52 is treated with diazomethane to give the diazo ketone 53. Rearrangement of compound 53 (for example, using water or an alcohol and silver oxide or silver benzoate and triethylamine, or heating or photolysis in the presence of water or an alcohol) affords the acetic acid compound 54 or an ester which may be hydrolyzed. Compounds where m is from 2 to 6 can be obtained by repetition of the above described process.


A preferred embodiment is shown in Schemes V and VI. A benzoyl acetate 26 is reacted with a nitro vinyl benzodioxolyl compound 27 using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base in toluene to give compound 28. Catalytic hydrogenation using Raney nickel leads to reduction of the nitro group to an amine and subsequent cyclization to give the dihydropyrrole 29. The double bond is reduced with sodium cyanoborohydride to give the pyrrolidine compound 30 as a mixture of cis-cis, trans,trans and cis,trans isomers. Chromatography separates out the cis-cis isomer, leaving a mixture of the trans,trans and cis,trans isomers (31).


Scheme VI illustrates the further elaboration of the trans,trans isomer. The mixture (31) of trans,trans and cis,trans pyrrolidines described in Scheme IV is reacted with N-propyl bromoacetamide in acetonitrile in the presence of ethyldiisopropylamine to give the alkylated pyrrolidine compound 32, still as a mixture of trans,trans and cis,trans isomers. Sodium hydroxide in ethanol-water hydrolyzes the ethyl ester of the trans,trans compound but leaves the ethyl ester of the cis,trans compound untouched, thus allowing separation of the trans,trans carboxylic acid 33 from the cis, trans ester 34.


Scheme VII illustrates the preparation of a specific piperidinyl compound. Benzodioxolyl methyl chloride 35 is reacted with lithio dithiane 36 to give the alkylated compound 37. Treatment of compound 37 with 4-methoxybenzyl chloride in the presence of lithium diisopropylamide gives compound 38. Cleavage of the dithiane protecting group using a mercuric salt in aqueous solution gives ketone 39. Treatment of 39 with benzylamine and formaldehyde gives the keto piperidine 40. Treatment of compound 40 with trimethylsilyl cyanide followed by phosphorous oxychloride gives the ene nitrile as a mixture of isomers 41. Sodium borohydride reduction of the double bond gives the piperidinyl nitrile 42. Hydrochloric acid hydrolysis in the presence of ethanol gives ethyl ester 43. The N-benzyl protecting group is removed by catalytic hydrogenation to give the free piperidine compound 44. Compound 44 is further elaborated by the procedures described in Scheme V for compound 31 resulting in the formation of the N-derivatized carboxylic acid 45.


A preferred embodiment of the process shown in Scheme III is shown in Scheme VIII. 4-Methoxybenzoylacetate 46 (wherein E is loweralkyl or a carboxy protecting group) is reacted with an benzodioxolyl α-bromoacetate 47 (wherein E is lower alkyl or a carboxy protecting group) in the presence of NaH in THF to give diester 48. Treating compound 48 with ethoxypropylamine and heating in acetic acid gives the cyclic compound 49. The double bond is reduced by catalytic hydrogenation using a palladium on carbon catalyst to give pyrrolidone 50. Epimerization with sodium ethoxide in ethanol to give the desired trans,trans configuration is followed by sodium hydroxide hydrolysis of the ester to afford the desired trans,trans carboxylic acid 51.


Scheme IX illustrates the preparation of compounds where n is 0, Z is —CH2—, and W is other than carboxylic acid. Compound 55, which can be prepared by the procedures described in Scheme IV, is converted (for example, using peptide coupling condition, e.g. N-methylmorpholine, EDCL and HOBt, in the presence of ammonia or other amide forming reactions) to give carboxamide 56. The carboxamide is dehydrated (for example, using phosphorus oxychloride in pyridine) to give nitrile 57. Nitrile 57 under standard tetrazole forming conditions (sodium azide and triethylamine hydrochloride or trimethylsilylazide and tin oxide) is reacted to give tetrazole 58. Alternatively nitrile 57 is reacted with hydroxylamine hydrochloride in the presence of a base (for example, potassium carbonate, sodium carbonate, sodium hydroxide, triethylamine, sodium methoxide or NaH) in a solvent such as DMF, DMSO, or dimethylacetamide to give amidoxime 59. The amidoxime 59 is allowed to react with a methyl or ethyl chloroformate in a conventional organic solvent (such as, chloroform, methylene chloride, dioxane, THF, acetonitrile or pyridine) in the presence of a base (for example, triethylamine, pyridine, potassium carbonate and sodium carbonate) to give an O-acyl compound. Heating of the O-acyl amidoxime in an inert solvent (such as benzene, toluene, xylene, dioxane, THF, dichloroethane, or chloroform and the like) results in cyclization to compound 60. Alternatively reacting the amidoxime 59 with thionyl chloride in an inert solvent (for example, chloroform, dichloromethane, dixoane and THF and the like) affords the oxathiadiazole 61.


Scheme X illustrates the preparation of compounds in which R3 is an acylmethylene group. A carboxylic acid 62 (where R4 is as previously defined herein) is treated with oxalyl chloride in a solution of methylene chloride containing a catalytic amount of N,N-dimethylformamide to give the acid chloride. Treatment of the acid chloride with excess ethereal diazomethane affords a diazoketone, and then treatment with anhydrous HCl in dioxane gives the α-chloroketone 63. Pyrrolidine ester 5 where E is lower alkyl or a carboxy protecting group, prepared in Scheme I, is alkylated with the α-chloroketone 63 to provide alkylated pyrrolidine 64. Carboxy deprotection (for example, hydrolysis of an alkyl ester using lithium or sodium hydroxide in ethanol-water) gives the alkylated pyrrolidine acid 65.


Scheme XI illustrates the preparation of “reverse amides and sulfonamides”. The carboxy protected pyrrolidine 5, prepared in Scheme I, is reacted with a difunctionalized compound X—R8—X where R8 is alkylene and X is a leaving group (for example a halide where Br is preferred) to give N-alkylated compound 66. Treatment of 66 with an amine (R20NH2) affords secondary amine 67. This amine (67) can be reacted with an activated acyl compound (for example, R4—C(O)—Cl) and then carboxy deprotected (for example, hydrolysis of an ester or hydrogenation of a benzyl moiety) to afford amide 68. Alternatively amine 67 can be reacted with an activated sulfonyl compound (for example, R6—S(O)2—Cl) and then carboxy deprotected (for example, hydrolysis of an ester or hydrogenation of a benzyl moiety) to afford sulfonamide 69.


Scheme XII illustrates a method for synthesizing pyrrolidines by an azomethine ylide type [3+2]-cycloaddition to an acrylate. General structures such as compound 70 are known to add to unsaturated esters such as 71 to provide pyrrolidines such as compound 72 (O. Tsuge, S. Kanemasa, K. Matsuda, Chem. Lett. 1131-4 (1983), O. Tsuge, S. Kanemasa, T. Yamada, K. Matsuda, J. Org. Chem. 52 2523-30 (1987), and S. Kanemasa, K. Skamoto, O. Tsuge, Bull. Chem. Soc. Jpn. 62 1960-68 (1989)). A specific example is also shown in Scheme XII. Silylimine 73 is reacted with acrylate 74 in the presence of trimethylsilyl triflate and tetrabutylammonium fluoride to give the desired pyrrolidine 75 as a mixture of isomers. This method can be modified to provide the N-acetamido derivatives directly by reacting 73 and 74 with the appropriate bromoacetamide (for example, dibutyl bromoacetamide) in the presence of tetrabutylammonium iodide and cesium fluoride to give compound 76.


Scheme XIII illustrates a method for producing an enantiomerically pure pyrrolidine 80 which can be further elaborated on the pyrrolidine nitrogen. Intermediate racemic pyrrolidine ester 77 (for example, prepared by the procedure described in Scheme V) is Boc-nitrogen protected (for example, by treatment with Boc2O) and then the ester is hydrolyzed (for example, using sodium or lithium hydroxide in ethanol and water) to give t-butyl carbamoyl pyrrolidine carboxylic acid 78. The carboxylic acid is converted to its (+)-cinchonine salt, which can be recrystallized (for example from ethyl acetate and hexane or chloroform and hexane) to afford the diastereomerically pure salt. This diastereomerically pure salt can be neutralized (for example, with sodium carbonate or citric acid) to afford enantiomerically pure carboxylic acid 79. The pyrrolidine nitrogen can be deprotected (for example, using trifluoroacetic acid) and the ester reformed by the use of ethanolic hydrochloric acid to give salt 80. Alternatively one can use ethanol HCl to cleave the protecting group and form the ester in one step. The pyrrolidine nitrogen can be further elaborated (for example, by treatment with the dibutyl amide of bromoacetamide in acetonitrile in the presence of diisopropylethylamine) to give optically active compound 81. The use of (−)-cinchonine will give the opposite enantiomer.


Scheme XIV describes another procedure for preparation of pyrrolidines. Pyrrolidines may be synthesized by the use of an azomethine ylide cycloaddition to an acrylate derivative as described by Cottrell, I. F., et. al., J. Chem. Soc., Perkin Trans. 1, 5: 1091-97 (1991). Thus, the azomethine ylide precursor 82 (where R55 is hydrogen or methyl) is condensed with a substituted acrylate 83 (wherein R2 is as described herein and R56 is loweralkyl) under acidic conditions to afford the substituted pyrrolidine 84. The N-protecting group can be removed (for example, by hydrogenolysis of an N-benzyl group) to give 85, which can be alkylated under the conditions described above to provide the N-substituted pyrrolidine 86. Standard ester hydrolysis of 86 produces the desired pyrrolidine carboxylic acid 87.


A preferred process is shown in Scheme XV. Nitro vinyl compound (88) is reacted with beta-keto ester 89 in the presence of a base such as sodium ethoxide and the like or a trialkylamine such as triethylamine or diisopropylethylamine and the like or an amidine such as DBU and the like in an inert solvent such as THF, toluene, DMF, acetonitrile, ethyl acetate, isopropyl acetate or methylene chloride and the like at a temperature of from about 0° C. to about 100° C. for a period of time from about 15 minutes to overnight to give compound 90. Reduction of the nitro group followed by cyclization was effected for example by catalytic hydrogenation with a hydrogen pressure of from about atmospheric pressure to 300 p.s.i. over from about 1 hour to about 1 day of compound 90 in an inert solvent such as THF, ethyl acetate, toluene, ethanol, isopropanol, DMF or acetonitrile and the like, using a hydrogenation catalyst such as Raney nickel, palladium on carbon, a platinum catalyst, such as platinum oxide, platinum on carbon or platinum on alumina and the like, or a rhodium catalyst, such as rhodium on carbon or rhodium on alumina and the like, and the like affords intermediate nitrone 91a or a mixture of nitrone 91a and imine 91b. The reaction mixture comprising the nitrone or nitrone/imine mixture is treated with an acid such as trifluoroacetic acid or acetic acid or sulfuric acid or phosphoric acid or methanesulfonic acid and the like, and the hydrogenation is continued to give pyrrolidine compound 92 as the cis,cis-isomer. Epimerization at C-3 is effected by treatment of compound 92 with a base such as sodium ethoxide, potassium t-butoxide, lithium t-butoxide or potassium t-amyloxide and the like or a trialkylamine such as triethylamine or diisopropylethylamine and the like or an amidine such as DBU and the like in an inert solvent such as ethanol, ethyl acetate, isopropyl acetate, THF, toluene or DMF and the like at a temperature of from about −20° C. to about 120° C. to give the trans,trans compound 93. Compound 93 itself can optionally be resolved into enantiomers prior to reacting with X—R3. The substantially pure (i.e., at least 95% of the desired isomer) optically active (+)-isomer of compound 93 is obtained by treatment of a mixture of the (+)-isomer and the (−)-isomer of 93 with S-(+)-mandelic acid, D-tartaric acid or D-dibenzoyl tartaric acid and the like in a solvent such as acetonitrile, ethyl acetate, isopropyl acetate, ethanol or isopropanol and the like. The (+)-isomer of 93 selectively crystallizes as the salt, leaving the (−)-isomer of 93 in solution. Alternatively, the substantially pure (i.e., at least 95% of the desired isomer) optically active-(−)-isomer of compound 93 can be selectively crystallized by reaction of a mixture of the (+)-isomer and the (−)-isomer of 93 with L-tartaric acid, L-dibenzoyl tartaric acid or L-pyroglutamic acid and the like, leaving the desired (+)-isomer of compound 93 in solution.


Compound 93 (racemic or optically active) is reacted with X—R3 (where X is a leaving group (for example, a halide or a sulfonate) and R3 is as previously defined) using a base such as diisopropylethylamine, triethylamine, sodium bicarbonate or potassium carbonate and the like in an inert solvent such as acetonitrile, THF, toluene, DMF or ethanol and the like at a temperature of from about 0° C. to about 100° C. to give the intermediate ester 94. The ester can be isolated or converted in situ to the carboxylic acid (95) using hydrolysis conditions such as a base such as sodium hydroxide or lithium hydroxide or potassium hydroxide and the like in a solvent such as ethanol-water or THF-ethanol and the like.


A more detailed description of the preparation of some specific analogs is provided in Schemes XVI-XXI. Aliphatic β-ketoesters (Scheme XVI) may be prepared by copper-catalyzed addition of a Grignard reagent (for example, propylmagnesium bromide) to an unsaturated ester, for example, ethyl 3,3-dimethylacrylate. The resultant ester is hydrolyzed, for example with sodium hydroxide in aqueous alcohol, and is homologated in stepwise fashion to the corresponding β-ketoester, for example by activation using carbonyldiimidazole and condensation with magnesio-ethoxymalonate. Alternatively, olefinic β-ketoesters may be prepared by Claisen rearangement of the corresponding allylic alcohols; hydrolysis and homologation as described above produce the desired β-ketoester.


N-alkyl, O-alkyl bromohydroxamates are prepared according to Scheme XVII. N-Boc-O-allyl hydroxylamine is alkylated with and alkyl halide, for example using sodium hydride as base; the double bond is selectively reduced, for example using hydrogen and a palladium catalyst. After removal of the Boc protecting group, for example with TFA, the resultant amine is acylated, for example using bromoacetyl bromide.


The β-ketoesters described in Scheme XVI may be converted to pyrrolidine derivatives as described in Scheme XVIII. Michael addition onto a nitrostyrene derivative can be catalyzed with base, for example DBU or potassium t-butoxide; the resultant adduct is hydrogenated, for example using Raney Nickel as catalyst, to give an imine, which is reduced further, for example using sodium cyanoborohydride under controlled pH. A mixture of isomers are generated, in which the trans-trans is generally preferred.


Scheme XIX describes-several strategies for resolving the racemic pyrrolidines described above. Treatment with a chiral acid, for example (S)-(+)-mandelic acid, may provide a crystalline derivative, which can be further enriched through recrystallization. The salt may be washed with base to extract the resolving agent and return the optically active pyrrolidine product. Alternatively, the amino ester can be N-protected (for example with Boc-anhydride) and hydrolyzed (for example with sodium hydroxide) to give the corresponding N-protected amino acid. Activation of the acid, for example as the pentafluorophenyl ester, followed by coupling with a chiral nonracemic oxazolidinone anion, provides the corresponding acyloxazolidinone diastereomers, which may be separated chromatographically. Alcoholysis of one acyloxazolidinone diastereomer, followed by cleavage of the N-protecting group, returns an optically enriched amino ester. A similar transformation may be accomplished through coupling of the protected amino acid with a chiral nonracemic amino alcohol. After chromatographic separation of the resultant diastereomers, the amide is cleaved and the protecting group is removed to provide optically enriched product.


Optically active amino esters prepared as described above may be alkylated (Scheme XX) with a variety of electrophiles, for example dibutyl bromoacetamide, N-butyl, N-alkoxy bromoacetamide, N-(4-heptyl)-N-(3-methyl-4-fluorophenyl) bromoacetamide, or N-(Ω-hydroxyalkyl)-N-alkyl haloacetamide. Hydrolysis of the resultant ester, for example using sodium hydroxide in aqueous alcohol, provides the product.


For one particular class of electrophile, N-(Ω-hydroxyalkyl)-N-alkyl haloacetamides, further transformations of the alkylation product are possible (Scheme XXI). Activation (for example using methanesulfonyl chloride) of the alcohol, followed by displacement with halogen (for example, using lithium bromide) provides the corresponding halide. Displacement of halide with an amine, for example dimethylamine, provides the corresponding amino ester, which may be hydrolyzed as previously described to provide product.




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


Compounds which are useful as intermediates for the preparation of compounds of the invention are:




embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2,
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j) alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof;


    or a compound of the formula:





embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2,
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i), hydroxy,
    • (j) alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof.



Preferred intermediates include compounds of formula (III), (IV) and (V)


wherein


m is zero or 1;




  • W is —CO2-G wherein G is hydrogen or a carboxy protecting group,

  • and R1 and R2 are as defined above; or


    the substantially pure (+)- or (−)-isomer thereof.



Particularly preferred intermediates are compounds of formula (III), (IV) and


(V) wherein


n and m are both 0;




  • W is —CO2-G wherein G is hydrogen or a carboxy protecting group; and R1 is (i) loweralkyl, (ii) alkenyl, (iii) alkoxyalkyl, (iv) cycloalkyl, (v) phenyl, (vi) pyridyl, (vii) furanyl or (viii) substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 3-fluorophenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 3-fluoro-4-methoxyphenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-t-butylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy (ix) aryalkyl, (x) aryloxyalkyl, (xi) heterocyclic (alkyl), (xii) (N-alkanoyl-N-alkyl)aminoalkyl, and (xiii) alkylsulfonylamidoalkyl, and R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen; or the substantially pure (+)- or (−)-isomer thereof.



Other compounds which are useful as intermediates for the preparation of compounds of the invention are:




embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • R5b is alkylene;
  • Q is a leaving group;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2.
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j) alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof;


    or a compound of the formula:





embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • R5b is alkylene;
  • Q is a leaving group;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2,
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j)alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof.



Preferred intermediates include compounds of formula (VI), (VII) and (VII)


wherein




  • m is zero R1;

  • R5b is alkylene;

  • Q is a leaving group;

  • W is —CO2-G wherein G is hydrogen or a carboxy protecting group, and R1 and R2 are as defined above; or


    the substantially pure (+)- or (−)-isomer thereof.



Particularly preferred intermediates are compounds of formula (VI), (VII) and (VIII) wherein

  • n and m are both 0;
  • R5b is alkylene;
  • Q is a leaving group;
  • W is —CO2-Q wherein G is hydrogen or a carboxy protecting group;
  • and R1 is (i) loweralkyl, (ii) alkenyl, (iii) alkoxyalkyl, (iv) cycloalkyl, (v) phenyl, (vi) pyridyl, (vii) furanyl or (viii) substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 3-fluorophenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 3-fluoro-4-methoxyphenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-t-butylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy, (ix) aryalkyl, (x) aryloxyalkyl, (xi) heterocyclic (alkyl), (xii) (N-alkanoyl-N-alkyl)aminoalkyl, and (xiii) alkylsulfonylamidoalkyl, and R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen; or the substantially pure (+)- or (−)-isomer thereof.


Other compounds which are useful as intermediates for the preparation of compounds of the invention are:




embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • R5b is alkylene;
  • R20a is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl or arylalkyl;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2,
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl,
    • (f) alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j) alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof;


    or a compound of the formula:





embedded image



wherein n is 0 or 1;

  • m is 0 to 6;
  • R5b is alkylene;
  • R20a is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl or arylalkyl;
  • W is (a) —C(O)2-G where G is hydrogen or a carboxy protecting group, (b) —PO3H2,
    • (c) —P(O)(OH)E where E is hydrogen, loweralkyl or arylalkyl,
    • (d) —CN,
    • (e) —C(O)NHR17 where R17 is loweralkyl, alkylaminocarbonyl,
    • (g) dialkylaminocarbonyl,
    • (h) tetrazolyl,
    • (i) hydroxy,
    • (j)alkoxy,
    • (k) sulfonamido,
    • (l) —C(O)NHS(O)2R16 where R16 is loweralkyl, haloalkyl, phenyl or dialkylamino,
    • (m) —S(O)2NHC(O)R16,




embedded image


  • R1 and R2 are independently selected from hydrogen, loweralkyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonylalkyl, hydroxyalkyl, haloalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl, thioalkoxyalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aminocarbonylalkenyl, alkylaminocarbonylalkenyl, dialkylaminocarbonylalkenyl, hydroxyalkenyl, aryl, arylalkyl, aryloxyalkyl, arylalkoxyalkyl, (N-alkanoyl-N-alkyl)aminoalkyl, alkylsulfonylamidoalkyl, heterocyclic, (heterocyclic)alkyl and (Raa)(Rbb)N—Rcc— wherein Raa is aryl or arylalkyl, Rbb is hydrogen or alkanoyl and Rcc is alkylene, with the proviso that one or both of R1 and R2 is other than hydrogen;


    or a salt thereof.



Preferred intermediates include compounds of formula (IX), (X) and (XI)


wherein




  • m is zero or 1;

  • R5b is alkylene;

  • R20a is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl or arylalkyl;

  • W is —CO2-G wherein G is hydrogen or a carboxy protecting group,

  • and R1 and R2 are as defined above; or


    the substantially pure (+)- or (−)-isomer thereof.



Particularly preferred intermediates are compounds of formula (IX), (X) and (XI) wherein

  • n and m are both 0;
  • R5b is alkylene;
  • R20a is hydrogen, loweralkyl, alkenyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl or arylalkyl;
  • W is —CO2-G wherein G is hydrogen or a carboxy protecting group; and R1 is (i) loweralkyl, (ii) alkenyl, (iii) alkoxyalkyl, (iv) cycloalkyl, (v) phenyl, (vi) pyridyl, (vii) furanyl or (viii) substituted or unsubstituted 4-methoxyphenyl, 4-fluorophenyl, 3-fluorophenyl, 4-ethoxyphenyl, 4-ethylphenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-pentafluoroethylphenyl, 3-fluoro-4-methoxyphenyl, 3-fluoro-4-ethoxyphenyl, 2-fluorophenyl, 4-methoxymethoxyphenyl, 4-hydroxyphenyl, 4-t-butylphenyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl or dihydrobenzofuranyl wherein the substituent is selected from loweralkyl, haloalkyl, alkoxy, alkoxyalkoxy and carboxyalkoxy, (ix) aryalkyl, (x) aryloxyalkyl, (xi) heterocyclic (alkyl), (xii) (N-alkanoyl-N-alkyl)aminoalkyl, and (xiii) alkylsulfonylamidoalkyl, and R2 is substituted or unsubstituted 1,3-benzodioxolyl, 7-methoxy-1,3-benzodioxolyl, 1,4-benzodioxanyl, 8-methoxy-1,4-benzodioxanyl, dihydrobenzofuranyl, benzofurnayl, 4-methoxyphenyl, dimethoxyphenyl, fluorophenyl or difluorophenyl wherein the substituent is selected from loweralkyl, alkoxy and halogen; or the substantially pure (+)- or (−)-isomer thereof.


The foregoing may be better understood by reference to the following examples which are provided for illustration and not intended to limit the scope of the inventive concept. The following abbreviations are used: Boc for tert-butyloxycarbonyl, Cbz for benzyloxycarbonyl, DBU for 1,8-diazabicyclo[5.4.0]undec-7-ene, EDCl for 1-(3-dimethylaminopropyl-3-ethylcarbodiimide hydrochloride, EtOAc for ethyl acetate, EtOH for ethanol, HOBt for 1-hydroxybenzotriazole, Et3N for triethylamine, TFA for trifluoroacetic acid and THF for tetrahydrofuran.







EXAMPLE 1
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 1A
Ethyl 2-(4-methoxybenzoyl)-4-nitromethyl-3-(1,3-benzodioxole-5-yl)butyrate

To ethyl(4-methoxybenzoyl)acetate (23.0 g, 0.104 mol), prepared by the method of Krapcho et al., Org. Syn. 47, 20 (1967), and 5-(2-nitrovinyl)-1,3-benzodioxole (17.0 g, 0.088 mol) dissolved in 180 mL of toluene and heated to 80° C. was added 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU, 0.65 g) with stirring. The mixture was heated until all the nitro starting material dissolved. The solution was stirred without heating for 30 minutes (min) and then an additional 0.65 g of DBU was added. After stirring an additional 45 minutes, thin layer chromatography (5% ethyl acetate in methylene chloride) indicated the absence of nitro starting material. Toluene (200 mL) was added, and the organic phase was washed with dilute hydrochloric acid and NaCl solution. The organic phase was dried over sodium sulfate and then concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with 3:1 hexane-ethyl acetate to give 21.22 g of the desired product as a mixture of isomers and 9.98 g. of recovered ethyl(4-methoxybenzoyl)acetate.


EXAMPLE 1B
Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-4,5-dihydro-3H-pyrrole-3-carboxylate

The compound resulting from Example 1A (21 g) in 500 mL of ethanol was hydrogenated under 4 atmospheres of hydrogen pressure using a Raney nickel 2800 catalyst (51 g). (The Raney nickel was washed with ethanol three times before use.) The catalyst was removed by filtration, and the solution was concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with 8.5% ethyl acetate in methylene chloride to give 12.34 g of the desired product.


EXAMPLE 1C
Ethyl 2-(4-methoxyphenyl-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate) as a mixture of cis-cis; trans,trans; and cis,trans-isomers

The compound resulting from Example 1B (11.89 g, 0.324 mol) was dissolved in 27 mL of tetrahydrofuran and 54 mL of ethanol. Sodium cyanoborohydride (2.35 g, 0.374 mol) and 5 mg bromocresol green were added. To this blue solution was added dropwise a solution of 1:2 concentrated HCl in ethanol at such a rate that the color was kept at light yellow-green. After the yellow color persisted without additional HCl, the solution was stirred an additional 20 minutes. The solution was concentrated in vacuo and then partitioned between chloroform and an aqueous potassium bicarbonate solution. The organic phase was separated, dried over sodium sulfate, and concentrated under reduced pressure. The residue was chromatographed on silica gel eluting with 85:15 ethyl acetate-hexane to give 5.96 g. of a mixture of 64% trans,trans-compound and 34% cis,trans-compound. Further elution with pure ethyl acetate gave 0.505 g of an unknown solid followed by 3.044 g of pure cis,cis-compound.


EXAMPLE 1D
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-Pyrrolidine-3-carboxylic acid

The mixture of 64% trans,trans- and 34% cis,trans- pyrrolidines (the mixture resulting from Example 1C) (5.72 g, 15.50 mmol), ethyldiisopropylamine (4.20 g, 32.56 mmol), and N-propyl bromoacetamide (3.42 g, 19.0 mmol), prepared by the method of Weaver, W. E. and Whaley, W. M., J. Amer. Chem. Soc., 69: 515 (1947), in 30 mL of acetonitrile was heated at 50° C. for 1 hour. The solution was concentrated in vacuo. The residue was dissolved in toluene, shaken with potassium bicarbonate solution, dried over sodium sulfate and concentrated in vacuo to give 7.16 g of product as a mixture of trans,trans- and cis,trans- ethyl esters.


This mixture was dissolved in a solution of 50 mL of ethanol and 15 mL of water containing 5.00 g of sodium hydroxide and stirred for 3 hours at room temperature. The solution was concentrated in vacuo and 60 mL of water added. The mixture was extracted with ether to remove the unreacted cis,trans- ethyl ester. The aqueous phase was treated with hydrochloric acid until slightly cloudy. It was then further neutralized with acetic acid to give the crude acid product. The crude product was filtered and purified by dissolving it in tetrahydrofuran, drying over sodium sulfate, concentrating in vacuo, and crystallizing from ether to give 3.230 g of the title compound. m.p. 151-153° C. 1H NMR (CD3OD, 300 MHz) δ 0.87 (t, J=7 Hz, 3H), 1.49 (sextet, J=7 Hz, 2H), 2.84 (d, J=16 Hz, 1H), 2.95-3.20 (m, 4H), 3.20 (d, J=16 Hz, 1H), 3.34-3.42 (m, 1H), 3.58-3.66 (m, 1H), 3.78 (s, 3H), 3.88 (d, J =10 Hz, 1H), 5.92 (s, 2H), 6.75 (d, J=8 Hz, 1H), 6.86 (dd, J=8 Hz, J=1 Hz, 1H), 6.90 (d, J=9 Hz, 2H), 7.02 (d, J=1 Hz, 1H), 7.40 (d, J=9 Hz, 2H).


EXAMPLE 2
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the method described in Example 1D, 300 mg of the mixture of 64% trans,trans- and 34% cis,trans- pyrrolidines (the mixture resulting from Example 1C), 220 mg of diisopropylethylamine and 184 mg iodoacetamide were reacted at 45° C. in 1 mL acetonitrile to give 291 mg of a mixture of trans,trans- and cis,trans- N-alkylated esters. A portion (270 mg.) was hydrolyzed with 200 mg NaOH in 1 mL of water and 3 mL of ethanol; a chloroform extraction was used to remove the unreacted cis,trans- ethyl ester. The isolation and purification procedures described in Example 1D were used to give 134 mg of the title compound. m.p. 246-248° C. 1H NMR (DMSO-d6, 300 MHz) δ 2.61 (d, J=16 Hz, 1H), 2.71 (t, J=9 Hz, 1H), 2.90 (t, J=9 Hz, 1H), 2.98 (d, J=16 Hz, 1H) 3.25-3.35 (m, 1H), 3.45-3.55 (m, 1H), 3.71 (s, 3H), 3.75 (d, J =10 Hz, 1H), 6.00 (s, 2H), 6.90 (d, J =8 Hz, 2H), 7.10 (s, 1H), 7.17 (s, 1H), 7.34 (s, 1H), 7.38 (d, J=8 Hz, 2H).


EXAMPLE 3
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-fluorobenzyl)-pyrrolidine-3-carboxylic acid

Using the method described in Example 1D, 300 mg of the mixture of 64% trans,trans- and 34% cis,trans- pyrrolidines (the mixture resulting from Example 1C), 220 mg of diisopropylethylamine and 185 mg of 4-fluorobenzyl bromide were reacted at room temperature for 3 hours in 1 mL of acetonitrile to give 387 mg of a mixture of trans,trans- and cis,trans-N-alkylated esters. A portion (360 mg) was hydrolyzed with 250 mg NaOH in 1 mL of water and 4 mL of ethanol to give 160 mg of the title compound as an amorphous powder. 1H NMR (CDCl3, 300 MHz) δ 2.74 (t, J=9 Hz, 1H), 2.95 (t, J=7 Hz, 1H), 2.98 (d, J=14, 1H), 3.07 (dd, J=9 Hz, 1 Hz, 1H), 3.42- 3.53 (m, 1H), 3.70 (d, J=9 Hz, 1H), 3.78 (d, J=14, 1H), 3.81 (s, 3H), 5.92 (s 2H), 6.70 (d, J=8 Hz, 1H), 6.77 (dd, J=8 Hz, 1 Hz, 1H), 6.91 (d, J=9 Hz, 2H), 6.94 -7.00 (m, 3H), 7.20-7.25 (M, 1H), 7.44 (d, J=9 Hz, 2H).


EXAMPLE 4
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-ethoxyethyl)-pyrrolidine-3-carboxylic acid

Using the method described in Example 1D, 300 mg. of the mixture of 64% trans,trans- and 34% cis,trans- pyrrolidines (the mixture resulting from Example 1C), 220 mg of diisopropylethylamine and 152 mg of 2-bromoethyl ethyl ether were refluxed in 1.5 mL acetonitrile for 3 hours (bath temperature at 95° C.) to give 346 mg of a mixture of trans,trans- and cis,trans-esters. Hydrolysis with 250 mg NaOH in 1 mL of water and 3 mL of ethanol afforded 1.40 mg of the title compound. m.p. 88-90° C. 1H NMR (CDCl3, 300 MHz) δ 1.25 (t, J=7 Hz, 3H), 2.21-2.32 (m, 1H), 2.70-2.80 (m, 1H), 2.85-2,94 (m, 2H), 3.38-3.55 (m, 6H), 3.67 (d, J=10 Hz, 1H), 3.79 (s, 3H), 5.94 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.84 (m, 1H), 6.84 (d, J=9 Hz, 2 H), 7.08 (d, J=1 Hz, 1H), 7.33 (d, J=9 Hz, 2H).


EXAMPLE 5
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-propoxyethyl)-pyrrolidine-3-carboxylic acid

Using the method described in Example 1D, 520 mg of the mixture resulting from Example 1C, 364 mg of diisopropylethylamine, 50 mg potassium iodide and 350 mg 2-chloroethyl propyl ether were reacted at 125° C. in 0.5 mL acetonitrile for 4 hours to give 517 mg of a mixture of trans,trans- and cis, trans-esters. A portion (500 mg) was hydrolyzed with 315 mg NaOH in 1 mL of water and 4 mL of ethanol to give 225 mg of the title compound as an amorphous powder. 1H NMR (CDCl3, 300 MHz) δ 0.87 (t, J=7 Hz, 3H), 1.53 (sextet, J=7 Hz, 2H), 2.28-2.41 (m, 1H), 2.71 -2.83 (m, 1H), 2.92-3.08 (m, 2H), 3.30 (t, J=7 Hz, 2H), 3.40-3.60 (m, 4H), 3.72- 3.83 (m 1H), 3.76 (s, 3H), 5.92 (s, 2H), 6.71 (d, J=8 Hz, 2H), 6.74 (dd, J=8 Hz, 1 Hz), 6.71 (d, J=9 Hz, 2H), 7.07 (d, J=9 Hz, 2H), 7.73 (d, J=9 Hz, 2H).


EXAMPLE 6
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(2-methoxyethoxy)ethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 6A
Ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate

To the pure cis,cis-compound resulting from Example 1C (3.02 g) dissolved in 10 mL of ethanol was added 20 drops of a solution of 21% sodium ethoxide in ethanol. The reaction mixture was refluxed overnight, at which time thin layer chromatography in ethyl acetate indicated the absence of starting material. The NaOEt was neutralized with HCl in ethanol, and the solution was concentrated in vacuo. The residue was taken up in toluene and extracted with potassium bicarbonate in water. The toluene was dried over sodium sulfate and concentrated under reduced pressure to give 2.775 of the title compound which was pure by TLC (ethyl acetate).


EXAMPLE 6B
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(2-methoxyethoxy)ethyl]-pyrrolidine-3-carboxylic acid

Using the method described in Example 1D, 250 mg of the compound resulting from Example 6A, 150 mg of 2-(2-methoxyethoxy)ethyl bromide and 175 mg diisopropyl-ethylamine in 1 mL acetonitrile were heated at 100° C. for 3 hours to give 229 mg of the trans,trans-ester. A portion (200 mg) was hydrolyzed with 125 mg NaOH in 1 mL of water and 2 mL of ethanol to give 151 mg of the title compound as an amorphous powder. 1H NMR (CD3OD, 300 MHz) δ 2.9-3.9 (m, 13H), 3.81 (s, 3H), 4.49 (d, J=10 Hz, 1H), 5.94 (s, 2H), 6.79 (d, J=8 Hz, 1H), 6.89 (dd, J =8 Hz, 1 Hz, 1H), 7.00 (d, J=9 Hz, 2H), 7.05 (d, J=1 Hz, 1H), 7.49 (d, J=9 Hz, 2H).


EXAMPLE 7
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(2-pyridyl)ethyl]-Pyrrolidine-3-carboxylic acid

The compound resulting from Example 6A (250 mg), 2-vinyl pyridine (355 mg) and one drop of acetic acid were dissolved in 2-methoxyethanol, and stirred at 100° C. for 2.5 hours. Toluene was added, and the solution was washed with potassium bicarbonate solution. The solution was dried over potassium bicarbonate and concentrated in vacuo. Toluene was added and the solution re-concentrated. This was done until the odor of 2-vinylpyridine was gone. The residue was taken up in hot heptane, filtered to remove a small amount of insoluble impurity, and concentrated in vacuo to give 225 mg of intermediate ester. The ester was hydrolyzed by the method described in Example 1D to give 202 mg of the title compound as the dihydrate. m.p. 77-80° C. 1H NMR (CD3OD, 300 MHz) δ 2.8-3.3 (m, 6H), 3.55-3.70 (m, 2H), 3.76 (s, 3H), 3.99 (d, J=10 Hz, 1H), 5.92 (d, J=1 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.80 (dd, J=8 Hz, 1 Hz), 6.85 (d, J=9 Hz, 2H), 6.92 (d, J=1 Hz, 1H), 7.20 (d, J=9 Hz, 2H), 7.20-7.32 (m, 2H), 7.70-7.80 (m, 2H) , 8.40 (d, J =4 Hz, 1H).


EXAMPLE 8
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(morpholin-4-ylcarbonyl)-pyrrolidine-3-carboxylic acid

To the compound resulting from Example 6A (300 mg) and 164 mg triethylamine dissolved in 2 mL of methylene chloride and cooled in an ice bath was added 146 mg 1-morpholinocarbonyl chloride. The mixture was stirred 3 hours at room temperature. Toluene was added and the solution was washed with potassium bicarbonate solution, dried over sodium sulfate and concentrated in vacuo to give the intermediate ester. The ester was hydrolyzed by the method described in Example 1D to give 288 mg of the title compound. m.p. 244-246° C. 1H NMR (DMSO-d6, 300 MHz) δ 2.96 (dd, J=12, Hz, 13 Hz, 1H), 3.03-3.13 (m, 2H), 3.20-3.30 (m, 2H), 3.40-3.60 (m, 5H), 3.74 (s, 3H), 3.70-3.85 (m, 3H), 5.10 (d, J=10 Hz, 1H), 5.99 (d, J=1 Hz, 2H), 6.80-6.90 (m, 2H), 6.87 (d, J=9 Hz, 2H), 7.07 (s, 1H), 7.25 (d, J=9 Hz, 2H).


EXAMPLE 9
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxole-5-yl)-1-(butylaminocarbonyl)-pyrrolidine-3-carboxylic acid

To the compound resulting from Example 6A (300 mg) dissolved in 2 mL tetrahydrofuran and cooled in an ice bath was added 88 mg of butyl isocyanate. After 40 minutes at room temperature, toluene was added, and the solution was concentrated in vacuo to give the intermediate ester. The ester was hydrolyzed by the method described in Example 1D to give 232 mg of the title compound. m.p. 220-221° C. 1H NMR (DMSO-d6, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 1.10 (sextet, J =7 Hz, 2H), 1.22 (quintet, J=7 Hz, 2H), 2.78-3.05 (m, 3H), 3.40-3.56 (m, 2H), 3.74 (s, 3H), 3.95-4.05 (m, 1H), 4.93 (d, J=9 Hz, 1H), 5.80 (t, broad, J=7 Hz, 1H), 5.99 (s, 2H), 6.78-6.86 (m, 2H), 6.88 (d, J=9 Hz, 2H), 7.00 (d, J=1 Hz, 1H), 7. 12 (d, J=9 Hz, 2H).


EXAMPLE 10
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-methoxyphenylaminocarbonyl)-3-pyrrolidine-3-carboxylic acid

The compound resulting from Example 6A (300 mg) was treated with 133 mg of 4-methoxyphenyl isocyanate by the procedure described in Example 9. The resulting ester was hydrolyzed with NaOH using the method described in Example 1D to give 279 mg of the title compound. m.p. 185-187° C. 1H NMR (CDCl3, 300 MHz) δ 3.23 (dd, J=12 Hz, 13 Hz, 1H), 3.55-3.68 (m, 2H), 3.72 (s, 3H), 3.83 (s, 3H), 4.50-4.65 (m, 1H), 5.06 (d, J=10 Hz, 1H), 5.90 (s, 1H), 5.95 (s, 1H), 6.72 (d, J=9 Hz, 2H), 6.7-6.8 (m, 3H), 6.92 (d, J=9 Hz, 2H), 6.97 (d, J=9 Hz, 2 H), 7.37 (d, J=9 Hz, 2H).


EXAMPLE 11
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-acetylpyrrolidine-3-carboxylic acid

The compound resulting from Example 6A (250 mg) in 0.5 mL of toluene was treated with 200 mg of acetic anhydride. After stirring 2 hours at room temperature, water was added and the acetic acid neutralized with potassium bicarbonate. The mixture was extracted with toluene to give 273 mg of the intermediate ester. A portion of the ester (200 mg) was hydrolyzed using the method of Example 1D to give 211, mg of the title compound. m.p. 248-250° C. Rotational isomers are seen in the NMR. 1H NMR (DMSO-d6, 300 MHz) δ 1.55 and 2.00 (s, 3H), 2.94 and 3.03 (dd, J=12 Hz, 13 Hz, 1H), 3.3-3.6 (m, 2H), 3.72 and 3.76 (s, 3H), 4.12 and 4.28 (dd, J=12 Hz, 7 Hz, 1H), 4.95 and 5.04 (d, J=10 Hz, 1H), 6.00 (s, 2H), 6.75-6.87 (m. 3H), 6.95 and 7.04 (d, J=9 Hz, 2H), 7.18 and 7.32 (d, J=9 Hz, 2H).


EXAMPLE 12
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-furoyl)-pyrrolidine-3-carboxylic acid

To the compound resulting from Example 6A (300 mg) and 164 mg triethylamine dissolved in 2 mL methylene chloride and cooled in an ice bath was added 138 mg of 2-furoyl chloride. The mixture was stirred 30 minutes at room temperature and then worked up by the procedures described in Example 8 to give the intermediare ester. The ester was hydrolyzed by the procedure described in Example 1D to give 269 mg of the title compound as an amorphous powder. 1H NMR (DMSO-d6, 300 MHz) δ 3.06 (dd, J=12 Hz, 13 Hz, 1H), 3.3-3.6 (m, 2H), 4.25 (m, 1H), 5.19 (d, J=10 Hz, 1H), 6.67.4 (m, 8H), 7.8-7.9 (m, 1H).


EXAMPLE 13
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(phenylaminocarbonyl)-pyrrolidine-3-carboxylic acid

Starting with the compound resulting from Example 6A, phenyl isocyanate and the procedures described in Example 9, the title compound was prepared. m.p. 209-211° C. 1H NMR (DMSO-d6, 300 MHz) δ 3.03 (dd, 1H), 3.55 (m, 1H), 3.70 (m, 1H), 3.72 (s, 3H), 4.15 (m, 1H), 5.13 (d, 1H), 6.00 (s, 2H), 6.88 (m, 5H), 7.07-7.20 (m, 3H), 7.30 (d, 2H), 7.38 (d, 2H), 8.20 (bs, 1H).


EXAMPLE 14
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(allylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. m.p. 138-140° C. 1H NMR (CDCl3, 300 MHz) δ 2.84 (d, 1H), 2.90-3.10 (dt, 2H), 3.28 (d, 1H), 3.35 (dd, 1H), 3.62 (m, 1H), 3.72-3.97 (m, 3H), 3.80 (s, 3H), 5.13 (bd, 2H), 5.80 (m, 1H), 5.97 (s, 2H), 6.74-6.97 (m, 5H), 7.38 (d, 2H).


EXAMPLE 15
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(n-butylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. m.p. 105-107° C. 1H NMR (CDCl3, 300 MHz) δ 0.90 (t, 3H), 1.30 (m, 2H), 1.45 (m, 2H), 2.80 (d, 1H), 2.87-3.35 (m, 6H), 3.62 (m, 1H), 3.80 (s, 3H), 5.97 (s, 2H), 6.75-6.92 (m, 5H), 7.28 (d, 2H).


EXAMPLE 16
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-(n-propyl)-N-methylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared as an amorphous solid. Rotational isomers are seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ 0.73, 0.84 (2t, 3H), 1.49 (m, 2H), 2.80 (dd, 1H), 2.85 (2 s, 3H), 2.95-3.20 (m, 3H), 3.20-3.40 (m, 1H), 3.40 (d, 1H), 3.60 (m, 1H), 3.79 (s, 3H), 5.93 (s, 2H), 6.73 (d, 1H), 6.86 (m, 2H), 7.03 (m, 1H), 7.32 (d, 2H).


EXAMPLE 17
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-ylcarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 1.40-1.70 (m, 6H), 2.80 (d, 1H), 3.00 (m, 2H), 3.24-3.43 (m, 5H), 3.60 (m, 2H), 3.73 (d, 1H), 3.80 (s, 3H), 5.95 (s, 2H), 6.74 (d, 1H), 6.80-6.90 (m, 3H), 7.04 (d, 1H), 7.30 (d, 2H).


EXAMPLE 18
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(isobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. m.p. 175-177° C. 1H NMR (CD3OD, 300 MHz) δ 0.87 (dd, 6H), 1.75 (septet, 1H), 2.85 (d, 1H), 2.90-3.10 (m, 4H), 3.23 (d, 1H), 3.40 (m, 1H), 3.58 -3.67 (m, 1H), 3.78 (s, 3H), 3.89 (d, 1H), 5.92 (s, 2H), 6.76 (d, 1H), 6.86 (dd, 1H ), 6.91 (d, 2H), 7.02 (d, 1H), 7.40 (d, 2H).


EXAMPLE 19
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(cyclopentylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. m.p. 137-139° C. 1H NMR (CDCl3, 300 MHz) δ 1.34 (m, 2H), 1.62 (m, 4H), 1.90 (m, 2H), 2.76 (d, 1H), 2.90 (t, 1H), 3.04 (dd, 1H), 3.22 (d, 1H), 3.28 (dd, 1H), 3.40 (m, 1H), 3.80 (s, 3H), 4.15 (m, 1H), 5.97 (d, 2H), 6.75-6.95 (m, 5H), 7.27 (m, 2H).


EXAMPLE 20
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(morpholin-4-ylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 2.82 (d, 1H), 3.00 (m, 2H), 3.24 (m, 1H), 3.30-3.52 (m, 4H), 3.52-3.75 (m, 8H), 3.80 (s, 3H), 5.95 (s, 2H), 6.75 (d, 1H), 6.84 (d, 3H), 7.00 (s, 1H), 7.28 (d, 2H).


EXAMPLE 21
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-phenoxyethyl) -pyrrolidine-3-carboxylic acid

Using the procedures described in Example 4 the title compound was prepared as an amorphous solid. 1H NMR (CD3OD, 300 MHz) δ 2.82 (m, 1H), 2.96 (dd, 1H), 3.13 (m, 1H), 3.32 (m, 1H), 3.51-3.70 (m, 2H), 3.77 (s, 3H), 4.00 (d, 1H), 4.07 (m, 2H), 5.91 (s, 2H), 6.72 (d, 1H), 6.80-6.95 (m, 6H), 7.03 (d, 1H), 7.22 (dd, 2H), 7.39 (d, 2H).


EXAMPLE 22
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-methoxyethylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. m.p. 107-109° C. 1H NMR (CD3OD, 300 MHz) δ 2.82 (d, 1H), 2.97 (q, 2H), 3.21 (d, 1H), 3.38 (m, 1H), 3.32 (s, 3H), 3.44 (m, 4H), 3.62 (m, 1H), 3.79 (s, 3H), 3.86 (d, 1H), 5.93 (s, 2H), 6.76 (d, 1H), 6.85 (dd, 1H), 6.91 (d, 2H), 7.01 (d, 1H), 7.38 (d, 2H).


EXAMPLE 23
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-butoxyethyl) -pyrrolidine-3-carboxylic acid

Using the procedures described in Example 4 the title compound was prepared. m.p. 53-55° C. 1H NMR (CDCl3, 300 MHz) δ 0.88 (t, J=7 Hz, 3H), 1.32 (sextet, J=7 Hz, 2H), 1.50 (pentet, J=7 Hz, 2H), 2.27 (tt, J=6 Hz, 6 Hz, 1H), 2.92 (q, J=10 Hz, 2H), 3.35 (t, J=7 Hz, 2H), 3.42-3.56 (m, 4H), 3.68 (d, J=10 Hz, 3.78 (s, 3H), 5.94 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.83 (d, J=9 Hz, 2H), 6.82-6.87 (m, 1H), 7.06 (d, J=2 Hz, 1H), 7.32 (d, J=9 Hz, 2H). MS m/e 442 (M+H)+.


EXAMPLE 24
trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 and substituting ethyl(1,3-benzodioxol-5-ylcarbonyl)acetate for ethyl(4-methoxybenzoyl)acetate and 4-(2-nitrovinyl)anisole for 5-(2-nitrovinyl)-1,3-benzodioxol-5yl afforded the title compound. m.p. 97-99° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 1.39 (sextet, J=7 Hz, 2H), 2.72 (d, J=16 Hz, 1H), 2.74 (t, J=10 Hz, 1H), 2.80-3.10 (m, 4H), 3.26-3.38 (m, 1H), 3.53 (m, 1H), 3.73 (s, 3H), 3.80 (d, J=10 Hz, 2H), 7.80 (t, J=6 Hz, 1H). MS (DCl/NH3) m/e 441 (M+H)+.


EXAMPLE 25
trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-(2-propoxyethyl) -pyrrolidine-3-carboxylic acid

Using the procedures described in Example 5 and substituting ethyl(1,3-benzodioxol-5-ylcarbonyl)acetate for ethyl(4-methoxybenzoyl)acetate and 4-(2-nitrovinyl)anisole for 5-(2-nitrovinyl)-1,3-benzodioxol-5yl afforded the title compound. m.p. 67-69° C. 1H NMR (CDCl3, 300 MHz) δ 0.89 (t, J=7 Hz, 3H), 1.56 (sextet, J=7 Hz, 2H), 2.33 (m, 1H), 2.78-3.00 (m, 3H), 3.32 (t, J=7 Hz, 2H), 3.45-3.57 (m, 4H), 3.73 (m, 1H), 3.79 (s, 3H), 5.93 (s, 2H), 6.22 (d, J=8 Hz, 1H), 6.85 (d, J=8 Hz, 3H), 6.98 (s, 1H), 7.37 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 428 (M+H)+.


EXAMPLE 26
trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-[2-(2-methoxyethoxy)ethyl)]-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 4 and substituting the starting materials described in Example 25 and using 2-(2-methoxyethoxy)ethylbromide to alkylate the pyrrolidine nitrogen afforded the title compound. m.p. 85-86° C. 1H NMR (CD3OD, 300 MHz) δ 3.18-3.90 (m, 15H), 3.79 (s, 3H), 4.57 (d, J=10 Hz, 1 H), 6.02 (s, 2H), 6.91 (d, J=8 Hz, 1H), 6.95 (d, J=9 Hz, 2H), 7.06 (dd, J=8 Hz, 1H), 7.12 (dd, J=1 Hz, 1H), 7.37 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 444 (M+H)+.


EXAMPLE 27
trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-(butoxyethyl) -pyrrolidine-3-carboxylic acid

Using the procedures described in Example 4, substituting the starting materials described in Example 25 and using 2-ethoxyethylbromide to alkylate the pyrrolidine nitrogen afforded the title compound. m.p. 54-56° C. 1H NMR (CDCl3, 300 MHz) δ 0.89 (t, J−7 Hz, 3H), 1.44 (sextet, J=7 Hz, 2H), 1.52 (pentet, J=7 Hz, 2H), 2.40 (m, 1H), 2.74-2.98 (m, 3H), 3.46 (t, J=7 Hz, 2H), 3.42-3.56(m, 4H), 368 (d, J=10 Hz, 1H), 3.80 (s, 3H), 5.93 (dd, J=6 Hz, 1 Hz, 2H), 6.72 (d J=8 Hz, 1), 6.74 (dd, J=9 Hz, 3H), 6.96 (s, 1H), 7.36 (d, J=9 Hz, 2H).


EXAMPLE 28
trans,trans-2-(4-Methoxyphenyl)-4-(1,4-benzodioxan-6-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 and substituting 6-(2-nitrovinyl)-1,4-benzodioxane for 5-(2-nitrovinyl)-1,3-benzodioxole afforded the title compound. m.p. 80-81° C. 1H NMR (CDCl3, 300 MHz) δ 0.89 (t, J=7 Hz, 3H), 1.49 (sextet, J=7 Hz, 2H), 2.78 (d, J=16 Hz, 1H), 2.92 (t, J=10 Hz, 1H), 3.05-3.43 (m, 5H), 3.24 (d, J=16 Hz, 1H), 3.52-3.62 (m, 1H), 3.80 (s, 3H), 3.80 (t, J=10 Hz, 1H), 4.27 (s, 4H), 6.74-6.93 (m, 5H), 7.29 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 455 (M+H)+.


EXAMPLE 29
trans,trans-2-(4-Methoxyphenyl)-4-(1,4-benzodioxan-6-yl)-1-(N-methyl-N -propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, substituting 6-(2-nitrovinyl)-1,4-benzodioxane for 5-(2-nitrovinyl)-1,3-benzodioxole and alkylating the pyrrolidine nitrogen with N-methyl-N-propyl bromoacetamide afforded the title compound. m.p. 74-76° C. Rotational isomers are seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ 0.73, 0.83 (2t, J=7 Hz, 3H), 1.48 (m, 2H), 2.78 (dd, 1H), 2.85 (2s, 3H), 2.96-3.15 (m, 3H), 3.27-3.42 (m, 3H), 3.52-3.60 (m, 1H), 3.75 (d, 1H), 3.78 (s, 3H), 4.22 (s, 4H), 6.80-6.98 (m, 5H), 7.32 (d, 2H). MS (DCl/NH3) m/e 469 (M+H)+.


EXAMPLE 30
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N -butylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. Rotational isomers are seen in the NMR. 1H NMR (CD3OD, 300 MHz) δ 0.86 (2t, 3H), 1.04-1.50 (m, 4H), 2.85 (2s, 3H), 2.93-3.20 (m, 4H), 3.40 (m, 2H), 3.52 (dd, 1H), 3.60 (m, 1H), 3.80 (s, 3H), 3.85 (m, 1H), 5.91 (s, 2H), 6.74 (d, 1H), 6.83-6.95 (m, 3H), 7.03 (dd, 1H), 7.35 (dd, 2H).


EXAMPLE 31
trans,trans-2-(4-Methoxy-2-methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N -methyl-N-butylamin)-pyrrolidine-3-carboxylic acid
EXAMPLE 31A
Ethyl 2-(4-methoxy-2-methoxymethoxyphenyl-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate)

Using the procedures described in Examples 1A and 1B and substituting ethyl (4-methoxy-2-methoxymethoxybenzoyl)acetate for ethyl(4-methoxybenzoyl)acetate afforded ethyl 2-(4-methoxy-2-methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-4,5-dihydro-3H-pyrrole-3-carboxylate.


The above dihydro pyrrole carboxylate (3.0 g, 7.0 mmol) was dissolved in 20 mL of methanol, treated with 500 mg of 10% Pd/C and placed under hydrogen atmosphere for 32 hours. The catalyst was removed by filtration and the filtrate was concentrated under reduced pressure and chromatographed on silica gel eluting with ethyl acetate to afford the title compound (1.9 g, 63%) as the cis-cis isomer.


EXAMPLE 31B
trans,trans-2-(4-Methoxy-2-methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N -methyl-N-butylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound resulting from Example 31A was epimerized by the procedure described in Example 6A. The resulting trans,trans compound (100 mg, 0.23 mmol) was then reacted by the procedures described in Example 1D substituting N-methyl -N-butyl bromoacetamide for N-propyl bromoacetamide to give the title compound (75 mg, 62%). m.p. 65-67° C. Rotational isomers are seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ 0.64, 0.68 (2t, J=7 Hz, 3H), 1.14, 1.12 (2 sextet, J=7 Hz, 2H), 1.40-1.48 (m, 2H), 2.86, 2.89 (2s, 3H), 2.95-3.42 (m, 6H), 3.50 (s, 3H), 3.43-3.65 (m, 2H), 3.78 (s, 3H), 4.30 (t, J=7 Hz, 1H), 5.09 (q, J=7 Hz, 2H), 5.92 (s, 2H), 6.55 (dd, J=3 Hz, 1H), 6.68 (s, 1H), 6.72 (s, 1H), 6.85 (2t, J=1 Hz, 1H), 7.04 (t, J=1 Hz, 1H), 7.42 (dd, J=3 Hz, 1H).


EXAMPLE 32
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3-ethoxypropyl) -pyrrolidin-5-one-3-carboxylic acid
EXAMPLE 32A
Ethyl 2-(4-methoxybenzoyl)-3-carbomethoxy-1,3-benzodioxole-5-propionate

To ethyl (4-methoxybenzoyl)acetate (4.44 g, 0.02 mmol) dissolved in 20 mL of anhydrous THF was added in portions 480 mg of NaH. The mixture was stirred for 30 minutes under nitrogen at ambient temperature. Methyl(1,3-benzodioxol-5-yl) bromoacetate (5.46 g, 0.02 mol) in 5 mL of THF was added. The mixture was stirred overnight at ambient temperature, diluted with 200 mL of EtOAc, and washed with water and brine. The organic phase was dried over sodium sulfate and concentrated in vacuo to afford the title compound (7.67 g, 92%) which was used without further purification.


EXAMPLE 32B
Ethyl 1-(3-ethoxypropyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-4,5-dihydro-5-oxo-1H-pyrrole-3-carboxylate

A mixture of the compound resulting from Example 32A (700 mg, 1.69 mmol), 3-ethoxypropylamine (348 mg, 3.38 mmol) and 1 mL of acetic acid in a sealed tube was heated for 18 hours at 125° C. After cooling the contents of the tube to ambient temperature, 5 mL of water was added and the mixture extracted with ethyl acetate (2×100 mL). The combined organic extracts were washed with saturated sodium bicarbonate solution, water and brine, dried over sodium sulfate and concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with 3:2 hexane-ethyl acetate to give 330 mg (42%) of the title compound.


EXAMPLE 32C
Ethyl 1-(3-ethoxypropyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidin-5-one-3-carboxylate

The compound resulting from Example 32B (300 mg, 0.64 mmol) in 15 mL of methanol was reduced with 100 mg of 10% Pd/C under hydrogen for 3 hours at ambient temperature. The catalyst was removed by filtration and the filtrate was concentrated under reduced pressure to give the title compound.


EXAMPLE 32D
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3-ethoxypropyl)-pyrrolidin-5-one-3-carboxylic acid

To the compound resulting from Example 32C (100 mg, 0.21 mmol) dissolved in 1 mL of ethanol was added 3 drops of a solution of 21% sodium ethoxide in ethanol. The mixture was heated to 70-80° C. for 3 hours, and then a solution of sodium hydroxide (100 mg) in 1 mL of water was added and heating was continued for 1 additional hour. The reaction mixture was cooled to ambient temperature, the ethanol was removed under reduced pressure, and water was added to the residue which was washed with ether. The aqueous layer was neutralized with 3 M HCl and allowed to stand overnight. The white crystalline solid was collected by filtration to give the title compound (60 mg, 64%). m.p. 134-140° C. 1H NMR (DMSO-d6, 300 MHz) δ 1.04 (t, J=7 Hz, 3H), 1.55 (sextet, J=7 Hz, 2H), 2.48-2.56 (m, 1H), 2.93 (dd, J=9 Hz, 1H), 3.25 (t, J=7 Hz, 2H), 3.28-3.40 (m, 2H), 3.48-3.57 (m, 1H), 3.78 (s, 3H), 3.88 (d, J=10 Hz, 1H), 4.72 (d, J=10 Hz, 1H), 6.02 (s, 2H), 6.74 (dd, J=8 Hz, 1 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 6.98 (d, J=8 Hz, 2H), 7.38 (d, J=8 Hz, 2H). MS (DCI/NH 3) m/e 442 (M+H)+.


EXAMPLE 33
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3-methoxybenzyl) -pyrrolidin-5-one-3-carboxylic acid

Following the procedures described in Example 32 and substituting 3-methoxybenzylamine for 3-ethoxypropylamine afforded the title compound (123 mg, 65%). m.p. 150-152° C. 1H NMR (CD3OD, 300 MHz) δ 2.96 (dd, J=8 Hz, 10 Hz, 1H), 3.72 (s, 3H), 3.80 (s, 3H), 4.06 (d, J=10 Hz, 1H), 4.58 (d, J=8 Hz, 1H), 4.92 (q, J=16 Hz, 2H), 5.92 (s, 2H), 6.55-6.63 (m, 2H), 6.82 (d, J=8 Hz, 4H), 6.94 (d, J=8 Hz, 2H), 7.15-7.22 (m, 3H). MS (DCl/NH3) m/e 475 (M+H)+.


EXAMPLE 34
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N, N-diisoamylaminocarbonylmethyl)-pyrrolidine-3carboxylic acid

The title compound was prepared as an amorphous solid using the procedures-described in Example 1. 1H NMR (CDCl3, 300 MHz) δ 0.70-0.90 (m, 12H), 1.10-1.60 (m, 10H), 2.75 (d, J=13 Hz, 1H), 2.90-3.10 (m, 4H), 3.15-3.30 (m, 2H), 3.40 (d, J=10 Hz, 1H), 3.40-3.52 (m, 2H), 3.55-3.62 (m, 1H), 3.75 (d, J=12 Hz, 1H), 3.79 (s, 3H), 5.93 (dd, J=1 Hz, 3 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.82-6.90 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H).


EXAMPLE 35
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N, N-dipentylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 6H), 0.95-1.03 (m, 2H), 1.10-1.30 (m, 8H), 1.40-1.51 (m, 2H), 2.72 (d, J=13 Hz, 1H), 2.90-3.08 (m, 4H), 3.25-3.50 (m, 3H), 3.37 (d, J=13 Hz, 1H), 3.52-3.60 (m, 1H), 3.70 (J=10 Hz, 1H), 3.75 (s, 3H), 5.92 (dd, J=2 Hz, 5 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.88 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H).


EXAMPLE 36
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(2-methoxyethyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 120-122° C. 1H NMR (CDCl3, 300 MHz) δ 2.82 (d, J=13, 1H), 2.94-3.08 (m, 2H), 3.12 (s, 3H), 3.23 (s, 3H), 3.20-3.70 (m, 11H), 3.73 (d, J=10 Hz, 1H), 3.79 (s, 3H), 5.92 (dd, J=2 Hz, 2 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.04 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H).


EXAMPLE 37
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-hexynyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 4, 200 mg. of the pure trans,trans isomer, the compound resulting from Example 6A was reacted with 109 mg of 1-bromo-2-hexyne, prepared by the method described in Perkin I, 2004 (1987), for 1 hour at 55° C., to give 226 mg of the intermediate ester. The ester was hydrolyzed using NaOH in ethanol-water for 3 hours at room temperature to give 175 mg of the title compound. 1H NMR (CDCl3, 300 MHz) δ 1.00 (t, J=7 Hz, 3H), 1.54 (m, 2H), 2.14-2.22 (m, 2H), 2.96 (dd, J=7 Hz, 13 Hz, 1H), 3.07 (dd, J=18 Hz, 2 Hz, 1H), 3.15 (dd, J=9 Hz, 2 Hz, 1H), 3.26 (t, J=9 Hz, 1H), 3.36 (dd, J=18 Hz, 2 Hz, 1H), 3.47-3.55 (m, 1H), 3.79 (s, 3H), 3.88 (d, J=9 Hz, 1H), 5.95 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.88 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.22 (d, J=9 Hz, 2H).


EXAMPLE 38
trans trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-cyclopropylmethyl-N -propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 167-169° C. Rotational isomers were seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ −0.1 (m), 0.05 (m), 0.12-0.25 (m), 0.32-0.51 (m), 0.67 and 0.74 (2 triplets, 3H), 0.90-1.00 (m), 1.20-1.55 (m), 2.72 (d, J=13 Hz, 1H), 2.85-3.29 (m, 4H), 3.30-3.50 (m, 3H), 3.52-3.62 (m, 1H), 3.65-3.73 (2 doublets, J=10 Hz, 2 Hz, 1H), 3.78 (s, 3H), 5.95 (2 singlets, 2H), 6.72 (2 doublets, 2H), 6.80-6.90 (m, 3H), 7.00 and 7.05 (2 doublets, J=9 Hz, 2H).


EXAMPLE 39
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N -pentylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. Rotational isomers were seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ 0.85 (t, J=7 Hz, 3H), 1.00-1.08 (m), 1.13-1.32 (m), 1.35-1,50 (m), 2.72-2.82 (2 doublets, J=13 Hz, 1H), 2.83 and 2.86 (2 singlets, 3H), 2.92-3.20 (m, 3H), 3.22-3.45 (m, 3H), 3.52-3.62 (m, 1H), 3.72 (2 doublets, 1H), 3.75 and 3.76 (2 singlets, 3H), 5.92 (2 singlets, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.87 (m, 3H), 7.03 (2 doublets, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H).


EXAMPLE 40
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N -diisobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 141-143° C. 1H NMR (CDCl3, 300 MHz) δ 0.54 (d, J=7 Hz, 3H), 0.70-0.90 (3 doublets, J=7 Hz, 9H), 1.60-1.75 (m, 1H), 1.90-2.02 (m, 1H), 2.67 (d, J=13 Hz, 1H), 2.70 (d, J=13 Hz, 1H), 2.84 (dd, J=6 Hz, 15 Hz, 1H), 2.96-3.06 (m, 2H), 3.20 (dd, J=9 Hz, 15 Hz, 1H), 3.35 (dd, J=2 Hz, 10 Hz, 1H), 3.44-3.60 (m, 4H), 3.70 (d, J=9 Hz, 1H), 3.79 (s, 3H), 5.94 (dd, J=2 Hz, 2 Hz, 2H), 6.72 (d, J=9 Hz, 1H), 6.82-6.90 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.31 (d, J=9 Hz, 2H).


EXAMPLE 41
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(2-propynyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. Rotational isomers were seen in the NMR. 1H NMR (CDCl3, 300 MHz) δ 2.09 and 2.32 (2 triplets, J=2 Hz, 1H), 2.80-3.10 (m, 3H), 2.90 and 2.99 (2 singlets, 3H), 3.35-3.50 (m, 2H), 3.52-3.62 (m, 1H), 3.78 (s, 3H), 4.03 (d, J=13 Hz, 1H), 4.00-4.30 (m, 3H), 5.93 (s, 2H), 6.72 (2 doublets, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.02 and 7.11 (2 doublets, J=2 Hz, 1H), 7.30 (2 doublets, J=9 Hz, 2H).


EXAMPLE 42
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(n -hexyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. 1H NMR (CDCl3, 300 MHz) δ 0.85 (2 triplets, J=7 Hz, 3H), 1.00-1.50 (m, 8H), 2.72-2.82 (2 doublets, J=13 Hz, 1H), 2.81 and 2.86 (2 singlets, 3H), 2.92-3.20 (m, 3H), 3.22-3.45 (m, 3H), 3.52-3.62 (m, 1H), 3.72 (2 doublets, 1H), 3.75 and 3.76 (2 singlets 3H), 5.94 (2 singlets, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.87 (m, 3H), 7.03 (2 doublets, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 1H).


EXAMPLE 43
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N N-di(n -butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 123-125° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7 Hz, 3H), 0.85 (t, J=7 Hz, 3H), 1.00-1.50 (m, 8H), 2.74 (d, J=13 Hz, 1H), 2.90-3.09 (m, 4H), 3.23-3.50 (m, 3H), 3.38 (d, J=13 Hz, 1H), 3.52-3.62 (m, 1H), 3.75 (d, J=10 Hz, 1H), 3.78 (s, 3H), 5.93 (dd, J=2 Hz, 4 Hz), 6.71 (d, J=8 Hz, 1H), 6.81-6.89 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 511 (M+H)+. Anal calcd for C29H38N2O6: C, 68.21; H, 7.50; N, 5.49. Found: C, 68.07; H, 7.47; N, 5.40.


EXAMPLE 44
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N -diethylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 132-134° C. 1H NMR (CDCl3, 300 MHz) δ 0.98 (t, J=7 Hz, 3H), 1.06 (t, J=7 Hz, 3H), 2.78 (d, J=13 Hz, 1H), 2.95-3.20 (m, 4H), 3.30-3.50 (m, 4H), 3.55-3.65 (m, 1H), 3.76 (d, J=12 Hz, 1H), 3.79 (s, 3H), 5.93 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.02 (d, J=2 Hz, 1H), 7.32 (d, J=9 Hz, 2H).


EXAMPLE 45
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N -phenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. 1H NMR (CD3OD, 300 MHz) δ 2.75-2.85 (m, 2H), 3.05-3.13 (m, 1H), 3.18 (s, 3H), 3.40-3.58 (m, 2H), 3.78 (s, 3H), 3.88 (d, J=12 Hz, 1H), 5.92 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.75-6.85 (m, 3H), 7.00-7.12 (m, 5H), 7.82-7.92 (m, 3H).


EXAMPLE 46
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-(N-methyl-N -cyclohexylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. Rotational isomers were seen in the NMR. 1H NMR (CD3OD, 300 MHz) δ 1.00-1.85 (m, 10H), 2.72 and 2.78 (2 singlets, 3H), 2.75-2.82 (2 doublets, J=12 Hz, 1H), 2.96-3.22 (m, 3H), 3.40-3.65 (m, 3H), 3.68 and 3.82 (2 doublets, J=10 Hz, 1H), 3.77 and 3.78 (2 singlets, 3H), 5.92 (s, 2H), 6.72 (2 doublets, J=8 Hz, 1H), 6.82-6.88 (m, 3H), 7.02 (2 doublets, J=2 Hz, 1H), 7.30-7.40 (2 doublets, J=9 Hz, 2H).


EXAMPLE 47
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 170-172° C. 1H NMR (CDCl3, 300 MHz) δ 0.69 (t, J=7 Hz, 3H), 0.85 (t, J=7 Hz, 3H), 1.20-1.55 (m, 4H), 2.72 (d, J=13 Hz, 1H), 2.90-3.10 (m, 4H), 3.25-3.47 (m, 4H), 3.35-3.62 (m, 1H), 3.72 (d, J=9 Hz, 1H), 3.79 (s, 3H), 5.94 (s, 2H), 6.72 (d, d, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.02 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H).


EXAMPLE 48
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N -isobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid using the procedures described in Example 1. Rotational isomers were seen in the NMR. 1H NMR (CD3OD, 300 MHz) δ 0.65-0.85 (4 doublets, J=7 Hz, 6H), 1.75-1.95 (m, 1H), 2.80 and 2.90 (2 singlets, 3H), 2.90-3.10 (m, 4H), 3.10-3.65 (m, 4H), 3.74 9S, 3H), 3.81 and 3,88 (2 doublets, J=10 Hz, 1H), 5.93 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.02 (2 doublets, J=2 Hz, 1H), 7.80-7.90 (2 doublets, J=9 Hz, 2H).


EXAMPLE 49
Alternate Prepration of Ethyl 2-(4-methoxybenzoyl)-4-nitromethyl-3-(1,3-benzodioxole-5-yl)butyrate
EXAMPLE 49A
E-2-(3,4-Methylenedioxyphenyl)-1-nitroethene

To a stirred solution of piperonal (75 g, 500 mmol) in methanol (120 mL) at 10° C. was added nitromethane (27.1 mL, 500 mmol, 1 eq) followed by the dropwise addition of sodium hydroxide (21 g, 525 mmol, 1.05 eq) in sufficient water to achieve a total volume of 50 mL while maintaining the temperature between 10-15° C. The reaction mixture became cloudy, turning to a thick paste. The mixture was stirred for 30 minutes upon completion of the addition, and the mixture was then diluted with ice-water (˜350 mL) maintaining the temperature below 5° C., until solution was achieved. The resultant solution was poured in a narrow stream (such that it just failed to break into drops) into a rapidly stirred solution of 36% hydrochloric acid (100 mL) in water (150 mL). A yellow solid precipitated (nitrostyrene), and this was collected by filtration, washed with water (1.5 L) until the filtrate was neutral. The filter cake was air dried and then recrystallized from hot ethanol (3 L) to yield E-2-(3,4-methylenedioxy)-nitrostyrene as yellow needles (53 g, 55%). 1H NMR (300 MHz, CDCl3) δ 7.94 (1H, d, J=13.5 Hz), 7.47 (1H, d, J=13.5 Hz), 7.09 (1H, dd, J=7.5&2 Hz), 7.01 (1H, d, J=2 Hz), 6.87 (1H, d, J=7.5 Hz), 6.06 (2H, s). MS (DCl/NH3) m/e 194 (M+H)+, 211 (M+H+NH3)+.


EXAMPLE 49B
Ethyl 2-(4-methoxyphenyl)oxo-4-nitro-3-(3,4-methylenedioxyphenyl)butyrate

To a stirred solution of the nitrostyrene resulting from Example 49A (14.17 g, 73.34 mmol, 1.2 eq) in a mixture of propan-2-ol (75 mL) and tetrahydrofuran (175 mL) at room temperature was added successively a solution of ethyl(4-methoxybenzoyl)acetate (11.5 g, 51.7 mmol) in THF (50 mL) followed by 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) (0.45 mL, 3.0 mmol, 0.05 eq). The resultant mixture was stirred at room temperature for 1 hour, then additional DBU (0.45 mL, 3.0 mmol, 0.05 eq) was added. The mixture was stirred a further 1 hour, then the volatiles were removed in vacuo and the residue purified by flash chromatography on 500 g silica gel, eluting with 20% ethyl acetate-hexanes changing to 25% ethyl acetate-hexanes as the product eluted. The solvents were removed in vacuo to yield the nitroketoester (19.36 g, 76%) as a viscous oil. Diastereomers were seen in the NMR. 1H NMR (300 MHz, CDCl3,) δ 8.06 (2H, d, J=9 Hz), 7.89 (2H, d, J=9 Hz), 6.96 (2H, d, J=9 Hz), 6.91 (2H, d, J=9 Hz), 6.77 (1H, dd, J=9 Hz, 3 Hz), 6.73 (1H, d, J=9 Hz), 6.65 (1H, d, J=3 Hz), 5.95 (2H, s), 5.89 (1H, d, J=4 Hz), 5.88 (1H, d, J=4 Hz), 4.90-4.60 (3H, m), 4.39 (1H, m), 4.18 (2H, q, J=7 Hz), 3.94 (2H, m), 3.80 (3H, s), 3.78 (3H, s), 1.19 (3H, t, J=7 Hz), 0.99 (3H, t, J=7 Hz), MS (DCl/NH3) m/e 416 (M+H)+, 433 (M+H+NH3)+.


EXAMPLE 50
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(t -butyloxycarbonylmethyl)-pyrrolidine-3-carboxylic acid

To a stirred solution of the compound resulting from Example 1C (100 mg, 0.27 mmol) in acetonitrile (2 mL) was added successively diisopropylethylamine (70 μL, 0.40 mmol, 1.5 eq) and t-butyl bromoacetate (48 μL, 0.29 mmol, 1.1 eq). The mixture was stirred 2 hours, then the solvent was removed in vacuo to yield the crude diester. To a stirred solution of the diester in ethanol (1 mL) at room temperature was added 50% w/w sodium hydroxide (300 mg, 3.75 mmol) in water. The mixture was stirred 2 hours, then the volatiles were removed in vacuo. The residue was dissolved in water (5 mL), and the solution was washed with ether. The aqueous phase was acidified with acetic acid (300 μL), and then extracted with ethyl acetate (2×). The combined organic extracts were dried (Na2SO4), filtered, and concentrated to yield the title compound (74 mg, 60%) as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.36 (2H, d, J=8 Hz), 7.13 (1H, d, J=3 Hz), 6.90 (1H, dt, J=3 Hz, 8 Hz), 6.88 (2H, d, J=8 Hz), 6.76 (1H, d, J=8 Hz), 5.96 (2H, s), 3.96 (1H, d, J=9 Hz), 3.81 (3H, s), 3.58 (1H, ddd, J=12, 10 Hz, 3 Hz), 3.52 (1H, dd, J=9 Hz, 3 Hz), 3.32 (1H, d, J=17 Hz), 3.08 (1H, t, J=10 Hz), 2.92 (1H, dd, J=9 Hz, 7 Hz), 2.83 (1H, d, J=17 Hz). MS (DCl/NH3) m/e 456 (M+H)+.


Anal calc for C29H29NO7.0.3 H2O: C, 65.07; H, 6.48; N, 3.04. Found: C, 65.02; H, 6.42; N, 2.93.


EXAMPLE 51
trans,trans-2-(4-Methoxyphenyl)-4-(1-naphthyl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting naphthalene-1-carboxaldehyde for piperonyl in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 8.29 (1H, bd, J=8 Hz), 7.86 (2H, d, J=8 Hz), 7.75 (1H, d, J=8 Hz), 7.49 (3H, m), 7.34 (2H, dd, J=3 Hz, 9 Hz), 6.83 (2H, dd, J=9 Hz, 2 Hz), 4.50 (1H, m), 3.94 (1H, dd, J=9 Hz, 2 Hz), 3.78 (3H, s), 3.65 (1H, m), 3.49 (1H, d, J=14 Hz), 3.40-2.93 (5H, m), 2.91, 2.83 (3H, s), 1.48 (2H, sept, J=7 Hz), 0.83, 0.77 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 461 (M+H)+. Anal calcd for C29H29NO7.0.5 HOAc: C, 71.00; H, 6.99; N, 5.71. Found: C, 70.95; H, 7.00; N, 5.46.


EXAMPLE 52
trans,trans-2-(4-Methoxyphenyl)-4-(2,3-dihydrobenzofuran-5-yl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 52A
0,2,3-Dihydrobenzofuran-5-carboxaldehyde

To a stirred solution of α,α-dichloromethyl methyl ether (2.15 g, 19 mmol, 1.35 eq) in methylene chloride (30 mL) at −40° C. was added successively stannic chloride (1.65 g, 17 mmol, 1.2 eq) and 15 minutes later, a solution of 2,3-dihydrobenzofuran (1.68 g, 14 mmol) in CH2Cl2 (5 mL) maintaining the temperature at or below −35° C. The mixture was warmed to 0° C., stirred 1 hour, then poured into ice-water, and stirred a further 30 minutes. The mixture was diluted with ether, and the phases separated. The organic phase was concentrated in vacuo, and the residue purified by vacuum distillation to yield the title compound. (1.25 g, 60%) as a colorless liquid. b.p. 119-121° C. at 0.3 mm Hg.


EXAMPLE 52B
trans,trans-2-(4-Methoxyphenyl)-4-(2,3-dihydrobenzofuran-5-yl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting the compound resulting from Example 52A for piperonal in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 7.33 (1H, d, J=8 Hz), 7.28 (1H, m), 7.19 (1H, m), 6.87 (1H, d, J=8 Hz), 6.73 (1H, d, J=8 Hz), 4.56 (1H, t, J=8 Hz), 3.83 (1H, d, J=10 Hz), 3.80 (3H, s), 3.63 (1H, m), 3.4-3.0 (9H, m), 2.87, 2.84 (3H, s), 1.51 (2H, septet, J=7 Hz), 0.88, 0.78 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 453 (M+H)+. Anal calc for C26H32N2O5.0.25H2O: C, 68.33; H, 7.17; N, 6.13. Found: C, 68.60; H, 6.88; N, 5.80.


EXAMPLE 53
trans,trans-2,4-Bis(4-methoxyphenyl)-1-(N-methyl-N-propyl)aminocarbonylmethyl) -pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 4-methoxybenzaldehyde for piperonal in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 7.37 (2H, d, J=7.5 Hz), 7.32 (2H, d, J=7.5 Hz), 6.86 (4H, m), 3.83 (1H, m), 3.81 (3H, s), 3.79 (3H, s), 3.64 (1H, m), 3.48-2.97 (6H, m), 2.87, 2.83 (3H, s), 2.85 (1H, m), 1.45 (2H, m), 0.84, 0.74 (3H, t, J=7.5 Hz). MS (DCl/NH3) m/e 441 (M+H)+. Anal calc for C25H32N2O5.0.5H2O: C, 66.80; H, 7.40; N, 6.23. Found: C, 67.15; H, 7.31; N, 6.00.


EXAMPLE 54
trans,trans-2-(4-Methoxyphenyl)-4-(3,4-dimethoxyphenyl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3,4-dimethoxybenzaldehyde for piperonal in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 7.33 (2H, d, J=7.5 Hz), 7.07 (1H, d, J=2.0 Hz), 6.98 (1H, m), 6.85 (1H, d, 7.5 Hz), 6.82 (2H, d, 7.5 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.83 (1H, m), 3.79 (3H, s), 3.64 (1H, m), 3.50-2.95 (6H, m), 2.87 (1H, m), 2.85, 2.83 (3H, s), 1.45 (2H, m), 0.84, 0.74 (3H, t, J=7.5 Hz). MS (DCl/NH3) m/e 471 (M+H)+. Anal calc for C26H34N2O6.0.5H2O: C, 65.12; H, 7.36; N, 5.84. Found: C, 65.22; H, 7.27; N, 5.59.


EXAMPLE 55
trans,trans-2-(4-Methoxyphenyl)-4-(3-methoxyphenyl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3-methoxybenzaldehyde for piperonal in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 7.33 (2H, d, J=7.5 Hz), 7.24 (1H, t, J=7.5 Hz), 7.05 (2H, m), 6.85 (2H, dd, J=7.5&2 Hz), 6.76 (1H, m), 3.83 (1H, m), 3.81 (3H, s), 3.79 (3H, s), 3.64 (1H, m), 3.48-2.97 (6H, m), 2.87, 2.83 (3H, s), 2.85 (1H, m), 1.45 (2H, m), 0.84, 0.74 (3H, t, J=7.5 Hz). MS (DCl/NH3) m/e 441 (M+H)+. Anal calc for C25H32N2O5.0.5H2O: C, 66.80; H, 7.40; N, 6.23. Found: C, 66.76; H, 7.36; N, 6.05.


EXAMPLE 56
trans,trans-2-(4-Methoxyphenyl)-4-(2-naphthyl)-1-(N-methyl-N -propyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting naphthylene-2-carboxaldehyde for piperonal in Example 49A. Rotational isomers are seen in the NMR. 1H NMR (300 MHz, CDCl3) δ 7.82 (4H, m), 7.69 (1H, m), 7.47 (2H, m), 7.37 (2H, dd, J=7.5&2 Hz), 6.85 (2H, dd, J=7.5&2 Hz), 3.90 (1H, d, J=8 Hz), 3.78 (3H, s), 3.57 (1H, m), 3.52-2.97 (6H, m), 2.93, 2.85 (3H, s), 2.90 (1H, m), 1.52 (2H, m), 0.86, 0.76 (3H, t, J=7.5 Hz). MS (DCl/NH3) m/e 461 (M+H). Anal calc for C28H32N2O4 0.5H2O: C, 71.62; H, 7.08; N, 5.97. Found: C, 71.58; H, 7.11; N, 6.01.


EXAMPLE 57
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(ethylsulfinyl)ethyl) -pyrrolidine-3-carboxylic acid

To the compound resulting from Example 1C (100 mg, 0.27 mmol) and 2-chloroethyl ethyl sulfide (67.5 mg, 0.5 mmol, 2 equivalents) dissolved in 6 mL of acetonitrile was added 10 mg of KI and 0.5 mL of diisopropylethylamine. The mixture was refluxed for 4 hours and then concentrated in vacuo. The residue obtained was purified by flash chromatography on silica gel eluting with 4:1 hexane-ethyl acetate to afford 93 mg (75%) of the ethylthioethyl compound.


To the sulfide (90 mg, 0.2 mmol) dissolved in 5 mL of CH2Cl2 in an ice bath was added 68 mg of 3-chloroperoxybenzoic acid. The mixture was stirred for 40 minutes in the ice bath and for 3 hours at room temperature. A 10% solution of sodium hydroxide (2 mL) was added, and the mixture was extracted with EtOAc (2×50 mL). The combined organic extracts were washed with water and brine, dried over sodium sulfate and concentrated in vacuo. The residue obtained was chromatographed on silica gel eluting with EtOAc and 10% MeOH in CH2Cl2 to afford the sulfoxide (62 mg, 65%).


The ethyl ester was hydrolyzed by the procedure described in Example 1D to afford the title compound as a diastereomeric mixture. m.p. 61-63° C. MS (DCl/NH3) m/e 446 (M+H)+. 1H NMR (CDCl3, 300 MHz) δ 1.25, 1.32 (t, J=9 Hz, 3H), 2.45-2.75 (m, 4H), 2.84-2.96 (m, 3H), 3.02-3.08 (m, 1H), 3.32, 3.36 (d, J=3 Hz, 1H). 3.47-3.58 (m, 2H), 3.65, 3.68 (d, J=7.5 Hz, 1H), 3.76, 3.80 (s, 3H), 5.94 (s, 2H), 6.72 (d, J=7.5 Hz, 1H), 3.84-3.89 (m, 3H), 7.02 (d, J=6 Hz, 1H), 7.30, 7.34 (d, J=7.5 Hz, 2H).


EXAMPLE 58
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(isopropylsulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

To 2-bromoethylamine hydrobromide (1 mmol) suspended in anhydrous CH3CN was added 1 equivalent of Et3N. The mixture was stirred for 30 minutes and then 1 equivalent of isopropyl sulfonyl chloride and 1 equivalent of Et3N were added. The resulting mixture was stirred for 2 hours at room temperature and then added to a solution of the compound resulting from Example 1C (185 mg, 0.5 mmol) in 3 mL of CH3CN. The mixture was warmed at 50-60° C. for 2 hours, cooled to room temperature, treated with water and extracted with EtOAc. The combined organic extracts were washed with water and brine, dried and concentrated in vacuo. The residue obtained was chromatographed on silica gel eluting with 3:2 hexane-EtOAc to give 195 mg (75%) of the ethyl ester. The ethyl ester (160 mg, 0.31 mmol) was hydrolyzed by the procedure described in Example 1D to afford the title compound (133 mg, 88%). m.p. 94-96° C. 1H NMR (CD3OD, 300 MHz) δ 1.26 (d, J=6 Hz, 6H), 1.97 (s, 1H), 2.38 (m, 1H), 2.77 (m, 1H), 2.88 (t, J=9 Hz, 1H), 3.04 (m, 1H), 3.14 (t, J=7.5 Hz, 2H), 3.35 (m, 2H), 3.46 (m, 1H), 3.58 (m, 1H), 3.78 (s, 3H), 5.92 (s, 2H), 6.74 (d, J=9 Hz, 1H), 6.86 (dd, J=9 Hz, 3 Hz, 1H), 6.92 (d, J=9 Hz, 2H), 7.00 (d, J=3 Hz, 1H), 7.36 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e (M+H)+.


EXAMPLE 59
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(isobutoxy)ethyl) -pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Example 1D from the compound resulting from Example 1C and 2-(isobutoxy)ethyl bromide. m.p. 68-70° C. 1H NMR (CDCl3, 300 MHz) δ 0.88 (d, J=6 Hz, 6H), 1.82 (quintet, J=6 Hz, 1H), 2.22 (m, 2H), 2.72-2.79 (m, 1H), 2.86-2.95 (m, 2H), 3.13 (d, J=6 Hz, 2H), 3.45-3.56 (m, 4H), 3.68 (d, J=9 Hz, 1H), 3.79 (s, 3H), 5.94 (s, 2H), 6.72 (d, J=7.5 Hz, 1H), 6.85 (dd, J=9 Hz, 7.5 Hz, 3H), 7.08 (s, 1H), 7.34 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 442 (M+H)+.


EXAMPLE 60
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(butylsulfonyl) -pyrrolidine-3-carboxylic acid

To 100 mg (0.271 mmol) of the compound resulting from Example 1C dissolved in 10 mL of THF was added 1-butanesulfonyl chloride (46.7 mg, 1.1 equivalents) and diisopropylethylamine (53 mg, 1.5 equivalents). The resulting mixture was stirred for 2.5 hours at room temperature and then the solvent evaporated. The crude product was purified by flash chromatography on silica gel eluting with 3:2 hexane-EtOAc to afford 120 mg (90%) of the ethyl ester.


The ester (120 mg, 0.244 mmol) was dissolved in 1 mL of EtOH, and a solution of 100 mg of NaOH in 1 mL of water was added. The mixture was stirred for 3 hours at room temperature and then concentrated under reduced pressure. Water (5 mL) was added and the solution was washed with ether to remove any unhydrolyzed trans-cis isomer. The aqueous solution was acidified to pH˜6 with acetic acid and then extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure to afford the pure title compound (60 mg, 53%) as a white solid. m.p. 67-69° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7.5 Hz, 3H), 1.20-1.33 (m, 2H), 1.58-1.68 (m, 2H), 2.48-2.69 (m, 2H), 3.28 (dd, J=9 Hz, 1H), 3.49 (t, J=12 Hz, 1H), 3.65 (dd, J=12 Hz, 1H), 3.82 (s, 3H), 4.32 (dd, J=12 Hz, 1H), 5.17 (d, J=9 Hz, 2H). MS 5.95 (s, 2H), 6.70-6.78 (m, 3H), 6.92 (d, J=9 Hz, 2H), 7.35 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 462 (M+H)+.


EXAMPLE 61
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N -isopropylcarbonylamino)-pyrrolidine-3-carboxylic acid
EXAMPLE 61A
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-bromoethyl) -pyrrolidine-3-carboxylic acid ethyl ester

To the mixture of cis,trans and trans,trans pyrrolidines resulting from Example 1C (400 mg) dissolved in 9 mL of 1,2-dibromoethane was added 0.7 mL of diisopropylethylamine and 30 mg of sodium iodide. The resultant mixture was heated at 100° C. for 1 hour, and then the solvents were removed in vacuo. The residue was taken up in EtOAc and washed sequentially with water and brine, dried and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel eluting with 4:1 hexane-EtOAc to give 470 mg of the title product.


EXAMPLE 61B
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(methylamino)ethyl) -pyrrolidine-3-carboxylic acid ethyl ester

To the compound resulting from Example 61A (450 mg) dissolved in 10 mL of EtOH was added 0.5 mL of 40% aqueous methylamine and 50 mg of sodium iodide. The mixture was heated at 80° C. for 1 hour, and then the solvents were removed in vacuo. The residue was taken up in EtOAc and washed sequentially with water and brine, dried and concentrated in vacuo. The resultant product was carried on without further purification.


EXAMPLE 61C
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N -isobutyrylamino)ethyl)-pyrrolidine-3-carboxylic acid

To the compound resulting from Example 61B (˜150 mg) dissolved in 5 mL of 1,2-dichloroethane was added 0.3 mL of diisopropylethylamine. The solution was cooled to −40° C., isobutyryl chloride (0.17 mL) was added, the bath was removed, and the solution was allowed to warm to ambient temperature and stirred for 15 hours. The solvent was removed in vacuo; the residue was taken up in EtOAc and washed sequentially with 1:1 sodium bicarbonate solution/water and brine, dried and concentrated in vacuo. The product was purified by flash chromatography on silica gel eluting with a gradient 1:1 EtOAc-hexanes going to EtOAc and finally using 10% MeOH-EtOAc.


The ester was dissolved in 1.5 mL of EtOH; 0.75 mL of a 17% aqueous NaOH solution was added, and the resultant mixture was stirred at ambient temperature for 3 hours. The solvents were removed in vacuo; the residue was taken up in water and washed with ether. The aqueous phase was acidified with 1 N H3PO4 to pH 3 and extracted twice with ether. The combined organic extracts were washed with brine and dried over Na2SO4. The solvents were removed in vacuo to provide 82 mg of the title compound as a white foam. Rotamers were seen in the NMR. 1H NMR (CDCl3, 300 MHz) of the major rotamer δ 1.06 (d, 3H, J=10 Hz), 1.12 (d, 3H, J=10 Hz), 2.15 (m, 1H), 2.5-3.0 (m, 3H), 2.91 (s, 3H), 3.32 (m, 2H), 3.50 (m, 2H), 3.65 (m, 2H), 3.77 (s, 3H), 5.92 (s, 2H), 6.73 (d, 1H, J=8 Hz), 6.75-6.9 (m, 4H), 6.96 (d, 1H, J=2 Hz), 7.29 (m, 1H). MS (DCl/NH3) m/z 469 (M+H)+. Analysis calcd for C26H32N2O6.0.3 TFA: C, 63.55; H, 6.48; N, 5.57. Found: C, 63.44; H, 6.71; N, 5.24.


EXAMPLE 62
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N -propionylamino)ethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Example 61 substituting propionyl chloride for isobutyryl chloride in Example 61C. 1H NMR (CDCl3, 300 MHz) of the major rotamer δ 1.13 (t, 3H, J=8 Hz), 2.19 (m, 1H), 2.30 (m, 2H), 2.65-3.0 (m, 3H), 2.85 (s, 3H), 3.25-3.4 (m, 2H), 3.5-3.7 (m, 3H), 3.79 (s, 3H), 5.92 (s, 2H), 6.74 (d, 1H, J=8 Hz), 6.75-6.9 (m, 4H), 7.00 (bd s, 1H), 7.29 (bd s, 1H). MS (DCl/NH3) m/z 455 (M+H)+. Analysis calcd for C25H30N2O6.1.0 H2O: C, 63.55; H, 6.83; N, 5.93. Found: C, 63.55; H, 6.52; N, 5.73.


EXAMPLE 63
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N -benzylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. 1H NMR (CDCl3, 300 MHz) of the major rotamer δ 2.79 (s, 3H), 2.8-3.2 (m, 2H), 3.48 (m, 2H), 3.61 (m, 2H), 3.77 (s, 3H), 3.78 (m, 1H), 4.3-4.5 (m, 2H), 5.95 (d, 2H, J=2 Hz), 6.7-6.9 (m, 4H), 7.00 (m, 1H), 7.15-7.35 (m, 7H). MS (FAB/NBA) m/z 503 (M+H)+. Anal calcd for C29H30N2O6.·0.5H2O: C, 68.36; H, 5.74; N, 5.50. Found: C, 68.41; H, 5.74; N, 5.36.


EXAMPLE 64
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N -butylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. 1H NMR (CDCl3, 300 MHz) of the major rotamer δ 0.88 (t, 3H, J=7 Hz), 1.06 (t, 3H, J=7 Hz), 1.27 (m, 2H), 1.45 (m, 2H), 2.8-3.6 (m, 11H), 3.79 (s,3H), 3.80 (m, 1H), 5.92 (bd s, 2H), 6.75 (d, 1H, J=8 Hz), 6.85 (d, 1H, J=8 Hz), 6.92 (d, 2H, J=8 Hz), 7.03 (s, 1H), 7.33 (d, 1H, J=8 Hz). MS (DCl/NH3) m/z 483 (M+H)+. Anal calcd for C27H34N2O6.0.5 HOAc: C, 65.61; H, 7.08; N, 5.46. Found: C, 65.51; H, 6.70; N, 5.66.


EXAMPLE 65
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(2,2-dimethylpropyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 the title compound was prepared. 1H NMR (CDCl3, 300 MHz) of the major rotamer δ 0.90 (s, 9H), 2.8-3.1 (m, 4H), 2.94 (s, 3H), 3.3-3.5 (m, 3H), 3.61 (m, 1H), 3.80 (s, 3H), 3.82 (m, 1H), 5.94 (bd s, 2H), 6.74 (d, 1H, J=8 Hz), 6.86 (d, 2H, J=8 Hz), 6.87 (m, 1H), 7.03 (d, 1H, J=2 Hz), 7.33 (d, 2H, J=8 Hz). MS (DCl/NH3) m/z 483 (M+H)+.


EXAMPLE 66
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N -butylsulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

To the compound resulting from Example 61B (60 mg, 0.13 mmol) dissolved in 5 mL of CH3CN was added 0.2 mL of Et3N and 22 mg (0.143 mmol, 1.1 equivalents) of 1-butanesulfonyl chloride. The mixture was stirred for 1 hour at room temperature and then concentrated in vacuo. The crude product was purified by column chromatography on silica gel eluting with 1:1 EtOAc-hexane to yield 64 mg (90%) of the ester. Ester hydrolysis by the procedure described in Example 1D afforded the title compound. m.p. 64-66° C. 1H NMR CDCl3, 300 MHz) δ 0.92 (t, J=7.5 Hz, 3H), 1.39 (hexad, J=7.5 Hz, 2H), 1.68-1.76 (m, 2H), 2.16-2.25 (m, 1H), 2.72 (s, 3H), 2.75-2.92 (m, 5H), 3.12-3.20 (m, 1H), 3.25-3.34 (m, 1H), 3.46-3.55 (m, 2H), 3.65 (d, J=9 Hz, 1H), 3.78 (s, 3H), 5.53 (s, 2H), 6.72 (d; J=7.5 Hz, 1H), 6.82 (dd, J=7.5 Hz, 3 Hz, 1H), 6.86 (d, J=9 Hz, 2H), 7.02 (d, J=3 Hz, 1H), 7.34 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 519 (M+H)+.


EXAMPLE 67
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N -propylsulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Example 66 substituting 1-propanesulfonyl chloride for 1-butanesulfonyl chloride. m.p. 69-70° C. 1H NMR (CDCl3, 300 MHz) δ 1.02 (t, J=7.5 Hz, 3H), 1.78 (hexad, J=7.5 Hz, 2H), 2.18-2.26 (m, 1H), 2.72 (s, 3H), 2.75-2.95 (m, 6H), 3.13-3.22 (m, 1H), 3.25-3.35 (m, 1H), 3.47-3.58 (m, 2H), 3.66 (d, J=9 Hz, 1H) 3.80 (s, 3H), 5.96 (s, 2H), 6.74 (d, J=7.5 Hz, 1H), 6.84 (d,d, J=7.5 Hz, 3 Hz, 1H), 6.87 (d, J=9 Hz, 2H), 7.04 (d, J=3 Hz, 1H), 7.43 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 505 (M+H)+.


EXAMPLE 68
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(propylsulfonyl)ethyl) -pyrrolidine-3-carboxylic acid

To 1-propanethiol (3.5 g, 46.05 mmol) dissolved in 10 mL of anhydrous THF was added 632 mg (26.32 mmol) of NaH in portions under a nitrogen atmosphere. The mixture was heated at 60-70° C. for 1 hours. To this mixture was added the compound resulting from Example 61A (180 mg, 0.38 mmol) in 2 mL THF. Heating was continued at 60-70° C. for an additional 2 hours, and then the volatiles were removed under reduced pressure. The crude propylthioethyl adduct was purified by flash chromatography on silica gel eluting with 3:2 hexane-EtOAc to give 170 mg (95%).


To a solution of 170 mg (0.36 mmol) of the sulfide and 93 mg (0.8 mmol) of N-methylmorpholine N-oxide (NMO) in a mixture of 20 mL of acetone and 5 mL of H2O was added a solution of osmium tetroxide (10 mg) in 0.3 mL of t-butanol. The resulting mixture was stirred overnight at room temperature and then concentrated under reduced pressure. The residue was partitioned between EtOAc and H2O. The organic phase was washed with brine, dried over Na2SO4 and concentrated in vacuo. Flash chromatography afforded 177 mg (98%) of the ethyl ester which was hydrolyzed by the procedures described in Example 1D to afford the title compound. m.p. 73-75° C. 1H NMR (CDCl3, 300 MHz) 1.04 (t, J=7.5 Hz, 3H), 1.78 (hexad, J=7.5 Hz, 2H), 2.59-2.66 (m, 1H), 2.84-3.08 (m, 7H), 3.43 (dd, J=9 Hz, 3 Hz, 1H), 3.53-3.60 (m, 1H), 3.68 (d, J=9 Hz, 1H), 3.82 (s, 3H), 5.96 (s, 2H), 6.75 (d, J=7.5 Hz, 1H), 6.82 (dd, J=7.5 Hz, 3 Hz, 1H), 6.88 (d, J=9 Hz, 2H), 6.99 (d, J=3 Hz, 1H), 7.32 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 476 (M+H)+.


EXAMPLE 69
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-N-(trans-5-methylhex-2-enyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 69A
trans-5-Methylhex-2-enoic acid ethyl ester

Oil dispersion sodium hydride (0.85 g) was washed with hexanes and suspended in THF (20 mL), and the mixture was cooled in an ice bath to 0° C. Diisopropyl(ethoxycarbonylmethyl)phosphonate (5.0 mL) was added slowly and the mixture stirred for 20 minutes at 0° C. Isovaleraldehyde (2.0 mL) in THF (5 mL) was added dropwise over five minutes. The ice bath was removed and the mixture stirred for 18 hours at ambient temperature. Saturated ammonium chloride solution (50 mL) was added and the mixture extracted with diethyl ether (3×50 mL). The ether extracts were combined, dried with Na2SO4, and evaporated to give a colorless oil which was purified by flash chromatography on silica gel eluting with hexanes. The title compound was isolated as a colorless oil (2.1 g).


EXAMPLE 69B
trans-5-Methylhex-2-en-1-ol

The compound resulting from Example 69A (2.0 g) was dissolved in toluene and cooled to 0° C. in an ice bath. Diisobutylaluminum hydride (1.5 N in toluene, 20 mL) was added dropwise and the solution stirred at 0° C. for two hours. Citric acid solution (25 mL) was added very slowly to the cooled solution. The resulting mixture was stirred for 18 hours at ambient temperature. Diethyl ether (50 mL) was added, the solids removed by filtration and washed with additional ether (2×25 mL). The filtrate was extracted with ether (2×25 mL). The ether extractions and washings were combined, dried, and evaported to give a colorless oil which was purified by flash chromatography on silica gel eluting with 25% EtOAc-hexanes. The title compound was isolated as a colorless oil (1.25 g).


EXAMPLE 69C
trans-1-Bromo-5-methylhex-2-ene

The compound resulting from Example 69B (1.0 g) was dissolved in diethyl ether and cooled to 0° C. in an ice bath. Phosphorus tribromide (2.5 g, 0.87 mL) was added dropwise and the solution stirred at 0° C. for two hours. The solution was poured onto ice, the layers separated, and the aqueous layer extracted with additional ether (3×25 mL). The ether layers were combined, dried, and evaporated to give a colorless oil which was used without further purification (0.95 g).


EXAMPLE 69D
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-N-(trans-5-methylhex-2-enyl)-pyrrolidine-3-carboxylic acid

The title compound was synthesized using the methods detailed in Example 1D but substituting the compound resulting from Example 69C for N-propyl bromoacetamide. 1H NMR (CDCl3, 300 MHz) δ 0.84 (d, 6H, J=8 Hz), 1.57 (heptet, 1H, J=8 Hz), 1.87 (t, 2H, J=6 Hz), 2.60 (dd, 1H, J=8 Hz, 14 Hz), 2.86 (t, 1H, J=10 Hz), 2.96 (dd, 1H, J=8 Hz, 10 Hz), 3.20 (dd, 1H, J=5 Hz, 14 Hz), 3.29 (dd, 1H, J=3 Hz, 10 Hz), 3.50 (m, 1H), 3.70 (d, 1H, J=10 Hz), 3.78 (s, 3H), 5.47 (m, 2H), 5.93 (s, 2H), 6.71 (d, 1H, J=8 Hz), 6.83 (d, 3H, J=9 Hz), 7.05 (s, 1H), 7.32 (d, 2H, J=9 Hz). MS (DCI/NH3) m/e 438 (M+H)+. Anal calcd for C26H31NO5: C, 71.37; H, 7.14; N, 3.20. Found: C, 71.16; H, 7.24; N, 3.17.


EXAMPLE 70
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-N-(trans-3,5-dimethylhex-2-enyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Example 69 but substituting 4-methyl-2-pentanone for isovaleraldehyde in Example 69A, which gave ˜7:1 mixture of trans/cis olefins. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product (and its diastereomer) as a white solid. 1H NMR of the major (trans) isomer: (CDCl3, 300 MHz) δ 0.83 (d, 6H, J=8 Hz), 1.56 (s, 3H), 1.74 (m, 1H), 1.92 (d, 2H, J=6 Hz), 3.3-3.5 (m, 3H), 3.6-3.8 (m, 4H), 3.78 (s, 3H), 3.94.0 (m, 1H), 5.22 (m, 1H), 5.90 (d, 2H, J=12 Hz), 6.63 (m, 1H), 6.78 (m, 3H), 6.95 (s, 1H), 7.45 (d, 3H, J=8 Hz). MS (DCl/NH3) m/e 438 (M+H)+. Anal calcd for C27H33NO5 1.0 TFA: C, 61.59; H, 6.06; N, 2.48. Found: C, 61.36; H, 6.10; N, 2.34.


EXAMPLE 71
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-heptylcarbonylmethyl) -Pyrrolidine-3-carboxylic acid
EXAMPLE 71A
1-Chloro-3-propyl-2-hexanone

To 2-propylpentanoic acid (156.6 μl, 1.00 mmol) dissolved in anhydrous dichloromethane (2 mL) was added DMF (3 μL, 4 mole %), and the solution was cooled to 0° C. under a nitrogen atmosphere. To the solution was added oxalyl chloride (94.3 μL, 1.08 mmol) dropwise over a few minutes. The reaction was stirred 18 hours while warming to ambient temperature. The mixture was cooled to 0° C. and excess ˜0.3 M ethereal diazomethane solution was added. The reaction mixture was stirred 18 hours while warming to ambient temperature. The reaction mixture was washed with 1 M aqueous sodium carbonate solution (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was dissolved in ether (2 mL) and cooled to 0° C. under a nitrogen atmosphere. Hydrogen chloride as a 4 N solution in dioxane (275 μL, 1.10 mmol) was added dropwise over a few minutes. The reaction was stirred 18 hours while warming to ambient temperature. The reaction mixture was concentrated under reduced pressure and the residual oil was used in the next step without further purification.


EXAMPLE 71B
trans,trans-Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-heptylcarbonylmethyl)-pyrrolidine-3-carboxylate

To the compound resulting from Example 71A (1.00 mmol, maximum theoretical yield) was added a solution of the trans,trans ethyl carboxylate from Example 1C (295 mg, 0.80 mmol as a 50% solution in toluene), diisopropylethylamine (700 μL, 4.00 mmol) and acetonitrile (4 mL). To the resulting solution was added sodium iodide (12 mg, 10 mole %), and the reaction mixture was stirred 18 hours under a nitrogen atmosphere at ambient temperature. Additional sodium iodide (24 mg, 20 mole %) and acetonitrile (4 mL) were added, and the reaction mixture was heated at 45-50° C. with stirring for 18 hours. The reaction mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel eluting with 1:9 ethyl acetate-hexane to give 237 mg (46%) of the title compound as a yellow oil.


EXAMPLE 71C
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-heptylcarbonylmethyl) -pyrrolidine-3-carboxylic acid

To the compound resulting from Example 71B (231 mg, 0.4532, mmol) dissolved in ethanol (10 mL) was added a solution of lithium hydroxide (38 mg, 0.9065 mmol) in water (2.5 mL). The solution was stirred for 18 hours under a nitrogen atmosphere, additional lithium hydroxide (19 mg, 0.4532 mmol) in water (0.5 mL) was added, and stirring was continued 24 hours. The reaction mixture was concentrated under reduced pressure to remove the ethanol, and the aqueous residue was diluted with water (45 mL) and washed with ether (50 mL). The aqueous layer was neutralized with 1 N hydrochloric acid to cloudiness and then 10% aqueous citric acid was added to adjust the pH to −5. This solution was then extracted with 10% ethanol in chloroform (4×25 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative TLC on silica gel eluted with 1:1 ethyl acetate-hexane to give 86 mg (39%) of the title compound as an off white powder. 1H NMR (CDCl3, 300 MHz) δ 0.73-0.97 (m, 6H), 1.03-1.33 (m, 6H), 1.36-1.58 (m, 2H), 2.46 (m, 1H), 2.80-2.98 (m, 3H), 3.38-3.64 (m, 3H), 3.75-3.90 (m, 1H), 3.79 (s, 3H), 5.94 (s, 2H), 6.75 (d, 1H), 6.86 (d, 2H), 6.92 (d, 1H), 7.12 (s, 1H), 7.32 (d, 2H). MS (FAB) m/e 482 (M+H)+. Anal calcd for C28H35NO6: C, 69.83; H, 7.32; N, 2.91. Found: C, 69.57; H, 7.41; N, 2.73.


EXAMPLE 72
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(valerylmethyl) -pyrrolidine-3-carboxylic acid
EXAMPLE 72A
1-Chloro-2-hexanone

Using the procedure described in Example 71A and substituting pentanoic acid for 2-propylpentanoic acid afforded the title compound as an oil which was used in the next step without further purification.


EXAMPLE 72B
trans,trans-Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxole-5-yl)-1-(valerylmethyl) -pyrrolidine-3-carboxylate

Substituting the compound resulting from Example 72A for 1-chloro-3-propyl-2-hexanone and using the procedure described in Example 71B, except deleting the first addition of sodium iodide, stirring 18 hours at ambient temperature and purifying by silica gel chromatography eluting with 3:17 ethyl acetate-hexane, the title compound 305 mg (65%) was obtained as a yellow oil.


EXAMPLE 72C
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(valerylmethyl) -pyrrolidine-3-carboxylic acid

By substituting the compound resulting from Example 72B for trans,trans-Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-heptylcarbonylmethyl)-pyrrolidine-3-carboxylate and using the procedure described in Example 71C, except only one solution of lithium hydroxide (81.5 mg, 1.942 mmol) in water (3.5 mL) was added followed by stirring for 18 hours, the title compound 130 mg (46%) was obtained as an off white powder. 1H NMR (CDCl3, 300 MHz) δ 0.87 (t, 3H), 1.26 (m, 2H), 1.49 (m, 2H), 2.37 (m, 2H), 2.79-2.98 (m, 3H), 3.31-3.49 (m, 2H), 3.56 (m, 1H), 3.77, 3.79 (d,s, 4H), 5.94 (s, 2H), 6.75 (d, 1H), 6.81-6.93 (m, 3H), 7.09 (d, 1H), 7.33 (d, 2H). MS (FAB) m/e 440 (M+H)+. Anal. calcd for C25H29NO6: C, 68.32; H, 6.65; N, 3.19. Found: C, 67.95; H, 6.64; N, 3.05.


EXAMPLE 73
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-(3,4-dimethoxybenzyl)-N-methylaminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 73A
trans,trans- and cis trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((3,4-dimethoxybenzyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid ethyl ester

Using the procedure of Example 1D, paragraph 1, substituting 3,4-dimethoxybenzyl bromoacetamide for dipropyl bromoacetamide, the desired product mixture was obtained as a white foam in 81% yield.


EXAMPLE 73B
trans,trans- and cis, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-(3,4-dimethoxybenzyl)-N-methylaminocarbonylmethyl)pyrrolidine-3-carboxylic acid ethyl
ester

The resultant product from Example 73A (220 mg, 0.404 mmol) was dissolved in 2 mL dry THF and added dropwise to a stirred, cooled (0° C.) suspension of sodium hydride (23 mg of a 60% by weight mineral oil suspension, 16.5 mg, 0.69 mmol) in 6.2 mL THF, under an argon atmosphere. The resulting mixture was stirred at 0° C. for 1 hour, then methyl iodide (28 μL, 64 mg, 0.45 mmol) was added. The reaction mixture was stirred at 0° C. for 45 minutes. TLC (Et2O) indicated incomplete reaction. An additional portion of methyl iodide (28 μL, 64 mg, 0.45 mmol) and dry 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (50 μL, 0.41 mmol) were added. The reaction mixture was stirred at ambient temperature for 2 days. The reaction was poured into 25 mL of 0.5 M aqueous citric acid and extracted with 2×25 mL EtOAc. The combined organic extrracts were washed sequentially with 30 mL water and 30 mL brine, then dried (Na2SO4), filtered and concentrated under reduced pressure to produce 270 mg of crude material. Flash chromatography on silica gel eluting with Et2O gave the title compounds as an inseparable mixture in 43% yield. 1H NMR (CDCl3, 300 MHz) δ 2.79 (s) and 2.81 (s), for the N—CH3 signals. MS m/z 591 (M+H)+.


EXAMPLE 73C
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-(3,4-dimethoxybenzyl)-N-methylaminocarbonylmethyl)pyrrolidine-3-carboxylic acid

To the resultant compound from Example 73B (98 mg, 0.17 mmol) dissolved in 1 mL EtOH and cooled to 0° C. was added a solution of lithium hydroxide monohydroxide (17 mg, 0.41 mmol) in 0.5 mL H2O. The resulting solution was stirred under a nitrogen atmosphere for 16 hours. The solution was concentrated in vacuo, and the residue was partitioned between 15 mL H2O and 15 mL Et2O. The aqueous phase was extracted with 5 mL Et2O, then the aqueous phase was acidified with 10% aqueous citric acid. The acidic aqueous phase was saturated with NaCl and extracted with 3×15 mL EtOAc. The EtOAc extracts were combined, dried (Na2SO4), then filtered and concentrated in vacuo to give 40 mg (42%) of the title compound as a white foam. 1H NMR (CD3OD, 300 MHz, two rotameric forms) δ 2.85 (s, 3H), 2.94-3.25 (br m, 3H), 3.35-3.70 (br m) and 3.64 (s, 4H total), 3.70-3.97 (br m), 3.74 (s), 3.76 (s), 3.78 (s), 3.79 (s), 3.81 (s), and 4.03 (br d, J=14 Hz, 8H total), 4.43 (AB, 1H), 5.91 (s) and 5.93 (s, 2H total), 6.50-6.60 (m, 1H), 6.67-7.02 (br m, 6H), 7.29 (br d) and 7.35 (br d, 2H total). HRMS calcd for C31H35N208 (M+H)+: 563.2393. Found: 563.2385.


EXAMPLE 74
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-(3,4-dimethoxybenzyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was used, with the substitution of the resultant compound from Example 73A for the resultant compound from Example 73B, to provide the title compound. 1H NMR (CD3OD, 300 MHz) δ 2.85 (d, J=16 Hz, 1H), 2.92 (br t, J=9 Hz, 1H), 2.98 (br t, J=10 Hz, 1H), 3.32-3.39 (br m, 2H), 3.54-3.65 (br m, 1H), 3.67 (s, 3H), 3.78 (s, 3H), 3.80 (s, 3H), 3.85 (d, J=10 Hz, 1H), 4.21 (d, J=15 Hz, 1H), 4.41 (d, J=15 Hz, 1H), 5.91 (s, 2H), 6.67 (d, J=8 Hz, 1H), 6.75-6.95 (m, 7H), 7.33-7.40 (m, 2H). HRMS calcd for C30H32N2O8 (M+H)+: 549.2237. Found: 549.2224.


EXAMPLE 75
(2R,3R,4R)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1R)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid
EXAMPLE 75A
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1R)-1-(benzyloxycarbonyl)butyl)pyrrolidine-3-carboxylic acid ethyl ester

The procedure of Fung, et. al., J. Med. Chem., 35(10): 1722-34 (1992) was adapted. The resultant compound from Example 6A (103 mg, 0.279 mmol) was dissolved in 0.7 mL of nitromethane and 0.7 mL of H2O, and ammonium carbonate (34 mg, 0.35 mmol) and (2S)-benzyl 2-bromopentanoate (78 mg, 0.30 mmol) were added. The reaction was refluxed for 24 hours. The reaction was partitioned between 15 mL of 1 M aqueous Na2CO3 and 25 mL of CH2Cl2. The aqueous phase was extracted with 2×10 mL CH2Cl2, and the combined organic phases were washed with 15 mL brine, dried (Na2SO4), then filtered and concentrated under reduced pressure to a brown oil (169 mg). The crude product was purified by silica gel chromatography eluting with 3:1 CH2Cl2-hexane to produce 106 mg (68%) of the title compound as a waxy solid. 1H NMR indicated the presence of two diastereomeric products.


EXAMPLE 75B
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1R)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid ethyl ester

The resultant compound from Example 75A (101 mg, 0.180 mmol) and 30 mg of 10% palladium on charcoal were stirred in 2 mL EtOAc under 1 atmosphere of H2 for 4 hours. The reaction mixture was filtered through a plug of Celite, using 15 mL MeOH to wash the catalyst. The combined filtrate and wash were concentrated in vacuo to give 81.4 mg (96%) of the crude acid as a white solid.


The above crude acid was combined with HOBt hydrate (41 mg, 0.27 mmol), dipropylamine (26 mg, 0.26 mmol), and 4-methylmorpholine (37 mg, 0.37 mmol) in 2 mL dry DMF. The solution was cooled to −15° C., then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (44 mg, 0.23 mmol) was added. The mixture was stirred at −15° C. and allowed to warm slowly to room temperature overnight. The solvent was removed by distillation under reduced pressure, and the residue was partitioned between 20 mL EtOAc and 10 mL of 1 M aqueous Na2CO3. The organic phase was washed with 10 mL of brine, dried (Na2SO4), then filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel, eluting with 1:2 Et2O-hexane. Further purification of overlap fractions by preparative TLC eluting with 1:2 Et2O-hexane yielded 32 mg (34%) of a less polar product, and 44 mg (46%) of a more polar product.


EXAMPLE 75C
(2R,3R,4R)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1R)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was followed, with the substitution of the less polar isomer from Example 75B for the resultant product from Example 73B, to provide the title compound in 94% yield. [α]D=−52° (c=0.235, CH3OH). 1H NMR (CD3OD, 300 MHz) δ 0.55 (t, J=7 Hz, 3H), 0.87 (t, J=7 Hz) and 0.87-0.94 (m, 6H total), 1.03-1.25 (br m, 2H), 11.25-1.68 (br m, 4H),1.90-2.07 (br m, 1H), 2.75-2.94 (br m, 2H), 2.94-3.02 (br m, 2H), 3.20-3.40 (m, overlapping with CD2HOD signal), 3.40-3.60 (br m, 2H), 3.79 (s, 3H), 4.04 (br d, J=9 Hz, 1H), 5.92 (dd, J=3, 5 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.79 (dd, J=1.5, 8 Hz, 1H), 6.92-6.98 (br m, 3H), 7.29-7.39 (m, 2H). MS m/z 525 (M+H)+.


EXAMPLE 76
(2S,3S,4S)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1R)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was followed, with the substitution of the more polar isomer from Example 75B for the resultant product from Example 73B, to provide the title compound in 88% yield. [α]D=+58° (c=0.37, CH3OH). 1H NMR (CD3OD, 300 MHz) δ 0.57 (br t, J=7 Hz, 3H), 0.88-0.98 (m, 6H), 1.08-1.35 (br m, 2H), 1.35-1.68 (br m, 4H), 1.75-1.90 (br m, 1H), 2.75-2.86 (br m, 2H), 3.10-3.30 (br m, 2H), 3.51-3.65 (br m, 2H), 3.69 (s, 3H), 4.03-4.16 (br m, 2H), 5.91 (s, 2H), 6.71-6.83 (m, 2H), 6.86-6.97 (m, 3H), 7.32+(br d, J=9 Hz, 2H). MS m/z 525 (M+H)+.


EXAMPLE 77
(2S,3S,4S)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1S)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid
EXAMPLE 77A
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1S)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid ethyl ester

(2R)-N,N-dipropyl 2-hydroxypentanamide (106 mg, 0.528 mmol, made by standard procedure) was dissolved in 2 mL THF under an argon atmosphere, diisopropylethylamine (75 mg, 0.58 mmol) was added, then the solution was cooled to −20° C. Trifluoromethanesulfonic anhydride (95 μL, 159 mg, 0.565 mmol) was added to the cooled solution over 1 minute, and the reaction mixture was stirred at −20° C. for 1 hour, and at room temperature for an additional 1 hour. The resulting slurry was recooled to 0° C., and a solution of the resultant compound from Example 6A (195 mg, 0.528 mmol) and diisopropylethylamine (101 μL, 75 mg, 0.58 mmol) in 3 mL of CH2Cl2 was added. The reaction was stirred at 0° C. for 3 hours and for an additional 2 days at room temperature. TLC (Et2O-hexane 1:2) indicated starting materials remained, so the mixture was warmed to reflux for 4 hours. The reaction was cooled, then partitioned between 30 mL EtOAc and 15 mL of 1 M aqueous Na2CO3. The aqueous phase was extracted with 15 mL EtOAc, then the combined organic phases were washed with 20 mL brine, dried (Na2SO4), filtered and concentrated in vacuo to a yellowish oil. Purification by flash chromatography on silica gel eluting with 1:2 Et2O-hexane gave 19.9 mg (7%) of a less polar product and 20.1 mg (7%) of a more polar product. 1H NMR spectra and MS were the same as those of Example 76B.


EXAMPLE 77B
(2S,3S,4S)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1S)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was followed, with the substitution of the less polar isomer from Example 77A for the resultant product from Example 73B, to provide the title compound in 100% yield. 1H NMR (CD3OD, 300 MHz) and MS identical to those of Example 75C.


EXAMPLE 78
(2R,3R,4R)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((1S)-1-(N,N-dipropylaminocarbonyl)-1-butyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was followed, with the substitution of the more polar isomer from Example 77A for the resultant product from Example 73B, to provide the title compound in 88% yield. 1H NMR (CD3OD, 300 MHz) and MS identical to those of Example 76.


EXAMPLE 79
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbony/methyl)-3-(5-tetrazolyl)pyrrolidine

Carbonyldiimidazole (510 mg, 3.148 mmol) was added to 1.020 g (2.00 mmol) of the compound resulting from Example 43 in 2.7 mL THF, and the mixture was heated for 40 minutes at 50° C. The reaction mixture was cooled in an ice bath, and 25% solution of ammonia in methanol was added. After 30 minutes, the solid which had formed was filtered, washed with ethanol and finally with ether to yield 850 mg (83%) of the 3-carboxamide compound. m.p. 194-196° C.


Phosphorus oxychloride (1.06 g) was added to this amide in 7 mL of pyridine, and the mixture was stirred 1 hour at room temperature. Dichloromethane was added, and the solution was washed with potassium bicarbonate solution, dried over sodium sulfate, and concentrated. The residue was chromatographed on silica gel eluting with 2:1 hexane-ethyl acetate to give 790 mg (96%) of the 3-carbonitrile compound.


To this nitrile in 5 mL toluene was added 385 mg of trimethyl tin chloride and 126 mg sodium azide. The mixture was heated 20 hours at 125° C. (bath temp). After cooling, methanol (5 mL) was added, and the solution was concentrated in vacuo. To the resulting residue was added 6 mL of methanol and 6 mL of water containing 0.2 g phosphoric acid. After stirring 1 hour at room temperature, water was added and the mixture extracted with dichloromethane. The combined organic extracts were dried and concentrated, and the resulting residue was crystallized from ether to give a solid. The solid was dissolved in sodium hydroxide solution, filtered from insoluble material and acidified with acetic acid to get 532 mg (62%) of the title compound. m.p. 165-167° C. 1H NMR (CDCl3, 300 MHz) δ 0.85 (t, J=7 Hz, 3H), 0.87 (t, J=7 Hz, 3H), 1.10-1.50 (m, 8H), 3.0-3.6 (m, 8H), 3.70 (s, 3H), 3.7-3.8 (m, 1H), 3.90 (t, J=9 Hz, 1H), 4.37 (d, J=9 Hz, 1H), 5.86 (s, 2H), 6.62 (d, J=8 Hz, 1H), 6.65-6.73 (m, 3H), 6.95 (d, J=2 Hz, 1H), 7.11 (d, J=9 Hz, 2H).


EXAMPLE 80
trans,trans-2-(4-Fluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl) pyrrolidine-3-carboxylic acid

The title compound was prepared as an amorphous solid from methyl(4-flourobenzoyl)acetate and 5-(2-nitrovinyl)-1,3-benzodioxole using the procedures described in Examples 1 and 43. 1H NMR (CDCl3, 300 MHz) δ 0.81 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.0-1.55 (m, 8H), 2.81 (d, J=13 Hz, 1H), 2.90-3.10 (m, 4H), 3.15-3.30 (m, 1H), 3.32-3.45 (m, 3H), 3.55-3.65 (m, 1H), 3.86 (d, J=10 Hz, 1H), 5.94 (dd, J=2 Hz, 4 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.86 (d, J=8 Hz, 1H), 6.95-7.07 (m, 3H), 7.32-7.45 (m, 2H).


EXAMPLE 81
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl) pyrrolide-3-carboxylic acid

N,N-Dibutyl glycine (150 mg, 0.813 mmol), prepared by the method of Bowman, R. E., J. Chem. Soc. 1346 (1950), in 0.7 mL of THF was treated with 138 mg (0.852 mmol) carbonyldiimidazole and heated for 30 minutes at 50° C. After cooling to room temperature, 250 mg (0.678 mmol) of ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate, the compound resulting from Example 6A, was added, and the mixture was heated at 45° C. for 30 minutes. The product was chromatographed on silica gel, eluting with 1:1 hexane-ethyl acetate to give 306 mg of the intermediate ethyl ester.


The ester was hydrolyzed with sodium hydroxide in water and ethanol to give 265 mg of the title compound as a white powder. 1H NMR (CDCl3, 300 MHz) δ rotational isomers −0.75 and 0.85 (2 t, J=7 Hz, 3H), 1.05-1.5 (m, 8H), 2.65-3.20 (m, 6H) 3.43-3.70 (m, 3H), 3.72 (s, 3H), 3.87 (d, J=15 Hz, 1H), 4.49 (dd, J=12 Hz, 6 Hz) and 5.23 (dd, J=12 Hz, 8 Hz) 2H, 5.90 (dd, J=2 Hz, 4 Hz, 2H), 6.63-6.78 (m, 3H), 6.86 and 7.04 (d, J=9 Hz, 2H), 7.22 (d, J=9 Hz, 2H).


EXAMPLE 82
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-n-butyl)-N-(n-propyl) aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Example 1. m.p. 160-162° C. 1H NMR (CDCl3, 300 MHz) rotational isomers δ 0.69, 0.80, 0.84, 0.87 (four triplets, J=7 Hz, 6H), 1.00-1.52 (m, 6H), 2.63 and 2.66 (two doublets, J=13 Hz, 1H), 2.90-3.10 (m, 4H), 3.23-3.61 (m, 5H), 3.71 and 3.75 (two doublets, J=10 Hz, 1H), 3.78 (s, 3H), 5.92-5.96 (m, 2H), 6.72 (d, J=8 Hz, 1H), 6.83-6.89 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.81 (d, J=9 Hz, 2H).


EXAMPLE 83
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N,N-di(n-propyl) aminocarbonyl)ethyl]pyrrolidine-3-carboxylic acid

The compound resulting from Example 6A (250 mg, 0.677 mmol), 205 mg (1.36 mmol) diallyl acrylamide (Polysciences, Inc.), and 10 mg acetic acid were heated at 85° C. in 0.75 mL of methoxyethanol for one hour. Toluene was added, and the solution was washed with bicarbonate solution, dried, and concentrated. Chromatography on silica gel eluting with 3:1 hexane-ethyl acetate gave 283 mg (80%) of the diallyl compound.


The diallyl compound was hydrogenated using 10% Pd/C catalyst (27 mg) in ethyl acetate (25 mL) under a hydrogen atmosphere. The catalyst was removed by filtration, and the filtrate was concentrated to afford the dipropyl amide ethyl ester in 100% yield.


The ester was hydrolyzed to the title compound by the method of Example 1D in 83% yield. 1H NMR (CDCl3, 300. MHz) δ 0.82 and 0.83 (two triplets, J=7 Hz, 6H), 1.39-1.54 (m, 4H), 2.35-2.60 (m, 3H), 2.80-3.07 (m, 5H), 3.14-3.21 (m, 2H), 3.31-3.38 (m, 1H), 3.51-3.61 (m, 1H), 3.73 (d, J=12H, 1H), 3.75 (s, 3H), 5.94 (s, 2H), 6.71 (d, J=9 Hz, 1H), 6.79-6.85 (m, 3H), 7.04 (d, J=2 Hz, 1H)<7.32 (d, J=9 Hz, 2H).


EXAMPLE 84
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Example 8 using dibutyl-carbamoyl chloride, prepared by the method of Hoshino et al., Syn. Comm., 17: 1887-1892 (1987), as a starting material. 1H NMR (CDCl3, 300 MHz) δ 0.86 (t, J=7 Hz, 6H), 1.14-1.28 (m, 4H), 1.35-1.48 (m, 4H), 2.81-2.94 (m, 2H),, 3.11 (t, J=12 Hz, 1H), 3.30-3.41 (m, 2H), 3.59-3.68 (m, 2H), 3.76 (s, 3H), 3.78-3.85 (m, 1H), 5.81 (d, J=9 Hz, 1H), 5.94 (s, 2H), 6.73-6.86 (m, 5H), 7.24 (d, J=9 Hz, 2H).


EXAMPLE 85
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylymethyl)pyrrolidine-3-carboxylic acid sodium salt

Sodium hydroxide (48.2 mg of 98.3% pure, 1.184 mmol) in 2 mL of MeOH was added to the compound resulting from Example 43 (610 mg, 1.196 mmol.) in 5 mL MeOH. The solution was concentrated to dryness, and the resulting powder was stirred with heptane. The heptane was removed in vacuo to give a powder which was dried in the vacuum oven for 2 hours at 60° C. to yield 627.5 mg of the title compound.


EXAMPLE 86
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N,N-di(n-butyl) amino)ethyl]pyrrolidine-3-carboxylic acid

A solution of the bromoethyl compound resulting from Example 61A (150 mg), dibutylamine (150 mg) and sodium iodide (18 mg) in 0.75 mL ethanol was heated at 80° C. for 1 hour. After cooling, toluene was added, and the solution was washed with potassium bicarbonate solution, dried over Na2SO4 and concentrated. More toluene was added, and the solution was again concentrated to get rid of excess dibutylamine. The residue was dissolved in warm heptane and filtered from a small amount of insoluble material. The hepane was removed in vacuo to give 143 mg (87%) of the intermediate ethyl ester.


The ester was hydrolyzed by the method of Example 1D to give the title compound as a white powder. 1H NMR (CD3OD, 300 MHz) δ 0.89 (t, J=7 Hz, 6H), 1.16-1.30 (m, 4H), 1.44-1.56 (m, 4H), 2.48-2.57 (m, 1H), 2.80-3.08 (m, 8H), 3.14-3.25 (m, 1H), 3.31-3.38 (m, 1H), 3.59-3.60 (m, 1H), 3.74 (s, 3H), 3.75 (d, J=10 Hz, 1H), 5.89 (s, 2H), 6.71 (d, J=9 Hz, 1H), 6.81 (dd, J=9 Hz, 2 Hz, 1H), 6.90 (d, J=10 Hz, 2H), 6.96 (d, J=2 Hz, 1H), 7.37 (d, J=10 Hz, 2H).


EXAMPLE 87
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-{(2-[N—(N,N-di(n-butyl) aminocarbonyl)-N-methylamino]ethyl}pyrrolidine-3-carboxylic acid

Dibutyl carbamoyl chloride (135 mg) was added to the compound resulting from Example 61B (250 mg) and 150 mg triethylamine in 1 mL dichloromethane. After stirring 1 hour at room temperature, toluene was added, and the solution was washed with potassium bicarbonate solution, dried over Na2SO4 and concentrated. The residue was chromatographed on silica gel, eluting with a mixture of 38% EtOAc and 62% hexane to give 194 mg of the ethyl ester intermediate.


The ester was hydrolyzed by the method of Example 1D to afford 141 mg of the title compound. 1H NMR (CD3OD, 300 MHz) δ 0.92 (t, J=7 Hz, 6H), 1.21-1.32 (m, 4H), 1.42-1.53 (m, 4H), 2.62 (s, 3H), 2.65-2.76 (m, 1H), 3.00-3.20 (m, 8H), 3.44-3.55 (m, 1H), 3.62-3.78 (m, 2H), 3.80 (s, 3H), 4.07 (d, J=12 Hz, 1H), 5.93 (s, 2H), 6.75 (d, J=9 Hz, 1H), 6.87 (dd, J=9 Hz, 2 Hz, 1H), 6.94 (d, J=10 Hz, 2H), 7.04 (d, J=2 Hz, 1H), 7.40 (d, J=10 Hz, 2H).


EXAMPLE 88
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)pyrrolidine-3-(N-methanesulfonyl)carboxamide

Carbonyldiimidazole (75 mg, 0.463 mmol) was added to 150 mg (0.294 mmol) of the compound resulting from Example 43 in 0.4 mL of tetrahydrofuran, and the solution was stirred at 60° C. for 2 hours. After cooling, 50 mg (0.526 mmol) of methanesulfonamide and 68 mg (0.447 mmol) of DBU in 0.3 mL of THF were added. The mixture was stirred at 45° C. for 2 hours. The solvents were removed in vacuo, and the residue was dissolved in water. A few drops of acetic acid were added, and the solution was lyophilized to give 121 mg (70%) of the title compound. m.p. 170-173° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.05-1.51 (m, 8H), 2.75-2.86 (m, 2H), 2.83-3.25 (m, 4H), 3.17 (s, 3H), 3.32-3.50 (m, 3H), 3.70-3.78 (m, 1H), 3.80 (s, 3H), 3.87 (d, J=10 Hz, 1H), 5.96 (dd, J=2 Hz, 4 Hz, 2H), 6.74 (d, J=9 Hz, 1H), 6.84 (dd, J=9 Hz, 2 Hz, 1H), 6.90 (d, J=10 Hz, 2H), 7.01 (d, J=2 Hz, 1H), 7.34 (d, J=10 Hz, 2H).


EXAMPLE 89
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)pyrrolidine-3-(N-benzenesulfonyl)carboxamide

The compound resulting from Example 43 was converted to the title compound by the method of Example 88 substituting benzenesulfonamide for methanesulfonamide. m.p. 169-171° C. for a sample recrystallized from acetonitrile. 1H NMR (CDCl3, 300 MHz) δ 0.81 (t, J=7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.02-1.50 (m, 8H), 2.65-2.80 (m, 2H), 2.90-3.25 (m, 4H), 3.80-3.95 (m, 3H), 3.50-3.60 (m, 1H), 3.65 (d, J=10 Hz, 1H), 3.81 (s, 3H), 5.94 (s, 2H), 6.70 (s, 2H), 6.81-6.90 (m, 3H), 7.17 (d, J=10 Hz, 2H), 7.55 (t, J=7 Hz, 2H), 7.66 (t, J=7 Hz, 1H), 8.95 (d, J=7 Hz, 2H).


EXAMPLE 90
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-di(n-butyl) aminosulfonylmethyl]-pyrrolidine-3-carboxylic acid

Chloromethyl sulfenyl chloride, prepared by the method of Brintzinger et. al., Chem. Ber. 85: 455457 (1952), is reacted with dibutylamine by the method of E. Vilsmaier described in Liebigs Ann. Chem. 1055-1063 (1980) to give N,N-dibutyl chloromethyl sulfenyl chloride. Alternatively dimethyl(methylthio)sulfonium tetraflouroborate is reacted with dibutylamine to give N,N-dibutyl methylsulfenyl chloride which is chlorinated with N-chlorosuccinimide to give chloromethyl sulfenyl chloride by the method of E. Vilsmaier, described in the above reference.


The N,N-dibutyl chloromethyl sulfenyl chloride is reacted with the compound resulting from Example 6A to give ethyl trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-di(n-butyl)aminosulfenylmethyl]-pyrrolidine-3-carboxylate. This is oxidized with osmium tetroxide and N-methyl morpholine N-oxide by the method of S. Kaldor and M. Hammond, Tet. Lett. 32: 5043-5045 (1991) to give the title compound after hydrolysis of the ethyl ester.


EXAMPLE 91
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N,N-di(n-butyl) aminocarbonyl-1-(RS)-ethyl]pyrrolidine-3-carboxylic acid
EXAMPLE 91A
(±)-Dibutyl 2-bromopropanamide

2-Bromopropanoic acid (510 mg, 3.33 mmol) and 4-methylmorpholine (0.74 mL, 6.73 mmol) were dissolved in 10 mL of CH2Cl2, the solution was cooled to 0° C. under a N2 atmosphere, and then treated dropwise with isobutyl chloroformate (0.45 mL, 3.5 mmol). After 10 minutes at 0° C., dibutylamine (0.57 mL, 3.4 mmol) was added. The reaction was stirred at 0° C. for 1 hour and for an additional 16 hours at room temperature. The mixture was partitioned with 25 mL of 1.0 M aqueous Na2CO3 solution, then the organic phase was washed sequentially with 25 mL of 1 M aqueous NaHSO4 and 25 mL brine, dried (Na2SO4), filtered, and concentrated under reduced pressure to afford 698 mg (2.64 mmol, 79%) of the crude bromoamide as a colorless oil. 1H NMR (CDCl3, 300 MHz) δ 0.93 (t, J=7 Hz) and 0.97 (t, J=7.5 Hz, 6H total), 1.26-1.60 (m, 7H), 1.60-1.78 (m, 1H), 1.82 (d, J=6 Hz, 3H), 3.04-3.27 (m, 2H), 3.42-3.64 (m, 2H), 4.54 (q, J=7H, 1H). MS (DCl/NH3) m/e 264 and 266 (M+H)+.


EXAMPLE 91B
trans,trans- and cis, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((N,N-di(n-butyl) amino)carbonyl-1-(RS)-ethyl)pyrrolidine-3-carboxylic acid ethyl ester

A solution of the resultant mixture of trans,trans and cis, trans compounds from Example 1C (232 mg, 0.628 mmol) and the resultant compound from Example 91A (183 mg, 0.693 mmol) in 2 mL of CH3CN was treated with diisopropylethylamine (0.22 mL, 1.3 mmol). The solution was stirred at 60-80° C. under a N2 atmosphere for 16 hours. The reaction was concentrated under reduced pressure, then the residue was partitioned between 30 mL Et2O and 10 mL of 1 M aqueous Na2CO3 solution. The organic phase was washed with 20 mL water and 20 mL brine, dried over Na2SO4, filtered and concentrated under reduced pressure to afford the crude amino amide as a brown oil (339 mg, 98% crude). The product was obtained by flash chromatography on silica gel eluting with 20% EtOAc-hexane to provide 224 mg (70%) of the title compounds as a mixture of 4 diastereomers. 1H NMR (CDCl3, 300 MHz) δ 0.66-1.55 (several m, 19H), 2.63-3.00 (m, 3H), 3.05-3.39 (m, 2H), 3.40-3.76 (m, 4H), 3.78-3.80 (4 s, 3H), 3.84-4.25 (m, 2.6H), 4.38 (d, J=10.5 Hz, 0.2H) and 4.58 (d, J=10.5 Hz, 0.2H), 5.90-5.97 (m, 2H), 6.68-6.96 (m, 5H), 7.38-7.43 (m, 2H). MS (DCl/NH3) m/e 553 (M+H)+.


EXAMPLE 91C
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-((N,N-dibutylamino) carbonyl-1-(RS)-ethyl)pyrrolidine-3-carboxylic acid

The procedure of Example 73C was used, substituting the resultant compound from Example 91B for the resultant compound from Example 73B to give the title compound in 61% yield. 1H NMR (CD3OD, 300 MHz) δ 0.70-1.05 (several m, 8H), 1.14 (d, J=6 Hz, 2H), 1.17-1.55 (m, 6H), 2.79-3.03 (m, 3.5H), 3.20-3.65 (br m, 4.6H plus CD2HOD), 3.70-3.78 (m, 0.4H), 3.79 (s, 3H), 3.98 (d, J=8 Hz, 0.6H), 4.06 (t, J=7.5 Hz, 0.4H), 4.25 (d, J=8 Hz, 0.4H), 5.92 (s) and 5.94 (s, 2H total 6H), 6.73 (d, J=2.5 Hz) and 6.75 (d, J=3 Hz, 1H total), 6.78-6.85 (m, 1H), 6.91-7.00 (m, 3H), 7.30-7.38 (m, 2H). MS (DCl/NH3) m/e 525 (M+H)+. Anal calcd for C30H40N2O6·0.5H2O: C, 67.52; H, 7.74; N, 5.25. Found: C, 67.63; H, 7.65; N, 5.21.


EXAMPLE 92
trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 92A
Methyl 2-(4-hexenoyl)-4-nitro-3-(1′,3-benzodioxole-5-yl)butyrate

A solution of methyl 3-oxo-6-octenoate (502 mg, 2.95 mmol) in 10 mL of isopropanol was added to a solution of 5-(2-nitrovinyl)-1,3-benzodioxole (712 mg, 3.69 mmol) in 10 mL THF, then DBU (22 μL, 0.15 mmol) was added. The resulting reddish solution was stirred at room temperature for 20 minutes. TLC (ethyl acetate-hexane, 1:3) indicated complete consumption of ketoester. The solution was concentrated in vacuo and flash chromatographed on silica gel eluting with 18% ethyl acetate in hexane to produce 879 mg (2.42 mmol, 82%) of the title compound as a mixture of diastereomers in a 1:1 ratio. 1H NMR (CDCl3, 300 MHz) δ 1.55-1.66 (m, 3H), 2.02-2.17 (br m, 1H), 2.20-2.37 (m, 1.5H), 2.49-2.76 (m, 1.5H), 3.57 (s, 1.5H), 3.74 (s, 1.5H), 3.97 (d, J=7.5H, 0.5H) and 4.05 (d, J=8 Hz, 0.5H), 4.10-4.20 (m, 1H), 4.68-4.82 (m, 2H), 5.06-5.52 (m, 2H), 5.95 (2s, 2H), 6.65 (m, 1H), 6.68 (br s, 1H), 6.75 (d, 7.5 Hz, 1H). MS (DCl/NH3) m/e 381 (M+NH4)+. Anal calcd for C18H21NO7: C, 59.50; H, 5.82; N, 3.85. Found: C, 59.32; H, 5.71; N, 3.72.


EXAMPLE 92B
Methyl trans,trans-2-(pentyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate

The procedures of Example 1B and Example 1C were followed, with the substitution of the resultant compound from Example 92A for the resultant compound from Example 1A, and the substitution of the this resultant compound for the resultant compound from Example 1B, to provide the title compound in crude form as a yellow oil. This crude compound was epimerized under the following conditions. A solution of the crude compound (660 mg, 2.07 mmol) in 3 mL methanol was treated with a solution of sodium methoxide (made by the addition of sodium metal (14 mg, 0.61 mmol) to 1 mL of methanol). The resultant solution was heated at reflux for 18 hours. The reaction was concentrated under reduced pressure, and the residue was partitioned between 25 mL saturated NaHCO3 diluted with 10 mL water and 30 mL of CH2Cl2. The aqueous phase was extracted (2×30 mL CH2Cl2), then the combined organic phases were washed with 20 mL brine, dried over Na2SO4, filtered and the filtrate concentrated under reduced pressure to afford the crude product. Purification by flash chromatography on silica gel eluting with 3.5% methanol in CH2Cl2 gave 336 mg (57%) the title compound as a yellow oil. 1H NMR (CDCl3, 300 MHz) δ 0.90 (br t, 3H), 1.25-1.70 (br m, 8H), 1.83-2.02 (br s, 2H), 2.58 (dd, J=8, 9 Hz, 1H), 2.99 (dd, J=8, 14 Hz, 1H), 3.34-3.45 (m, 2H), 3.53 (q, J=9 Hz, 1H), 3.66 (s, 3H), 5.94 (s, 2H), 6.65-6.75 (m, 3H). MS (DCl/NH3) m/e 320 (M+H)+. Anal calcd for C18H25NO4: C, 67.69; H, 7.89; N, 4.39. Found: C, 67.39; H, 7.84; N, 4.37.


EXAMPLE 92C
trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The procedures of Example 1B-1D were used, with the substitution of the resultant compound from Example 92A for the resultant compound from Example 1B, to provide the title compound as a white foam. 1H NMR (CDCl3, 300 MHz) δ 0.87 (br t) and 0.89 (br t, 6H total), 0.97 (t, J=7.5 Hz, 3H), 1.21-1.42 (br m, 10), 1.43-1.78 (br m, 6H), 2.76 (t, J=7 Hz, 1H), 3.02-3.30 (br m, 6H), 3.40-3.60 (m, 3H), 3.73 (d, J=14 Hz, 1H), 5.98 (AB, 2H), 6.70 (d, J=7 Hz, 1H), 6.77 (dd, J=1.5, 7 Hz, 1H), 6.89 (d, J=1.5 Hz, 1H). MS (DCl/NH3) m/e 475 (M+H)+. Anal calcd for C27H42N2O5·0.5H2O: C, 67.05; H, 8.96; N, 5.79. Found: C, 67.30; H, 8.77; N, 5.68.


EXAMPLE 93
trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-propylsulfonylamino) ethyl]pyrrolidine-3-carboxylic acid
EXAMPLE 93A
Methyl trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-(2-bromoethyl)pyrrolidine-3-carboxylate

The procedure of Example 61A was used, with the substitution of the resultant compound from Example 92B for the resultant compound from Example 1C, to provide the title compound as a yellow oil. 1H NMR (CDCl3, 300 MHz) δ 0.89 (br t, J=7 Hz, 3H), 1.24-1.40 (br m, 6H), 1.60-1.80 (br m, 2H), 2.61-2.75 (m, 2H), 2.76-2.91 (m, 2H), 3.10-3.22 (m, 2H), 3.36-3.47 (m, 2H), 3.68 (s, 3H), 5.92 (s, 2H), 6.69-6.77 (m, 2H), 6.90-6.94 (m, 1H). MS (DCl/NH3) m/e 426, 428 (M+H)+.


EXAMPLE 93B
Methyl trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-propylsulfonylamino) ethyl]pyrrolidine-3-carboxylate

A solution of the resultant compound from Example 93A (102 mg, 0.24 mmol) and tetrabutylammonium iodide (6 mg, 16 μmol) in 1 mL EtOH was treated with propylamine (60 μL, 0.73 mmol). The solution was warmed to 80° C. for 4 hours. The reaction was concentrated under reduced pressure, then the residue was dissolved in 35 mL ethyl acetate and extracted with 2×15 mL of 1 M aqueous Na2CO3. The organic phase was washed with 15 mL brine, then dried over Na2SO4, filtered and concentrated under reduced pressure to provide the crude secondary amine as a yellow oil (94.2 mg). The crude amine was dissolved in 1 mL of CH2Cl2, diiosopropylethylamine (65 μL, 0.373 mmol) was added, followed by propylsulfonyl chloride (29 μL, 0.26 mmol). The solution was stirred at room temperature for 4 hours. The reaction was quenched with 10% aqueous citric acid (to pH 4), and the mixture was extracted with 2×3 mL CH2Cl2. The combined organic extracts were washed with 2 mL brine, then dried over Na2SO4; filtered, concentrated in vacuo. Purification by flash chromatography eluting with 20% ethyl acetate in hexane provided 65.0 mg (53%) of the title compound as a waxy solid. Rf=0.17 (20% EtOAc-hexane). MS (DCl/NH3) m/e 511 (M+H)+.


EXAMPLE 93C
trans,trans-2-(Pentyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-propylsulfonylamino) ethyl]pyrrolidine-3-carboxylic acid

The procedure of Example 71C was followed, with the substitution of the resultant compound from Example 93B for the resultant compound from Example 71B, to provide the title compound as a white foam (47 mg, 80%), Rf=0.14 (5% MeOH—CH2Cl2). 1H NMR (CDCl3, 300 MHz) δ 0.88 (br t) and 0.92 (t, J=7 Hz, 6H total), 1.22-1.52 (br m, 6H), 1.63 (sextet, J=8 Hz, 2H), 1.75-2.10 (br m, 4H), 2.89-2.98 (m, 2H), 3.05 (brt, J=9 Hz, 1H), 3.10-3.30 (m, 3H), 3.30-3.80 (br m, 7H), 5.9 (s, 2H), 6.71 (t, J=8 Hz, 1H), 6.77 (dd, J=1.5, 8 Hz, 1H), 6.89 (d, J=1.5 Hz, 1H). MS (DCl/NH3) m/e 497 (M+H)+.


EXAMPLE 94
trans,trans-2-(Propyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl) pyrrolidine-3-carboxylic acid
EXAMPLE 94A
Ethyl 2-(4-butanoyl)-4-nitro-3-(1,3-benzodioxole-5-yl)butyrate

The procedure of Example 92A was followed, with the substitution of ethyl butyryl acetate for methyl 3-oxo-6-octenoate, to provide the title compound as a mixture of trans and cis isomers (47 mg, 80%), Rf=0.28 (25% EtOAc-hexane). 1H NMR (CDCl3, 300 MHz) δ 0.74 (t, J=7.5 Hz) and 0.91 (t, J=7.5 Hz, 3H total), 1.08 (t, J=7 Hz) and 1.28 (t, J=7 Hz, 3H total), 1.45 (sextet, J=7 Hz, 1.5H), 1.63 (sextet, J=7 Hz, approx. 1.5H), 2.17 (t, J=7 Hz) and 2.24 (t, J=7 Hz, 0.5H total) 2.40-2.54 (m, 1H), 2.60 (t, J=7.5 Hz) and 2.67 (t, J=7.5 Hz, 0.5H total), 3.93-4.09 (m, 2H), 4.10-4.20 (br m, 1H), 4.23 (q, J=7 Hz, 1H), 4.67-4.85 9m, 2H), 5.94 (s, 2H), 6.62-6.75 (m, 3H). MS (DCl/NH3) m/e 369 (M+NH4)+. Anal calcd for C17H21NO7: C, 58.11; H, 6.02; N, 3.99. Found: C, 58.21; H, 5.98; N, 3.81.


EXAMPLE 94B
Ethyl trans,trans-2-(propyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate

The procedure of Example 92B was followed, with the substitution of the resultant compound from Example 94A for the resultant compound from Example 92A, to afford the title compound. MS (DCl/NH3) m/e 306 (M+H)+.


EXAMPLE 94C
trans,trans-2-(Propyl)-4-(1,3-benzodioxol-5-yl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The procedure of Example 92C was followed, with the substitution of the resultant product from Example 94B for the resultant product from Example 92B, to give the title compound. 1H NMR (CDCl3, 300 MHz) δ 0.89 (t, J=7.5 Hz), 0.92 (t, J=7.5 Hz), and 0.97 (t, J=7.5H, 9H total), 1.22-1.80 (br m, 12H), 2.83 (t, J=7.5 Hz, 1H), 3.40-3.55 (br m, 2H), 3.55-3.68 (m, 1H), 3.78 (d, J=15 Hz, 1H), 5.92 (q, J=1 Hz, 2H), 6.70 (d, J=8 Hz, 1H), 6.79 (dd, J=1 Hz, 8 Hz, 1H), 6.90 (d, J=1 Hz, H). MS (DCl/NH3) m/e 447 (M+H)+. Anal calcd for C25H38N205.0.5H2O: C, 65.91; H, 8.63; N, 6.15. Found: C, 65.91; H, 8.68; N, 5.94.


EXAMPLE 95
(2S,3R,4S)-(+)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 95A
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-([tert-butyloxycarbonylaminocarbonylmethyl]pyrrolidine-3-carboxylic acid

The resulting mixture of 64% trans,trans- and cis,trans-pyrrolidines resulting from Example 1C (3.01 g, 8.15 mmol) was dissolved in 50 mL of methylene chloride. To this was added dropwise a solution of di-tert-butyl dicarbonate (1.96 g, 8.97 mmol) in 20 mL methylene chloride under a nitrogen atmosphere, and the resulting solution was stirred 30 minutes at which point TLC (ethyl acetate:hexane, 1:1) indicated that all of the starting material was consumed. The reaction mixture was concentrated and dried under high vacuum to give 3.94 g of the ethyl ester as a yellow-brown oil. 1H NMR (CDCL3, 300 MHz) δ 0.99, 1.07 (br t, br t, J=7 Hz, 3H), 1.11-1.62 (several br m, 9H), 3.05 (br m, 1H), 3.44-3.95 (m, 3H), 3.81 (s, 3H), 4.04 (q, J=7 Hz, 1H), 4.14-4.28 (br m, 1H), 4.89-5.24 (br m, 1H), 5.94 (d, J=3 Hz, 2H), 6.69-6.90 (m, 5H), 7.06-7.20 (m, 2H). MS (DCl/NH3) m/e 470 (M+H)+.


To the ethyl ester dissolved in 170 mL of ethanol was added a solution of lithium hydroxide (1.06 g, 25.17 mmol) in 60 mL of water. The reaction mixture was vigorously stirred for 18 hours under a nitrogen atmosphere. The reaction mixture was concentrated to remove ethanol, diluted with 250 mL of water and extracted three times with 250 mL of ether. The organic phase acidified to slight cloudiness (pH ˜7) with 1 N hydrochloric acid, then to pH 4 with 10% citric acid and extracted with 5% ethanol in methylene chloride (3×100 mL). The combined organic layers dried (Na2SO4), filtered, concentrated and dried on high vacuum to give the title compound as a white foam (2.19 g, 60%). 1H NMR (CDCl3, 300 MHz) δ 1.16 (v br s, 9H), 3.11 (br m, 1H), 3.50-3.64 (m, 2H), 3.81 (s, 3H), 4.24 (br m, 1H), 4.96 (br m, 1H), 5.94 (s, 2H), 6.71-6.79 (m, 3H), 6.84-6.91 (m, 2H), 7.19 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 442 (M+H)+.


EXAMPLE 95B
(2R,3R,4S)-(+)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(tert-butyloxycarbonylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound resulting from Example 95A (2.15 g, 4.86 mmol) and (+)-cinchonine (1.43 g, 4.86 mmol) were added to 100 mL of methylene chloride; this suspension was swirled with warming as necessary to get all solids to dissolve. The solution was then concentrated and dried on high vacuum to a white foam. This material was crystallized from a mixture of refluxing chloroform (64 mL) and hexane (360 mL). The resulting crystals were isolated by filtration and recrystallized under the same conditions seven additional times. Each time the resulting crystals and filtrate were monitored by 1H NMR and chiral HPLC. The amount of (2S,3S,4R)-(−)-enantiomer decreased first in the crystals and then in the filtrate with the predetermined endpoint achieved when the (2S,3S,4R)-(−)-enantiomer could no longer be detected in the filtrate. The pure (2R,3R,4S)-(+)-enantiomer thus obtained was partitioned between 100 mL of 10% citric acid and 100 mL of ether. The aqueous layer was further extracted twice with 100 mL of ether. The combined ether layers were washed with brine, dried (Na2SO4), filtered, concentrated and dried on high vacuum to a white powder (550 mg, 55% of theoretical 50% maximum, >99.5 ee). 1H NMR (CDCl3, 300 MHz) δ 1.05-1.50 (br m, 9H), 3.12 (br m, 1H), 3.50-3.65 (m, 2H), 3.81 (s, 3H), 4.24 (m, 1H), 4.96 (br m, 1H), 5.95 (s, 2H), 6.70-6.79 (m, 3H), 6.86 (d, J=9 Hz, 2H), 7.19 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 442 (M+H)+.


EXAMPLE 95C
(2R,3R,4S)-(+)-Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound resulting from Example 95B (251 mg, 0.568 mmol) was dissolved in 20 mL of a saturated solution of anhydrous HCl(g) in anhydrous ethanol. The resulting solution was heated at 50° C. with stirring for 18 hours at which point all of the precipitated solid had dissolved. The reaction mixture was concentrated to a solid which was partitioned between O.8 M aqueous sodium carbonate (50 mL) and methylene chloride (50 mL). The aqueous layer was further extracted with methylene chloride (2×50 mL). The combined organic layers were dried (Na2SO4), filtered, concentrated and dried under high vacuum to give the title compound as an almost colorless oil (158 mg, 69%). 1H NMR (CDCl3, 300 MHz) δ 1.11 (t, J=7 Hz, 3H), 2.18 (v brs, 1H), 2.93 (t, J=9 Hz, 1H), 3.19, 3.22 (dd, J=7 Hz, 1H), 3.50-3.69 (m, 2H), 3.80 (s, 3H), 4.07 (q, J=7 Hz, 2H), 4.49 (d, J=9 Hz, 1H), 5.94 (s, 2H), 6.73 (d, J=2 Hz, 2H), 6.81-6.92 (m, 3H), 7.34-7.41 (m, 2H). MS (DCl/NH3) m/e 370 (M+H)+.


EXAMPLE 95D
(2S,3R,4S)-(+-2-(4-methoxyhenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

To the resulting compound from Example 95C (131 mg, 0.355 mmol) was added, diisopropylethylamine (137 mg, 185 μL, 1.06 mmol), acetonitrile (2 mL), N,N-di-(n-butyl)bromoacetamide (133 mg, 0.531 mmol), and the mixture was heated at 50° C. for 1.5 hours. The reaction mixture was concentrated to a solid, dried under high vacuum, and purified by chromatography on silica gel eluting with 1:3 ethyl acetate-hexane to give pure ester as a colorless oil. 1H NMR (CDCl3, 300 MHz) δ 0.81 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.10 (t, J=7 Hz, 3H), 1.00-1.52 (m, 8H), 2.78 (d, J=14 Hz, 1H), 2.89-3.10 (m, 4H), 3.23-3.61 (m, 5H), 3.71 (d, J=9 Hz, 1H), 3.80 (s, 3H), 4.04 (q, J=7 Hz, 2H), 5.94 (dd, J=1.5 Hz, 2H), 6.74 (d, J=9 Hz, 1H), 6.83-6.90 (m, 3H), 7.03 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 539 (M+H)+.


To the ethyl ester dissolved in 7 mL of ethanol was added a solution of lithium hydroxide (45 mg, 1.06 mmol) in water (2.5 mL). The mixture was stirred for 1 hour at ambient temperature and then warmed slowly to 40° C. over 2.5 hours at which point all of the starting material had been consumed. The reaction mixture was concentrated to remove the ethanol, diluted with 60 mL water and extracted with ether (3×40 mL). The aqueous solution was treated with 1 N aqueous hydrochloric acid until cloudy, and the pH was then adjusted to ˜4-5 with 10% aqueous citric acid. This mixture was extracted with 1:19 ethanol-methylene chloride (3×50 mL). The combined extracts were dried (Na2SO4), filtered, concentrated and dried under high vacuum to give the title compound as a white foam (150 mg, 83%). 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.08 (m, 2H), 1.28 (m, 3H), 1.44 (m, 3H), 2.70-3.77 (svr br m, 12H), 3.79 (s, 3H), 5.95 (m, 2H), 6.75 (d, J=8 Hz, 1H), 6.87 (br d, J=8 Hz, 3H), 7.05 (br s, 1H), 7.33 (v br s, 2H). MS (DCl/NH3) m/e 511 (M+H)+. [α]22=+74.42°. Anal calcd for C29H38N2O6.0.5H2O: C,67.03; H 7.56; N, 5.39. Found: C, 67.03; H, 7.59; N, 5.33.


EXAMPLE 95E
Alternate Preparation of (2R,3R,4S)-(+)-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(tert-butyloxycarbonylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The product of Example 95A (2.858 g) was suspended in 10 mL of EtOAc. 0.7833 g of R (+) alpha methyl benzylamine in 3 mL ethyl acetate was added. On swirling all of the solids were dissolved. The ethyl acetate was removed in vacuum. Ether (13 ml) was added to the residue. When all of the residue had dissolved, 5 mg of seed crystals were added and these crystals were crushed with a metal spatula while cooling in ice. The product crystallized very slowly. After 1 hour the solid was filtered and washed with ether giving 1.4213 g, m.p. 163-167°. The filtrate was concentrated, cooled and scratched with a spatula to give a second crop 0.1313 g, m.p. 164-168°. The filtrate was concentrated again and put in the refrigerator and let stand overnight giving 1.6906 g, m.p. 102-110°. (HPLC of this showed 20% of the desired enantiomer and 80% of the unwanted enantiomer.)


The first two batches of crystallized material were combined and suspended in 20 mL dichloromethane (Note: the unwanted isomer is more soluble in dichloromethane) and stirred for 2 minutes. The mixture was concentrated, but not to dryness, and ether (10 mL) was added. After stirring for a few minutes the crystals were filtered. Yield: 1.401 g, m.p. 164-172°.


Treatment of the crystalline product with 10% citric acid and ether according the method described in Example 95B provided the title compound.


EXAMPLE 96
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-butyrylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and butyryl chloride for isobutyryl chloride in Example 61C. The product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (m, 3H), 0.90 (t, 3H, J=8 Hz), 1.42 (m, 2H), 1.58 (heptet, 2H, J=8 Hz), 2.20 (t, 3H, J=8 Hz), 2.94 (br m, 2H), 3.10 (br m, 2H), 3.48 (br m, 4H), 3.76 (br m, 2H), 3.78 (s, 3H), 4.30 (br s, 1H), 5.95 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.84 (m, 1H), 6.85 (d, 2H, J=8 Hz), 7.04 (d, 1H, J=1 Hz), 7.40 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 497 (M+H)+. Anal calcd for C28H36N2O6.1.0 TFA: C, 58.82; H, 6.42; N, 4.57. Found: C, 58.77; H, 6.30; N, 4.42.


EXAMPLE 97
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(ethylaminocarbonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and ethyl isocyanate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR CDCl3, 300 MHz) mixture of rotamers δ 0.80 (t, J=8 Hz) and 1.05 (t, J=8 Hz) and 1.20 (m) and 1.42 (m) total of 8H for the four peaks, 2.35 (br s, 1H), 2.70 (m, 1H), 3.0 (m, 3H), 3.2 (m, 3H), 3.25 (dq, 1H, J=1, 8 Hz), 3.42 (m, 1H), 3.6 (m, 1H), 3.75 (m, 1H), 3.78 (s, 3H), 4.8 (br s, 1H), 5.95 (s, 2H), 6.74 (d, 1H, J=8 Hz), 6.85 (m, 3H), 7.00 (s, 1H), 7.30 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 498 (M+H)+. Anal calcd for C27H35N3O6.0.75H2O: C, 63.45; H, 7.20; N, 8.22. Found: C, 63.38; H, 7.29; N, 8.44.


EXAMPLE 98
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-butyl-N-butyrylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting butylamine for methylamine in Example 61B and butyryl chloride for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (m, 3H), 0.90 (t, 3H, J=8 Hz), 1.45 (m, 4H), 1.6 (m, 2H), 2.20 (t, 3H, J =8 Hz), 2.94 (br m, 2H), 3.10 (br m, 2H), 3.5 (br m, 4H), 3.80 (br m, 2H), 3.82 (s, 3H), 4.30 (br s, 1H), 5.95 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.84 (m, 1H), 6.85 (d, 2H, J=8 Hz), 7.04 (d, 1H, J=1 Hz), 7.40 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 511 (M+H)+. HRMS calcd for C29H38N2O6: 511.2808. Found: 511.2809.


EXAMPLE 99
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-ethoxycarbonylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and ethyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, 3H, J=8 Hz), 1.05 (m, 2H), 1.22 (m, 3H), 1.45 (m, 3H), 2.08 (br s, 1H), 2.75 (m, 1H), 2.88 (br q, 2H, J=8 Hz), 3.08 (br m, 2H), 3.27 (br m, 2H), 3.44 (m, 1H), 3.54 (dt, 1H, J=1, 8 Hz), 3.63 (d, 1H, J=8 Hz), 3.78 (s, 3H), 4.02 (br d, 2H), 5.93 (s, 2H), 6.72 (d, 1H, J=8 Hz), 6.81 (dd, 1H, J=1, 8 Hz), 6.85 (d, 2H, J=8 Hz), 7.00 (s, 1H), 7.30 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 499 (M+H)+. Anal calcd for C27H34N2O7.0.5H2O: C, 63.89; H, 6.95; N, 5.52. Found: C, 64.03; H, 6.71; N, 5.30.


EXAMPLE 100
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-methyl-N-(2-ethylbutyryl)amino)ethyl]pyrrolidine-3-carboxylic acid

To the compound resulting from Example 61B (190 mg) dissolved in THF (2 mL) was added HOBt (60 mg), EDCl (85 mg), N-methylmorpholine (50 μL), and DMF (2 mL). 2-Ethylbutyric acid was added and the solution stirred overnight at ambient temperature. Water (10 mL) was added, and the mixture was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with saturated sodium bicarbonate solution, 1 N H3PO4, and brine, dried with Na2SO4, and evaporated to give an oil which was purified by flash chromatography on silica gel eluting with 1:3EtOAc-hexane. The resulting ethyl ester was saponified by the procedure described in Example 61C. The crude product was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) (mixture of rotamers) δ 0.66, 0.74, 0.80, 0.88 (all triplets, total of 6H, J=8 Hz), 1.05 (m, 2H), 1.25-1.75 (m, 5H), 2.16 (m, 1H), 2.32 (m, 1H), 2.45 (m, 1H), 2.70 (m, 1H), 2.86, 2.94 (s, total 3H), 2.95 (m, 1H), 3.35 (m, 1H), 3.52 (m, 2H), 3.65 (m, 1H), 3.80 (s, 3H), 5.94, 5.96 (s, total 2H), 6.73 (m, 1H), 6.84 (m, 3H), 6.97 (m, 1H), 7.30 (m, 2H). MS (DCl/NH3) m/e 497 (M+H)+. Anal calcd for C28H36N2O6.0.25H2O: C, 67.11; H, 7.34; N, 5.59. Found: C, 67.13; H, 7.24; N, 5.56.


EXAMPLE 101
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-methyl-N-(2-propylvaleryl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedure described in Example 100, but substituting 2-propylpentanoic acid for 2-ethylbutyric acid. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid.



1H NMR (CDCl3, 300 MHz) δ 0.79 (t, 3H, J=8 Hz), 0.82 (t, 3H, J=8 Hz), 1.10 (m, 4H), 1.2-1.5 (m, 4H), 2.55 (m, 1H), 2.96 (s, 3H), 3.15 (br m, 1H), 3.32 (br m, 1H), 3.56 (m, 2H), 3.68 (m, 1H) 3.68 (s, 3H), 3.70 (m, 1H), 3.80 (m, 2H), 4.65 (br d, 1H), 5.92 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.84 (m, 1H), 6.85 (d, 2H, J=8 Hz), 7.05 (s, 1H), 7.42 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 525 (M+H)+. Anal calcd for C30H40N2O6. 1.25 TFA: C, 58.51; H, 6.23; N, 4.20. Found: C, 58.52; H, 6.28; N, 4.33.


EXAMPLE 102
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(tert-butyloxycarbonylmethyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and t-butyl bromoacetate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, 3H, J=8 Hz), 1.18 (m, 2H), 1.19 (s, 9H), 2.12 (m, 1H, 2.46 (m, 2H), 2.70 (m, 3H), 2.85 (m, 2H), 3.20 (s, 2H), 3.40 (dd, 1H, J=2, 8 Hz), 3.50 (dt, 1H, J=2, 8 Hz), 3.62 (d, 1H, J=8 Hz), 3.78 (s, 3H), 5.95 (s, 2H), 6.72 (d, 1H, J=8 Hz), 6.84 (m, 1H), 6.85 (d, 2H, J=8 Hz), 7.05 (s, 1H), 7.16 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 541 (M+H)+. Anal calcd for C30H40N2O7.1.0H2O: C, 64.50; H, 7.58; N, 5.01. Found: C, 64.75; H, 7.35; N, 4.86.


EXAMPLE 103
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(n-propylaminocarbonylmethyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and N-propyl bromoacetamide for isobutyryl chloride in Example 61C. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, 3H, J=8 Hz), 0.88 (t, 3H, J=8 Hz), 1.45 (m, 2H), 1.48 (m, 3H, J=8 Hz), 2.55-2.7 (m, 2H), 2.90 (m, 1H), 3.04 (m, 1H), 3.15 (m, 3H), 3.28 (t, 1H, J=8 Hz), 3.45 (t, 1H, J=8 Hz), 3.60 (m, 2H), 3.70 (d, 2H, J=8 Hz), 3.75 (m, 1H), 3.80 (s, 3H), 4.25 (d, 1H, J=8 Hz), 5.95 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.86 (dt, 1H, J=1, 8 Hz), 6.88 (d, 2H, J=8 Hz), 7.04 (d, 1H, J=1 Hz), 7.40 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 526 (M+H)+. Anal calcd for C29H39N3O6.1.85 TFA: C, 53.32; H, 5.59; N, 5.70. Found: C, 53.45; H, 5.62; N, 5.63.


EXAMPLE 104
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(4-methoxyphenoxycarbonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and 4-methoxyphenylchloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CD3OD, 300 MHz) mixture of rotamers δ 0.88 (m, 3H), 1.57 (m, 2H), 2.45 (br s) and 2.60 (br s, total of 1H), 2.90-3.15 (m, 4H), 3.42-3.7 (m, 5H), 3.78 (s, 3H), 3.80 (s, 3H), 3.85 (m) and 4.0 (m, total of 1H), 5.95 (s) and 5.98 (s, total of 2H), 6.63 (m, 1H), 6.72 (d, 1H, J=8 Hz), 6.81 (m, 2H), 6.93 (m, 5H), 7.40 (m, 2H). MS (DCl/NH3) m/e 577 (M+H)+. Anal calcd for C32H36N2O8.1.0 H2O: C, 64.63; H, 6.44; N, 4.71. Found: C, 64.70; H, 6.38; N, 4.63.


EXAMPLE 105
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(4-methoxybenzoyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and anisoyl chloride for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) mixture of rotamers δ 0.78 (m) and 0.98 (t, J=8 Hz) total of 3H, 1.47 (m) and 1.52 (q, J=8 Hz) total of 2H, 2.25 (br s, 1H), 2.78 (br s, 1H), 2.90 (br t, 2H), 3.12-3.68 (m, 7H), 3.80 (s, 3H), 3.82 (s, 3H), 5.94 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.83 (m, 5H), 6.94 (m, 1H), 7.22 (m, 4H). MS (FAB) m/e 561 (M+H)+. Anal calcd for C32H36N2O7. 0.75H2O: C, 66.94; H, 6.58; N, 4.88. Found: C, 67.00; H, 6.38; N, 4.59.


EXAMPLE 106
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-benzoylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and benzoyl chloride for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) mixture of rotamers δ 0.65 and 0.9 (m, total of 3H), 1.4 and 1.55 (m, total of 2H), 2.05 and 2.15 (m, total of 1H), 2.6-3.6 (m, 8H), 5.92 (s, 2H), 6.70 (d, 1H, J=8 Hz), 6.82 (m, 4H), 7.2-7.4 (m, 6H). MS (DCl/NH3) m/e 531 (M+H)+. Anal calcd for C31H34N2O6.0.3H2O: C, 69.46; H, 6.51; N, 5.23. Found: C, 69.48; H, 6.19; N, 4.84.


EXAMPLE 107
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-benzyloxycarbonylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and benzyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.8 (m, 3H) 1.45 (m, 2H), 2.20 (br m, 1H), 2.75 (m, 1H), 2.93 (m, 1H), 3.15 (m, 2H), 3.32 (m, 3H), 3.52 (m, 2H), 3.66 (m, 1H), 3.78 (s, 3H), 5.00 (m, 2H), 5.94 (s, 2H), 6.72 (d, 1H, J=8 Hz), 6.82 (m, 3H), 7.0 (br d, 1H, J=15 Hz), 7.2 (s, 4H), 7.30 (m, 3H). MS (FAB) m/e 561 (M+H)+. Anal calcd for C32H36N2O7.1.0 TFA: C, 60.53; H, 5.53; N, 4.15. Found: C, 60.66; H, 5.34; N, 4.28.


EXAMPLE 108
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(4-methoxybenzyloxycarbonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound is prepared by the methods described in Example 61, substituting propylamine for methylamine in Example 61B and 4-methoxybenzyl chloroformate for isobutyryl chloride in Example 61C.


EXAMPLE 109
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-butyl-N-ethoxycarbonylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting butylamine for methylamine in Example 61B and ethyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by preparative HPLC (Vydac 82 C18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, 3H, J=8 Hz), 1.20 (m, 5H), 1.34 (m, 2H), 3.08 (m, 2H), 3.17 (m, 2H), 3.52 (m, 2H), 3.75 (m, 2H), 3.78 (s, 3H), 4.06 (q, 2H, J =8Hz), 4.35 (br s, 1H), 5.94 (s, 2H), 6.76 (d, 1H, J=8 Hz), 6.92 (d, 2H, J=8 Hz), 7.03 (rb s, 1H), 7.17 (br s, 1H), 7.7 (br s, 2H). MS (FAB) m/e 513 (M+H)+. Anal calcd for C28H36N2O7.0.5 TFA: C, 61.15; H, 6.46; N, 4.92. Found: C, 60.99; H, 6.80; N, 4.93.


EXAMPLE 110
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-butyl-N-propoxycarbonylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting butylamine for methylamine in Example 61B and propyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (br s, 1H), 0.85 (t, 3H, J=8 Hz), 0.92 (br s, 1H), 1.22 (m, 3H), 1.40 (m, 3H), 1.62 (br m, 1H), 2.15 (br s, 1H), 2.72 (m, 1H), 2.87 (m, 1H), 3.1-3.45 (m, 5H), 3.55 (m, 1H), 3.64 (d, 1H, J=8 Hz), 3.79 (s, 3H), 3.88 (br s, 1H), 3.97 (br s, 1H), 5.95 (s, 2H), 6.73 (d, 1H, J=8 Hz), 6.85 (m, 3H, 7.0 (s, 1H), 7.30 (d, 2H), J=8 Hz). MS (FAB) m/e 527 (M+H)+. Anal calcd for C29H38N2O7.0.15H2O: C, 65.80; H, 7.29; N, 5.29. Found: C, 65.79; H, 7.30; N, 5.21.


EXAMPLE 111
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-propoxycarbonylamino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods described in Example 61, but substituting propylamine for methylamine in Example 61B and propyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether-hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, 3H, J=8 Hz), 093 (m, 3H), 1.43 (m, 3H), 1.62 (m, 1H), 2.15 (br s, 1H), 2.68-3.45 (m, 8H), 3.54 (m, 1H), 3.66 (m, 1H), 3.78 (s, 3H), 3.94 (m, 2H), 5.94 (s, 2H), 6.72 (d, 1H, J=8 Hz), 6.82 (m, 1H), 6.84 (d, 2H, J=8 Hz), 3.94 (m, 1H), 7.33 (m, 2H). MS (DCl/NH3) m/e 513 (M+H)+. Anal calcd for C28H36N2O7.0.15H2O: C, 65.26; H, 7.10; N, 5.44. Found: C, 65.22; H, 6.74; N, 5.06.


EXAMPLE 112
trans,trans-1-(N N-Di(n-butyl)aminocarbonylmethyl)-2,4-di(1,3-Benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Ethyl(3,4-methylenedioxybenzoyl)acetate, prepared by the method of Krapcho et al., Org. Syn. 47, 20 (1967) starting with 3,4-methylenedioxyacetophenone instead of 4-methoxyacetophenone, was reacted by the procedures described in Example 1 to give the title compound as a white solid. m.p. 58-60° C. 1H NMR (CDCl3, 300 MHz) δ 0.87 (quintet, J=6 Hz, 6H), 1.12 (sextet, J=6 Hz, 2H), 1.24-1.51 (m, 6H), 2.80 (d, J=13 Hz, 1H), 2.94-3.12 (m, 4H), 3.28-3.50 (m, 4H), 3.58-3.62 (m, 1H), 3.78 (d, J=9 Hz, 1H), 5.95 (s, 4H), 6.73 (dd, J=8 Hz, 3 Hz, 2H), 6.84-6.89 (m, 2H), 6.92 (d, J=1 Hz, 1H), 7.01 (d, H=1 Hz, 1H). MS (DCl/NH3) m/e 525 (M+H)+.


EXAMPLE 113
trans,trans-1-(2-(N-(n-Butyl)-N-propylsulfonylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 64-65° C. 1H NMR (CDCl3, 300 MHz) δ 0.83 (t, J=7 Hz, 3H), 0.98 (t, J=7 Hz, 3H), 1.12-1.25 (m, 2H), 1.32-1.41 (m, 2H), 1.75 (sextet, J=7 Hz, 2H), 2.23-2.31 (m, 2H), 2.72-3.32 (m, 8H), 3.43 (dd, J=9 Hz, 3 Hz, 1H), 3.53-3.59 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.83 (dd, J=8 Hz, 1 Hz, 1H), 6.88 (d, J=9 Hz, 2H), 7.02 (d, J=1 Hz, 1H), 7.33 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 547 (M+H)+.


EXAMPLE 114
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Examples 28 and 43, the title compound was prepared as a white solid. m.p. 74-76° 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=6 Hz, 3H), 0.88 (t, J=8 Hz, 3H), 1.08 (sextet, J=8 Hz, 2H), 1.21-1.48 (m, 6H), 2.75 (d, J=12 Hz, 1H), 2.95-3.09 (m, 4H), 3.26-3.59 (m, 5H), 3.75 (d, J=9 Hz, 1H), 3.79 (s, 3H), 4.28 (s, 4H), 6.78 (d, J=9 Hz, 1H), 6.85 (d, J=9 Hz, 2H), 6.91 (d, d, J=3 Hz, 9 Hz, 1H), 6.98 (d, J=3 Hz, 1H), 7.32 (d, J=9 Hz, 2H), MS (DCl/NH3) m/e 525 (M+H)+.


EXAMPLE 115
trans,trans-1-(2-(N-Propyl-N-propylsulfonylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 72-73° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=8 Hz, 3H), 0.98 (t, J=8 Hz, 3H), 1.43 (sextet, J=8 Hz, 2H), 1.75 (sextet, J=8 Hz, 2H), 2.22-2.32 (m, 1H), 2.69-3.32 (m, 9H), 3.42 (dd, J=3 Hz, 12 Hz, 1H), 3.52-3.58 (m, 1H), 3.64 (d, J=12 Hz, 1H), 3.80 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=11 Hz, 1H), 6.83 (dd, J=1 Hz, 11 Hz, 1H), 6.87 (d, J=11 Hz, 2H), 7.0 (d, J=2 Hz, 1H), 7.32 (d, J=11 Hz, 2H). MS (DCl/NH3) m/e 533 (M+H)+.


EXAMPLE 116
trans,trans-1-(2-(N-Butyl-N-butylsulfonylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 62-63° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=6 Hz, 3H), 0.91)t, J=6 Hz, 3H), 1.20 (sextet, J=6 Hz, 2H), 1.33-1.42 (m, 4H), 1.68 (quintet, J=6 Hz, 3H),2.23-2.32 (m, 1H), 2.70-3.28 (m, 9H), 3.41 (d, J=8 Hz, 1H), 3.52-3.58 (m, 1H), 3.65 (d, J=8 Hz, 1H), 3.79 (s, 3H), 5.95 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 7.01 (s, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 561 (M+H)+.


EXAMPLE 117
trans,trans-1-(2-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

4-Hydroxyacetophenone was treated with chloromethyl methyl ether and triethylamine in THF at room temperature to give ethyl 4-methoxymethoxybenzoylacetate which was treated by the procedures described in Example 1 to afford the title compound as a white solid. m.p. 4849° C. 1H NMR (CDCl3, 300 MHz) δ 0.81 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.06 (sextet, J=7 Hz, 2H), 1.20-1.35 (m, 4H), 1.44 (quintet, J=7 Hz, 2H), 2.75 (d, J=12 Hz, 1H), 2.94-3.10 (m, 4H), 3.25-3.35 (m, 1H), 3.40 (d, J=12 Hz, 1H), 3.43-3.52 (m, 2H), 3.47 (s, 3H), 3.55-3.62 (m, 1H), 3.77 (d, J=9 Hz, 1H), 5.15 (s, 2H), 5.94 (m, 2H), 6.73 (d, J=8 Hz, 1H), 6.86 (dd, J=1 Hz, 8 Hz, 1H), 7.0 (d, J=8 Hz, 2H), 7.04 (d, J=1 Hz, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 541 (M+H)+.


EXAMPLE 118
trans,trans-1-(2-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-hydroxyPhenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid hydrochloride salt

The compound resulting from Example 116 was treated with concentrated HCl in 1:1 THF-isopropanol to give the title compound as a white solid. m.p. 211-212° C. 1H NMR (CD3OD, 300 MHz) δ 0.90 (t, J=8 Hz, 6H), 1.12-1.27 (m, 6H), 1.36-1.45 (m, 2H), 3.04 (bs, 1H), 3.14-3.35 (t, J=9 Hz, 1H), 3.90 (bs, 3H), 4.17 (d, J=15 Hz, 1H), 5.96 (s, 2H), 6.82-6.93 (m, 4H), 7.03 (d, J=1 Hz, 1H), 7.42 (bs, 2H). MS (DCl/NH3) m/e 497 (M+H)+.


EXAMPLE 119
trans,trans-1-(2-(N-Isobutyl-N-propylsulfonylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 73-74° C. 1H NMR (CDCl3, 300 MHz) δ 0.80 (d, J=6 Hz, 6H), 0.98 (t, J=8 Hz, 3H), 1.62 (sextet, J=6 Hz, 1H), 1.74 (sextet, J=8 Hz, 2H), 2.23-2.34 (m, 1H), 2.68-2.98 (m, 7H), 3.08-3.18 (m, 1H), 3.26-3.42 (m, 2H), 3.52-3.58 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.90 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.86 (d, J=8 Hz, 2H), 6.98 (d, J=1 Hz, 1H), 7.33 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 547 (M+H)+.


EXAMPLE 120
trans,trans-1-(2-(N-Benzenesulfonyl-N-propylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 89-91° C. 1H NMR (CDCl3, 300 MHz) δ 0.74 (t, J=6 Hz, 3H), 1.33 (sextet, J=6 Hz, 2H), 2.20-2.30 (m, 1H), 2.62-2.72 (m, 1H), 2.85-3.05 (m, 4H), 3.12-3.22 (m, 1H), 3.38 (dd, J=3 Hz, 9 Hz, 1H), 3.49-3.57 (m, 1H), 3.62 (d, J=9 Hz, 1H), 3.82 (s, 3H), 5.96 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.84 (dd, J=1 Hz, 8 Hz, 1H), 6.85 (d, J=9 Hz, 2H), 7.02 (d, J=1 Hz, 1H), 7.28 (d, J=9 Hz, 2H), 7.39-7.54 (m, 3H), 7.70 (d, J=7 Hz, 2H). MS (DCl/NH3) m/e 567 (M+H)+.


EXAMPLE 121
trans,trans-1-(2-(N-(4-Methoxybenzenesulfonyl)-N-propylamino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 96-97° C. 1H NMR (CDCl3, 300 MHz) δ 0.73 (t, J=7 Hz, 3H), 1.34 (sextet; J=7 Hz, 2H), 2.20-2.30 (m, 1H), 2.62-2.71 (m, 1H), 2.82-3.03 (m, 4H), 3.08-3.18 (m, 2H), 3.38 (dd, J=3 Hz, 9 Hz, 1H), 3.48-3.56 (m, 1H), 3.62 (d, J=9 Hz, 1H), 3.81 (s, 3H), 3.86 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.81-6.89 (m, 5H), 7.01 (d, J=1 Hz, 1H), 7.28 (d, J=8 Hz, 2H), 7.62 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 597 (M+H)+.


EXAMPLE 122
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(2-methoxyethoxy-4 methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

2-Hydroxy-5-methoxyacetophenone was treated with sodium hydride and bromoethyl methyl ether in THF at 70° C. to provide ethyl 2-methoxyethoxy-4-methoxybenzoylacetate which was treated by the procedures described in Example 1 to provide the title compound as a white solid. m.p. 63-65° C. 1H NMR (CDCl3, 300 MHz) δ 0.84 (t, J=7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.16 (sextet, J=7 Hz, 2H), 1.28 (sextet, J=7 Hz, 2H), 1.45-1.52 (m, 4H), 2.87-2.94 (m, 2H), 3.00-3.16 (m, 3H), 3.26-3.36 (m, 2H), 3.43 (s, 3H), 3.47-3.54 (m, 3H), 3.66-3.72 (m, 2H), 3.78 (s, 3H), 3.76-3.84 (m, 1H), 4.02-4.10 (m, 2H), 4.25 (d, J=9 Hz, 1H), 5.92 (s, 2H), 6.40 (d, J=2 Hz, 1H), 6.52 (dd, J=2 Hz, 9 Hz, 1H), 6.70 (d, J=8 Hz, 1H), 6.83 (dd, J=1 Hz, 8 Hz, 1H), 5.98 (d, J=2 Hz, 1H), 7.53 (d, J=9 Hz, 1H). MS (DCl/NH3) m/e 585 (M+H)+.


EXAMPLE 123
trans,trans-1-(2-(N-Propyl-N-(2,4-dimethylbenzenesulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 88-90° C. 1H NMR (CDCl3, 300 MHz) δ 0.69 (t, J=7 Hz, 3H), 1.32 (sextet, J=7 Hz, 2H), 2.12-2.20 (m, 1H), 2.32 (s, 3H), 2.47 (s, 3H), 2.62-2.69 (m, 1H), 2.78 (t, J=9 Hz, 1H), 2.89 (dd, J=8 Hz, 1H), 3.02 (sextet, J=9 Hz, 2H), 3.15-3.32 (m, 3H), 3.46-3.55 (m, 1H), 3.60 (d, J=9 Hz, 1H), 3.82 (s, 3H), 5.96 (s, 2H), 6.72 (d, J=7 Hz, 1H), 6.80 (dd, J=1 Hz, 9 Hz, 1H), 6.86 (d, J=9 Hz, 2H), 6.97 (d, J=1 Hz, 1H), 7.03 (bs, 2H), 7.29 (d, J=9 Hz, 1H). MS (DCl/NH3) m/e 595 (M+H)+.


EXAMPLE 124
trans,trans-1-(2-(N-Propyl-N-(3-chloropropylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 75-76° C. 1H NMR (CDCl3,300 MHz) δ 0.80 (t, J=7 Hz, 3H),1.45 (sextet, J=7 Hz, 2H), 2.15-2.31 (m, 3H), 2.70-2.80 (m, 1H), 2.85-3.10 (m, 6H), 3.23-3.31 (m, 2H), 3.43 (bd, J=9 Hz, 1H), 3.55-3.66 (m, 4H), 3.81 (s, 3H), 5.94 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.86 (d, J=8 Hz, 2H), 7.00 (s, 1H), 7.33 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 567 (M+H)+.


EXAMPLE 125
trans,trans-1-(2-(N-Propyl-N-(2-methoxyethylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, trans,trans-1-(2-(N-Propyl-N-(vinylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)pyrrolidine-3-carboxylic acid was prepared. Ester hydrolysis using aqueous sodium hydroxide in methanol afforded the title compound as a white solid. m.p. 62-64° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 1.42 (sextet, J=7 Hz, 2H), 2.23-2.32 (m, 1H), 2.72-2.79 (m, 1H), 2.86-3.05 (m, 4H), 3.10-3.27 (m, 4H), 3.32 (s, 3H), 3.43 (dd, J=3 Hz, 9 Hz, 1H), 3.53-3.58 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.6.9 (t, J=6 Hz, 2H), 3.80 (s, 3H), 5.94 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (dd, J=1 Hz, 8 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 7.02 (d, J=1 Hz, 1H), 7.33 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 549 (M+H)+.


EXAMPLE 126
trans,trans-1-(2-(N-Propyl-N-(2-ethoxyethylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 58-60° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 1.18 (t, J=7 Hz, 3H), 1.43 (sextet, J=7 Hz, 2H), 2.24-2.33 (m 1H), 2.70-2.80 (m, 1H), 2.87-3.05 (m, 4H), 3.13-3.20 (m, 2H), 3.22-3.32 (m, 2H), 3.42 (dd, J=2 Hz, 9 Hz, 1H), 3.46 (q, J=7 Hz, 2H), 3.52-3.58 (m, 1H), 3.65 (d J=9 Hz, 3.72 (t, J=6 Hz, 2H), 3.80 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=7 Hz, 1H), 6.83 (dd, J=1 Hz, 7 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 7.00 (d, J=1 Hz, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 563 (M+H)+.


EXAMPLE 127
trans,trans-1-(2-(N-Propyl-N-(5-dimethylamino-1-naphthylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a yellow solid. m.p. 102-104° C. 1H NMR (CDCl3, 300 MHz) δ 0.62 (t, J=7 Hz, 3H), 1.28 (sextet, J=7 Hz, 2H), 2.12-2.20 (m, 1H), 2.78 (t, J=9 Hz, 1H), 2.88 (s, 6H), 2.72-2.89 (m, 1H), 3.05-3.12 (m, 2H), 3.26-3.45 (m, 3H), 3.45-3.52 (m, 1H), 3.58 (d, J=9 Hz, 1H), 6.97 (d, J=1 Hz, 1H), 7.13 (d, J=7 Hz, 1H), 7.26 (d, J=8 Hz, 1H), 7.42-7.50 (m, 2H), 8.08 (dd, J=1 Hz, 7 Hz, 1H), 8.20 (d, J=8 Hz, 1H), 8.48 (d, J=8 Hz, 1H). MS (DCl/NH3) m/e 660 (M+H)+.


EXAMPLE 128
trans,trans-1-(2-(N-Propyl-N-(ethylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 70-72° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=8 Hz, 3H), 1.28 (t, J=7 Hz, 3H), 1.43 (q, J=8 Hz, 2H), 2.22-2.30 (m, 1H), 2.71-2.80 (m, 1H), 2.82-3.10 (m, 6H), 3.18-3.32 (m, 2H), 3.43 (dd, J=3 Hz, 9 Hz, 1H), 3.53-3.60 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.96 (s, 2H), 6.73 (d, J=7 Hz, 1H), 6.82 (dd, J=1 Hz, 7 Hz, 1H), 6.88 (d, J=8 Hz, 2H), 7.00 (d, J=1 Hz, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 519 (M+H)+.


EXAMPLE 129
trans,trans-1-(2-(N-Propyl-N-(4-methylbenzenesulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 78-79° C. 1H NMR (CDCl3, 300 MHz) δ 0.73 (t, J=7 Hz, 3H), 1.33 (sextet, J=7 Hz, 2H), 2.20-2.30 (m, 1H), 2.40 (s, 3H), 2.61-2.72 (m, 1H), 2.83-3.05 (m, 4H), 3.08-3.19 (m, 2H), 3.48 (dd, J=3 Hz, 9 Hz, 1H), 3.49-3.57 (m, 1H), 3.62 (d, J=9 Hz, 1H), 3.81 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 7.00 (s, 1H), 7.21 (d, J=8 Hz, 2H), 7.29 (d, J=8 Hz, 2H), 7.57 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 581 (M+H)+.


EXAMPLE 130
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(3-pyridyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Methyl nicotinoyl acetate was prepared by the method of Wenkert, et al., J. Org. Chem. 48: 5006 (1983) and treated by the procedures described in Example 1 to provide the title compound as a white solid. m.p. 167-168° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.14 (sextet, J=7 Hz, 2H), 1.23-1.48 (m, 6H), 2.86-3.20 (m, 6H), 3.34-3.43 (m, 2H), 3.57 (dd, J=3 Hz, 9 Hz, 1H), 3.75-3.83 (m, 1H), 4.08 (d, J=9 Hz, 1H), 5.93 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.90 (dd, J=2 Hz, 8 Hz, 1H), 7.03 (d, J=2 Hz, 1H), 7.38 (dd, J=4 Hz, 8 Hz, 1H), 8.04 (d, J=8 Hz, 1H), 8.48 (dd, J=2 Hz, 4 Hz, 2H). MS (DCl/NH3) m/e 482 (M+H)+.


EXAMPLE 131
trans,trans-1-(2-(N-Propyl-N-(n-butylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 65-66° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 0.92 (t, J=7 Hz, 3H), 1.31-1.46 (m, 4H), 1.68 (quintet, J=7 Hz, 2H), 2.21-2.32 (m, 1H), 2.70-3.08 (m, 7H), 3.12-3.23 (m, 2H), 3.42 (dd, J=2 Hz, 9 Hz, 1H), 3.52-3.58 (m, 1H), 3.64 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.96 (s, 2H), 6.72 (d, J=7 Hz, 1H), 6.83 (dd, J=1 Hz, 7 Hz, 1H), 6.86 (d, J=8 Hz, 2H), 7.00 (d, J=1 Hz, 1H), 7.32 (d, J=8 Hz), 2H). MS (DCl/NH3) m/e 547 (M+H)+.


EXAMPLE 132
trans,trans-1-(2-(N-Propyl-N-(4-chlorobenzenesulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 105-106° C. 1H NMR (CDCl3, 300 MHz) δ 0.72 (t, J=7 Hz, 3H), 1.34 (sextet, J=7 Hz, 2H), 2.56-2.62 (m, 1H), 2.78-2.86 (m, 1H), 2.96-3.03 (m, 3H), 3.13-3.26 (m, 3H), 3.51 (dd, J=5 Hz, 9 Hz, 1H), 3.62-3.68 (m, 1H), 3.80 (s, 3H), 3.94 (d, J=9 Hz, 1H), 5.92 (s, 2H), 6.75 (d, J=8 Hz, 1H), 6.84 (dd, J=2 Hz, 8 Hz, 1H), 6.94 (d, J=8 Hz, 2H), 6.98 (d, J=2 Hz, 1H), 7.36 (d, J=8 Hz, 1H), 7.49 (d, J=8 Hz, 1H), 7.68 (d, J=8 Hz, 1H). MS (DCl/NH3) m/e 601 (M+H)+.


EXAMPLE 133
trans,trans-1-(2-(N-Propyl-N-(benzylsulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 88-89° C. 1H NMR (CDCl3, 300 MHz) δ 0.72 (t, J=7 Hz, 3H), 1.32 (sextet, J=7 Hz, 2H), 2.06-2.16 (m, 1H), 2.56-2.67 (m, 1H), 2.75-3.10 (m, 6H), 3.30 (dd, J=2 Hz, 9 Hz, 1H), 5.95 (s, 2H), 6.73 (d, J=7 Hz, 1H), 6.80 (dd, J=1 Hz, 7 Hz, 1H), 6.86 (d, J=8 Hz, 2H), 6.97 (d, J=1 Hz, 1H), 7.27-7.35 (m, 7H). MS (DCl/NH3) m/e 581 (M+H)+.


EXAMPLE 134
trans,trans-1-(2-(N-Propyl-N-(4-fluorobenzenesulfonyl)amino)ethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 91-93° C. 1H NMR (CDCl3, 300 MHz) δ 0.73 (t, J=7 Hz, 3H), 1.44 (sextet, J=7 Hz, 2H), 2.18-2.27 (m, 1H), 2.56-2.67 (m, 1H), 2.78-2.87 (m, 2H), 2.97 (septet, J=8 Hz, 2H), 3.11-3.16 (m, 2H), 3.33 (dd, J=2 Hz, 9 Hz, 1H), 3.43-3.50 (m, 1H), 3.57 (d, J=9 Hz, 1H), 3.78 (s, 3H), 7.08 (t, J=8 Hz, 2H), 7.24 (d, J=8 Hz, 2H), 7.69 (dd, J=5 Hz, 8 Hz, 2H). MS (DCl/NH3) m/e 585 (M+H)+.


EXAMPLE 135
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-benzofuranyl)pyrrolidine-3-carboxylic acid
EXAMPLE 135A
Benzofuran-4-carboxaldehyde

To a suspension of 60% sodium hydride in mineral oil (4.00 g, 100 mmol, 1.25 eq) in DMF (60 mL) at 0° C. was added a solution of 3-bromophenol (13.8 g, 80 mmol) in DMF (5 mL). After 10 minutes, bromoacetaldehyde diethyl acetal (14.9 mL, 96.6 mmol, 1.24 eq) was added, and the resultant mixture then heated at 120° C. for 2.5 hours. The mixture was cooled to room temperature and was poured into water, and extracted once with ether. The organic solution was dried over MgSO4, filtered, evaporated and vacuum distilled to yield a colorless liquid (17.1 g, 74%). b.p. 160-163° C. at 0.4 mm Hg.


To warm polyphosphoric acid (15.3 g) was added a solution of the above compound (17.1 g, 59.3 mmol) in benzene (50 mL). The resultant mixture was heated under reflux with vigorous stirring for 4 hours, after which time the benzene layer was carefully decanted off, and the lower layer washed once with hexanes. The combined organic solutions were concentrated in vacuo, and then vacuum distilled to yield a colorless liquid (8.13 g, 70%). b.p. 62-72° C. at 0.6 mm Hg.


To a solution of the above compounds (8.11 g, 41.5 mmol) in ether (80 mL) at −78° C. was added 1.7 M t-butyllithium (48.8 mL, 83 mmol, 2 eq) such that the temperature did not exceed −70° C. After stirring for 15 minutes, a solution of DMF (6.5 mL, 83 mmol, 2 eq) in ether (20 mL) was added, and the mixture allowed to warm to room temperaure over 2 hours. The mixture was poured into water and the phases separated. The organic solution was dried over MgSO4 and concentated in vacuo. The residue was purified by flash chromatography on silica gel eluting with 10% ether in hexanes to yield benzofuran-6-carboxaldehyde (1.22 g) and benzofuran-4-carboxaldehyde (1.86 g), both as colorless oils.


EXAMPLE 135B
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-benzofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Examples 1 and 49 substituting the compound resulting from Example 135A in Example 49A for piperonal. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.59 (1H, t, J=3 Hz), 7.4-7.2 (6H, m), 6.8 (2H, d, J=8 Hz), 4.03 (1H, m), 3.94 (1H, dd, J=8 Hz), 3 Hz), 3.77 (3H, s), 3.61 (1H, dd, J=8 Hz, 73 Hz), 3.42 (1H, dd, J=11 Hz, 5 Hz), 3.40-2.90 (5H, m), 2.82 (2.81) (3H, s), 1.50 (2H, septet, J=7 Hz), 0.82 (0.75) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 451 (M+H)+. Anal. calc. for C26H30N2O5.AcOH: C, 65.87; H, 6.71; N, 5.49. Found: C, 66.04; H, 6.42; N, 5.60, s


EXAMPLE 136
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(6-benzofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in Examples 1 and 49 substituting benzofuran-6-carboxaldehyde, prepared as described in Example 135A, in Example 49A for piperonal. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.65 (1H, bd), 7.60 (1H, d, J=2 Hz), 7.55 (1H, d, J=8 Hz), 7.35 (3H, m), 6.85 (2H, dd, J=8 Hz, 3 Hz), 6.75 (1H, dd, J=3 Hz, 2 Hz), 3.83 (2H, m), 3.79 (3H, s), 3.60-3.0 (7H, m), 2.91 (2.83) (s, 3H), 1.51 (2H, septet, J=7 Hz), 0.83 (0.78) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 451 (M+H). Anal. calc. for C26H30N2O5.0.5H2O: C, 67.96; H, 6.80; N, 6.10. Found: C, 67.90; H, 6.71; N, 6.07.


EXAMPLE 137
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(6-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by catalytic hydrogenation (4 atmospheres of H2 in AcOH, followed by preparative hplc) of the compound resulting from Example 136 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.49 (7.47) (2H, d, J=8 Hz), 7.19 (1H, d, J=8 Hz), 7.00 (1H, m), 7.82 (3H, m), 5.40 (1H, dd, J=11 Hz, 7 Hz), 4.58 (2H, t, J=8 Hz), 4.18 (1H, m), 4.10 (1H, m), 3.88 (1H, m), 3.79 (3H, s), 3.60 (1H, m), 3.35 (1H, m), 3.19 (2H, t, J=8 Hz), 3.00 (4H, m), 2.91 (2.78) (s, 3H), 1.53 (1.40) (2H, septet, J=7 Hz), 0.88 (0.78) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 453 (M+H)+. Anal. calc. for C26H32N2O5.1.25 TFA: C, 57.53; H, 5.63; N, 4.71. Found: C, 57.68; H, 5.68; N, 4.70.


EXAMPLE 138
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-benzofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting benzofuran-4-carboxaldehyde in Example 49A for piperonal and substituting N,N-dibutyl bromoacetamide for N-methyl-N-propyl bromoacetamide. 1H NMR (300 MHz, CDCl3) δ 7.62 (1H, d, J=3 Hz), 7.39 (1H, dt, J=8 Hz, 2 Hz), 7.34 (3H, m), 7.26 (1H, d, J=2 Hz), 7.23 (1H, d, J=8 Hz), 6.84 (2H, d, J=8 Hz), 4.02 (1H, ddd, J=8, 6 Hz, 4 Hz), 3.89 (1H, d, J=9 Hz) 3.79 (3H, s), 3.67 (1H, dd, J=10 Hz, 3 Hz), 3.44 (2H, m), 3.35-3.15 (3H, m), 3.00 (2H, m), 2.84 (1H, d, J=14 Hz), 1.43 (3H, m), 1.23 (3H, m), 1.08 (2H, m), 0.87 (3H, t, J=7 Hz), 0.82 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 507 (M+H)+. Anal. calc. for C30H38N2O5: C, 71.12; H, 7.56; N, 5.53. Found: C, 70.86; H, 7.45; N, 5.24.


EXAMPLE 139
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-benzofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting benzofuran-5-carboxaldehyde, prepared by the procedures described in Example 135A substituted 4-bromophenol for 3-bromophenol, in Example 49A for piperonal and substituting N,N-dibutyl bromoacetamide for N-methyl-N-propyl bromoacetamide. 1H NMR (300 MHz, CDCl3) δ 7.64 (1H, bd), 7.59 (1H, d, J=2 Hz), 7.43 (2H, m), 7.33 (2H, d, J=8 Hz), 6.85 (2H, d, J=8 Hz), 6.73 (1H, dd, J=3 Hz, 1 Hz), 3.82 (1H, d, J=11 Hz), 3.89 (1H, d, J=9 Hz) 3.79 (3H, s), 3.53 (1H, dd, J=10 Hz, 3 Hz), 3.44 (2H, m), 3.30 (1H, m), 3.20-2.95 (5H, m), 2.82 (1H, d, J=14 Hz), 1.43 (3H, m), 1.23 (3H, m), 1.08 (2H, m), 0.87 (3H, t, J=7 Hz), 0.82 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 507 (M+H)+. Anal. calc. for C30H38N2O5: C, 71.12; H, 7.56; N, 5.53. Found: C, 70.73; H, 7.45; N, 5.29.


EXAMPLE, 140
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(6-benzofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting benzofuran-6-carboxaldehyde in Example 49A for piperonal and substituting N,N-dibutyl bromoacetamide for N-methyl-N-propyl bromoacetamide. 1H NMR (300 MHz, CDCl3) δ 7.63 (1H, bd), 7.59 (1H, d, J=2 Hz), 7.53, (1H, d, J=8 Hz), 7.36 (3H, m), 6.85 (2H, d, J=8 Hz), 6.73 (1H, dd, J=3 Hz, 1 Hz), 3.82 (1H, d, J=11 Hz), 3.89 (1H, d, J=9 Hz) 3.79 (3H, s), 3.53 (1H, dd, J=10 Hz, 3 Hz), 3.44 (2H, m), 3.30 (1H, m), 3.20-2.95 (5H, m), 2.80 (1H, d, J=14 Hz), 1.43 (3H, m), 1.23 (3H, m), 1.08 (2H, m), 0.87 (3H, t, J=7 Hz), 0.82 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 507 (M+H)+. Anal. calc. for C30H38N2O5.0.75H2O: C, 69.28; H, 7.65; N, 5.39. Found: C, 69.11; H, 7.33; N, 5.32.


EXAMPLE 141
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(6-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by catalytic hydrogenation of the compound resulting from Example 140 (4 atmospheres of H2 in AcOH, followed by preparative hplc). 1H NMR (300 MHz, CDCl3) δ 7.40 (2H, d, J=8 Hz), 7.16 (1H, d, J=8 Hz), 6.97 (1H, dd, J=8 Hz, 2 Hz), 6.89 (3H, m), 5.90 (1H, bs) 4.57 (2H, t, J=9 Hz), 4.93 (2H, m), 3.80 (3H, s), 3.70-3.58 (2H, m), 3.40 (1H, m), 3.30-2.90 (8H, m), 1.40 (2H, m), 1.29 (3H, m), 1.08 (2H, m), 0.92 (3H, t, J=7 Hz), 0.82 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 509 (M+H)+. Anal. calc. for C30H40N2O5.0.85 TFA: C, 62.88; H, 6.80; N, 4.63. Found: C, 63.04; H, 6.66; N, 4.60.


EXAMPLE 142
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(5-indanyl)pyrrolidine-3-carboxylic acid
EXAMPLE 142A
Indane-5-carboxaldehyde

Indane-5-carboxaldehyde was prepared by formylation of indane under the conditions described for 2,3-dihydrobenzofuran in Example 52A. The resultant mixture of 4- and 5-carboxaldehydes was purified as follows: to a 6:1 mixture of indane-4-carboxaldehyde and indane-5-carboxaldehyde (3.46 g, 23 mmol) was added aniline (2.20 g, 23 mmol, 1 eq). The resultant solution slowly solidfied to a mixture of imines Which was recrystallized from hot acetonitrile to yield the 5-aldimine as a white solid. The aldimine (2.65 g) was suspended in water (6 mL), and treated with 4 N hydrochloric dioxane (10 mL). The mixture was boiled for 1 hour, cooled to room temperature, and poured into ether. The organic solution was dried over MgSO4, filtered, and concentated in vacuo. Vacuum distillation of the residue afforded indane-5-carboxaldehyde (1.54 g, 88%) as a colorless liquid. b.p. 88-90° C. at 0.9 mm Hg.


EXAMPLE 142B
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(5-indanyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting indane-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.25-7.1 (5H, m), 6.78 (2H, d, J=8 Hz), 3.89 (1H, d, J=8 Hz), 3.75 (3H, s), 3.50-2.90 (6H, m), 2.88 (6H, t, J=6 Hz), 2.82 (2.80) (3H, s), 2.04 (2H, t, J=8 Hz), 1.48 (2H, septet, J=7 Hz), 0.83 (0.73) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 451 (M+H)+, 473 (M+Na)+. Anal. calc. for C27H34N2O4.2.5H2O ; C, 65.44; H, 7.93; N, 5.65. Found: C, 65.36; H, 7.45; N, 5.53.


EXAMPLE 143
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(6-indolyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting indole-6-carboxaldehyde, prepared by the method of Rapoport, J. Org. Chem. 51: 5106 (1986), for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 8.43 (1H, brs), 7.57 (1H, d, J=8 Hz), 7.43 (1H, s), 7.31 (2H, dd, J=6 Hz, 3 Hz), 7.22 (1H, d, J=8 Hz), 7.1 (1H, t, J=3 Hz), 6.78 (2H, dd, J=6 Hz, 3 Hz), 6.45 (1H, m), 3.93 (1H, dd, J=6 Hz, 3 Hz), 3.80 (1H, m), 3.73 (3H, s), 3.60-2.90 (6H, m), 2.86 (2.82) (3H, s), 1.47 (2H, septet, J=7 Hz), 0.83 (0.73) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 450 (M+H)+. Anal. calc. for C26H31N3O4.0.75H2O: C, 67.44; H, 7.07; N, 9.07. Found: C, 67.42; H, 7.09; N, 8.91.


EXAMPLE 144
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(3,4-difluorophenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3,4-difluorobenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.60-7.3 (4H, m), 7.13 (1H, q, J=9 Hz), 6.90 (2H, d, J=8 Hz), 3.90 (1H, m), 3.79 (3H, s), 3.60-2.95 (6H, m), 2.92 (2.78) (3H, s), 1.55 (2H, septet, J=7 Hz), 0.88 (0.73) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 447 (M+H)+. Anal. calc. for C24H28F2N2O4.1.80H2O: C, 60.19; H, 6.65; N, 5.85. Found: C, 60.13; H, 6.34; N, 5.84.


EXAMPLE 145
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(phenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting benzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) (minor rotamer) δ 7.53 (4H, d, J=6 Hz), 7.40-7.20 (3H, m), 6.88 (2H, d, J=8 Hz), 3.90 (1H, m), 3.79 (3H, s), 3.70-2.95 (8H, m), 2.90 (2.79) (3H, s), 1.50 (2H, sept, J=7 Hz), 0.87 (0.72) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 411 (M+H)+. Anal. calc. for C24H30N2O4.2.00H2O: C, 64.55; H, 7.67; N, 6.27. Found: C, 64.37; H, 7.43; N, 6.29.


EXAMPLE 146
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-hydroxyphenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 4-hydroxybenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3-CD3OD) (minor rotamer) δ 7.35 (2H, d, J=8 Hz), 7.28 (2H, dd, J=7 Hz, 3 Hz), 6.90 (2H, dd, J=7 Hz, 3 Hz), 6.89 (2H, d, J=8 Hz), 3.81 (3H, s), 3.65 (1H, d, J=8 Hz), 3.70-3.00 (8H, m), 2.92 (2.83) (3H, s), 1.50 (2H, septet, J=7 Hz), 0.87 (0.77) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 427 (M+H)+. Anal. calc. for C24H30N2O5.1.00H2O: C, 64.85; H, 7.26; N, 6.30. Found: C, 64.82; H, 7.39; N, 6.46.


EXAMPLE 147
trans,trans-1-(N-Methyl-N-propylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(2,4-dimethoxyphenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 2,4-dimethoxybenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3-CD3OD) (minor rotamer) δ 7.61 (1H, d, J=8 Hz), 7.30 (2H, d, J=8 Hz), 6.82 (2H, d, J=8 Hz), 6.55 (1H, d, J=8 Hz), 6.45 (1H, d, J=3 Hz), 3.90 (1H, m), 3.81 (3H, s), 3.79 (3H, s), 3.77 (3H, s), 3.70-2.90 (8H, m), 2.85 (3H, s), 1.50 (2H, sept, J=7 Hz), 0.87 (0.77) (3H, t, J=7 Hz). MS (DCl/NH3) m/e 471 (M+H)+. Anal. calc. for C26H34N2O6.0.75H2O: C, 64.51; H, 7.39; N, 5.79. Found: C, 64.65; H, 7.07; N, 5.75.


EXAMPLE 148
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.31 (2H, d, J=8 Hz), 7.27 (1H, d, J=2 Hz), 7.18 (1H, dd, J=7 Hz, 3 Hz), 6.86 (2H, d, J=8 Hz), 6.72 (1H, d, J=8 Hz), 4.56 (2H, t, J=7 Hz), 3.78 (3H, s), 3.62 (1H, m), 3.50-3.25 (4H, m), 3.17 (2H, t, J=7 Hz), 3.15-2.90 (5H, m), 2.79 (1H, d, J=14 Hz), 1.43 (3H, m), 1.26 (3H, m), 1.08 (2H, m), 0.87 (3H, t, J=7 Hz), 0.81 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 509 (M+H)+. Anal. calc. for C30H40N2O5.0.25H2O: C, 70.22; H, 7.95; N, 5.46. Found: C, 70.21; H, 7.92; N, 5.36.


EXAMPLE 149
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-methoxyphenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 4-methoxybenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.38 (2H, d, J=8 Hz), 7.30 (2H, d, J=8 Hz), 6.87 (4H, dd, J=7 Hz, 3 Hz), 3.78 (3H, s), 3.76 (3H, s), 3.63 (1H, m), 3.50-3.20 (4H, m), 3.15-2.90 (5H, m), 2.78 (1H, d, J=14 Hz), 1.43 (3H, m), 1.27 (3H, m), 1.09 (2H, m), 0.87 (3H, t, J=7 Hz), 0.81 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 497 (M+H)+. Anal. calc. for C29H40N2O5: C, 70.13; H, 8.12; N, 5.64. Found: C, 69.78; H, 8.10; N, 5.54.


EXAMPLE 150
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(3,4-difluorophenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3,4-difluorobenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.35 (1H, m), 7.30 (2H, d, J=8 Hz), 7.20-7.00 (2H, m), 6.87 (2H, d, J=8 Hz), 3.78 (3H, s), 3.79 (1H, m), 3.62 (1H, m), 3.50-3.30 (3H, m), 3.23 (1H, m), 3.15-2.90 (4H, m), 2.78 (1H, d, J=14 Hz), 1.43 (2H, m), 1.27 (4H, m), 1.08 (2H, m), 0.85 (3H, t, J=7 Hz), 0.80 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 503 (M+H)+. Anal. calc. for C28H36F2N2O4.1H2O: C, 64.60; H, 7.36; N, 5.38. Found: C, 64.59; H, 7.20; N, 5.35.


EXAMPLE 151
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(2,4-dimethoxyphenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 2,4-dimethoxybenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.37 (2H, d, J=8 Hz), 7.20 (1H, d, J=8 Hz), 6.92 (2H, d, J=8 Hz), 6.60 (1H, d, J=3 Hz), 6.49 (1H, dd, J=6 Hz, 2 Hz), 5.35 (1H, d, J=8 Hz), 4.20 (3H, m), 4.10 (3H, s), 3.83 (3H, s), 3.81 (3H, s), 3.75 (3H, m), 3.17 (2H, hep, J=7 Hz), 3.05 (2H, t, J=7 Hz), 1.30 (4H, m), 1.07 (4H, m), 0.87 (3H, t, J=7 Hz), 0.80 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 527 (M+H)+. Anal. calc. for C30H42N2O6 .1.30 TFA: C, 58.02; H, 6.47; N, 4.15. Found: C, 57.92; H, 6.43; N, 4.07.


EXAMPLE 152
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-phenyl-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl benzoylacetate in Example 49B. 1H NMR (300 MHz, CDCl3) δ 7.50-7.25 (5H, m), 7.04 (1H, d, J=3 Hz), 6.87 (1H, dd, J=7 Hz, 3 Hz), 6.74 (1H, d, J=8 Hz), 5.94 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 3.85 (1H, d, J=8 Hz), 3.64 (1H, m), 3.42 (3H, m), 3.27 (2H, m), 3.20-2.90 (5H, m), 2.81 (1H, d, J=14 Hz), 1.43 (2H, m), 1.27 (4H, m), 1.05 (2H, m), 0.85 (3H, t, J=7 Hz), 0.80 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 481 (M+H)+. Anal. calc. for C28H36N2O5: C, 69.98; H, 7.55; N, 5.83. Found: C, 69.69; H, 7.63; N, 5.71.


EXAMPLE 153
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-phenyl-4-(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl benzoylacetate in Example 49B and 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.53 (2H, m), 7.40 (4H, m), 7.13 (1H, dd, J=7 Hz, 3 Hz), 6.72 (1H, d, J=8 Hz), 5.40 (1H, d, J=10 Hz), 4.56 (2H, t, J=8 Hz), 4.18 (1H, d, J=14 Hz), 4.07 (2H, m), 3.79 (2H, m), 3.48 (1H, d, J=14 Hz), 3.35 (1H, m), 3.28 (3H, m), 2.95 (2H, m), 1.47 (2H, m), 1.28 (4H, m), 1.10 (2H, m), 0.93 (3H, t, J=7 Hz), 0.78 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 479 (M+H)+. Anal. calc. for C29H38N2O4.1.10 TFA: C, 62.04; H, 6.52; N, 4.64Found: C, 61.89; H, 6.44; N, 4.57.


EXAMPLE 154
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-t-butylphenyl)-4-(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting t-butyl benzoylacetate, prepared by the method of Krapcho et al., Org. Syn. 47:20 (1967) starting from 4-t-butylacetophenone, in Example 49B and 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.60-7.30 (6H, m), 6.90 (1H, m), 4.50 (2H, m), 3.95 (1H, m), 3.85-2.95 (11H, m), 2.90 (1H, d, J=14 Hz), 1.58 (2H, m), 1.50 (7H, m), 1.41 (6H, s), 1.10 (2H, m), 1.00 (3H, t, J=7 Hz), 0.90 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 535 (M+H)+. Anal. calc. for C33H46N2O4.0.25H2O: C, 73.50; H, 8.69; N, 5.19. Found: C, 73.57; H, 8.58; N, 5.14.


EXAMPLE 155
trans,trans-2-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(4-fluorophenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 4-fluorobenzaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.50 (1H, m), 7.42 (1H, dd, J=7 Hz, 3 Hz), 7.36 (2H, d, J=8 Hz), 7.01 (3H, t, J=8 Hz), 6.87 (1H, d, J=8 Hz), 3.83 (1H, m), 3.8 (3H, s), 3.67 (1H, m), 3.47 (3H, m), 3.30-2.90 (5H, m), 2.82 (1H, d, J=14 Hz), 1.43 (2H, m), 1.28 (4H, m), 1.08 (2H, m), 0.90 (3H, t, J=7 Hz), 0.82 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 485 (M+H)+. Anal. calc. for C28H37FN2O4: C, 69.40; H, 7.70; N, 5.78. Found: C, 69.03; H, 8.00; N, 5.74.


EXAMPLE 156
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(3-furyl)-4-(1,3-Benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting β-oxo-3-furanpropionate in Example 49B. 1H NMR (300 MHz, CDCl3) δ 7.41 (2H, m), 6.97 (1H, d, J=3 Hz), 6.85 (1H, dd, J=7 Hz, 3 Hz), 6.72 (1H, d, J=8 Hz), 6.42 (1H, s), 5.94 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 3.90 (1H, m), 3.70-3.25 (5H, m), 3.20-2.90 (4H, m), 2.85 (1H, d, J=14 Hz), 1.43 (2H, m), 1.40-1.05 (6H, m), 0.90 (6H, m). MS (DC I/N H3) m/e 471 (M+H)+. Anal. calc. for C26H34N2O6: C, 66.36; H, 7.28; N, 5.95. Found: C, 66.09; H, 7.24; N, 5.87.


EXAMPLE 157
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(isopropyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl isobutyrylacetate in Example 49B. 1H NMR (300 MHz, CDCl3) δ 6.85 (1H, d, J=2 Hz), 6.76 (1H, dd, J=6 Hz, 2 Hz), 6.71 (1H, d, J=8 Hz), 5.92 (2H, s), 3.75 (1H, d, J=14 Hz), 3.66 (1H, q, J=7 Hz), 3.42 (3H, m), 3.25 (3H, m), 3.11 (2H, m), 2.83 (1H, t, J=7 Hz), 1.88 (1H, m), 1.55 (4H, m), 1.32 (4H, m), 0.92 (12H, m). MS (DCl/NH3) m/e 447 (M+H)+. Anal. calc. for C25H38N2O5 .0.50H2O: C, 65.91; H, 8.63; N, 6.15. Found: C, 66.07; H, 8.10; N, 6.03.


EXAMPLE 158
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-t-butylphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl 4-t-butylbenzoylacetate, prepared by the method of Krapcho, et al., Org. Syn. 47: 20 (1967) starting with 4-t-butylacetophenone), in Example 49B. 1H NMR (300 MHz, CDCl3) δ 7.32 (4H, d, J=3 Hz), 7.04 (1H, d, J=2 Hz), 6.87 (1H, dd, J=8 Hz, 3 Hz), 6.74 (1H, d, J=9 Hz), 5.94 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 3.77 (1H, d, J=14 Hz), 3.65-3.25 (5H, m), 3.15-2.85 (4H, m), 2.73 (1H, d, J=14 Hz), 1.45 (2H, m), 1.29 (13H, s), 1.00 (2H, m), 0.86 (3H, t, J=7 Hz), 0.76 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 537 (M+H)+. Anal. calc. for C32H44N2O5: C, 71.61; H, 8.26; N, 5.22. Found: C, 71.43; H, 8.09; N, 5.11.


EXAMPLE 159
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-t-butylphenyl)-4-(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl isobutyrylacetate in Example 49B and 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.30 (1H, s), 7.13 (1H, dd, J=7 Hz, 2 Hz), 6.82 (1H, d, J=8 Hz), 4.68 (2H, t, J=8 Hz), 4.48 (1H, s), 3.19 (3H, m), 3.80 (3H, m), 3.48 (2H, m), 3.3 (5H, m), 2.41 (1H, m), 1.65 (4H, m), 1.44 (4H, m), 1.21 (3H, d, J=5 Hz), 1.17 (3H, d, J=5 Hz), 1.05 (6H, m). MS (DCl/NH3) m/e 445 (M+H)+. Anal. calc. for C26H40N2O4.1.2 TFA: C, 58.67; H, 7.14; N, 4.8.2 Found: C, 58.54; H, 7.25; N, 4.74.


EXAMPLE 160
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(anti-4-methoxycyclohexyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid
EXAMPLE 160A
syn and anti Ethyl 4-methoxycyclohexanoylacetate

Syn, anti-4-Methoxycyclohexane carboxylic acid (5.00 g, 31.6 mmol) and carbonyldiimidazole (6.15 g, 37.9 mmol, 1.2 eq) were stirred in anhydrous tetrahydrofuran (50 mL) for 6 hours at room temperature. At the same time, magnesium chloride (3.01 g, 31.6 mmol) and ethyl malonate potassium salt (7.52 g, 44.2 mmol, 1.4 equivalents) were stirred in anhydrous tetrahydrofuran (75 mL) for 6 hours at 50° C. The mixture was cooled to room temperature, and the imidazole-acid mixture added to it. The reaction stirred overnight at room temerature. The solvents were removed under reduced pressure, and the residue was taken up in chloroform/water. The organic phase washed with 5% potassium bisulfate, water, and brine, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on 175 g silica gel, eluting with 20% ethyl acetate in hexanes. Pure fractions of the syn and anti methoxycyclohexyl β-keto esters were obtained. The solvents were removed under reduced pressure to yield the trans-4-methoxycyclohexyl β-keto ester (914 mg) as a colorless oil and the cis 4-methoxycyclohexyl β keto ester (1.07 g) as a colorless oil.


EXAMPLE 160B
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(anti-4-methoxycyclohexyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting the anti-compound resulting from Example 160A in Example 49B. 1H NMR (300 MHz, CDCl3) δ 6.84 (1H, d, J=2 Hz), 6.76 (1H, dd, J=7 Hz, 2 Hz) 6.61 (1H, d, J=8 Hz), 5.92 (2H, s), 3.69 (2H, m), 3.50-3.27 (5H, m), 3.26 (3H, s), 3.25-3.00 (3H, m), 2.88 (1H, m), 1.95 (2H, m), 1.62 (7H, m), 1.33 (9H, m), 0.97 (3H, t, J=7 Hz), 0.92 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 517 (M+H)+. Anal. calc. for C29H44N2O6.0.50H2O: C, 66.26; H, 8.63; N, 5.33. Found: C, 66.27; H, 8.50; N, 5.13.


EXAMPLE 161
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(syn-4-methoxycyclohexyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting the syn-compound resulting from Example 160A in Example 49B. 1H NMR (300 MHz, CDCl3) δ 6.84 (1H, d, J=2 Hz), 6.77 (1H, dd, J=6 Hz, 2 Hz), 6.61 (1H, d, J=8 Hz), 5.92 (2H, s), 3.65 (2H, m), 3.42 (2H, m), 3.32 (3H, s), 3.30-3.00 (6H, m), 2.82 (1H, m), 2.10 (2H, m), 1.83 (2H, m), 1.52 (6H, m), 1.33 (4H, m), 1.20-1.00 (4H, m), 0.96 (3H, t, J=7 Hz), 0.91 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 517 (M+H)+. Anal. calc. for C29H44N2O6.0.30H2O: C, 66.72; H, 8.61; N, 5.37. Found: C, 66.76; H, 8.65; N, 5.28.


EXAMPLE 162
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2,4-di(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid
EXAMPLE 162A
5-Acetyl-2,3-dihydrobenzofuran

To a 0° C. solution of acetyl chloride (1.64 mL, 23.0 mmol, 1.3 equivalents) in methylene chloride (30 mL) was added stannic chloride (2.49 mL, 21.3 mmol, 1.2 equivalents), maintaining the temperature below 5° C. The solution was stirred 15 minutes at 0° C., and then a solution of 2,3-dihydrofuran (2.00 mL, 17.7 mmol) in methylene chloride (5 mL) was added dropwise while maintaining the temperature below 8° C. The dark red solution was stirred 1 hour at 2° C. and then poured into 50 mL of ice water. The reaction was stirred an additional 30 minutes, and the layers were separated. The organic layer was washed with water and aqueous sodium bicarbonate, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on 150 g silica gel, eluting with 18% ethyl acetate in hexanes. The solvents were removed under reduced pressure to yield the title compound (2.68 g, 93%) as a yellow solid.


EXAMPLE 162B
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2,4-di(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting the compound resulting from Example 162A in Example 49B and 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.43 (1H, s), 7.38 (1H, s), 7.06 (2H, m), 6.75 (1H, d, J=6 Hz), 6.70 (1H, d, J=6 Hz), 5.40 (1H, d, J=9 Hz), 4.58 (4H, q, J=7 Hz), 4.16 (1H, d, J=15 Hz), 4.09 (2H, m), 3.82 (2H, m), 3.57 (1H, d, J=14 Hz), 3.38 (1H, m), 3.30-3.05 (6H, m), 2.95 (2H, q, J=6 Hz), 1.50 (2H, m), 1.30 (4H, m), 1.15 (2H, m), 0.94 (3H, t, J=7 Hz), 0.83 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 521 (M+H)+. Anal. calc. for C31H40N2O5.1.25 TFA: C, 60.67; H, 6.27; N, 4.22. Found: C, 60.49; H, 6.18; N, 4.13.


EXAMPLE 163
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(3-furyl)-4-(5-benzo-2,3-dihydrofuranyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl β-oxo-3-furanpropionate in Example 49B and 2,3-dihydrobenzofuran-5-carboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.42 (1H, m), 7.38 (1H, m), 7.13 (1H, s), 7.16 (1H, dd, J=7 Hz, 3 Hz), 6.70 (1H, d, J=8 Hz), 6.41 (1H, m), 4.57 (2H, t, J=7 Hz), 3.95 (1H, d, J=8 Hz), 3.63 (1H, m), 3.55 (1H, d, J=14), 3.50-3.25 (4H, m), 3.18 (2H, t, J=6 Hz), 3.15-2.95 (3H, m), 2.87 (1H, d, J=14 Hz), 1.45 (4H, m), 1.35-1.10 (4H, m), 0.85 (6H, m). MS (DCl/NH3) m/e 469 (M+H)+. Anal. calc. for C27H36N2O5 .0.25H2O: C, 68.55; H, 7.78; N, 5.92. Found: C, 68.62; H, 7.68; N, 5.82.


EXAMPLE 164
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(3-fluorophenyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3-fluorobenzenecarboxaldehyde for piperonal in Example 49A. 1H NMR (300 MHz, CDCl3) δ 7.30 (2H, d, J,=8 Hz), 7.22 (2H, m), 6.91 (1H, m), 6.86 (2H, d, J=8 Hz), 3.79 (1H, m), 3.78 (3H, s), 3.68 (1H, m), 3.55-3.37 (3H, m), 3.29 (1H, m), 3.15-2.90 (5H, m), 2.78 (1H, d, J=14 Hz), 1.43 (2H, m), 1.25 (4H, m), 1.07 (2H, m), 0.87 (3H, t, J=7 Hz), 0.80 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 485 (M+H)+. Anal. calc. for C28H37FN2O4 .0.25H2O: C, 68.76; H, 7.73; N, 5.73. Found: C, 68.87; H, 7.69; N, 5.67.


EXAMPLE 165
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(3-pyridyl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting 3-pyridinecarboxaldehyde for piperonal in Example 49A. The nitro styrene was prepared by the method of Bourguignon, et al., Can. J. Chem. 63: 2354 (1985). 1H NMR (300 MHz, CDCl3) δ 8.82 (1H, bs), 8.73 (1H, bd, J=9 Hz), 8.62 (1H, bd, J=7 Hz), 7.78 (1H, bdd, J=9 Hz, 3 Hz), 7.38 (2H, d, J=10 Hz), 6.90 (2H, d, J=10 Hz), 4.39 (1H, d, J=12 Hz), 3.95 (1H, m), 3.80 (3H, s), 3.79 (1H, m), 3.68 (1H, d, J=18 Hz), 3.50-3.30 (3H, m), 3.25-2.90 (6H, m), 1.47 (2H, m), 1.31 (4H, m), 1.20 (2H, m), 0.92 (3H, t, J=7 Hz), 0.83 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 468 (M+H)+. Anal. calc. for C27H37N3O4 .1.65 TFA: C, 55.50; H, 5.94; N, 6.41. Found: C, 55.53; H, 5.90; N, 6.27.


EXAMPLE 166
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(2-fluorophenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl 2-fluorobenzoylacetate in Example 49B. 1H NMR (300 MHz, CDCl3) δ 7.52 (1H, dt, J=7 Hz, 3 Hz), 7.25 (1H, m), 7.13 (1H, dt, J=7 Hz, 3 Hz), 7.02 (2H, m), 6.88 (1H, dd, J=7 Hz, 3 Hz), 6.73 (1H, d, J=8 Hz), 5.93 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 4.25 (1H, d, J=9 Hz), 3.68 (1H, m), 3.42 (3H, m), 3.39 (1H, m), 3.20-2.95 (4H, m), 2.91 (H, d, J=14 Hz), 1.45 (3H, m), 1.26 (3H, m), 1.08 (2H, m), 0.87 (3H, t, J=7 Hz), 0.81 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 499 (M+H)+. Anal. calc. for C28H35FN2O5 .0.25H2O: C, 66.85; H, 7.11; N, 5.57. Found: C, 66.51; H, 6.67; N, 5.18.


EXAMPLE 167
trans,trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(3-fluorophenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

The title compound was prepared by the procedures described in Examples 1 and 49 substituting ethyl 3-fluorobenzoylacetate in Example 49B. 1H NMR (300 MHz, CDCl3) δ 7.38 (1H, m), 7.18 (1H, d, J=7 Hz), 7.15 (1H, m), 7.00 (1H, d, J=2 Hz), 6.95 (1H, m), 6.86 (1H, dd, J=7 Hz, 2 Hz), 6.75 (1H, d, J=8 Hz), 5.93 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 3.94 (1H, d, J=14 Hz), 3.63 (1H, m), 3.42 (3H, m), 3.35-2.95 (5H, m), 2.87 (1H, d, J=14 Hz), 1.44 (3H, m), 1.27 (3H, m), 1.10 (2H, m), 0.88 (3H, t, J=7 Hz), 0.81 (3H, t, J=7 Hz). MS (DCl/NH3) m/e 499 (M+H)+. Anal. calc. for C28H35FN2O5: C, 67.45; H, 7.08; N, 5.62. Found: C, 67.32; H, 7.05; N, 5.40.


EXAMPLE 168
trans,trans-1-(4-N,N-Di(n-butyl)aminophenyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

4-Nitro-1-fluorobenzene, ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate (the compound resulting from Example 6A), and diisopropylethylamine are heated in dioxane to give ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-nitrophenyl)-pyrrolidine-3-carboxylate. The nitro compound is hydrogenated to give the corresponding aminophenyl compound. The aminophenyl compound is reacted with butyraldehyde and sodium cyanoborohydride according to the method of Borch, J. Am Chem. Soc. 93: 2897 (1971) to give the corresponding N,N-dibutylaminophenyl compound. Hydrolysis with sodium hydroxide using the method of Example 1D affords the title compound.


EXAMPLE 169
trans,trans-1-(2-N,N-Dibutylaminopyrimidin-4-yl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

2-(Dibutylamino)-4-chloropyrimidine is prepared from 2,4-dichloropyrimidine according to the method of Gershon, J. Heterocyclic Chem. 24: 205 (1987) and reacted with ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate (the compound resulting from Example 6A) and diisoproplyethylamine in dioxane with heating to give the intermediate ethyl ester, which is hydrolyzed with sodium hydroxide using the method of Example 1D to the title compound.


EXAMPLES 170-266

Using the procedures described in Examples 1, 4, 5, 7, 8 and 9 and Scheme X, following compounds can be prepared.


Ex. No. Name

  • 170 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(isopropylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 171 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(ethylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 172 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(1-methylpropylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 173 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(phenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 174 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(piperidinylcarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 175 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(1-(propylaminocarbonyl)ethyl)-pyrrolidine-3-carboxylic acid;
  • 176 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(α-(propylaminocarbonyl)benzyl)-pyrrolidine-3-carboxylic acid;
  • 177 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(bis-(propylaminocarbonyl)methyl)-pyrrolidine-3-carboxylic acid;
  • 178 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(propylaminocarbonyl)ethyl)-pyrrolidine-3-carboxylic acid;
  • 179 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminosulfonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 180 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-phenethyl)-pyrrolidine-3-carboxylic acid;
  • 181 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(pentanoylmethyl)-pyrrolidine-3-carboxylic acid;
  • 182 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(benzoylmethyl)-pyrrolidine-3-carboxylic acid;
  • 183 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(hexyl)-pyrrolidine-3-carboxylic acid;
  • 184 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-hexynyl)-pyrrolidine-3-carboxylic acid;
  • 185 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propoxymethylcarbonyl-pyrrolidine-3-carboxylic acid;
  • 186 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(phenylacetyl)-pyrrolidine-3-carboxylic acid;
  • 187 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(anilinylcarbonyl)-pyrrolidine-3-carboxylic acid;
  • 188 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-acetylaminoethyl)-pyrrolidine-3-carboxylic acid;
  • 189 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-phenoxyethyl)-pyrrolidine-3-carboxylic acid;
  • 190 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-benzodioxanylmethyl)-pyrrolidine-3-carboxylic acid;
  • 191 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-tetrahydrofuranylmethyl)-pyrrolidine-3-carboxylic acid;
  • 192 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(propylaminocarbonylamino)ethenyl)-pyrrolidine-3-carboxylic acid;
  • 193 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(propylaminocarbonylamino)ethyl)-pyrrolidine-3-carboxylic acid;
  • 194 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3-oxohex-1-enyl)-pyrrolidine-3-carboxylic acid;
  • 195 trans,trans-2-(2,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 196 trans,trans-2-(2-Carboxy-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 197 trans,trans-2-(2-Aminocarbonyl-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 198 trans,trans-2-(2-Methanesulfonamido-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 199 trans,trans-2-(2-Aminocarbonylmethoxy-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 200 trans,trans-2-(2-Methoxyethoxy-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 201 trans,trans-2-(2-Carboxymethoxy-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 202 trans,trans-2-(4-Methoxy-2-tetrazolylmethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 203 trans,trans-2-(2-Allyloxy-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 204 trans,trans 2,4-Bis(4-methoxyphenyl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 205 trans,trans 2,4-Bis(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 206 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 207 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxole-5-yl)-1-(N-methyl-N-butylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 208 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(4-methoxyphenyl)aminocarbonyl)-3-pyrrolidine-3-carboxylic acid;
  • 209 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-phenylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 210 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-allylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 211 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 212 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-isobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 213 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-cyclopentylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 214 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(2-methoxyethyl)aminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 215 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-butoxyethylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 216 trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 217 trans,trans-2-(4-Methoxyphenyl)-4-(1,4-benzodioxan-6-yl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 218 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1 (N-methyl-N-isopropylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 219 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-ethylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 220 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-(N-methyl-N-(1-methylpropyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 221 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-phenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 222 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(1-(N-methyl-N-propylaminocarbonyl)ethyl)-pyrrolidine-3-carboxylic acid;
  • 223 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(α-(N-methyl-N-propylaminocarbonyl)benzyl)-pyrrolidine-3-carboxylic acid;
  • 224 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 225 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxole-5-yl)-1-(N-ethyl-N-butylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 226 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-(4-methoxyphenyl)aminocarbonyl)-3-pyrrolidine-3-carboxylic acid;
  • 227 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-phenylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 228 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-allylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 229 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-isobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 230 trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-cyclopentylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 231 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-methoxyethylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 232 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-butoxyethylaminocarbonyl)-pyrrolidine-3-carboxylic acid;
  • 233 trans,trans-2-(1,3-Benzodioxol-5-yl)-4-(4-methoxyphenyl)-1-(N-ethyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 234 trans,trans-2-(4-Methoxyphenyl)-4-(1,4-benzodioxan-6-yl)-1-(N-ethyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 235 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-isopropylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 236 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-diethylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 237 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-(1-methylpropyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 238 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-phenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 239 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(1-(N-ethyl-N-propylaminocarbonyl)ethyl)-pyrrolidine-3-carboxylic acid;
  • 240 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(α-(N-ethyl-N-propylaminocarbonyl)benzyl)-pyrrolidine-3-carboxylic acid;
  • 241 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-isobutylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 242 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-cyclohexylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 243 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-dipropylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 244 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(isobutyloxyethyl)-pyrrolidine-3-carboxylic acid;
  • 245 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(butylsulfonyl)-pyrrolidine-3-carboxylic acid;
  • 246 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(isopropylsulfonylaminoethyl)-pyrrolidine-3-carboxylic acid;
  • 247 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(ethoxymethylcarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 248 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-ethylbutyrylmethyl)-pyrrolidine-3-carboxylic acid;
  • 249 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(3,4-dimethoxybenzyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 250 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(1R)-1-(N-methyl-N-propylaminocarbonyl)butyl]-pyrrolidine-3-carboxylic acid;
  • 251 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(1S)-1-(N-methyl-N-propylaminocarbonyl)butyl]-pyrrolidine-3-carboxylic acid;
  • 252 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3-isopropoxypropyl)-pyrrolidine-3-carboxylic acid;
  • 253 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(5-methylhexyl)-pyrrolidine-3-carboxylic acid;
  • 254 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(5-methyl-2-hexenyl)-pyrrolidine-3-carboxylic acid;
  • 255 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(5-methyl-4-hexenyl)-pyrrolidine-3-carboxylic acid;
  • 256 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3,5-dimethyl-2-hexenyl)-pyrrolidine-3-carboxylic acid;
  • 257 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-methyl-N-isobutyrylamino)ethyl)-pyrrolidine-3-carboxylic acid;
  • 258 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-(2,2-dimethylpropyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 259 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-ethyl-N-butylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 260 trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-methyl-N-benzylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 262 trans,trans-2-(4-Methoxyphenyl)-4-(5-indanyl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 262 trans,trans-2-(4-Methoxyphenyl)-4-(2,3-dihydrobenzofuran-5-yl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 263 trans,trans-2-(4-Methoxyphenyl)-4-(1-methylindol-5-yl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 264 trans,trans-2-(4-Methoxyphenyl)-4-(2-naphthyl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 265 trans,trans-2-(4-Methoxyphenyl)-4-(1,2-dimethoxy-4-phenyl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;
  • 266 trans,trans-2-(4-Methoxyphenyl)-4-(1-methoxy-3-phenyl)-1-(N-methyl-N-propylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid;


EXAMPLES 267-288

Following the procedures described in Example 1 and Scheme II, the following compounds can be prepared.

  • 267 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(propylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 268 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(aminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 269 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(4-fluorobenzyl)-piperidine-4-carboxylic acid;
  • 270 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(2-ethoxyethyl)-piperidine-4-carboxylic acid;
  • 271 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(2-propoxyethyl)-piperidine-4-carboxylic acid;
  • 272 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-[2-(2-methoxyethoxy)ethyl]-piperidine-4-carboxylic acid;
  • 273 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-[2-(2-pyridyl)ethyl]-piperidine-4-carboxylic acid;
  • 274 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(morpholin-4-ylcarbonyl)-piperidine-4-carboxylic acid;
  • 275 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxole-5-yl)-1-(butylaminocarbonyl)-piperidine-4-carboxylic acid;
  • 276 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(4-methoxyphenylaminocarbonyl)-3-piperidine-4-carboxylic acid;
  • 277 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-acetylpiperidine-3-carboxylic acid;
  • 278 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(2-furoyl)-piperidine-3-carboxylic acid;
  • 279 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(phenylaminocarbonyl)-piperidine-4-carboxylic acid;
  • 280 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(allylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 281 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(n-butylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 282 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(N-n-butyl-N-methylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 283 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-ylcarbonylmethyl)-piperidine-4-carboxylic acid;
  • 284 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(isobutylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 285 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(cyclopentylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 286 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(morpholin-4-ylaminocarbonylmethyl)-piperidine-4-carboxylic acid;
  • 287 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(2-phenoxyethyl)-piperidine-4-carboxylic acid;
  • 288 trans,trans-3-(4-Methoxyphenyl)-5-(1,3-benzodioxol-5-yl)-1-(methoxyethylaminocarbonyl)-piperidine-4-carboxylic acid.


EXAMPLE 289
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-dibutylaminophenyl)-pyrrolidine-3-carboxylic acid

4-Nitro-fluorobenzene, ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate (example 6A) and di-isopropyl ethylamine are heated in dioxane to give ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(4-nitrophenyl)-pyrrolidine-3-carboxylate. The nitro compound is hydrogenated to the corresponding aminophenyl compound. This is reacted with butyraldehyde and sodium cyanoborohydride according to the method of Borch (J. Am Chem. Soc., 93, 2897,1971) to give the corresponding N,N-dibutylaminophenyl compound, which is hydrolyzed with sodium hydroxide using the method of example 1D to give the title compound.


EXAMPLE 290
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-dibutylamino-pyrimidine-4-yl)-pyrrolidine-3-carboxylic acid

2-(Dibutylamino) 4-chloropyrimidine is prepared from 2-4-dichloropyrimidine according to the method of Gershon (J. Heterocyclic Chem. 24, 205, 1987). This compound, ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate (example 6A), and di-isopropyl ethylamine are heated in dioxane to give the intermediate ethyl ester, which is hydrolyzed with sodium hydroxide using the method of example 1D to give the title compound.


EXAMPLE 291
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N-butyl-N-phenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The title compound was prepared according to the general procedure of Example 1. 1H NMR (CD3OD): δ 0.87 (t, 3H, J=8); 1.2-1.35 (m, 2H); 1.35-1.5 (m, 2H); 2.78 (m, 2H); 3.10 (t, 1H, J=9); 3.26 (d, 1H, J=15); 3.44 (dd, 1H, J=5,10); 3.5-3.7 (m, 3H); 3.77 (m, 1H); 3.78 (s, 3H); 5.93 (s, 2H); 6.7-6.9 (m, 4H); 7.0-7.2 (m,5H); 7.4 (m, 3H). MS (DCl/NH3): m/e 531 (M+H)+. Anal calcd for C31H34N2O6: C, 70.17; H, 6.46; N, 5.28. Found: C, 70.36; H, 6.52; N, 4.99.


EXAMPLE 292
Sodium trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylate
EXAMPLE 292A
Ethyl 3-(4-methoxyphenyl)-3-oxopropionate

Simultaneous reactions were run in both a 65-L reactor and a 35-L reactor that share the same reflux system. A nitrogen atmosphere was maintained in both. 4.0 kg (100 moles) of 60% sodium hydride in mineral oil and 32 L toluene were charged into the ambient temperature reactors. The mixture was agitated for 5 minutes and allowed to settle. 20 L of the toluene solution was aspirated. 28 L of toluene was added, agitated for 5 minutes, allowed to settle and 28 L of the toluene solution was aspirated. 68 L of toluene and 8.4 L (69.7 moles) diethyl carbonate were added. The agitation was begun and the flow of Syltherm (Note 4) in reactor jackets was initiated. A solution of 5.0 kg (33.3 moles) 4-methoxyacetophenone in 12 L toluene was added over 20 minutes. When additions were complete, the jacket temperature was reduced to 10° C. and stirring continued for 16 hours. A solution of 6.7 L (117 moles) glacial acetic acid in 23 L deionized water was fed at the same rate that was previously used for the acetophenone solution. When addition was complete, agitation was stopped and the layers separated. The aqueous layer was washed once with 13 L toluene. The combined organic layers were washed twice with 6.7 L portions of 7% (w:w) aqueous sodium bicarbonate. The toluene solution was washed once with 6.7 L of 23% (w:w) aqueous sodium chloride. The organic solution was dried over 10 kg sodium sulfate, filtered, and the solvent removed on the rotary evaporator to provide the desired product.


EXAMPLE 292B
3,4-Methylenedioxy-1-(2-nitroethenyl)-benzene

In a 45-L cryogenic reactor with a contoured, anchor stirrer was dissolved 5.537 kg (36.9 moles) piperonal in 9 L methanol and 2.252 kg (36.9 moles) nitromethane at 15°-20° C. The jacket temperature was set to −5° C. and the reaction solution cooled to a temperature of +3.5° C. A 21° C. solution of 3.10 kg (38.8 moles) 50% (w:w) aquous sodium hydroxide diluted with 3.7 L water was pumped in. The reaction temperature was maintained between 10°-15° C. When addition was complete, the jacket temperature was reset to 1° C. and stirring continued for 30 minutes. A mixture of 7 kg ice in 19 L water was added to dissolve most of the solid. The reaction mixture was filtered through canvas and then a 27R10SV Honeycomb filter. The filtered solution was metered into a 21° C. mixture of 7.4 L concentrated hydrochloric acid in 11.1 L deionized water. The final reaction temperature was 26° C. The resulting product was centrifuged and washed until the wash pH rose to at least 6 (by pH indicating paper). The crude product was dissolved in 92 L dichloromethane and the layers separated. The aqueous layer was washed once with 8 L dichloromethane. The combined organics were dried over 1.32 kg magnesium sulfate and filtered through Whatman #1 paper. The volume was reduced to 20% and the solution cooled to 4° C. Filtration through Whatman #1 paper, followed by ambient temperature drying in vacuo with an air leak afforded 1.584 kg (22%) of a first crop Concentration of the MLS to 25% followed by similar cooling, filtration, and drying afforded 0.262 kg (4%) of a second crop. The yellow product darkened on standing in light and air.


EXAMPLE 292C
Ethyl 2-(4-methoxybenzoyl)-3-(1,3-benzodioxol-5-yl)-4-nitro-butanoate

Into a 45-L stirred reactor at ambient temperature were charged 5.819 kg (30.1 moles) 3,4-methylenedioxy-1-(2-nitroethenyl)-benzene and 24 L ethyl acetate. A solution of 5.355 kg (24.1 moles) ethyl 3-(4-methoxyphenyl)-3-oxopropionate in 16 L ethyl acetate was added. 280 g (275 ml, 1.84 moles) of 1,8-diaza-bicyclo[5.4.0]undec-7-ene in four equal portions was added over a 2.5 hour period. The reaction mixture was filtered through dicalite and the resulting filtered solution was used in the next step without any further purification.


EXAMPLE 292D
Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-4,5-dihydro-3H-pyrrol-3-carboxylate

The product of Example 292C (1316 ml solution consisting of 300 g Ethyl 2-(4-methoxybenzoyl)-3-(3,4-methylenedioxyphenyl)4 nitrobutanoate in ethyl acetate) was added to a glass reactor containing RaNi # 28 (300 g). The reaction mixture was shaken under a hydrogen environment of 4 atm at room temperature for 18 hours and filtered through a nylon 0.20 micron 47 mm millipore.


The filtrate was concentrated to 1.4 kg of dark solution and purified by normal phase silica gel chromatography eluting with 85:15, hexanes:ethyl acetate. The pure fractions were combined and concentrated (as above) until crystals formed. The solution was cooled to 0° C. and filtered. The solid was washed with 2 L of 85:15, hexane:ethyl acetate (0° C.). The solids were dried in vacuo at 50° C. to a constant weight of 193.4 g (21% yield, melting point 80-81° C.) of the title compound. A further 200 g (23% yield) of product was obtained from the mother liquors.


EXAMPLE 292E
Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine 3-carboxylate

Into a 12-L flask equipped with magnetic stirring, addition funnel, temperature probe, and nitrogen inlet was charged 0.460 kg ethyl 2-(4-methoxyphenyl)-4-(3,4-methylenedioxyphenyl)-4,5-dihydro-3H-pyrrole-3-carboxylate (1.25 mol). The reaction vessel was degassed with nitrogen. Absolute 3.7 L ethanol and 1.12 L of THF were added. 31 mg bromocresol green and 94.26 g sodium cyanoborohydride (1.5 mol) were added. A solution containing 400 mL absolute ethanol and 200 mL of 12 M HCl was then added. The reaction mixture was stirred for 30 minutes after addition was complete. After the starting material was consumed, 0.5 L of 7% aq. NaHCO3 was added. The reaction mixture was concentrated and diluted with 5 L ethyl acetate. The organic layer was washed twice with 2 L of 7% aq. NaHCO3 and once with 2.5 L of 23% aq. NaCl, the dried over 190 g MgSO4, filtered, and concentrated to give 447 g of the title compound as a thick yellow oil.


EXAMPLE 292F
Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine 3-carboxylate

Into a 22-L flask equipped with overhead stirring, nitrogen inlet, and condenser was charged ethyl 2-(4-methoxyphenyl)-4-(3,4-methylenedioxyphenyl)-pyrrolidine-3-carboxylate (2.223 kg, 6.02 mol). The reaction vessel was degassed with nitrogen. 13.2 L of acetonitrile, 3.66 L diisopropylethylamine (2.71 kg, 20.9 mol), and 1.567 kg dibutylamidomethyl bromide (6.26 mol) were added. The mixture was refluxed at 78° C. for 17 hrs. After the disappearance of starting material, the mixture was concentrated until crystals formed. The solid was filtered and washed with 4 L ethyl acetate (0° C.). Concentrating of the filtrate was continued as above until all volatiles were removed. The residue was diluted with 40 L ethyl acetate and washed with 20 L deionized water. The organic layer was washed with 8 L of 23% aq. NaCl nad dried over 0.399 kg MgSO4 and filtered. Concentration as above provided 3.112 kg (96% yield) of the title compound as a dark oil.


EXAMPLE 292G
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine 3-carboxylate and preparation of trans,trans 2-(4-methoxyphenyl)-4-(3,4-dioxyphenyl)-pyrrolidine-3-carboxylic acid ethyl ester

Into a 35-L reactor equipped with overhead stirring, nitrogen inlet, and condenser was charged 3.112 kg ethyl 2-(4-methoxyphenyl)-4-(3,4-methylenedioxyphenyl)-pyrrolidine 3-carboxylate (5.78 mol). 16.4 L of absolute ethanol was added and the reaction vessel was degassed with nitrogen. 0.115 kg of sodium ethoxide (1.69 mol) was added and the mixture was refluxed at 79° C. for 1 hr. The mixture was cooled to 15° C. and 5 L of 7.6 M NaOH solution (38.1 mol) was added. The mixture was stirred at 15° C. for 18 hrs. The solvent was evaporated and the residue dissolved in 15.8 L of deionized water and extracted with 28 L of ether. The ether solution was washed with 9.5 L deionized water. The aqueous wash was extracted with 3 L ether. 0.340 L of 12 M HCl was added to the aqueous layer. The aqueous layer was extracted with 24 L of ethyl acetate. The organic layer was washed with 9 L of 23% aq. NaCl, dried with 0.298 kg MgSO4, filtered, and concentrated to give 2.132 kg of a dark oil. The oil was triturated with 18 L ether. The undesired solids were filtered and saved for later use. The mother liquors were concentrated to obtain 1.102 kg of light foam. The foam was dissolved in 5.5 L ethyl acetate with heating to 65° C. 14 L hexane was added slowly enough to keep the solution refluxing. The reaction mixture was cooled to 10° C. and filtered. The crystals were washed with 2 L ether (0° C.) and dried to constant weight in vacuo at 50° C. to give 0.846 kg (43% yield, melting point 119-120) of crude product, which was further purified by normal phase silica gel chromatography.


EXAMPLE 292H
Sodium trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine 3-carboxylate

Into a 20-L flask was charged trans,trans 2-(4-methoxyphenyl)-4-(3,4-methyledioxyphenyl)-1-(N,N-dibutylamino-carbonyl methyl)pyrrolidine 3-carboxylic acid (0.927 kg, 1.819 mol). A solution of 0.0720 kg NaOH (1.80 mol) dissolved in 4.65 L methanol was added. The reaction mixture was concentrated to an oil. Pentane (4 L) was added and the solution concentrated again. Pentane (4 L) was added again and concentration of this solution gave a light tan foam. The foam was dried in vacuo at 50° C. to a constant weight of 0.937 kg (97% yield) of the title compound.


EXAMPLE 293
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[decahydroisoquinolin-2-carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) shows a mixture of isomers. MS (DCl/NH3) m/z 521. Anal calcd for C30H36N2O6.1.3 TFA: C, 58.54; H, 6.62; N, 4.19. Found: C, 58.34; H, 5.58; N, 4.00.


EXAMPLE 294
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[3,3-dimethylpiperidinyl-carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) indicates presence of rotamers. δ 0.84 (s, 3H), 0.86 (s, 3H), 1.35-1.6 (m, 4H), 3.83 (s, 3H), 5.96 (s, 2H), 6.81 (d, 1H, J=8), 6.90 (dd, 1H, J=1,8), 7.01 (d, 2H, J=9), 7.03 (s, 1H), 7.47 (d, 2H, J=9). MS (DCl/NH3) m/z 495. Anal calcd for C28H34N2O6.1.4 TFA: C, 56.55; H, 5.45; N, 4.28. Found: C, 56.52; H, 5.83; N, 4.26.


EXAMPLE 295
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-iso-butoxycarbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods detailed in Example 61, but substituting propylamine for methylamine in Example 61B and isobutyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether/hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, 3H, J=7), 0.92 (m, 3H), 1.43 (h, 2H, J=7 Hz), 1.7-1.9 (m, 1H), 2.72 (m, 1H), 2.90 (m, 2H), 3.10 (m, 2H), 3.25 (m, 2H), 3.40 (m, 1H), 3.55 (m, 1H), 3.62 (m, 1H), 3.7-3.9 (m, 2H) 3.78 (s, 3H), 5.95 (s, 2H), 6.72 (d, 1H, J=8 Hz), 6.82 (m, 3H), 7.00 (s, 1H), 7.30 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 527 (M+H)+. Anal calcd for C29H38N2O6 .0.5H2O: C, 65.03; H, 7.34; N, 5.23. Found: C, 65.13; H, 6.96; N, 4.95.


EXAMPLE 296
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[1,2,3,4-tetrahydroisoquinolin-2-carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) indicates presence of rotamers. δ 2.97 (m, 2H), 4.68 (s, 3H), 5.97 (s, 2H), 6.83 (d, 1H, J=8), 6.9-7.0 (m, 3H), 7.03 (d, 1H, J=2), 7.1-7.3 (m, 4H), 7.4-7.5 (m, 2H). MS (DCl/NH3) m/z 515.


EXAMPLE 297
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-dimethylaminocarbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared by the methods detailed in Example 61, but substituting propylamine for methylamine in Example 61B and dimethylcarbamyl chloride for isobutyryl chloride in Example 61C. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.70 (t, 3H, J=7), 1.28 (m, 2H), 2.75 (s, 3H), 2.82 (m, 2H), 3.1-3.45 (m, 4H), 3.70 (m, 1H), 3.80 (s, 3H), 3.90 (m, 3H), 4.72 (m, 1H), 5.95 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.87 (m, 3H), 7.05 (s, 1H), 7.40 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 498 (M+H)+. Anal calcd for C27H35N3O6 1.25 TFA: C, 55.35; H, 5.71; N, 6.56. Found: C, 55.41; H, 5.71; N, 6.41.


EXAMPLE 298
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(4-nitrobenzenesulfonyl)amino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Eample 66, the title compound was prepared as a yellow solid. m.p. 85-87° C. 1H NMR (CDCl3, 300 MHz) δ 0.77 (t, J=7.5 Hz, 3H), 1.38 (sextet, J=7.5 Hz, 2H), 2.20-2.29 (m, 1H), 2.57-2.66 (m, 1H), 2.82-3.15 (m, 4H), 3.22 (t, J=7.5 Hz, 2H) 3.38 (dd, J=3 Hz, J=9 Hz, 1H), 3.49-3.57 (m, 1H), 3.59 (d, J=9 Hz, 1H), 3.83 (s, 3H), 5.96 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (dd, J=1 Hz, J=8 Hz, 1H), 6.87 (d, J=9 Hz, 2H), 6.98 (d, J=1 Hz, 1H), 7.27 (d, J=9 Hz, 2H), 7.82 (d, J=9 Hz, 2H), 8.23 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 612 (M+H)+.


EXAMPLE 299
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-n-pentanesulfonylamino)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 59-61° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7.5 Hz, 3H), 0.90 (t, J=6 Hz, 3H), 1.26-1.32 (m, 4H), 1.43 (sextet, J=7.5 Hz, 2H), 1.67-1.76 (m, 2H), 2.23-2.32 (m, 1H), 2.70-3.08 (m, 7H), 3.15-3.32 (m, 2H), 3.42 (dd, J=3 Hz, J=9 Hz, 1H), 3.52-3.57 (m, 1H), 3.63 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=7.5 Hz, 1H), 6.83 (dd, J=1 Hz, J=7.5 Hz, 1H), 6.87 (d, J=8 Hz, 2H), 7.00 (d, J=1 Hz, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 561 (M+H)+.


EXAMPLE 300
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(4-trifluoromethoxybenzenesulfonyl)amino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 122-124° C. 1H NMR (CD3OD, 300 MHz) δ 0.75 (t, J=7.5 Hz, 3H), 1.26-1.45 (m, 2H), 2.96-3.08 (m, 2H), 3.23 (bs, 2H), 3.35-3.45 (m, 2H), 3.52 (t, J=10 Hz, 1H), 3.81 (d, J=9 Hz, 2H), 3.86 (s, 3H), 3.92 (t, J=9 Hz, 1H), 4.63 (d, J=10 Hz, 1H), 5.97 (s, 2H), 6.82 (d, J=9 Hz, 1H), 6.93 (dd, J=3 Hz, J=9 Hz, 1H), 7.06-7.08 (m, 3H), 7.46 (d, J=9 Hz, 2H), 7.56 (d, J=9 Hz, 2H), 7.89 (d, J=9 Hz, 2H). MS (DCl/NH3), m/e 651 (M+H)+.


EXAMPLE 301
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(2-methyl-2-propenesulfonyl)amino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 69-71° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7.5 Hz, 3H), 1.93 (sextet, J+7.5 Hz, 2H), 1.92 (s, 3H), 2.25-2.35 (m, 1H), 2.68-2.77 (m, 1H), 2.85-3.28 (m, 7H), 3.40 (d, J=9 Hz, 1H), 3.52-3.68 (m, 2H), 3.66 (d, J=9 Hz, 1H), 3.80 (s, 3H), 4.92 (s, 1H), 5.07 (s, 1H), 5.97 (s, 2H), 6.74 (d, J=7 Hz, 1H), 6.82-6.89 (m, 3H), 7.01 (s, 1H), 7.33 (d, J=9 Hz, 2H). MS (DCl/NH3), m/e 545 (M+H)+.


EXAMPLE 302
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-ethylpiperidinyl-carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) shows a mixture of isomers. δ 0.75 (t, 3H, J=7), 1.4-1.7 (m, 8H), 3.84 (s, 3H), 5.96 (s, 2H), 6.83 (d, 1H, J=8), 6.91 (d, 1H, J=8), 7.0-7.1 (m, 3H), 7.52 (d, 2H, J=9). MS (DCl/NH3) m/z 495. Anal calcd for C28H34N2O6.1.6 TFA: C, 55.35; H, 5.30; N, 4.14. Found: C, 55.26; H, 5.37; N, 4.01.


EXAMPLE 303
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(2-methylpropanesulfonyl)amino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 72-73° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7.5 Hz, 3H),1.04 (d, J=6 Hz, 6H), 1.44 (q, J=7.5 Hz, 2H), 2.15-2.33 (m, 2H), 2.57-2.75 (m, 2H), 2.84-3.08 (m, 3H), 3.12-3.21 (m, 1H), 3.23-3.45 (m, 1H), 3.43 (d, J=11 Hz, 1H), 3.55-3.62 (m, 1H), 3.66 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.95 (s, 2H), 6.75 (d, J=9 Hz, 1H), 6.83 (dd, J=1 Hz, J=9 Hz, 1H), 6.87 (d, J=9 Hz, 2H), 7.02 (d, J=1 Hz, 1H), 7.33 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 547 M+H)+.


EXAMPLE 304
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-heptanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 58-59° C. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=7.5 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.23-1.36 (m, 8H), 1.94 (q, J=7.5 Hz, 2H), 1.71 (quintet, J=7 Hz, 2H), 2.23-2.32 (m, 1H), 2.70-3.09 (m, 7H), 3.13-3.32 (m, 2H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.52-3.58 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.80 (s, 3H), 5.96 (s, 2H), 6.73 (d, J=7 Hz, 1H), 6.83 (dd, J=1 Hz, J=7 Hz, 1H), 6.87 (d, J=9 Hz, 2H), 7.01 (d, J=1 Hz, 1H), 7.32 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 589 M+H)+.


EXAMPLE 305
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-ethyl-N-ethoxycarbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

Prepared by the methods detailed in Example 61, but substituting ethylamine for methylamine in Example 61B and ethyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by preparative HPLC (Vydac μC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The desired fractions were lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.90 (t, 3H, J=7), 1.22 (m, 3H), 3.0-3.2 (m, 4H), 3.42 (m, 2H), 3.78 (s, 3H), 3.82 (m, 4H), 4.10 (q, 2H, J=17 Hz), 3.5 (br s, 1H), 5.97 (dd, 2H, J=1, 7 Hz), 6.72 (d, 1H, J=8 Hz), 6.84 (m, 3H), 7.00 (s, 1H), 7.42 (d, 2H, J=8 Hz). MS (DCl/NH3) m/e 485 (M+H)+. Anal calcd for C26H32N2O7 1.2 TFA: C, 54.90; H, 5.39; N, 4.51. Found: C, 55.01; H, 5.36; N, 4.56.


EXAMPLE 306
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-hexanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 59-60° C. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=7.5 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.25-1.36 (m, 6H), 1.53 (sextet, J=7.5 Hz, 2H), 1.72 (quintet, J=7 Hz, 2H), 2.23-2.32 (m, 1H), 2.72-3.08 (m, 7H), 3.15-3.32 (m, 2H), 3.43 (d, J=9 Hz, 1H),+3.55-3.62 (m, 1H), 3.65 (d, J=10 Hz, 1H), 3.80 (s, 3H), 5.96 (s, 2H), 6.74 (d, J=7.5 Hz, 1H), 6.82 (d, J=7.5 Hz, 1H), 6.87 (d, J=9 Hz, 2H), 7.01 (s, 1H), 7.32 (d, J=9 Hz, 2H). MS (DCl/NH3), m/e 575 (M+M)+.


EXAMPLE 307
trans-trans-2-(4-Ethylphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-di(n-butyl)aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in examples 1 and 49, substituting ethyl 4-ethylbenzoylacetate (prepared by the method of Krapcho et al., Org. Syn. 47, 20 (1967) starting with 4′-ethylacetophenone) in procedure 49B. NMR (CDCl3, 300 MHz) δ 7.31 (2H, d, J=8 Hz), 7.16 (2H, d, J=8 Hz), 7.03 (1H, d, J=3 Hz), 6.86 (1H, dd, J=8&3 Hz), 6.73 (1H, d, J=9 Hz), 5.94 (1H, d, J=4 Hz), 5.92 (1H, d, J=4 Hz), 3.77 (1H, d, J=9 Hz), 3.60 (1H, m), 3.53-3.23 (5H, m), 3.13-2.90 (4H, m), 2.73 (1H, d, J=14 Hz), 2.62 (2H, q, J=9 Hz), 1.45 (2H, m), 1.40-1.10 (6H, m), 1.02 (2H, m), 0.87 (3H, t, J=7 Hz), 0.78 (3H, t, J=7 Hz) m/e (DCl, NH3) 509 (MH+) Anal. calc. for C30H40N2O5 C, 70.84; H, 7.93; N, 5.51. Found C 70.80, H 7.85, N 5.25.


EXAMPLE 308
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-chloroethoxy)carbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

Prepared by the methods detailed in Example 61, but substituting propylamine for methylamine in Example 61B and 2-chloroethyl chloroformate for isobutyryl chloride in Example 61C. The crude product was purified by trituration with 1:1 diethyl ether/hexane. The resulting solid was dissolved in CH3CN and water and lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, 3H, J=7), 1.22 (m, 3H), 2.15 (m, 1H), 2.75 (m, 1H), 2.85 (m, 1H), 3.1 (m, 2H), 3.25 (m, 2H), 3.5 (m, 3H), 3.65 (m, 2H), 3.80 (s, 3H), 4.18 (m, 1H), 4.30 (m, 1H), 5.98 (s, (M+H)+. Anal calcd for C27H33N2O7Cl: C, 60.84; H, 6.24; N, 5.26. Found: C, 60.48; H, 6.04; N, 5.10.


EXAMPLE 309
trans-trans-2-(2-Methoxyethyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-di(n-butyl)aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1, substituting ethyl 5-methoxy-3-oxopentanoate for ethyl 4-methoxybenzoylacetate in Example 1A. The title compound is a yellow foam. 1H NMR (CDCl3, 300 MHz) δ 0.91 (t, J=7 Hz) and 0.95 (t, J=7 Hz, 6H total), 1.28-1.41 (br m, 4H), 1.45-1.63 (br m, 4H), 2.00-2.20 (br m, 2H), 3.06 (br t, J=9 Hz, 1H), 3.30 (s) and 3.20-3.68 (br m, 11H total), 3.72-4.10 (br m, 4H), 5.92 (s, 2H), 6.72 (d, J=8.5 Hz, 1H), 6.82 (dd, J=1.5, 8.5 Hz, 1H), 6.91 (d, J=1.5 Hz, 1H); MS (FAB) m/e 463 (M+H)+. Anal calcd for C25H38N2O5.H2O: C, 62.48; H, 8.39; N, 5.83. Found: C, 62.13; H, 8.15; N, 5.69.


EXAMPLE 310
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-ethyl-N-n-pentanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared as a white solid. m.p. 57-58° C. 1H NMR (CDCl3, 300 MHz) δ 0.89 (t, J=7 Hz, 3H), 1.06 (t, J=7.5 Hz, 3H), 1.26-1.37 (m, 4H), 1.72 (quintet, J=7.5 Hz, 2H), 2.22-1H), 3.67 (d, J=9 Hz, 1H), 3.80 (s, 1H), 5.97 (s, 2H), 6.73 (d, J=9 Hz, 1H), 3.53-3.60 (m, J=9 Hz, 1H), 6.88 (d, J=9 Hz, 2H),7.02 (s, 1H), 7.33 (d, J=9 Hz, 2H). MS (CDI/NH3) m/e 547 (M+H)+.


EXAMPLE 311
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-dicyclohexylamino carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) δ1.0-2.0 (m, 20H), 3.0-3.1 (m, 2H), 3.80 (s, 3H), 5.95 (s, 2H), 6.75 (d, 1H, J=8), 6.86 (dd, 1H, J=2,8), 6.95 (d, 2H, J=9), 7.04 (d, 1H, J=2), 7.38 (d, 2H, J=9). MS (DCl/NH3) m/z 563. Anal calcd for C33H42N2O6.0.5H2O: C, 69.33; H, 7.58; N, 4.90. Found: C, 69.42; H, 7.29; N, 4.78.


EXAMPLE 312
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-tert-butoxycarbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 61, substituting-propylamine for aqueous-methylamine in Example 61B and di-tert-butyldicarbonate for isobutyryl chloride in Example 61C. NMR (CD3OD, 300 MHz) suggests presence of rotamers δ 0.81 (t, 3H, J=7), 1.2-1.5 (m, 11H), 3.78 (s, 3H), 5.92 (dd, 2H, J=1,2), 6.74 (d, 1H, J=8), 6.84 (dd, 1H, J=2,8), 6.92 (d, 2H, J=9), 6.99 (bd s, 1H), 7.35 (d, 2H, J=9). MS (DCl/NH3) m/z 527. Anal calcd for C29H38N2O7: C, 66.14; H, 7.27; N, 5.32. Found: C, 66.,05; H, 7.36; N, 5.15.


EXAMPLE 313
trans-trans-2-(4-Methoxy-3-fluorophenyl)-4-(1,3-Benzodioxol-5-yl)-1-[N,N-di(n-butyl)aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the methods described in examples 1 and 43, using 4-methoxy-3-fluoro acetophenone in place of 4-methoxy acetophenone. m.p. 142-143° C. NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.03-1.50 (m, 8H), 2.82 (d, J=13 Hz, 1H), 2.90-3.13 (m, 4H), 3.20-3.50 (m, 3H), 3.39 (d, J=13H, 1H), 3.55-3.65 (m, 1H), 3.82 (d, J=10 Hz, 1H), 3.87 (s, 3H), 5.91 (dd, J=2 Hz, 4 Hz, 2H), 6.72 (d, J=8 Hz, 1H), 6.83-6.91 (m, 2H), 6.99 (d, J=2 Hz, 1H), 7.06 (m, 2H). Anal calcd for C29H37N2O6F: C, 65.89; H, 7.06; N, 5.30. Found: C, 65.82; H, 7.13; N, 5.29.


EXAMPLE 314
trans,trans-2-(Propyl)-4-(1,3-Benzodioxol-5-yl)-1-(2-(N-propyl-pentanesulfonylamino)ethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 314A
Propyl pentanesulfonamide

Pentane sulfonyl chloride (687 mg, 4.03 mmol) was dissolved in 5 mL CH2Cl2 and added to an ice-cooled solution of n-propylamine (0.40 mL, 4.82 mmol) and ethyldiisopropylamine (0.85 mL, 4.88 mmol) in 5 mL CH2Cl2 under a nitrogen atmosphere. The reaction was stirred at 0° C. for 30 min, then at 25° C. for 4 h. The solution was partitioned between 20 mL of 1.0 M aqeous NaHSO4 and 25 mL CH2Cl2. The organic phase was washed sequentially with 25 mL H2O and 25 mL brine, then dried (Na2SO4), filtered, and concentrated in vacuo to provide 739 mg (3.83 mmol, 95%) of the title compound as a white solid. TLC (25% EtOAc-hexane) Rf 0.23; 1H NMR (CDCl3, 300 MHz) δ 0.92 (t, J=7 Hz, 3H), 0.97 (t, J=7 Hz, 3H), 1.28-1.50 (br m, 4H), 1.52-1.68 (m, 2H), 1.75-1.90 (br m, 2H), 2.98-3.06 (m, 2H), 3.08 (q, J=6 Hz, 2H), 4.10-4.23 (br m, 1H); MS (DCl/NH3) m/e 211 (M+NH4)+.


EXAMPLE 3149B
Ethyl trans,trans-4-(1,3-benzodioxol-5-yl)-1-(2-bromoethyl)-2-propylpyrrolidine-3-carboxylate

The title compound was prepared according the procedure of Example 61A, substituting the compound of Example 94B for the pyrrolidine mixture.


EXAMPLE 314C
Ethyltrans,trans-2-(Propyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-pentanesulfonylamino)ethyl)pyrrolidine-3-carboxylate

A solution of the compound of Example 314A (6.6 mg, 34 μmol) in 0.1 mL DMF was treated with sodium hydride (2 mg, 60% oil dispersion, 1.2 mg NaH, 50 μmol). The resulting mixture was stirred at room temperature for 15 min, then a solution of the compound of Example 189B (9.0 mg, 22 μmol) in 0.1 mL DMF was added, followed by 0.5 mg of tetra-n-butylammonium iodide. The reaction was sealed under argon and stirred at 60° C. overnight. The reaction was concentrated under high vacuum, and the residue was partitioned between 2 mL of saturated aqueous NaHCO3, 1 mL water and 5 mL EtOAc. The organic phase was washed with 1 mL brine, dried by passing through a plug of Na2SO4, and the filtrate concentrated in vacuo to an oil. The crude product was purified by preparative TLC (silica gel, 8×20 cm, 0.25 mm thickness, eluting with 20% EtOAc-hexane, providing 8.4 mg (73%) of the title compound as a wax.


EXAMPLE 314D
trans,trans-4-(1,3-benzodioxol-5-yl)-2-(Propyl)-1-(2-(N-propyl-pentanesulfonylamino)ethyl)pyrrolidine-3-carboxylic acid

The title compound was prepared according to the procedure of Example 71C. 1H NMR (CDCl3, 300 MHz) δ 0.88-1.00 (m, 9H), 1.20-1.55 (br m, 6H), 1.55-1.68 (m, 3H), 1.70-1.85 (br m, 2H), 1.90-2.16 (br m, 2H), 2.84-3.26 (br m, 6H), 3.26-3.90 (br m, 6H), 5.95 (s, 2H), 6.76 (d, J=8 Hz, 1H), 6.79 (m, 1H), 6.93 (br s, 1H); HRMS (FAB) calcd for C25H41N2O6S (M+H)+ 497.2685. Found: 497.2679.


EXAMPLE 315
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-dimethylsulfamoylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was preapred as a white solid. m.p. 59-61° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7.5 Hz, 3H), 1.45 (sextet, J=7.5 Hz, 2H), 2.22-2.31 (m, 1H), 2.65 (s, 6H), 2.70-2.79 (m, 1H), 2.85-3.04 (m, 4H), 3.09-3.32 (m, 2H), 3.40 (d, J=9 Hz, 1H), 3.55 (t, J=9 Hz, 1H), 3.65 (d, J=9 Hz, 1H), 3.81 (s, 3H), 5.96 (s, 2H), 6.75 (d, J=9 Hz, 1H), 6.83 (d, J=9 Hz, 1H), 6.88 (d, J=9 Hz, 2H), 7.02 (s, 1H), 7.34 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 534 (M+H)+.


EXAMPLE 316
trans-trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-[4-methoxyphenyl]sulfonylamino)propyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 316A
Ethyl trans-trans and cis-trans 2-(4-Methoxypheny)-4-(1,3-benzodiox-5-yl)-1-(3-bromopropyl) pyrrolidine-3-carboxylate

A 2:1 mixture of trans-trans and cis-trans ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodiox-5-yl)-pyrrolidine-3-carboxylate (4.00 g; prepared according to example 1C), 32 ml dibromopropane, and 200 mg sodium iodide, were heated at 100° for 1.25 hrs. The excess dibromopropane was removed in vacuo and the residue was dissolved, in toluene. After shaking with potassium bicarbonate, the solution was dried (Na2SO4) and the solution concentrated. The residue was chromatographed on silica gel eluting with 5:1 hexane:EtOAc. yielding 5.22 (98%) of the title compound.


EXAMPLE 316B
Ethyl trans-trans and cis-trans 2-(4-Methoxyphenyl)-4-(1,3-benzodiox-5-yl)-1-(3-propylaminopropyl) pyrrolidine-3-carboxylate

The compound described in Example 316A (5.22 g) was heated at 800 for 2 hrs. with 35 ml. ethanol, 2.5 g. propylamine and 35 mg. sodium iodide. The solvents were removed in vacuo. The residue was dissolved in toluene, shaken with potassium bicarbonate solution and dried (Na2SO4). The soilution was concentated in vacuum to give 4.96 g of the title compound as an orange oil. This was used in the next step without purification.


EXAMPLE 316C
trans-trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-[4-methoxyphenyl]sulfonylamino)propyl]-pyrrolidine-3-carboxylic acid

Using the method described in example 66, the compound prepared in Example 316B was reacted with 4-methoxybenzenesulfonyl chloride in acetonitrile containing diisopropylethylamine. The resulting product was chromatographed on silica gel (30% EtOAc in hexane), and hydrolyzed to the title compound by the method of example 1D. NMR (CDCl3, 300 MHz) δ 0.83 (t, J=7 Hz, 3H), 1.40-1.52 (m, 2H), 1.56-1.70 (m, 2H), 2.00-2.11 (m, 1H), 2.40-2.51 (m, 1H), 2.69-2.78 (m, 1H), 2.84-3.03 (m, 4H), 3.19-3.34 (m, 2H), 3.48-3.59 (m, 2H), 3.80 (s, 3H), 3.86 (s, 3H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.85 (d, J=8 Hz, 3H), 6.93 (d, J=8 Hz, 2H), 7.02 (d, J=2 Hz, 1H), 7.29 (d, J=8 Hz, 2H), 7.69 (d, J=8 Hz, 2H). Anal calcd for C32H38N2O8S: C, 62.93; H, 6.27; N, 4.59. Found: C, 62.97; H, 6.39; N, 4.45.


EXAMPLE 317
trans-trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-propylsulfonylamino)propyl]-pyrrolidine-3-carboxylic acid

Using the method described in example 66, the propylamino compound prepared in Example 316B was reacted with propanesulfonyl chloride in acetonitrile containing diisopropylethylamine. The resulting product was chromatographed on silica gel (30% EtOAc in hexane) and hydrolyzed to the title compound by the method of example 1D. NMR (CDCl3, 300 MHz) δ 0.85 (t, J=7 Hz, 3H), 1.02 (t, J=7 Hz, 3H), 1.47-1.60 (m, 2H), 1.65-1.85 (m, 4H), 2.04-2.16 (m, 1H), 2.42-2.57 (m, 1H), 2.72-3.11 (m, 5H), 3.25-3.41 (m, 2H), 3.50-3.62 (m, 2H), 3.80 (s, 3H), 5.85 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.90 (m, 3H), 7.02 (d, J=2 Hz, 1H), 7.30 (d, J=9 Hz, 2H). Anal calcd for C28H38N2O7S: C, 61.52; H, 7.01; N, 5.12. Found: C, 61.32; H, 7.01; N, 5.01.


EXAMPLE 318
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl) 1-(2-(N-propyl-N-pentanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 313 and Example 66, the title compound was prepared as a white solid. m.p. 66-68° C. 1H NMR (CDCl3, 300 MHz) δ 0.81 (t, J=7.5 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.26-1.35 (m, 4H), 1.45 (sextet, J=7.5 Hz, 2H), 1.68-1.76 (m, 2H), 2.25-2.33 (m, 1H), 2.72-2.92 (m, 5H), 2.97-3.12 (m, 2H), 3.16-3.33 (m, 2H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.53-3.60 (m, 1H), 3.66 (d, J=10 Hz, 1H), 3.88 (s, 3H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (dd, J=1 Hz, J=8 Hz, 1H), 6.92 (t, J=8 Hz, 1H), 6.97 (d, J=1 Hz, 1H), 7.12 (d, J=8 Hz, 1H), 7.18 (dd, J=1 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 579 (M+H)+.


EXAMPLE 319
trans-trans-2-(4-Pyridinyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-di(n-butyl)aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the methods described in examples 1 and 43, using methyl 3-oxo-3-(4-pyridyl)propanoate (J. Am. Chem. Soc. 1993, 115, 11705) in place of ethyl(4-methoxybenzoyl)acetate. m.p. 131-132° C. NMR (CDCl3, 300 MHz) δ 0.82 (t, J+7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.05-1.50 (m, 8H), 2.90 (dd, J=7 Hz, 9 Hz, 1H), 2.97 (d, J=13 Hz, 1H), 3.00-3.25 (m, 4H), 3.32 (m, 1H), 3.99 (d, J=13 Hz, 1H), 3.45-3.52 (m, 1H), 3.67-3.78 (m, 1H), 4.10 (d, J=9 Hz, 1H), 5.92 (dd, J=2 Hz, 4 Hz, 2H), 6.75 (d, J=9 Hz, 1H), 6.90 (dd, J=9 Hz, 2 Hz, 1H), 7.02 (d, J=2 Hz, 1H), 7.45 (d, J=8 Hz, 2H), 8.50 (d, J=8 Hz, 2H). Anal calcd for C27H35N3O5: C, 67.34; H, 7.33; N, 8.73. Found: C, 67.39; H, 7.45; N, 8.61.


EXAMPLE 320
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-diethylaminocarbonylamino)ethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 61, substituting propylamine for aqueous methylamine in Example 61B and diethylcarbamyl chloride for isobutyryl chloride in Example 61C. NMR (CD3OD, 300 MHz) δ 0.74 (t, 3H, J=7), 1.09 (t, 6H, J=7), 1.33 (m, 2H), 3.17 (q, 4H, J=7), 3.78 (s, 3H), 4.04 (m, 1H), 5.93 (s, 2H), 6.86 (d, 1H, J=8), 7.06 (dd, 1H, J=2.8), 6.94 (d, 2H, J=9), 7.04 (d, 1H, J=2), 7.40 (d, 2H, J=9). MS (DCl/NH3) m/z 526. Anal calcd for C29H39N3O6. 0.1 TFA: C, 65.31; H, 7.34; N, 7.82. Found: C, 65.33; H, 7.43; N, 8.14.


EXAMPLE 321
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[3,5-dimethylpiperidinyl-carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) shows mixture of isomers. δ 0.88 (d, 3H, J=7), 0.93 (d, 3H, J=7), 3.82 (s, 3H), 5.95 (s, 2H), 6.82 (d, 1H, J=8), 6.89 (dd, 1H, J=1.8), 7.00 d, 2H), J=9), 7.03 (m, 1H), 7.47 (d, 2H, J=9). MS (DCl/NH3) m/z 495.


EXAMPLE 322
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-[N,N-di(s-butyl)aminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) suggests a mixture of isomers. δ 0.83 (t, 6H, J=8), 1.27 (d, 6H, J=7), 1.6 (m, 2H), 3.79 (s, 3H), 5.93 (s, 2H), 6.75 (d, 1H, J=8), 6.86 (d, 1H, J=8), 6.94 (d, 2H, J=9), 7.03 (d, 1H, J=2), 7.35 (d, 2H, J=9). MS (DCl/NH3) m/z 511.


EXAMPLE 323
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N-(2-Methylphenyl)-N-butylamino carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. MS (DCl/NH3) m/z 545. Anal calcd for C32H36N2O6.0.9H2O: C, 68.53; H, 6.79; N, 4.99. Found: C, 68.56; H, 6.62; N, 4.71.


EXAMPLE 324
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N-(3-Methylphenyl)-N-butylamino carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared using the procedures described in example 1. NMR (CD3OD, 300 MHz) d 0.88 (t, 3H, J=7),1.2-1.5 (m, 4H), 2.31 (s, 3H), 2.8 (m, 2H), 3.14 (t, 1H, J=10), 3.3 (m, 1H), 3.44 (dd, 1H, J=5,10), 3.53 (m, 1H), 3.60 (t, 2H, J=7), 3.79 (s, 3H), 3.82 (m, 1H), 5.93 (s, 2H), 6.74 (d, 1H, J=8), 6.8-6.9 (m, 5H), 7.06 (d, 1H, J=2), 7.09 (d, 2H, J=9), 7.18 (d, 1H, J=7), 7.27 (t, 1H, J=7). MS (DCl/NH3) m/z 545. Anal calcd for C32H36N2O6.0.8H2O: C, 68.75; H, 6.78; N, 5.01. Found: C, 68.70; H, 6.67; N, 4.85.


EXAMPLE 325
trans trans-4-(1,3-Benzodioxol-5-yl)-2-(benzyloxymethyl)-1-((N,N-dibutylaminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 325A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(benzyloxymethyl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The procedures of Example 1A-1 D were followed, substituting ethyl 4-benzyloxy-3-oxobutyrate for 4-methoxybenzoylacetate in Example 1A, to afford the title compound as a colorless oil. TLC (30% EtOAc-hexane) Rf 0.18; 1H NMR (CDCl3, 300 MHz) δ 0.88 (t, J=7 Hz, 6H), 1.17 (t, J=7 Hz, 3H), 1.20-1.34 (br m, 4H), 1.40-1.56 (br m, 3H), 2.85 (t, J=8 Hz, 1H), 2.98-3.30 (m, 5H), 3.39-3.60 (m, 3H), 3.64-3.75 (m, 2H), 3.92 (d, J=14 Hz, 1H), 4.10 (two overlapping q, J=6.5 Hz, 2H), 4.53 (s, 2H), 5.91 (m, 2H), 6.69 (d, J=9 Hz, 1H), 6.77 (dd, J=1.5, 9 Hz, 1H), 6.91 (d, J=1.5 Hz, 1H); MS (DCl/NH3) m/e 553 (M+H)+.


EXAMPLE 325B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(benzyloxymethyl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound was prepared according to the procedure of Example 71C, as a colorless glass. TLC (5% MeOH—CH2Cl2) Rf 0.13; 1H NMR (CDCl3, 300 MHz) δ 0.86 (t, J=7 Hz), and 0.90 (t, J=7 Hz, 6H total), 1.15-1.52 (br m, 8H), 2.96-3.35 (br m, 5H), 3.50-3.75 (br m, 2H), 3.80 (dd, J=3, 13 Hz, 1H), 3.88-4.40 (br m, 6H), 4.45 (AB, 2H), 5.90 (s, 2H), 6.70 (d, J=8 Hz, 1H), 6.84 (dd, J=1, 8 Hz, 1H), 6.93 (d, J=1 Hz, 1H), 7.28-7.39 (m, 5H); MS (DCl/NH3) m/e 524 (M+H)+.


EXAMPLE 326
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(hydroxymethyl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 326A
Ethyltrans,trans-4-(1,3-Benzodioxol-5-yl)-2-(hydroxymethyl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The resultant product from Example 325A (128 mg, 0.232 mmol) and 25 mg of 20% Pd(OH)2 on charcoal in 7 mL EtOH was stirred under 1 atm hydrogen for 48 h. The mixture was filtered through a plug of celite, and the catalyst was washed with 2×10 mL EtOH, then the combined filtrate and washes were concentrated under reduced pressure to afford the crude product. Purification by flash chromatography (40% EtOAc-hexane) provided the title compound.


EXAMPLE 326B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(hydroxymethyl)-1-((N,N-di(butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound was prepared according to the procedure of Example 71C.


EXAMPLE 327
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-methylpropenamid-3-yl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 327A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(formyl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is made by selective oxidation (e.g. using the Swern oxidation with DMSO, oxalyl chloride, ethyldiisopropylamine or using the Dess-Martin periodinane) of the compound of Example 326A.


EXAMPLE 327B
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(O-tert-butylpropenoat-3-yl)-1-((N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is produced by condensing the compound of Example 327A with tert-butyl triphenylphosphoranylidine acetate in CH2Cl2 solution.


EXAMPLE 327C
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(propenoic acid-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is produced by reacting the compound of Example 327B with trifluoacetic acid in CH2Cl2 (1:1).


EXAMPLE 327D
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-methylpropenamid-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is produced by condensing the compound of Example 327C with methylamine hydrochloride in the presence of a carbodiimide (e.g. N-ethyl-N-(3-dimethylamino)propylcarbodiimide, DCC).


EXAMPLE 327E
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-methylpropenamid-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by reacting the compound of Example 327D with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 328
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(1-hydroxy-2-propen-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 328A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(1-hydroxy-2-propen-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is produced by reacting the compound of Example 327C with borane methyl sulfide complex.


EXAMPLE 328B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(1-hydrox-2-propen-3-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by condensing the compound of Example 328A with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 329
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 329A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate,

The title compound is produced by condensing the compound of Example 327A with benzylamine in the presence of sodium cyanoborohydride in ethanol.


EXAMPLE 329B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by reacting the compound of Example 329A with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 330
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-acetyl-N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 330A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-acetyl-N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is produced by reacting the compound of Example 3294A with acetic anhydride in the presence of pyridine or triethylamine.


EXAMPLE 330B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(N-acetyl-N-benzylaminomethyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by reacting the compound of Example 330A with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 331
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(ethynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 331A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(ethynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is made by employing the procedure of Corey and Fuchs (Tetrahedron Lett. 1972, 3769-72), using the compound of Example 327A.


EXAMPLE 331B
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(ethynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by reacting the compound of Example 331A with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 332
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(1-pentynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid
EXAMPLE 332A
Ethyl trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(pentynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylate

The title compound is made by palladium-catalyzed coupling of the compound of Example 206A and propyl iodide, employing the procedure of Taylor, et. al. (J. Org. Chem. 1989, 54(15), 3618-24).


EXAMPLE 332B trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(1-pentynyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

The title compound is produced by reacting the compound of Example 332A with lithium hydroxide according to the procedure of Example 71C.


EXAMPLE 333
trans-trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(2,6-dioxopiperidinyl)ethyl]-pyrrolidine-3-carboxylic acid

The compound of example 61A is added to a solution of the sodium salt of glutarimide in dimethylformamide. After stirring 24 hours, water is added and the mixture is extracted with ether. The resultant glutarimide is hydrolyzed to the title compound by the method of example 1D.


EXAMPLE 334
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-diphenylaminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared according to the procedures described in Example 1. 1H NMR (300 MHz, CD3OD) δ 2.83 (dd, 1, J=8.1, 9.7), 2.99 (d, 1, J=15.4), 3.19 (t, 1, J=9.5), 3.49 (d, 1, J=15.3), 3.51 (dd, 1, J=4.6, 9.5), 3.57 (m, 1), 3.79 (s, 3), 3.85 (d, 1, J=9.5), 5.90 (s, 2), 6.71 (d, 1, J=8.0), 6.84 (m, 3), 7.04 (d, 1, J=1.6), 7.14-7.16 (m, 6), 7.19-7.34 (m, 6); MS (DCl/NH3) m/z 551; Anal Calcd for C33H30N2O6602 0.65H2O∘0.35C2H5OCOCH3: C, 69.77, H, 5.77, N, 4.76. Found: C, 69.75, H, 5.55, N, 4.64.


EXAMPLE 335
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[N,N-diisopropylaminocarbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared according to the procedures described in Example 1. 1H NMR (300 MHz, CD3OD) δ 0.95 (d, 3, J=6.5), 1.24 (d, 3, J=6.4), 1.30 (d, 6, J=6.8), 2.85 (d, 1, J=12.5), 3.04 (dd, 1, J=8.1, 9.8), 3.14 (t, 1, J=9.7), 3.32-3.55 (m, 3), 3.63 (m, 1), 5.92 (s, 2), 6.75 (d, 1, J=8.1), 6.85 (dd, 1, J=1.7, 8.1), 6.93 (m, 2), 7.02 (d, 1, J=1.7), 7.35 (m, 2). MS (DCl/NH3) m/z 483. Anal Calcd for C27H34N2O6.0.65 EtOAc: c, 65.86, H, 7.32, N, 5.19. Found: C, 5.74, H, 7.26, N, 5.52.


EXAMPLE 336
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-N-propyl-N-butanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 313 and Example 66, the title compound was prepared as a white solid. m.p. 65-66° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7.5 Hz, 3H), 0.92 (t, J=7.5 Hz, 3H), 1.34-1.52 (m, 4H), 1.72 (quintet, J=7.5 Hz, 2H), 2.25-2.35 (m, 1H), 2.72-2.94 (m, 5H), 2.97-3.12 (m, 2H), 3.19-3.46 (m, 2H), 3.44 (d, J=9 Hz, 1H), 3.53-3.60 (m, 1H), 3.67 (d, J=9 Hz, 1H), 3.89 (s, 3H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.92 (t, J=9 Hz, 1H), 6.97 (s, 1H), 7.12 (d, J=9 Hz, 1H), 7.18 (d, J=12 Hz, 1H). MS (DCl/NH3) m/e 565 (M+H)+.


EXAMPLE 337

Using methods described in the above examples, the compounds disclosed in Table 1 can be prepared.









TABLE 1









embedded image







R












embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image









embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image












EXAMPLE 338

Using methods described in the above examples, compounds comprising a parent structure selected from those disclosed in Table 2A and an R substituent selected from those disclosed in Table 2B can be prepared.












TABLE 2A









1.


embedded image









2.


embedded image









3.


embedded image









4.


embedded image









5.


embedded image









6.


embedded image









7.


embedded image









8.


embedded image









9.


embedded image









10.


embedded image









11.


embedded image









12.


embedded image









13.


embedded image









14.


embedded image









15.


embedded image









16.


embedded image









17.


embedded image









18.


embedded image









19.


embedded image









20.


embedded image









21.


embedded image









22.


embedded image









23.


embedded image









24.


embedded image









25.


embedded image









26.


embedded image









27.


embedded image









28.


embedded image









29.


embedded image









30.


embedded image









31.


embedded image









32.


embedded image









33.


embedded image









34.


embedded image









35.


embedded image









36.


embedded image









37.


embedded image









38.


embedded image









39.


embedded image









40.


embedded image









41.


embedded image









42.


embedded image









43.


embedded image









44.


embedded image









45.


embedded image









46.


embedded image









47.


embedded image









48.


embedded image









49.


embedded image









50.


embedded image









51.


embedded image









52.


embedded image









53.


embedded image









54.


embedded image









55.


embedded image









56.


embedded image









57.


embedded image









58.


embedded image









59.


embedded image









60.


embedded image









61.


embedded image









62.


embedded image









63.


embedded image









64.


embedded image









65.


embedded image









66.


embedded image









67.


embedded image









68.


embedded image









69.


embedded image









70.


embedded image









71.


embedded image









72.


embedded image









73.


embedded image









74.


embedded image









75.


embedded image









76.


embedded image









77.


embedded image









78.


embedded image









79.


embedded image









80.


embedded image









81.


embedded image









82.


embedded image









83.


embedded image









84.


embedded image









85.


embedded image









86.


embedded image









87.


embedded image









88.


embedded image









89.


embedded image









90.


embedded image









91.


embedded image









92.


embedded image









93.


embedded image









94.


embedded image









95.


embedded image









96.


embedded image









97.


embedded image









98.


embedded image









99.


embedded image









100.


embedded image









101.


embedded image









102.


embedded image









103.


embedded image









104.


embedded image









105.


embedded image









106.


embedded image









107.


embedded image









108.


embedded image









109.


embedded image









110.


embedded image









111.


embedded image









112.


embedded image









113.


embedded image









114.


embedded image









115.


embedded image









116.


embedded image









117.


embedded image









118.


embedded image









119.


embedded image









120.


embedded image









121.


embedded image









122.


embedded image









123.


embedded image









124.


embedded image









125.


embedded image









126.


embedded image









127.


embedded image









128.


embedded image









129.


embedded image









130.


embedded image









131.


embedded image









132.


embedded image









133.


embedded image









134.


embedded image









135.


embedded image









136.


embedded image









137.


embedded image









138.


embedded image









139.


embedded image









140.


embedded image









141.


embedded image









142.


embedded image









143.


embedded image









144.


embedded image









145.


embedded image









146.


embedded image









147.


embedded image









148.


embedded image









149.


embedded image









150.


embedded image









151.


embedded image









152.


embedded image









153.


embedded image









154.


embedded image









155.


embedded image









156.


embedded image









157.


embedded image









158.


embedded image









159.


embedded image









160.


embedded image









161.


embedded image









162.


embedded image









163.


embedded image









164.


embedded image









165.


embedded image









166.


embedded image









167.


embedded image









168.


embedded image









169.


embedded image









170.


embedded image









171.


embedded image









172.


embedded image









173.


embedded image









174.


embedded image









175.


embedded image









176.


embedded image









177.


embedded image









178.


embedded image









179.


embedded image









180.


embedded image









181.


embedded image









182.


embedded image









183.


embedded image









184.


embedded image









185.


embedded image









186.


embedded image









187.


embedded image









188.


embedded image









189.


embedded image









190.


embedded image









191.


embedded image









192.


embedded image









193.


embedded image









194.


embedded image









195.


embedded image









196.


embedded image









197.


embedded image









198.


embedded image









199.


embedded image









200.


embedded image









201.


embedded image









202.


embedded image









203.


embedded image









204.


embedded image









205.


embedded image









206.


embedded image









207.


embedded image









208.


embedded image









209.


embedded image









210.


embedded image









211.


embedded image









212.


embedded image









213.


embedded image









214.


embedded image









215.


embedded image









216.


embedded image









217.


embedded image









218.


embedded image









219.


embedded image









220.


embedded image









221.


embedded image









222.


embedded image









223.


embedded image









224.


embedded image









225.


embedded image









226.


embedded image









227.


embedded image









228.


embedded image









229.


embedded image









230.


embedded image









231.


embedded image









232.


embedded image









233.


embedded image









234.


embedded image









235.


embedded image









236.


embedded image









237.


embedded image









238.


embedded image









239.


embedded image









240.


embedded image









241.


embedded image









242.


embedded image









243.


embedded image









244.


embedded image









245.


embedded image









246.


embedded image









247.


embedded image









248.


embedded image









249.


embedded image









250.


embedded image









251.


embedded image









252.


embedded image









253.


embedded image









254.


embedded image









255.


embedded image









256.


embedded image









257.


embedded image









258.


embedded image









259.


embedded image









260.


embedded image









261.


embedded image









262.


embedded image









263.


embedded image









264.


embedded image









265.


embedded image









266.


embedded image









267.


embedded image









268.


embedded image









269.


embedded image









270.


embedded image









271.


embedded image









272.


embedded image









273.


embedded image









274.


embedded image









275.


embedded image









276.


embedded image









277.


embedded image









278.


embedded image









279.


embedded image









280.


embedded image









281.


embedded image









282.


embedded image









283.


embedded image









284.


embedded image









285.


embedded image









286.


embedded image









287.


embedded image









288.


embedded image









289.


embedded image









290.


embedded image









291.


embedded image









292.


embedded image









293.


embedded image









294.


embedded image









295.


embedded image









296.


embedded image









297.


embedded image









298.


embedded image









299.


embedded image









300.


embedded image









301.


embedded image









302.


embedded image









303.


embedded image









304.


embedded image









305.


embedded image









306.


embedded image









307.


embedded image









308.


embedded image









309.


embedded image









310.


embedded image









311.


embedded image









312.


embedded image









313.


embedded image









314.


embedded image









315.


embedded image









316.


embedded image









317.


embedded image









318.


embedded image









319.


embedded image









320.


embedded image









321.


embedded image





1.



322.


embedded image









323.


embedded image









324.


embedded image









325.


embedded image









326.


embedded image









327.


embedded image









328.


embedded image









329.


embedded image









330.


embedded image









331.


embedded image









332.


embedded image









333.


embedded image









334.


embedded image









335.


embedded image









336.


embedded image









337.


embedded image









338.


embedded image









339.


embedded image









340.


embedded image









341.


embedded image









342.


embedded image









343.


embedded image









344.


embedded image









345.


embedded image









346.


embedded image









347.


embedded image









348.


embedded image









349.


embedded image









350.


embedded image









351.


embedded image









352.


embedded image









353.


embedded image









354.


embedded image









355.


embedded image









356.


embedded image









357.


embedded image









358.


embedded image









359.


embedded image









360.


embedded image









361.


embedded image









362.


embedded image









363.


embedded image









364.


embedded image









365.


embedded image









366.


embedded image









367.


embedded image









368.


embedded image









369.


embedded image









370.


embedded image









371.


embedded image









372.


embedded image









373.


embedded image









374.


embedded image









375.


embedded image









376.


embedded image









377.


embedded image









378.


embedded image









379.


embedded image









380.


embedded image









381.


embedded image









382.


embedded image









383.


embedded image









384.


embedded image









385.


embedded image









386.


embedded image









387.


embedded image









388.


embedded image









389.


embedded image









390.


embedded image









391.


embedded image









392.


embedded image









393.


embedded image









394.


embedded image









395.


embedded image









396.


embedded image









397.


embedded image









398.


embedded image









399.


embedded image









400.


embedded image









401.


embedded image









402.


embedded image









403.


embedded image









404.


embedded image









405.


embedded image









406.


embedded image









407.


embedded image









408.


embedded image









409.


embedded image









410.


embedded image









411.


embedded image









412.


embedded image









413.


embedded image









414.


embedded image









415.


embedded image









416.


embedded image









417.


embedded image









418.


embedded image









419.


embedded image









420.


embedded image









421.


embedded image





1.



422.


embedded image









423.


embedded image









424.


embedded image









425.


embedded image









426.


embedded image









427.


embedded image









428.


embedded image









429.


embedded image









430.


embedded image









431.


embedded image





1.



432.


embedded image





2.



433.


embedded image









434.


embedded image









435.


embedded image









436.


embedded image









437.


embedded image









438.


embedded image









439.


embedded image









440.


embedded image









441.


embedded image









442.


embedded image









443.


embedded image









444.


embedded image









445.


embedded image









446.


embedded image









447.


embedded image









448.


embedded image









449.


embedded image









450.


embedded image









451.


embedded image









452.


embedded image









453.


embedded image









454.


embedded image









455.


embedded image









456.


embedded image









457.


embedded image









458.


embedded image









459.


embedded image









460.


embedded image









461.


embedded image









462.


embedded image









463.


embedded image









464.


embedded image









465.


embedded image



















TABLE 2B





R

















embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image









embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image












EXAMPLE 339

Using methods described in the above examples, compounds comprising a parent structure selected from those disclosed in Table 3A and an R substituent selected from those disclosed in Table 3B can be prepared.










TABLE 3A







1.


embedded image







2.


embedded image







3.


embedded image







4.


embedded image







5.


embedded image







6.


embedded image







7.


embedded image







8.


embedded image







9.


embedded image







10.


embedded image







11.


embedded image







12.


embedded image







13.


embedded image







14.


embedded image







15.


embedded image







16.


embedded image







17.


embedded image







18.


embedded image







19.


embedded image







20.


embedded image







21.


embedded image


















TABLE 3B





R

















embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image







embedded image









embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image











embedded image












EXAMPLE 340
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-(3-methylbut-1-yl)-N-phenyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.85 (d, J=6 Hz, 6H), 1.25 (q, J=7 Hz, 2H), 1.42-1.56 (m, 1H), 3.43-3.85 (m, 9H), 3.88s (3), 5.95 (s, 2H), 6.80 (d, J=7 Hz, 1H), 6.86 (dd, J9 Hz, 1H), 6.89-7.00 (m, 2H), 6.97 (d, J=1 Hz, 1H), 7.04 (d, J=9 Hz, 2H), 7.37 (d, J=9 Hz, 2H), 7.40-7.47 (m, 3H). MS (C.I.) m/e C (53.12, 53.11), H (4.63, 4.80), N (3.33, 3.28).


EXAMPLE 341
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(4-methylphenylaminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.47 (m, 4H), 2.37 (s, 3H), 2.83 (q, J=7 Hz, 2H), 3.06-3.25 (m, 2H), 3.40-3.50 (m, 1H), 3.51-3.63 (m, 3H), 3.80 (s, 3H), 3.87 (d, J=9 Hz, 1H), 5.92 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.80-6.86 (m, 3H), 6.89 (d, J=8 Hz, 2H), 7.04 (d, J=2 Hz, 1H), 7.12 (d, J=8 Hz, 2H), 7.19 (d, J=8 Hz, 2H). MS (DCl) m/e 545 (M+H)+. Analysis calcd for C32H36N2O6: C, 70.57; H, 6.66; N, 5.14. Found: C, 70.20; H, 6.81; N, 5.03.


EXAMPLE 342
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-propoxyphenyl)-1-(N,N-di(n-butyl)amino)carbonyl)methyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.30 (2H, d, J=9), 7.03 (1H, d, J=2), 6.83 (3H, m), 6.72 (1H, d, J=9), 5.95 (1H, d, J=2), 5.93 (1H, d, J=2), 3.88 (2H, t, J=7), 3.73 (1H, d, J=12), 3.58 (1H, m), 3.53-3.20 (4H, m), 3.10-2.90 (4H, m), 2.72 (1H, d, J=15), 1.79 (2H, q, J=8), 1.50-1.05 (8H, m), 1.02 (3H, t, J=7), 0.87 (3H, t, J=7), 0.80 (3H, t, J=7), MS (DCl/NH3) m/e 539 (M+H)+. Anal calcd for C31H42N2O6. 0.5H2O: C, 67.98; H, 7.91; N, 5.11. Found: C, 68.24; H, 7.70; N, 5.03.


EXAMPLE 343
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-propylphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.31 (2H, d, J=9), 7.13 (2H, d, J=9), 7.03 (1H, d, J=2), 6.84 (1H, dd, J=6, 2), 6.73 (1H, d, J=9), 5.95 (1H, d, J=2), 5.93 (1H, d, J=2), 3.76 (1H, d, J=10), 3.60 (1H, m), 3.55-3.20 (4H, m), 3.13-2.88 (4H, m), 2.75 (1H, d, J=15), 2.55 (2H, t, J=8),1.62 (2H, q, J=8), 1.50-1.00 (8H, m), 0.92 (3H, t, J=7), 0.85 C31H42N2050.25H2O: C, 70.63; H, 8.13; N, 5.31. Found C, 70.55; H, 8.08; N, 5.18.


EXAMPLE 344
trans-trans-2-(4-Methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-[3-(N-propyl-N-n-pentanesulfonylamino)propyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 316, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.85 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.3-1.4 (m, 4H), 1.5-1.6 (sextet, J=7, 2H), 1.65-1.8 (m, 4H), 2.05-2.15 (m, 1H), 2.43-2.56 (m, 1H), 2.72-3.1 (m, 7H), 3.27-3.4 (m, 2H), 3.5-3.6 (m, 2H), 3.80 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.8-6.9 (m, 1H), 6.85 (d, J=9 Hz, 2H), 7.02 (d, J=2 Hz, 1H), 7.80 (d, J=9 Hz, 2H).


EXAMPLE 345
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-ethylphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.40 (3H, m), 7.22 (2H, d, J=8), 7.13 (1H, dd, J=8, 3), 6.72 (1H, d, J=9), 5.28 (1H, d, J=12), 4.55 (2H, t, J=9), 4.15 (1H, d, J=18), 4.03 (2H, m), 3.75 (2H, m), 3.40 (2H, m), 3.20 (2H, t, J=9), 3.15 (1H, m), 3.10-2.90 (2H,m), 2.63 (2H, q, J=9), 1.47 (2H, m), 1.31 (4H, m), 1.12 (3H, t, J=8), 1.10 (2H, m), 0.92 (3H, t, J=9), 0.80 (3H, t, J=9). MS (DCl/NH3) m/e 507 (M+H+). Anal calcd for C31H42N2O4.1.0 TFA: C, 63.86; H, 6.98; N, 4.51. Found: C, 63.95; H, 7.12; N, 4.43.


EXAMPLE 346
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(3-pentyl)-N-phenylamino)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.93 (t, J=7.3 Hz, 3H), 0.94 (t, J=7.3 Hz, 3H), 1.33 (m, 4H), 2.72 (d, J=15.2 Hz, 1H), 2.81 (m, 1H), 3.11-3.23 (m, 2H), 3.45-3.57 (m, 2H), 3.79 (s, 3H), 3.83 (d, J=9.8 Hz, 1H), 4.54 (m, 1H), 5.92 (s, 2H), 6.73 (d, J=7.8 Hz, 1H), 6.83 (m, 3H), 6.98 (bs, 2H), 7.04 (d, J=1.7 Hz, 1H), 7.07 (2), 7.37 (m, 3H). MS (DCl) m/e 545 (M+H+). anal calcd for C32H33N2O6.0.35 H2O: C, 69.76; H, 6.71; N, 5.08. Found: C, 69.72; H, 6.66; N, 4.94.


EXAMPLE 347
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl)-N-(3-trifluoromethylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=6.6 Hz, 3H), 1.17-1.45 (m, 4H), 2.65 (d, J=16.5 Hz, 1H), 2.72 (m, 1H), 3.10 (t, J=9.5 Hz, 1H), 3.21-3.27 (m, 1H), 3.40 (dd, J=4.1, 9.9 Hz, 1H), 3.54 (m, 1H), 3.61-3.74 (m, 3H), 3.77 (s, 3H), 5.93 (s, 2H), 6.73-6.85 (m, 4H), 7.02 (m, 3H), 7.33 (d, J=7.5 Hz, 1H), 7.40 (s, 1H), 7.58 (t, J=7.8 Hz, 1H), 7.69 (d, J=7.5 Hz, 1H). MS (DCl) m/e 599 (M+H+). Anal calcd for C32H33F3N2O6: C, 64.21; H, 5.56; N, 4.68. Found: C, 64.09; H, 5.63; N, 4.57.


EXAMPLE 348
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-propyl-N-(4-morpholinylcarbonyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.78 (t, J=7 Hz, 3H), 1.43 (q, J=7 Hz, 2H), 2.07-3.01 (m, 1H), 2.76 (dd, J=7, 9 Hz, 2H), 2.77-3.00 (m, 5H), 3.05 (3.70, J=m Hz, 11H), 3.76 (s, 3H), 5.88 (s, 2H), 6.67 (d, J=8 Hz, 1H), 6.80 (dd, J=7 Hz, 6.83-6.90 (m, 2H), 6.98 (d, J=2 Hz, 1H), 7.32-7.39 (m, 2H). MS m/e calc'd for (M+H) C29H39N3O7: (M+H) 540.2710,. Found (M+H) 540.2713.


EXAMPLE 349
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(cis-2,6-dimethylpiperidin-1-yl)carbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.94 (d, J=7 Hz, 3H), 1.15d (7, 3H), 1.10-1.70 (m, 6H), 1.70-1.90 (m, 1H), 2.9. (d, J=13 Hz, 1H), 3.00-3.20 (m, 2H), 3.50 (3.70, J=m Hz, 2H), 3.79 (s, 3H), 3.80-4.00 (m, 1H), 4.10-4.65 (m, 2H), 5.95 (s, 2H), 6.70 (7.10, J=m Hz, 5H), 7.35 (m, 2H). MS m/e calc'd for (M+H)+ C28H35N2O6: (M+H) 495.2495. Found (M+H) 495.2493.


EXAMPLE 350
trans,trans-2-(4-Methoxymethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 57-59° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.28-1.36 (m, 4H), 1.93 (sextet, J=7 Hz, 2H), 1.72 (t, J=7 Hz, 2H), 2.20-2.32 (m, 1H), 2.72-3.10 (m, 7H), 3.18-3.41 (m, 2H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.48 (s, 3H), 3.52-3.59 (m, 1H), 3.68 (d, J=9 Hz, 1H), 5.15 (s, 2H), 5.94 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (dd, J=1 Hz, J=8 Hz, 1H), 6.98-7.02 (m, 3H), 7.32 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 591 (M+H)+.


EXAMPLE 351
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-butyl)-N-phenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.79-0.89 (m, 6H), 1.14-1.21 (m, 1H), 1.25-1.40 (m, 1H), 2.64 (dd, J=4.6, 15.4 Hz, 1H), 2.76 (t, J=9.0 Hz, 1H), 3.05-3.13 (m, 2H), 3.37-3.49 (m, 2H), 3.70 (s, 3H), 3.80 (d, J=9.8 Hz, 1H), 4.53 (m, 1H), 5.83 (m, 2H), 6.65 (d, J=8.1 Hz, 1H), 6.72 (−6.76, J=m Hz, 3H), 6.87 (m, 2H), 6.95 (d, J=1.7 Hz, 1H), 7.03 (m, 2H), 7.29 (m, 3H). MS (DCl) m/e 531 (M+H+). Anal calcd for C31H34N2O6·0.4H2O: C, 69.23; H, 6.52; N, 5.21. Found: C, 69.19; H, 6.52N, 5.03.


EXAMPLE 352
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-propyl)-N-phenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.99 (d, J=6.8 Hz, 6H), 2.71 (d, J=15.6 Hz, 1H), 2.84 (m, 1H), 3.13-3.18 (m, 2H), 3.45-3.58 (m, 2H), 3.79 (s, 3H), 3.88 (d, J=9.8 Hz, 1H), 4.80 (m, 1H), 5.92 (s, 2H), 6.74 (d, J=8.1 Hz, 1H), 6.83 (m, 3H), 6.96 (br s, 2H), 7.04 (d, J=1.7 Hz, 1H), 7.13 (m, 2H), 7.38 (m, 3H). MS (DCl) m/e 517 (M+H+). Anal calcd for C30H32N2O6·0.4H2O·0.08CH3CO2C2H5: C, 68.65; H, 6.28; N, 5.28. Found: C, 68.64; H, 6.35; N, 5.14.


EXAMPLE 353
trans,trans-4-(4-Propoxyphenyl)-2-(4-methoxyphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.42 (2H, d, J=10 Hz), 7.38 (2H, d, J=10 Hz), 6.92 (2H, d, J=10 Hz), 6.88 (2H, d, J=10 Hz), 5.13 (1H, bd, J=12 Hz), 4.02 (2H, m), 3.90 (2H, t, J=8 Hz), 3.80 (3H, s), 3.71 (3H, m), 3.40 (2H, m), 3.19 (1H, m), 3.10-2.90 (2H, m), 1.80 (2H, m), 1.48 (2H, m), 1.29 (4H, m), 1.13 (2H, m), 1.03 (3H, t, J=8Hz), 0.92 (3H, t, J=9 Hz), 0.82 (3H, t, J=9 Hz). MS (DCl/NH3) m/e 525 (MH+). Anal calcd for C31H44N2O5 ·1 TFA: C, 62.06H, 7.10; N, 4.39. Found: C, 62.43; H, 7.28; N, 4.39.


EXAMPLE 354
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((1,2,3,4-tetrahydroquinolin-1-yl)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 1.88 (quintet, J=6.5 Hz, 2H), 2.67 (t, J=6.4 Hz, 2H), 2.87 (t, J=8.6 Hz, 1H), 3.14 (m, 2H), 3.42 (dd, J=4.6, 9.7 Hz, 1H), 3.53-3.70 (m, 3H), 3.72-3.78 (m, 1H), 3.77 (s, 3H), 3.86 (d, J=9.6 Hz, 1H), 5.91 ·(s, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.83 (m, 3H), 6.98 (d, J=1.1 Hz, 1H), 7.02-7.23 (m, 6H). MS (DCl) m/e 515 (M+H+). Anal calcd for C30H30N2O6 ·.0.3H2O.0.15 CH3CO2C2H5: C, 68.93; H, 6.01; N, 5.25. Found: C, 68.91; H, 5.86; N, 5.19.


EXAMPLE 355
trans,trans-2-(3,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 64-65° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H),1.07 (sextet, J=7 Hz, 2H), 1.20-1.35 (m, 4H), 1.43 (sextet, J=7 Hz, 2H), 2.83 (d, J=13.5 Hz, 1H), 2.94-3.17 (m, 4H), 3.22-3.42 (m, 1H), 3.40-3.48 (m, 3H), 3.58-3.65 (m, 1H), 3.82 (s, 3H), 3.85 (s, 4H), 5.92 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.81 (d, J=8 Hz, 1H), 6.86-6.96 (m, 3H), 7.07 (d, J=3 Hz, 1H). MS (DCl/NH3) m/e 541 (M+H)+.


EXAMPLE 356
trans,trans-2-(3,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 75-86° C. 1H NMR (CD3OD, 300 MHz) δ 0.75 (t, J=7 Hz, 3H), 0.82 (t, J=7 Hz, 3H), 1.32-1.43 (m, 6H), 1.65-1.77 (m, 2H), 3.0-3.09 (m, 4H), 3.23-3.27 (m, 2H), 3.44 (t, J=6 Hz, 1H), 3.47-3.56 (m, 2H), 3.78 (d, J=9 Hz, 1H), 3.83-3.93 (m, 2H), 3.87 (s, 3H), 3.92 (s, 3H), 4.63 (d, J=13 Hz, 1H), 5.97 (s, 2H), 6.82 (d, J=7 Hz, 1H), 6.93 (d, J=7 Hz, 1H), 7.06 (d, J=7 Hz, 1H), 7.08 (d, J=3 Hz, 1H), 7.16 (dd, J=3 Hz, J=7 Hz, 1H), 7.27 (d, J=3 Hz, 1H). MS (DCl/NH3) m/e 591 (M+H)+.


EXAMPLE 357
trans,trans-2-(3,4-Dimethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-hexanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 65-66° C. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=0.7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.23-1.48 (m, 6H), 1.43 (sextet, J=7 Hz, 2H), 1.72 (sextet, J=7 Hz, 2H), 2.25-2.35 (m, 1H), 2.73-3.10 (m, 7H), 3.19-3.32 (m, 2H), 3.45 (dd, J=3 Hz, J=9 Hz, 1H), 3.53-3.59 (m, 1H), 3.68 (d, J=9 Hz, 1H), 3.87 (s, 6H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.79-6.86 (m, 2H), 6.92-6.97 (m, 2), 7.02 (s, 1H). MS (DCl/NH3) m/e 605 (M+H)+.


EXAMPLE 358
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(phthalimido)ethyl]-pyrrolidine-3-carboxylic acid

The compound of Example 1C (250 mg), N-bromoethylphthalimide (206 mg), and diisopropylethylamine (175 mg) were dissolved in 1 mL of acetonitrile and heated for 2.5 hours at 95° C. Toluene was added, and the mixture was washed with KHCO3 solution. The solution was dried (Na2SO4) and concentrated. The crude product was purified by chromatography on silica gel eluting with 3:1 EtOAc-hexane to give 216 mg of an intermediate ethyl ester which was hydrolyzed by the method of Example 1D to give 130 mg of the title compound as a white powder. 1H NMR (300 MHz, CDCl3) δ 3.12-3.26 (m, 2H), 3.60-3.75 (m, 2H), 3.70 (s, 3H), 3.98-4.12 (m, 2H), 4.45-4.55 (m, 1H), 4.69 (d, J=9Hz, 1H), 4.76-4.88 (m, 1H), 5.96 (s, 2H), 6.55 (d, J=8 Hz, 1H), 6.60-6.70 (m, 3H), 6.79 (d, J=8 Hz, 1H), 7.05-7.45 (m, 5H), 7.75 (d, J=7 Hz, 1H).


EXAMPLE 359
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-pentyl)-N-phenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.86-0.98 (m, 6H), 1.17-1.22 (m, 1H), 1.23-1.41 (m, 3H), 2.70 (dd, J=11.2, 15.3 Hz, 1H), 2.83 (m, 1H), 3.10-3.21 (m, 2H), 3.45-3.60 (m, 2H), 3.79 (s, 3H), 3.86 (m, 1H), 4.74 (m, 1H), 5.91 (m, 2H), 6.73 (dd, J=1.1, 7.7 Hz, 3H), 6.82 (m, 2H), 7.04-7.14 (m, 3H), 7.36 (m, 3H). MS (DCl) m/e 545 (M+H+). Anal calcd for C32H36N2O6.0.25 CH3CO2C2Hs: C, 69.95; H, 6.76; N, 4.94. Found: C, 70.03; H, 6.54; N, 4.78.


EXAMPLE 360
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(2-naphthyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.83 (t, J=7 Hz, 3H), 1.23-1.39 (m, 4H), 1.40-1.55 (m, 3H), 2.60-2.72 (m, 2H), 3.00-3.80 (m, 5H), 3.66 (s, 3H), 5.87 (s, 2H), 6.39 (d, J=9 Hz, 2H), 6.74-6.85 (m, 3H), 7.17 (d, J=2 Hz, 1H), 7.40 (dd, J=8 Hz, 1H), 7.52-7.62 (m, 3H), 7.80-7.90 (m, 1H), 7.90-8.00 (m, 2H). MS (DCl) m/e 581 (M+H)+. Analysis calcd for C35H36N2O6.0.3H2O: C, 71.73; H, 6.29; N, 4.78. Found: C, 71.74; H, 6.26; N, 4.72.


EXAMPLE 361
trans,trans-2-(4-Propoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 53-54° C. 1H NMR (CDCl3, 300 MHz) δ 0.79 (t, J=7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 1.03 (t, J=7 Hz, 3H), 1.24-1.34 (m, 4H), 1.43 (sextet, J=7 Hz, 2H), 1.67-1.75 (m, 2H), 1.80 (sextet, 2H), 2.23-2.33 (m, 1H), 2.72-2.93 (m, 5H), 3.05 (septet, J=7 Hz, 2H), 3.15-3.35 (m, 2H), 3.42 (d, J=9 Hz, 1H), 3.54-3.62 (m, 1H), 3.67 (d, J=9 Hz, 1H), 4.90 (t, J=7 Hz, 2H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.85 (d, J=8 Hz, 2H), 7.02 (s, 1H), 7.32 (d, J=8 Hz, 2H). MS (DCl/NH3) m/e 589 (M+H)+.


EXAMPLE 362
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((2-methylindolin-1-yl)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ mixture of indole C2 diastereomers, 0.95 (m, 1.5 (CH3)), 1.05 (d, 6.3H, 1.5 (CH3)), 2.62 (m, 1H), 3.01 (m, 2H), 3.14-3.25 (m, 1H), 3.37-3.52 (m, 1.5H), 3.56-3.80 (m, 2H), 3.65 (s, 1.5 (CH3O)), 3.76 (s, 1.5 (CH3O)), 3.93 (m, 0.5H), 4.05-4.13 (m, 0.5H), 4.42 (m, 0.5H), 4.65-4.74 (m, 1H), 5.91 (m, 2H), 6.72 (d, J=8.1 Hz, 0.5H), 6.75 (m, 0.5H), 6.85 (m, 2H), 6.92 (d, J=8.5 Hz, 1H), 7.00-7.06 (m, 2H), 7.14 (t, J=7.7 Hz, 1H), 7.21 (t, J=6.6 Hz, 1H), 7.38 (m, 2H), 7.99 (m, 1H). MS (DCl) m/e 515 (M+H+). Anal calcd for C30H30N2O6.0.35H2O.0.3 CH3CO2C2H5: C, 68.47; H, 6.10; N, 5.12. Found: C, 68.46; H, 5.97; N, 5.07.


EXAMPLE 363
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(2-hydroxy-3-propylhex-1-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 1.06 (m, 6H), 1.26-1.60 (m, 9H), 3.16 (dd, J=10.9, 12.6 Hz, 1H), 3.18 (d, J=11 Hz, 1H), 3.44 (d, J=2.0 Hz, 1H), 3.61 (t, J=11 Hz, 1H), 3.73 (t, J=11.0 Hz, 1H), 3.85 (m, 1H), 3.96-4.17 (m, 2H), 4.02 (s, 1.5 (CH3O diastereomer)), 4.03 (s, 1.5 (CH3O diastereomer)), 6.15 (s, 2H), 7.01 (d, J=8.1 Hz, 0.5H), 7.00 (d, J=8.1 Hz, 0.5H), 7.10 (m, 1H), 7.23 (m, 3H), 7.77 (m, 2H). MS (DCl.) m/e 484 (M+H+). Anal calcd for C28H37NO6.0.33H3PO4: C, 65.34; H, 7.44; N, 2.72. Found: C, 65.30; H, 7.40; N, 2.60.


EXAMPLE 364
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(4-heptyl)-N-(3,4-dimethoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ1:1 mixture of rotamers, 0.61 (t, J=7.1 Hz, 1.5H), 0.72 (7.3, 1.5H), 0.76 (t, J=7.1, 1.5, 0.83, t, 7.3 Hz, 1.5H), 1.05-1.60 (m, 8H), 2.84-3.10 (m, J=2.5, 3.18, t; 9.7 Hz, 0.5H), 3.41-3.52 (m, 2H), 3.47-3.69 (m, 2H), 3.66 (s, 1.5H), 3.73 (s, 1.5H), 3.77 (s, 1.5H), 3.78 (s, 1.5H), 3.79 (s, 1.5H), 3.86 (d, J=9.8 Hz, 0.5H), 4.19 (d, J=17.7 Hz, 0.5H), 4.29 (d, J=15.2 Hz, 0.5H), 4.40-4.49 (m, 0.5H), 4.47 (d, J=15.3 Hz, 0.5H), 4.60 (d, J=17.6 Hz, 0.5H), 5.93 (m, 2H), 6.46 (dd, J=1.7, 8.2 Hz, 0.5H), 6.52 (d, J=2.0 Hz, 0.5H), 6.74 (m, 2.5H), 6.80 (s, 1H), 6.83-6.88 (m, 1H), 6.92 (m, 1.5H), 7.03 (dd, J=1.7, 6.8 Hz, 1H), 7.19 (m, 1H), 7.36 (m, 1H). MS (DCl) m/e 647 (M+H+). Anal calcd for C37H46N2O8: C, 68.71; H, 7.17; N, 4.33. Found: C, 68.41; H, 7.26; N, 4.11.


EXAMPLE 365
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((indolin-1-yl)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 2.97 (dd, J=8.1, 9.5 Hz, 1H), 3.10 (t, J=8.1 Hz, 2H), 3.16-3.22 (m, 2H), 3.51-3.68 (m, 3H), 3.73 (m, 3H), 3.83-4.05 (m, 3H), 5.90 (m, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.86 (m, 3H), 6.99 (dt, J=1.1, 7.4 Hz, 1H), 7.08 (d, J=0.7 Hz, 1H), 7.11 (m, 1H), 7.18 (d, J=7.1 Hz, 1H), 7.38 (d, J=8.5 Hz, 2H), 8.02 (8.1, 1H). MS (C.I.) m/e 501 (M+H+). Anal calcd for C29H28N2O6.0.5H2O.0.15 CH3CO2C2H5: C, 68.01; H, 5.82; N, 5.36. Found: C, 68.03; H, 5.65; N, 5.25.


EXAMPLE 366
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(2-chlorophenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H-NMR (300 MHz, CD3OD) δ 0.89 (dt, J=7 Hz, 3H), 1.23-1.51 (m, 4H), 2.52-4.00 (m, 8H), 3.78 (d, J=6 Hz, 3H), 5.92 (d, J=6 Hz, 2H), 6.70-6.87 (m, 4H), 7.02-7.21 (m, 4H), 7.27-7.52 (m, 3H). MS (DCl) m/e 565 (M+H)+. Analysis calcd for C31H32N2O6Cl.0.6H2O: C, 64.66; H, 5.99; N, 4.86. Found: C, 64.59; H, 6.00; N, 4.64.


EXAMPLE 367
trans,trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-(3,4,5-trimethoxybenzyl)pyrrolidine-3-carboxylic acid

The compound resulting from Example 1C (0.25 g) was reacted with 0.169 g of 3,4,5-trimethoxybenzyl chloride and 0.175 g of diisopropylethylamine in 1 mL of acetonitrile for 2 hours at room temperature. The resulting ester was isolated and then hydrolyzed by the method of Example 1D to give 0.193 g of the title compound. m.p. 108-110° C. 1H NMR (300 MHz, CDCl3) δ2.75 (t, J=9 Hz, 1H), 2.95-3.05 (m, 2H), 3.20 (d, J=11 Hz, 1H), 3.45-3.55 (m, 1H), 3.7-3.8 (m, 2H), 3.84 (s, 3H), 5.95 (dd, J=2 Hz, 6 Hz, 2H), 6.55 (s, 2H), 6.70 (d, J=8 Hz, 1H), 6.30-6.35 (m, 1H), 6.90 (d, J=9 Hz, 2H), 7.13 (d, J=2 Hz, 1H), 7.43 (d, J=9 Hz, 2H).


EXAMPLE 368
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(3-chlorophenyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.89 (t, J=7 Hz, 3H), 1.20-1.42 (m, 4H), 3.42-3.87 (m, 9H), 3.9 (s, 3H), 5.96 (s, 2H), 6.75 (7.10, J=m Hz, 7H), 7.33-7.50 (m, 4H). MS (C.l.) m/e 565 (M+H). Analysis calcd for C31H33N2O6Clo1.0CF3COOH: C, 58.37; H, 5.05; N, 4.13. Found: C, 58.41; H, 4.99; N, 4.08.


EXAMPLE 369
trans,trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(di-n-butylamino)pyrimidin-4-yl]pyrrolidine-3-carboxylic acid

The compound resulting from Example 1C (0.25 g) was reacted with 0.11 g of 2,4-dichloropyrimidine and 0.175 g of diisopropylethylamine in 1 mL of acetonitrile for 2 hours at room temperature to give 0.218 g of ethyl 2-(4-methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-chloro-4-pyrimidyl)-pyrrolidine-3-carboxylate. This compound was reacted with 1 mL of dibutylamine in 2 mL of toluene at 125° C. for 17 hours. The resulting ethyl ester was hydrolyzed by the method of Example 1D to give 0.142 g of the title comopund as a white powder. 1H NMR (300 MHz, CDCl3) δ0.75-0.90 (broad, 6H), 1.1-1.3 (br, 4H), 1.35-1.55 (br, 4H), 3.05 (m, 1H), 3.3-3.5 (br, 2H), 3.55-3.67 (m, 2H), 3.75 (s, 3H), 4.6 (br, 1H), 5.2 (br, 1H), 5.45 (br, 1H), 5.87 (s, 2H), 6.3 (br, 1H), 6.67 (d, J=8 Hz, 1H), 6.7-6.85 (m, 4H), 7.10 (d, J=9 Hz, 2H).


EXAMPLE 370
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-methylbut-2-yl)-N-phenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.90 (t, J=7.5 Hz, 3H), 1.12 (s, 3H), 1.14 (s, 3H), 2.06 (q, J=7.5 Hz, 2H), 2.73 (d, J=15.3 Hz, 1H), 2.91 (t, J=9.5 Hz, 1H), 3.11 (d, J=15.6 Hz, 1H), 3.21 (t, J=8.8 Hz, 1H), 3.50-3.61 (m, 2H), 3.80 (s, 3H), 4.00 (d, J=10.2 Hz, 1H), 5.91 (s, 2H), 6.74 (d, J=7.8 Hz, 1H), 6.85 (m, 3H), 6.93 (m, 1H), 6.98 (m, 1H), 7.03 (d, J=1.7 Hz, 1H), 7.17 (m, 2H), 7.36 (m, 3H). MS (DCl) m/e 545 (M+H+). Anal calcd for C32H36N2O6: C, 70.57; H, 6.66; N, 5.14. Found: C, 70.17; H, 6.53; N, 4.97.


EXAMPLE 371
trans,trans-2-(4-Ethylphenyl)-4-(5-indanyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.25 (3H, m), 7.21 (1H, d, 3 Hz), 7.17 (3H, m), 3.80 (1H, d, 10 Hz), 3.65 (1H, ddd, 6, 5, 3 Hz), 3.4 (4H, m), 3.10 (2H, m), 2.98 (2H, m), 2.88 (5H, m), 2.79 (1H, d, 16 Hz), 2.62 (2H, q, 7 Hz), 2.05 (2H, m), 1.42 (2H, m), 1.32 (1H, m), 1.21 (3H, t, 7 Hz), 1.05 (2H, sext, 7 Hz), 0.87 (3H, t, 7 Hz), 0.79 (3H, t, 7 Hz). MS (DCl, NH3) m/e 505 (M+H+). Anal calcd for C32H44N2O3: C, 76.15; H, 8.79; N 5.55. Found: C, 75.96; H, 8.75; N, 5.36.


EXAMPLE 372
trans,trans-2-(3,4-Difluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 62-63° C. 1H NMR (CDCl3, 300 MHz), δ 0.83 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.13 (sextet, J=7 Hz, 2H), 1.20-1.32 (m, 3H), 1.36-1.49 (m, 3H), 2.85-2.93 (m, 2H), 2.98-3.23 (m, 4H), 3.36-3.45 (m, 3H), 3.58-3.66 (m 1H), 3.94 (d, J=8 Hz, 1H), 5.93 (s, 2H), 6.72 (d, J=7.5 Hz, 1H), 6.84 (dd, J=1 Hz, J=7.5 Hz, 1H), 6.98 (d, J=7.5 Hz, 1H), 7.08-7.15 (m, 2H), 7.22-7.28 (m, 1H). MS (CDl/NH3) m/e517 (M+H)+.


EXAMPLE 373
trans,trans-2-(3,4-Difluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 71-72° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.25-1.38 (m, 4H), 1.46 (sextet, J=7 Hz, 2H), 1.74 (quintett, J=7 Hz, 2H), 2.26-2.36 (m, 1H), 2.72-2.95 (m, 5H), 2.98-3.12 (m, 2H), 3.15-3.34 (m, 2H), 3.45 (dd, J=3 Hz, J=9 Hz, 1H), 3.53-3.60 (m, 1H), 3.71 (d, J=9 Hz, 1H), 5.96 (s, 2H), 6.75 (d, J=9 Hz, 1H), 3.82 (dd, J=2 Hz, J=9 Hz, 1H), 5.96 (d, J=2 Hz, 1H), 7.09-7.18 (m, 2H), 7.23-7.34 (m, 1H). MS (CDl/NH3) m/e567 (M+H)+.


EXAMPLE 374
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(ethoxymethyl)-1-(((N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. TLC (10% MeOH—CH2Cl2) Rf=0.53. 1H NMR (CDCl3,300 MHz, rotameric forms) δ 0.70 (t, J=7 Hz), 0.80 (t, J=7 Hz) and 0.96-1.04 (m, 6H total), 1.04-1.75 (m, 11H), 1.34-1.53 (br m, 4H), 2.65 (AB) and 2.80-3.08 (m, 2H total), 3.10-3.82 (br m, 12H), 4.03 (m) and 4.22-4.45 (br m, 2H total), 5.90 (s) and 5.91 (s, 2H total), 6.65-6.84 (m) and 6.93 (m) and 6.99 (m, 3H total). MS (FAB) m/e 463 (M+H)+. Anal calcd for C25H38N2O6.1.5H2O: C, 61.33; H, 8.44; N, 5.72. Found: C, 61.28; H, 7.78; N, 5.62.


EXAMPLE 375
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(n-butyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a colorless wax. TLC (10% MeOH—CH2Cl2) Rf=0.37. 1H NMR (CDCl3, 300 MHz, rotameric forms) δ 0.71 (t, J=7 Hz) and 0.77-1.05 (m, 9H total), 1.05-1.20 (m, 2H), 1.20-1.72 (br m, 13H), 2.48-2.52 (m, 1H), 2.87-3.00 (m, 1H), 3.05-3.60 (m, 5H), 3.60-3.80 (br m, 2H), 3.88-4.05 (br m, 1H), 4.28 (br d, J=15 Hz, 1H total), 5.90 (s) and 5.92 (s, 2H total), 6.67-6.82 (m, 3H total). MS (FAB) m/e 461 (M+H)+. Anal calcd for C26H40N2O5.1.75H2O: C, 63.45; H, 8.90; N, 5.69. Found: C, 63.18; H, 8.22; N, 5.60.


EXAMPLE 376
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(2-methylbutyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a colorless glass. TLC (10% MeOH—CH2Cl2) Rf=0.49. 1H NMR (CDCl3, 300 MHz, rotameric forms and mixture of diastereomers) δ 0.69 (br t, J=7 Hz) and 0.75-2.15 (several br m, approx. 26H total), 2.48-2.65 (br m, 1H), 2.87-3.01 (br m, 1H), 3.06-3.82 (br m, 7H), 3.90-4.40 (br m, 2H), 5.90 (s) and 5.92 (s, 2H total), 6.67-6.90 (m, 3H total). MS (FAB) m/e 475 (M+H)+.


EXAMPLE 377
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(3-methylbutyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. TLC (10% MeOH—CH2Cl2) Rf=0.41. 1H NMR (CDCl3, 300 MHz, rotameric forms) δ 0.73 (t, J=7 Hz) and 0.77-1.05 (m, 12H total), 1.07-1.75 (m, approx. 14H plus H2O), 2.48-2.63 (m, 1H), 2.87-3.05 (m, 1H), 3.05-3.60 (several br m, 5H), 3.62-4.02 (br m, 2H), 4.29 (br d, J=15 Hz, 1H), 5.89 (s) and 5.93 (s, 2H total), 6.65-6.90 (m, 3H total). MS (FAB) m/e 475 (M+H)+.


EXAMPLE 378
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-((N-methyl-N-propylamino)sulfonyl)amino)ehtyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 58-59° C. 1H NMR (CDCl3, 300 MHz) δ 0.78 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.27 (sextet, J=7 Hz, 2H), 1.48 (m, 4H), 2.22-2.30 (m, 1H), 2.62 (s, 3H), 2.68-2.78 μm, 1H), 2.84-3.03 (m, 5H), 3.08-3.31 (m, 3H),3.39 (dd, J=3 Hz, J=9 Hz, 1H), 3.50-3.58 (m, 1H), 3.63 (d, J=9 Hz, 1H),3.79 (s, 3H), 5.95 (s, 2H), 3.73 (d, J=8 Hz, 1H), 6.83 (dd, J=2 Hz, J=8 Hz, 1H), 3.87 (d, J=9 Hz, 2H), 7.01 (d, J=2 Hz, 1H), 7.33 (d, J=9 Hz, 2H). MS (DCl/NH3) m/e 576 (M+H)+.


EXAMPLE 379
trans,trans-2,4-Di(3,4-difluorophenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.35 (2H, m), 7.18 (4H, m), 4.87 (1H, d, J=12), 4.00-3.60 (5H, m), 3.60-3.10 (3H, m), 3.10-2.90 (2H, m), 1.45 (2H, m), 1.29 (4H, m), 1.15 (2H, m), 0.91 (3H, t, J=9), 0.83 (3H, t, J=9). MS (DCl/NH3) m/e 509 (M+H+). Anal calcd for C27H32F4N2O3.0.75 TFA: C, 57.62; H, 5.56; N, 4.72. Found: C, 57.72; H, 5.67; N, 4.66.


EXAMPLE 380
trans,trans-4-(3,4-Dimethylphenyl)-2-(4-methoxyphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.43 (2H, d, J=9), 7.25 (1H, bs), 7.18 (1H, dd, J=8, 3), 7.11 (1H, d, J=9), 6.90 (2H, d, J=10), 5.48 (1H, d, J=12), 4.26 (1H, d, J=18), 4.16 (2H, m), 3.83 (2H, m), 3.81 (3H, s), 3.56 (1H, bd, J=18), 3.37 (1H, m), 3.20 (1H, m), 2.96 (2H, m), 2.24 (3H, s), 2.22 (3H, s), 1.47 (2H, m), 1.27 (4H, m), 1.10 (2H, m), 0.93 (3H, t, J=9), 0.81 (3H, t, J=9). MS (DCl/NH3) m/e 495 (M+H+). Anal calcd for C30H42N2O4.1.25 TFA: C, 61.26; H, 6.84; N, 4.40. Found: C, 61.16; H, 7.05; N, 4.38.


EXAMPLE 381
trans,trans-2,4-Di(3-fluoro-4-methoxyphenyl)-1-(N,N-di(n-butyl)aminocarbony)methyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.20 (2H, m), 7.17 (2H, m), 6.93 (2H, m), 5.48 (1H, m), 4.26 (1H, m), 4.16 (2H, m), 3.83 (2H, m), 3.87 (6H, s), 3.56 (1H, m), 3.37 (1H, m), 3.20 (1H, m), 2.96 (2H, m), 1.47 (2H, m), 1.27 (4H, m), 1.10 (2H, m), 0.93 (3H, t, J=9), 0.81 (3H, t, J=9). MS (DCl/NH3) m/e 533 (M+H+). Anal calcd for C29H38F2N2O5.0.75H2O: C, 63.78; H, 7.29; N, 5.13. Found: C, 63.77; H, 7.08; N, 4.99.


EXAMPLE 382
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-pentyl),N-(3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.90 (m, 3H), 0.95 (t, J=7.3 Hz, 3H), 1.13-1.37 (m, 4H), 2.30 (s, 3H), 2.34 (s (CH3 rotamer)), 2.73-2.91 (m, 2H), 3.17-3.26 (m, 2H), 3.32-3.62 (m, 2H), 3.77-4.08 (m, 1H), 3.80 (s, 3H), 4.71 (m, 1H), 5.92 (m, 2H), 6.61-6.84 (m, 6H), 7.04-7.16 (m, 3H), 7.23-7.29 (m, 2H). MS (DCl) m/e 559 (M+H+). Anal calcd for C33H38N2O6.0.35H2O.0.05 CH3CO2C2H5: C, 70.03; H, 6.92; N, 4.92. Found: C, 70.08; H, 6.82; N, 4.95.


EXAMPLE 383
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(1-naphthyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.40 (m, 2H), 1.40-1.60 (m, 2H), 2.42-2.80 (m, 2H), 2.85-4.00 (m, 6H), 3.77 (d, J=1.5 Hz, 3H), 4.05-4.20 (m, 1H), 5.94 (d, J=2 Hz, 2H), 6.6 (dd, J=9, 10 Hz, 1H), 6.70-6.85 (m, 4H), 6.95-7.02 (m, 2H), 7.17 (dd, 8H, ½), 7.25 (dd, 8H, ½), 7.38-7.60 (m, 4H), 7.87-8.00 (m, 2H). MS (E.S.I.) m/e (M+H) 581. Analysis calcd for C35H36N2O6.1.4H2O: C, 69.38; H, 6.45; N, 4.62. Found: C, 69.36; H, 6.07; N, 4.41.


EXAMPLE 384
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-phenyl-N-n-hexanesulfonylamino)ehtyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a tan solid. m.p. 67-68° C. 1H NMR (CD3OD, 300 MHz) δ 0.88 (t, J=7 Hz, 3H), 1.25-1.40 (m, 6H), 1.73 (quintet, J=7 Hz, 2H), 2.13-2.23 (m, 1H), 2.64-2.88 (m, 3H), 3.02 (sextet, J=8 Hz, 2H), 3.44-3.53 (m, 2H), 3.58 (d, J=9 Hz, 1H), 3.56-3.75 (m, 1H), 3.78 (s, 3H), 3.88-3.98 (m, 1H), 5.93 (s, 2H), 6.72 (d, J=9 Hz, 1H), 5.78-5.84 (m, 3H), 6.96 (d, J=2 Hz, 1H), 7.20 (d, J=9 Hz, 2H), 7.27-7.36 (m, 5H). MS (DCl/NH3) m/e 609 (M+H)+.


EXAMPLE 385
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 1.03 (m, 3H), 1.10-1.45 (m, 1H), 2.10-2.85 (m, 4H), 2.90-4.00 (m, 7H), 3.76 (s, 1.5H), 3.77 (s, 1.5H, isomer), 5.90 (m, 2H), 6.70-7.40 (m, 11H). MS (DCl) m/e 529 (M+H)+. Analysis calcd for C31H32N2O6.0.3H2O: C, 69.73; H, 6.15; N, 5.25. Found: C, 69.74; H, 6.10; N, 5.01.


EXAMPLE 386
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(3-butyl-hept-2-en-1-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.86 (t, J=7.0 Hz, 3H), 0.90 (t, J=7.0 Hz, 3H), 1.20-1.41 (m, 8H), 1.95-2.06 (m, 4H), 3.24 (d, J=11.0 Hz, 1H), 3.51-3.59 (m, 3H), 3.60-3.71 (m, 1H), 3.77-3.84 (m, 1H), 3.81 (s, 3H), 4.45 (d, J=11.0 Hz, 1H), 5.52 (t, J=7.4 Hz, 1H), 5.93 (s, 2H), 6.77 (d, J=8.1 Hz, 1H), 6.87 (dd, J=1.8, 8.1 Hz, 1H), 6.99 (m, 3H), 7.46 (m, 2H). MS (DCl) m/e 494 (M+H+). Anal calcd for C30H39NO5: C, 72.99; H, 7.96; N, 2.84. Found: C, 72.73; H, 7.89; N, 2.64.


EXAMPLE 387
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-hexanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 63-65° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.88 (t, J=6 Hz, 3H), 1.23-1.47 (m, 6H), 1.44 (sextet, J=7 Hz, 2H), 1.71 (quintet, J=6 Hz, 2H), 2.24-2.34 (m, 1H), 2.70-2.93 (m, 5H), 2.96-3.12 (m, 2H), 3.15-3.35 (m, 2H), 3.43. (dd, J=3 Hz, J=9 Hz, 1H), 3.52-3.59 (m, 1H), 3.66 (d, J=9 Hz, 1H), 3.87 (s, 3H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.42 (t, J=8 Hz, 1H), 6.96 (s, 1H), 7.12 (d, J=9 Hz, 1H), 7.17 (d, J=12 Hz, 1H). MS (DCl/NH3) m/e 593 (M+H)+.


EXAMPLE 388
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((3-pyridyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 2.87 (m, 2H), 3.04 (dd, J=3.2, 9.7 Hz, 1H), 3.21 (d, J=13.7 Hz, 1H), 3.51 (m, 1H), 3.76-3.85 (m, 2H), 3.79 (s, 3s), 5.90 (m, 2H), 6.71 (m, 1H), 6.79 (dd, J=1.7 Hz, 7.8H), 6.94 (m, 3H), 7.36-7.45 (m, 3H), 7.81 (m, 1H), 8.39 (m, 1H), 8.46 (dd, J=1.4 Hz, 1H). Anal calcd for C25H24N2O5.0.70 H2O.0.05 CH3CO2C2H5: C, 67.34; H, 5.79; N, 6.23. Found: C, 67.31; H, 5.63; N, 5.90.


EXAMPLE 389
trans,trans-2-(n-Hexyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CDCl3, 300 MHz) δ 0.82-1.00 (m, 9H), 1.20-1.40 (m, 12H), 1.45-1.60 (m, 4H), 1.70-1.90 (br m, 2H), 3.10-3.46 (m, 6H), 3.65 (t, J=10.8 Hz, 1H), 3.76 (t, J=11.0 Hz, 1H), 3.92-4.06 (m, 2H), 4.14-4.34 (m, 2H), 5.94 (s, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.79 (dd, J=8.1, 1.8 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS(DCl/NH3) m/e 489 (M+H)+. Anal calcd for C28H44N2O5.0.9 TFA: C, 60.53; H, 7.65; N, 4.74. Found: C, 60.62; H, 7.69; N, 4.61.


EXAMPLE 390
trans trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-pentyl)-N-(4-fluoro-3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.92 (m, 3H), 0.97 (t, J=7.1 Hz, 3H), 1.13-1.40 (m, 4H), 2.22 (m, 3H), 2.58-2.74 (m, 1H), 2.78-2.87 (m, 1H), 3.09-3.25 (m, 2H), 3.39-3.60 (m, 2H), 3.70-3.90 (m, 1H), 3.80 (s, 3H), 4.70 (m, 1H), 5.93 (m, 2H), 6.70-6.76 (m, 1H), 6.75 (dd, J=1.4, 8.1 Hz, 1H), 6.80-6.94 (m, 4H), 6.96-7.13 (m, 4H). MS (DCl) m/e 577 (M+H+). Anal calcd for C33H37FN2O6.0.25H2O: C, 68.20; H, 6.50; N, 4.82. Found: C, 68.21; H, 6.46; N, 4.74.


EXAMPLE 391
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((2-pyridyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 2.97 (dd, J=7.9, 9.7 Hz, 1H), 3.04 (t, J=9.6 Hz, 1H), 3.18 (dd, J=4.4 Hz, 9.9H), 3.47 (d, J=14.0 Hz, 1H), 3.59 (m, 1H), 3.78 (s, 3H), 3.96 (d, J=9.9 Hz, 1H), 3.97 (d, J=13.6 Hz, 1H), 5.90 (m, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.83 (dd, J=1.7, 7.9 Hz, 1H), 6.92 (m, 2H), 6.96 (d, J=1.8 Hz, 1H), 7.28 (m, 1H), 7.44 (m, 2H), 7.53 (d, J=8.1 Hz, 1H), 7.80 (dt, J=1.8, 7.7 Hz, 1H), 8.42 (m, 1H). MS (DCl) m/e 433 (M+H+). Anal calcd for C25H24N2O5 0.35H2O: C, 68.43; H, 5.67; N, 6.38. Found: C, 68.44; H, 5.61; N, 6.24.


EXAMPLE 392
trans,trans-2-(3-Phenylpropyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CDCl3, 300 MHz) δ 0.89-0.97 (m, 6H), 1.22-1.36 (m, 4H), 1.41-1.55 (m, 4H), 1.63-1.95 (m, 4H), 2.62 (dt, J=7.2, 2.1 Hz, 2H), 3.05-3.44 (m, 7H), 3.53-3.60 (m, 2H), 3.65-3.76 (m, 1H), 3.82-3.90 (m, 1H), 3.96-4.10 (m, 1H), 5.92 (s, 2H), 6.71 (d, J=8.1 Hz, 1H), 6.77 (dd, J=8.1, 1.5 Hz, 1H), 6.86 (d, J=1.2 Hz, 1H), 7.10-7.28 (m, 5H). MS(DCl/NH3) m/e 523 (M+H)+. Anal calcd for C31H42N2O5.0.6 TFA: C, 65.43; H, 7.26; N, 4.74. Found: C, 65.28; H, 7.29; N, 4.50.


EXAMPLE 393
trans-trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 115-117° C. 1H NMR (300 MHz, CDCl3) δ 0.82 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.05-1.5 (m, 8H), 2.85 (d, J=13 Hz, 1H), 2.90-3.17 (m, 5H), 3.20-3.35 (m, 1H), 3.35-3.50 (m, 3H), 3.55-3.65 (m, 1H), 3.84 (d, J=10 Hz, 1H), 3.87 (s, 3H), 3.92 (s, 3H), 5.94 (dd, J=4 Hz, 2 Hz, 2H), 6.62 (s, 1H), 6.70 (s, 1H), 6.90 (t, J=8 Hz, 1H), 7.05-7.20 (m, 2H).


EXAMPLE 394
trans-trans-2-(1,4-Benzodioxan-6-yl)-4-(7-methoxy-1,3-Benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 107-110° C. 1H NMR (300 MHz, CDCl3) δ 0.82 (t, J=7 Hz, 3H), 0.88 (t, J=7 Hz, 3H), 1.05-1.50 (m, 8H), 2.75 (d, J=13 Hz, 1H), 2.90-3.12 (m, 4H), 3.32-3.60 (m, 5H), 3.69 (d, J=8 Hz, 1H), 3.90 (s, 3H), 4.23 (s, 4H), 5.95 (dd, J=4 Hz, 2 Hz, 2H), 6.62 (s, 1H), 6.70 (s, 1H), 6.78-6.93 (m, 3H).


EXAMPLE 395
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(3-butyl-2-fluoro-hept-2-en-1-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.84 (t, J=7.0 Hz, 3H), 0.88 (t, J=7.0 Hz, 3H), 1.16-1.37 (m, 8H), 1.83 (t, J=8.5 Hz, 2H), 2.03-2.08 (m, 2H), 2.76-2.92 (m, 2H), 3.02 (t, J=9.3 Hz, 1H), 3.32-3.42 (m, 2H), 3.50 (m, 1H), 3.71 (d, J=9.2 Hz, 1H), 3.78 (s, 3H), 5.91 (m, 2H), 6.72 (d, J=7.8 Hz, 1H), 6.83 (dd, J=1.7, 8.1 Hz, 1H), 6.90 (m, 2H), 7.02 (d, J=1.7 Hz, 1H), 7.34 (m, 2H). MS (DCl) m/e 512 (M+H+). Anal calcd for C30H38FNO5: C, 70.43; H, 7.49; N, 2.74. Found: C, 70.58; H, 7.54; N, 2.66.


EXAMPLE 396
trans,trans-2-(3-Fluoro-4-ethoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-n-pentanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 65-66° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.26-1.36 (m, 4H), 1.41-1.52 (m, 5H), 1.73 (quintet, J=7 Hz, 2H), 2.23-2.33 (m, 1H), 2.69-2.96 (m, 5H), 2.97-3.12 (m, 2H), 3.16-3.37 (m, 2H), 3.43 (d, J=9 Hz, 1H), 3.52-3.59 (m, 1H), 3.66 (d, J=9 Hz, 1H), 4.08 (q, J=7 Hz, 2H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (d, J=8 Hz, 1H), 6.92 (t, J=8 Hz, 1H), 6.97 (s, 1H), 7.07 (d, J=8 Hz, 1H), 7.15 (d, J=12 Hz, 1H). MS (DCl/NH3) m/e 593 (M+H)+.


EXAMPLE 397
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-Benzodioxol-5-yl)-1-[(N-butyl-N-propylamino)carbonylmethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as a white solid. m.p. 118-120° C. 1H NMR (300 MHz, CDCl3) δ 0.70-0.90 (4 triplets, J=7 Hz), 1.05-1.55 (m, 8H), 2.80-3.50 (m, 9H), 3.55-3.65 (m, 1H), 3.82 (d, J=10 Hz, 1H), 3.85 (s, 3H), 3.92 (s, 3H), 5.96 (s, 2H), 6.62 (s, 1H), 6.70 (s, 1H), 6.90 (t, J=8 Hz, 1H), 7.08-7.22 (m, 2H).


EXAMPLE 398
trans,trans-4-(1,3-benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(4-chlorophenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.50 (m, 4H), 2.66-4.00 (m, 9H), 3.81 (s, 3H), 5.95 (s, 2H), 6.77 (d, J=7 Hz, 1H), 6.85 (d, J=8 Hz, 3H), 7.05 (m, 5H), 7.33-7.42 (m, 2H). MS (C.I,) m/e 565 (M+H). Analysis calcd for C31H33N2O6Cl.0.25H3PO4: C, 63.16; H, 5.77; N, 4.75. Found: C, 63.14; H, 5.59; N, 4.53.


EXAMPLE 399
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(4-methyl-1,2,3,4-tetrahydroquinolin-1-yl)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 1.27 (d, J=7 Hz, 1.5H), 1.28 (d, 7H, 1.5-diastereomer), 1.39-1.55 (m, 1H), 2.02-2.15 (m, 1H), 2.60-3.25 (m, 5H), 3.33-4.00 (m, 5H), 3.78 (s, 3H), 5.92 (d, J=3 Hz, 2H), 6.73 (dd, J=8 Hz, 1H), 6.75-6.90 (m, 3H), 6.91-7.35 (m, 7H). MS (DCl) m/e 529 (M+H)+. Analysis calcd for C31H32N2O6: C, 70.44; H, 6.10; N, 5.30. Found: C, 70.16; H, 6.04; N, 5.04.


EXAMPLE 400
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-(piperidin-1-yl)ethanesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 95-96° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 1.43-1.55 (m, 4H), 1.63-1.72 (m, 4H), 2.29-2.38 (m, 1H), 2.64-2.78 (m, 5H), 2.87 (t, J=8 Hz, 1H), 2.95-3.04 (m, 5H), 3.20-3.30 (m, 1H), 3.32-3.43 (m, 4H), 3.54-3.63 (m, 1H), 3.78 (d, J=8 Hz, 1H), 3.87 (s, 3H), 5.92 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.78 (dd, J=2 Hz, J=8 Hz, 1H), 6.88 (t, J=8 Hz, 1H), 6.94 (d, J=2 Hz, 1H), 7.08-7.20 (m, 2H). MS (DCl/NH3) m/e 620 (M+H)+.


EXAMPLE 401
trans,trans-2-(n-Heptyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CDCl3, 300 MHz) δ 0.83-0.98 (s, 9H), 1.18-1.40 (m, 14H), 1.44-1.60 (m, 4H), 1.72-1.96 (br m, 2H), 3.12-3.45 (m, 6H), 3.65 (t, J=10.5 Hz, 1H), 3.76 (t, J=11.2 1H), 3.90-4.06 (m, 2H), 4.13-4.33 (m, 2H), 5.93 (s, 2H), 6.73 (d, J=7.8 Hz, 1H), 6.79 (dd, J=7.8, 1.7 Hz, 1H), 6.87 (d, J=1.7 Hz, 1H). MS(DCl/NH3) m/e 503 (M+H)+. Anal calcd for C29H46N2O5 0.75 TFA: C, 62.28; H, 8.01; N, 4.76. Found: C, 62.20; H, 7.99; N, 4.50.


EXAMPLE 402
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(3-methyl-1,2,3,4-tetrahydroquinolin-1-yl)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.99 (d, 1.5H), 1.03 (d, J=6 Hz, 1.5H, second diastereomer), 2.60-4.00m (12), 3.78 (s, 1.5H), 3.79 (s, 1.5H, second diastereomer), 5.92 (s, 1H), 5.93 (s, 1H, diastereomer), 6.65-7.40 (m, 11H). MS (DCl) m/e 529 (M+H)+. Analysis calcd for C31H32N2O6.0.8H2O: C, 68.57; H, 6.24; N, 5.16. Found: C, 70.44; H, 6.10; N, 5.30.


EXAMPLE 403
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(4-fluorophenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.2-1.47 (m, 4H), 2.7 (d, J=12 Hz, 1H), 2.80 (t, J=9 Hz, 1H), 3.09 (t, J=9 Hz, 1H), 3.25 (d, J=15 Hz, 1H), 3.40-3.47 (m, 1H), 3.49-3.65 (m, 3H), 3.75 (d, J=12 Hz, 1H), 3.80 (s, 3H), 5.94 (s, 2H), 6.72-6.86 (m, 4H), 7.00-7.15 (m, 7H). MS (DCl) m/e 549 (M+H)+. Analysis calcd for C31H33N2O6F.0.4H2O: C, 66.99; H, 6.13; N, 5.04. Found: C, 66.99; H, 5.94; N, 4.99.


EXAMPLE 404
trans,trans-1-(N-Butyl-N-(3-methylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(5-benzofuranyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.66 (1H, bs), 7.60 (1H, d, J=3 Hz), 7.45 (2H, s), 7.15 (4H, m), 6.75 (5H, m), 3.96 (1H, d, J=10 Hz), 3.78 (3H, s), 3.74 (1H, m), 3.59 (3H, m), 3.21 (1H, t, J=9 Hz), 3.19 (1H, d, J=16 Hz), 2.92 (1H, t, J=9 Hz), 2.70 (1H, d, J=16 Hz), 2.29 (3H, s), 1.41 (2H, m), 1.24 (2H, m), 0.85 (3H, t, J=7 Hz). MS (DCl, NH3) m/e 541 (M+H+). Anal. calcd for C33H34N2O.1 H2O: C, 71.21; H, 6.52; N 5.03. Found: C, 71.31; H, 6.30; N, 4.98.


EXAMPLE 405
trans,trans-1-(N-Butyl-N-(3-methylphenyl)aminocarbonylmethyl)-2-(4-fluorophenyl)-4-(5-benzofuranyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.67 (1H, bs), 7.60 (1H, d, J=3 Hz), 7.45 (2H, m), 7.18 (3H, m), 7.12 (1H, d, J=7 Hz), 6.93 (2H, m), 6.76 (1H, d, J=3 Hz), 6.70 (2H, bd), 4.02 (1H, m), 3.77 (1H, m), 3.59 (3H, m), 3.29 (1H, m), 3.19 (1H, m), 2.94 (1H, m), 2.71 (1H, m), 2.30 (3H, s), 1.45 (2H, m), 1.26 (2H, sext, J=7 Hz), 0.84 (3H, t, J=7 Hz). MS (DCl, NH3) m/e 529 (M+H+). Anal. calcd for C33H34N2O5.0.2 HOAc: C, 71.98; H, 6.30; N 5.18. Found: C, 71.68; H, 5.89; N, 5.25.


EXAMPLE 406
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-((4-methoxyphenyl)-1-((N,N-(di-(3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 2.27 (s, 6H), 2.81 (dd, J=8.1, 9.5 Hz, 1H), 2.98 (d, J=15.3 Hz, 1H), 3.20 (t, J=16.6 Hz, 1H), 3.47-3.60 (m, 3H), 3.80 (s, 3H), 3.85 (d, J=9.5 Hz, 1H), 5.91 (s, 2H), 6.73 (d, J=7.8 Hz, 1H), 6.85 (m, 3H), 6.95 (m, 4H), 7.05 (d, J=1.7 Hz, 1H), 7.06-7.24 (m, 6H). MS (DCl) m/e 579 (M+H+). Anal calcd for C35H34N2O6.0.15H2O.0.20 CH3CO2C2H5: C, 71.79; H, 6.04; N, 4.68. Found: C, 71.81; H, 5.79; N, 4.51.


EXAMPLE 407
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ 7.73 (2H, m), 7.40-7.10 (4H, m), 6.92 (2H, m), 6.72 (2H, d, J=9), 6.63 (1H, m), 5.40 (1H, m), 4.55 (2H, t, J=9), 4.30-4.10 (3H, m), 3.84 (3H, s), 3.82 (1H, m), 3.65 (1H, m), 3.39 (1H, m), 3.21 (2H, t, J=9), 3.10-2.90 (2H, m), 2.26 (3H, s), 1.55 (2H, m), 1.45 (2H, m), 0.92 (3H, t, J=9). MS (DCl/NH3) m/e 543 (M+H+). Anal calcd for C33H38N2O5.0.65H2O: C, 71.50; H, 7.15; N, 5.05. Found: C, 71.47; H, 6.96; N, 4.83.


EXAMPLE 408
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-{2-(N-propyl-N-[2-(N,N-dimethylamino)]ethanesulfonylamino)ethyl}pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 81-82° C. 1H NMR (CDCl3, 300 MHz) δ 0.80 (t, J=7 Hz, 3H), 1.43 (sextet, J=7 Hz, 2H), 2.15-2.24 (m, 1H), 2.36 (s, 6H), 2.66-2.76 (m, 1H), 2.83-3.04 (m, 6H), 3.18-3.41 (m, 5H), 3.55-3.63 (m, 1H), 3.72 (d, J=8 Hz, 1H), 3.85 (s, 3H), 5.90 (d, J=6 Hz, 2H), 6.67 (d, J=8 Hz, 1H), 6.78 (dd, J=2 Hz, J=8 Hz, 1H), 6.84 (t, J=8 Hz, 1H), 7.94 (d, J=2 Hz, 1H), 7.09 (d, J=8 Hz, 1H), 7.20 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 580 (M+H)+.


EXAMPLE 409
trans,trans-1-(N,N-Dibutylaminocarbonylmethyl)-2-(4-fluorophenyl)-4-(5-benzofuranyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.88 (1H, bs), 7.80 (2H, m), 7.61 (1H, d, J=3 Hz), 7.55 (1H, bd, J=8 Hz), 7.46 (1H, d, J=8 Hz), 7.07 (2H, t, J=8 Hz), 6.76 (1H, d, J=3 Hz), 5.53 (1H, bd, J=11 Hz), 4.18 (2H, m), 3.91 (3H, m), 3.55 (1H, d, J=16 Hz), 3.30 (3H, m), 3.12 (1H, dd, J=10&9 Hz), 2.95 (1H, m), 1.51 (2H, m), 1.31 (4H, m), 1.12 (2H, m), 0.92 (3H, m), 0.83 (3H, t, J=7 Hz). MS m/e (DCl, NH3) 595 (M+H+).


EXAMPLE 410
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-butyl-N-(3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.35 (2H, m), 7.20-7.00 (7H, m), 6.70 (2H, d, J=9), 5.38 (1H, m), 4.55 (2H, t, J=9), 4.05 (1H, m), 3.64 (2H, m), 3.45 (1H, m), 3.21 (2H, t, J=9), 2.95 (1H, m), 2.75 (1H, m), 2.63 (2H, q, J=8), 2.38 (2H, m), 2.27 (3H, s), 1.43 (2H, m), 1.30 (2H, m), 1.22 (3H, t, J=9), 0.89 (3H, t, J=9). MS (DCl/NH3) m/e 541 (M+H+). Anal calcd for C34H40N2O4.1.6 AcOH: C, 70.17; H, 7.34; N, 4.40. Found: C, 70.11; H, 7.06; N, 4.80.


EXAMPLE 411
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-fluorophenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.40 (2H, m), 7.28 (1H, bs), 7.18 (1H, dd, J=8, 3), 7.00 (2H, t, J=9), 6.72 (1H, d, J=9), 4.53 (2H, t, J=9), 3.92 (1H, m), 3.65 (1H, m), 3.42 (3H, m), 3.19 (2H, t, J=9), 3.15-2.90 (6H, m), 1.43 (3H, m), 1.25 (3H, m), 1.10 (2H, m), 0.90 (3H, t, J=8), 0.83 (3H, t, J=8). MS (DCl/NH3) m/e 497 (M+H+). Anal calcd for C29H37FN2O4.0.25H2O: C, 69.51; H, 7.54; N, 5.59. Found: C, 69.45; H, 7.60; N, 5.44.


EXAMPLE 412
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-fluorophenyl)-1-(((N-butyl-N-(3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.28 (1H, bs), 7.25-7.00 (5H, m), 6.91 (2H, m), 6.72 (3H, d, J=9), 4.54 (2H, t, J=9), 4.00 (1H, m), 3.60 (3H, m), 3.45 (1H, m), 3.19 (2H, t, J=9), 3.11 (2H, m), 2.84 (1H, m), 2.67 (1H, bd, J=18), 2.26 (3H, s), 1.42 (2H, m), 1.25 (2H, m), 0.88 (3H, t, J=8). MS (DCl/NH3) m/e 531 (M+H+). Anal calcd for C32H35FN2O4.0.25H2O: C, 71.82; H, 6.69; N, 5.23. Found: C, 71.66; H, 6.55; N, 5.03.


EXAMPLE 413
trans,trans-4-(Indan-5-yl)-2-(4-methoxyphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.32 (3H, m), 7.18 (2H, m), 6.85 (2H, d, J=9), 3.83 (1H, m), 3.79 (3H, s), 3.67 (1H, m), 3.50-3.20 (4H, m), 3.20-2.92 (4H, m), 2.87 (5H, m), 2.79 (1H, bd, J=15), 2.06 (2H, m), 1.43 (2H, m), 1.27 (4H, m), 1.08 (2H, m), 0.88 (3H, t, J=8), 0.82 (3H, t, J=8). MS (DCl/NH3) m/e 507 (M+H+). Anal calcd for C31H42N2O4: C, 73.49; H, 8.36; N, 5.53. Found: C, 73.18; H, 8.29; N, 5.17.


EXAMPLE 414
trans,trans-2-(4-Methoxyphenyl)-4-(3,4-difluorophenyl)-1-[(N-butyl-N-(3-methylphenyl)amino)carbonylmethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.86 (t, J=7 Hz, 3H), 1.10-1.35 (m, 2H), 1.35-1.52 (m, 2H), 2.29 (s, 3H), 2.63 (d, J=13 Hz, 1H), 2.76 (t, J=7 Hz, 1H), 3.06-3.20 (m, 2H), 3.42-3.53 (m, 1H), 3.50-3.64 (m, 3H), 3.80 (s, 3H), 3.86 (d, J=9 Hz, 1H), 6.66-6.82 (m, 4H), 7.02-7.22 (m, 6H), 7.30-7.40 (m, 1H).


EXAMPLE 415
trans,trans-1-(N-Butyl-N-(3-chlorophenyl)aminocarbonylmethyl)-2-(4-fluorophenyl)-4-(5-benzofuranyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.64 (1H, d, J=2 Hz), 7.61 (1H, d, J=3 Hz), 7.47 (1H, d, J=8 Hz), 7.41 (1H, dd, J=8&3 Hz), 7.30 (1H, dt, J=8&2 Hz), 7.21 (1H, d, J=8 Hz), 7.19 (2H, m), 7.00 (1H, bs), 6.94 (2H, t, J=8 Hz), 6.83 (1H, bd, J=8 Hz), 6.74 (1H, dd, J=2&1 Hz), 3.96 (1H, d, J=110 Hz), 3.75 (1H, ddd, 6, 5&3 Hz), 3.59 (3H, m), 3.23 (1H, t, J=10 Hz), 3.18 (1H, d, J=16 Hz), 2.92 (1H, dd, J=10&9 Hz), 2.69 (1H, d, J=16 Hz), 1.41 (2H, m), 1.23 (2H, m), 0.87 (3H, t, J=7 Hz). MS (DCl, NH3) 549, 551 (M+H+). Anal. calcd for C31H30ClFN2O: C, 67.82; H, 5.51; N, 5.10. Found: C, 67.43; H, 5.33; N, 4.78.


EXAMPLE 416
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-propyl-N-(4-phenoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 7.40-7.20 (5H, m), 7.13 (2H, m), 6.98 (2H, m), 6.93-6.60 (7H, m), 5.93 (1H, d. J=2), 5.88 (5.85) (1H, d, J=2), 4.90 (4.50) (1H, d, J=15), 4.10 (4.25) (1H, d, J=15), 3.77 (3.73) (3H, s), 3.72 (1H, m), 3.60 (1H, m), 3.53-3.20 (3H, m), 3.15-2.75 (4H, m), 1.60-1.20 (2H, m), 0.83 (0.64) (3H, t, J=8). MS (DCl/NH3) m/e 623 (M+H+). Anal calcd for C37H38N2O7.0.25H2O: C, 70.85; H, 6.19; N, 4.47. Found: C, 70.68; H, 6.10; N, 4.42.


EXAMPLE 417
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-(2-pentyl)-N-(4-fluoro-3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.30 (1H, bs), 7.20-7.00 (5H, m), 6.87 (1H, m), 6.73 (2H, d, J=9), 6.57 (1H, m), 4.81 (1H, m), 4.55 (2H, t, J=9), 3.92 (1H, bd, J=11), 3.60 (1H, m), 3.43 (1H, m), 3.18 (2H, t, J=9), 3.17 (1H, m), 3.06 (1H, dd, J=15, 6), 2.88 (1H, dd, J=11, 9), 2.61 (2H, q, J=8), 2.59 (1H, m), 2.18 (3H, m), 1.40-1.10 (4H, m), 1.22 (3H, t, J=9), 1.00-0.80 (6H, m). MS (DCl/NH3) m/e 573 (M+H+). Anal calcd for C35H41FN2O4.0.75H2O: C, 71.71; H, 7.31; N, 4.78. Found: C, 71.56; H, 7.33; N, 4.56.


EXAMPLE 418
trans,trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-[2-pyrimidinyl]amino)ethyl]pyrrolidine-3-carboxylic acid

Ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propylamino)propyl]pyrrolidine-3-carboxylate, prepared by the procedures of Example 61B (300 mg), 138 mg of 2-bromopyrimidine, and 150 mg of diisopropylethylamine were heated at 95° C. for 15 hours in 2 mL of acetonitrile. The resulting intermediate trans-trans ethyl ester was isolated by chromatography on silica gel eluting with 5-10% ETOAc in CH2Cl2 and hydrolyzed with NaOH in ethanol/water to give 95 mg of the title compound. 1H NMR (300 MHz, CDCl3) δ 0.82 (t, J=7 Hz, 3H), 1.50 (sextet, J=7 Hz, 2H), 2.15-2.30 (m, 1H), 2.75-2.97 (m, 3H), 3.40-3.55 (m, 4H), 3.60-3.70 (m, 3H), 3.75 (s, 3H), 5.95 (s, 2H), 6.34 (t, J=4 Hz, 1H), 6.65 (d, J=8 Hz, 1H), 6.75-6.82 (m, 1H), 6.78 (d, J=9 Hz, 2H), 6.96 (d, J=2 Hz, 1H), 7.27 (d, J=9 Hz, 2H), 8.20 (d, J=4 Hz, 2H).


EXAMPLE 419
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(3-butyl-2-chloro-hept-2-en-1-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.84 (t, J=6.8 Hz, 3H), 0.88 (t, J=6.7 Hz, 3H), 1.19-1.39 (m, 8H), 2.05-2.09 (m, 2H), 2.17-2.23 (m, 2H), 2.78 (dd, J=6.6 9.2 Hz, 1H), 2.95 (t, J=9.2 Hz, 1H), 3.32-3.37 (m, 2H), 3.49 (m, 1H), 3.70 (d, J=9.2 Hz, 1H), 3.77 (s, 3H), 5.91 (m, 2H), 6.72 (d, J=8.1 Hz, 1H), 6.85 (dd, J=1.9, 8.1 Hz, 1H), 6.89 (m, 2H), 7.08 (d, J=1.5 Hz, 1H), 7.36 (m, 2H). MS (DCl) m/e 528 (M+H+). Anal calcd for C30H38ClNO5.0.25H2O: C, 67.66; H, 7.29; N, 2.63. Found: C, 67.62; H, 7.18; N, 2.40.


EXAMPLE 420
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-methoxyphenyl)-1-(((N-(2-pentyl)-N-(4-fluoro-3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.28 (1H, bs), 7.15 (3H, m), 6.90 (1H, m), 6.77 (2H, dd, J=9, 3), 6.71 (2H, d, J=9), 6.56 (1H, m), 4.80 (1H, m), 4.53 (2H, t, J=9), 3.92 (1H, m), 3.79 (3H, s), 3.60 (1H, m), 3.45 (1H, m), 3.19 (2H, t, J=9), 3.18 (1H, m), 3.03 (1H, dd, J=15, 6), 2.85 (1H, m), 2.55 (1H, m), 2.18 (3H, m), 1.40-1.05 (4H, m), 1.00-0.80 (6H, m). MS (DCl/NH3) m/e 575 (M+H+). Anal calcd for C34H39FN2O5.0.35H2O: C, 70.29; H, 6.89; N, 4.82. Found: C, 70.37; H, 6.92; N, 4.30.


EXAMPLE 421
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(3-chlorophenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.29 (1H, d, J=3), 7.25-7.05 (5H, m), 6.98 (1H, bs), 6.80 (2H, m), 6.72 (2H, d, J=9), 4.53 (2H, t, J=9), 3.85 (1H, d, J=10), 3.79 (3H, s), 3.58 (3H, m), 3.42 (1H, dd, J=10, 6), 3.18 (4H, m), 2.87 (1H, m), 2.66 (1H, m), 1.40 (2H, m), 1.25 (2H, m), 0.86 (3H, t, J=9). MS (DCl/NH3) m/e 563 (M+H+). Anal calcd for C32H35ClN2O5.0.25H2O: C, 67.72; H, 6.30; N, 4.94. Found: C, 67.72; H, 6.21; N, 4.55.


EXAMPLE 422
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(5-ethylfuran-2-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.77 (1H, bs), 7.11 (1H, d, J=3), 7.02 (1H, dd, J=9, 3), 6.82 (1H, d, J=9), 6.52 (1H, d, J=4), 6.08 (1H, d, J=4), 5.98 (2H, s), 5.80 (1H, d, J=6), 4.70 (1H, bd, J=15), 4.37 (2H, m), 3.70 (2H, m), 3.39 (2H, m), 3.20 (1H, m), 3.10-2.82 (2H, m), 2.76 (2H, q, J=8), 1.45 (2H, m), 1.32 (3H, t, J=9), 1.30-1.10 (6H, m), 0.87 (3H, t, J=9), 0.85 (3H, t, J=9). MS (DCl/NH3) m/e 499 (M+H+). Anal calcd for C28H38N2O6.1.75HCl: C, 59.80; H, 7.12; N, 4.98. Found: C, 59.51; H, 6.96; N, 4.88.


EXAMPLE 423
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-fluorophenyl)-1-(((N-(2-pentyl)-N-(4-fluoro-3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.30-7.10 (4H, m), 6.92 (3H, m), 6.73 (2H, d, J=9), 6.59 (1H, m), 4.80 (1H, m), 4.53 (2H, t, J=9), 4.00 (1H, bd, J=10), 3.62 (1H, m), 3.45 (1H, m), 3.22 (1H, m), 3.21 (2H, t, J=9), 3.02 (1H, dd, J=15, 6), 3.85 (1H, t, J=10), 2.58 (1H, bd, J=18), 2.20 (3H, bs), 1.40-1.30 (3H, m), 1.15 (1H, m), 1.00-0.80 (6H, m). MS (DCl/NH3) m/e 563 (M+H+). Anal. calcd for C33H36F2N2O4: C, 70.44; H, 6.45; N, 4.98. Found: C, 70.06; H, 6.47; N, 4.71.


EXAMPLE 424
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-fluorophenyl)-1-(((N-butyl-N-(3-chlorophenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.30 (2H, m), 7.25-7.10 (4H, m), 6.95 (3H, m), 6.82 (1H, bd, J=9), 6.73 (1H, d, J=9), 4.55 (2H, t, J=9), 3.92 (1H, bd, J=11), 3.60 (3H, m), 3.43 (1H, dd, J=9, 6), 3.21 (2H, t, J=9), 3.16 (2H, m), 2.87 (1H, m), 2.69 (1H, m), 1.42 (2H, m), 1.26 (2H, m), 0.87 (3H, t, J=9). MS (DCl/NH3) m/e 551 (M+H+). Anal calcd for C31H32ClFN2O4 0.25H2O: C, 67.02; H, 5.90; N, 5.04. Found: C, 66.98; H, 5.71; N, 4.76.


EXAMPLE 425
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-butyl-N-(3-chlorophenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.30 (1H, m), 7.21 (1H, d, J=9), 7.15 (2H, m), 7.09 (4H, bs), 6.96 (1H, bs), 6.80 (1H, bd, J=9), 6.73 (1H, d, J=9), 4.54 (2H, t, J=9), 3.89 (1H, bd, J=11), 3.60 (3H, m), 3.43 (1H, m), 3.22 (2H, t, J=9), 3.18 (2H, m), 2.92 (1H, m) 2.72 (1H, m), 2.62 (2H, q, J=8), 1.41 (2H, m), 1.26 (2H, m), 1.23 (3H, t, J=9), 0.87 (3H, t, J=9). MS (DCl/NH3) m/e 561 (M+H+). Anal calcd for C33H37ClN2O4 0.25H2O: C, 70.08; H, 6.68; N, 4.95. Found: C, 70.13; H, 6.59; N, 4.65.


EXAMPLE 426
trans,trans-1-(N-Butyl-N-(3-chlorophenyl)carboxamidomethyl)-2-(4-methoxyphenyl)-4-(5-benzofuranyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 7.67 (1H, bs), 7.60 (1H, d, J=3 Hz), 7.48 (1H, d, J=8 Hz), 7.42 (1H, dd, J=8&3 Hz), 7.29 (1H, dt, J=8&3 Hz), 7.21 (1H, d, J=8 Hz), 7.14 (2H, m), 6.99 (1H, bs), 6.76 (4H, m), 3.88 (1H, d, J=10 Hz), 3.75 (1H, ddd, J=6, 5&3 Hz), 3.59 (2H, m), 3.53 (1H, dd, J=10&3 Hz), 3.22 (1H, t, J=9 Hz), 3.19 (1H, m), 2.96 (1H, m), 2.70 (1H, d, J=16 Hz), 1.42 (2H, m), 1.26 (2H, m), 0.87 (3H, t, J=7 Hz). MS (DCl, NH3) m/e 563, 561 (M+H+). Anal. calcd for C32H33ClN2O5.0.5H2O: C, 67.42; H, 6.01; N, 4.91. Found: C, 67.45; H, 5.82; N, 4.68.


EXAMPLE 427
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-cyclohexyl-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) (rotamer) δ 0.78 (0.86) (t, 3H, J=7 Hz), 0.90-1.90 (envelope, 14H), 2.69 (2.80) (d, 1H, J=12 Hz), 2.9-3.8 (envelope, 10H), 3.78 (3.80) (s, 3H), 5.92 (s, 2H), 6.72 (d, 1H, J=9 Hz) 6.86 (m, 3H) 7.03 (d, 1H, J=6 Hz), 7.34 (m, 2H). MS (DCl/NH3) m/e 537 (M+H)+. Anal. calc'd for C31H40N2O6.1 H2O: C, 67.13; H, 7.63; N, 5.05. Found: C, 67.09; H, 7.34; N, 4.92.


EXAMPLE 428
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-ethylphenyl)-1-(((N-(3-methylphenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.86 (t, 3H, J=7 Hz), 1.22 (t, 3H, J=7 Hz), 1.25 (m, 2H), 1.43 (m, 2H), 2.26 (s, 3H), 2.6 (q, 2H, J=7 Hz), 2.68 (d, 1H, J=12 Hz), 2.86 (t, 1H, J=8 Hz), 3.19 (q, 2H, J=7 Hz), 3.44 (dd, 1H, J=3 Hz, 1 Hz), 3.59 (m, 3H), 3.94 (d, 1H, 9 Hz), 5.92 (s, 2H), 6.75 (m, 3H), 6.86 (dd, 1H, J=2 Hz, 8 Hz), 7.08 (m, 6H), 7.17 (t, 1H, J=8 Hz). MS (DCl/NH3) m/e 543 (M+H)+. Anal. calc'd for C33H38N2O5.0.60H2O: C, 71.61; H, 7.14; N, 5.06. Found: C, 71.57; H, 6.80; N, 4.87.


EXAMPLE 429
trans,trans-4-(Benzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-(3-methylphenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.90 (t, 3H, J=7 Hz), 1.30 (t, 3H, J=7 Hz), 1.31 (m, 2H), 1.43 (m, 2H), 2.27 (s, 3H), 2.73 (q, 2H, J=7 Hz), 3.15 (d, 2H, J=17 Hz), 3.61 (t, 2H, J=8 Hz), 3.82 (m, 2H), 4.00 (t, 1H, 12 Hz), 4.26 (m, 2H), 5.53 (br d, 1H), 6.54 (br s, 2H), 6.76 (d, 1H, J=2 Hz), 7.14 (m, 3H), 7.28 (s, 1H), 7.40 (m, 3H), 7.48 (d, 1H, J=8 Hz), 7.63 (d, 1H, J=2 Hz), 7.73 (s, 1H). HRMS. calc'd for C34H39N2O4 (M+H)+: 539.2910. Found: 539.2891.


EXAMPLE 430
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-ethylphenyl)-1-(((N-(3-methylphenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.87 (t, 3H, J=7 Hz), 1.22 (t, 3H, J=7 Hz), 1.24 (m, 2H), 1.42 (m, 2H), 2.30 (s, 3H), 2.61 (q, 2H, J=7 Hz), 2.67 (d, 1H, J=14 Hz), 2.86 (t, 1H, J=8 Hz), 3.18 (q, 2H, J=7 Hz), 3.41 (dd, 1H, J=4, 10 Hz), 3.59 (m, 3H), 3.93 (d, 1H, J=10 Hz), 4.25 (m, 4H), 6.74 (brs, 2H), 6.80 (d, 1H, J=8 Hz), 6.93 (dd, 1H, J=2 Hz, 8 Hz), 6.99 (d, 1H, J=2 Hz), 7.07 (m, 5H), 7.17 (t, 1H, J=8 Hz). MS (DCl/NH3) m/e 557 (M+H)+. Anal. calc'd for C34H40N2O5.0.40H2O: C, 72.42; H, 7.29; N, 4.97. Found: C, 72.49; H, 7.16; N, 4.62.


EXAMPLE 431
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-2-mesitylenesulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 80-82° C. 1H NMR (CDCl3, 300 MHz) δ 0.69 (t, J=7 Hz, 3H), 1.37 (sextet, J=7 Hz, 2H), 2.09-2.17 (m, 1H), 2.24 (s, 3H), 2.53 (s, 6H), 2.54-2.64 (m, 1H), 2.73-2.86 (m, 2H), 3.02 (sextet, J=7 Hz, 2H), 3.13-3.28 (m, 3H)), 3.44-3.53 (m, 1H), 3.57 (d, J=9 Hz, 1H), 3.89 (s, 3H), 5.94 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.78 (dd, J=2 Hz, J=8 Hz, 1H), 6.85 (s, 2H), 6.92 (d, J=8 Hz, 1H), 9.94 (d, J=2 Hz, 1H), 7.06 (d, J=8 Hz, 1H), 7.13 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 627 (M+H)+.


EXAMPLE 432
trans,trans-2-(4-Methoxyphenyl)-4-(3,4-difluorophenyl)-1-[(N-butyl-N-(3-chlorophenyl)amino)carbonylmethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.86 (t, J=7 Hz, 3H), 1.18-1.32 (m, 2H), 1.35-1.48 (m, 2H), 2.64 (d, J=13 Hz, 1H), 2.71 (t, J=7 Hz, 1H), 3.08-3.18 (m, 2H), 3.42-3.48 (m, 1H), 3.53-3.64 (m, 3H), 3.77 (s, 3H), 3.80 (d, J=9 Hz, 1H), 6.73-6.85 (m, 3H), 6.94 (s, 1H), 7.04-7.40 (m, 7H).


EXAMPLE 433
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-propyl-N-(3-chloropropanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.80 (t, 3H, J=7), 1.47 (bd hex, 2H, J=8), 2.15 (pen, 2H, J=7), 2.32 (m, 1H), 2.7-3.2 (m, 9H), 3.46 (dd, 1H, J=4, 10), 3.57 (m, 1H), 3.64 (t, 2H, J=6), 3.67 (d, 1H, J=9), 3.86 (s, 3H), 5.92 (s, 2H), 6.74 (d, 1H, J=8), 6.84 (dd, 1H, J=2, 8), 6.96 (d, 1H, J=2), 7.06 (t, 1H, J=9), 7.18 (m, 2H). MS (DCl/NH3) m/e 585 (M+H; 35Cl)+; 587 (M+H; 37Cl)+. Anal calcd for C27H34N2O7ClFS: C, 55.43; H, 5.86; N, 4.79. Found: C, 55.65; H, 5.81; N, 4.70.


EXAMPLE 434
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(3-chloropropanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.79 (d, 3H, J=7), 0.84 (d, 3H, J=7), 1.68 (hept, 1H, J=7), 2.18 (pen, 2H, J=7), 2.8-3.4 (m, 10H), 3.5-3.8 (m, 3H), 3.65 (t, 2H, J=6), 3.90 (s, 3H), 5.94 (s, 2H), 6.77 (d, 1H, J=8), 6.87 (dd, 1H, J=2, 8), 6.99 (d, 1H, J=2), 7.13 (t, 1H, J=9), 7.27 (m, 2H). MS (DCl/NH3) m/e. 599 (M+H)+. Anal calcd for C28H36N2O7ClFS.0.3 TFA: C, 54.24; H, 5.78; N, 4.42. Found: C, 54.19; H, 5.71; N, 4.01.


EXAMPLE 435
trans,trans-2-Propoxymethyl-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CDCl3, 300 MHz) δ 0.87-0.98 (m, 9H), 1.21-1.39 (m, 4H), 1.43-1.57 (m, 4H), 1.58-1.70 (m, 2H), 3.13-3.29 (m, 4H), 3.34-3.43 (m, 3H), 3.45-3.55 (m, 3H), 3.69 (dd, J=10.2, 4.5 Hz, 1H), 3.80-4.20 (m, 4H), 5.93 (s, 2H), 6.73 (d, J=7.8 Hz, 1H), 6.84 (dd, J=8.2, 1.7 Hz, 1H), 6.93 (d, J=1.7 Hz, 1H). MS(DCl/NH3) m/e 477 (M+H)+. Anal calcd for C26H40N2O6.0.50 TFA: C, 60.77; H, 7.65; N, 5.25. Found: C, 60.73; H, 7.74; N, 5.22.


EXAMPLE 436
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(4-methylbutanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 65-67° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 0.88 (d, J=5 Hz, 6H), 1.46 (sextet, J=7 Hz, 2H), 1.56-1.64 (m, 3H), 2.24-2.33 (m, 1H), 2.68-2.93 (m, 5H), 2.98-3.12 (m, 2H), 3.15-3.35 (m, 2H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.52-3.58 (, 1H), 3.65 (d, J=12 Hz, 1H), 3.87 (s, 3H), 5.95 (s, 2H), 6.73 (d, J=8 Hz, 1H), 6.82 (dd, J=2 Hz, J=8 Hz, 1H), 6.92 (t, J=8 Hz, 1H), 6.97 (d, J=2 Hz, 1H), 7.10 (d, J=9 Hz, 1 Hz), 7.16 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 579 (M+H)+.


EXAMPLE 437
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(n-pentanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.81 (t, J=7 Hz, 3H), 0.90 (t, J=9 Hz, 3H), 1.25-1.35 (m, 4H), 1.44 (sextet, J=7 Hz, 2H), 1.67-1.78 (m, 2H), 2.22-2.34 (m, 1H), 2.30-2.95 (m, 5H), 2.95-3.10 (m, 2H), 3.15-3.33 (m, 2H), 3.45 (dd, J=3 Hz, 9 Hz, 1H), 3.47-3.56 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.88 (s, 3H), 3.94 (s, 3H), 5.95 (s, 2H), 6.55 (s, 1H), 6.65 (s, 1H), 6.92 (t, J=7H, 1H), 7.11 (d, J=9 Hz, 1H), 7.17 (d, J=12 Hz, 1H).


EXAMPLE 438
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2,2,3,3,3-pentafluoropropoxyethanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 63-64° C. 1H NMR (CDCl3, 300 MHz) δ 0.82 (t, J=7 Hz, 3H), 1.45 (sextet, J=7 Hz, 2H), 2.24-2.33 (m, 1H), 2.70-2.82 (m, 1H), 2.85-3.09 (m, 5H), 3.14-3.28 (m, 4H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.52-3.58 (m, 1H), 3.65 (d, J=9 Hz, 1H), 3.87 (s, 3H), 3.92-3.98 (m, 3H), 5.94 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (dd, J=2 Hz, J=8 Hz, 1H), 6.92 (t, J=8 Hz, 1H), 6.97 (d, J=2 Hz, 1H), 7.10 (d, J=9 Hz, 1H), 7.17 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 685 (M+H)+.


EXAMPLE 439
trans,trans-2-(1,4-Benzodioxan-6-yl)-4-(7-methoxy-1,3-Benzodioxol-5-yl)-1-[2-(N-propyl-N-(n-pentanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CDCl3) δ 0.81 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.23-1.36 (m, 4H), 1.45 (sextet, J=7 Hz, 2H), 1.65-1.78 (m, 2H), 2.20-2.30 (m, 1H), 2.30-2.95 (m, 5H), 2.95-3.10 (m, 2H), 3.15-3.35 (m, 2H), 3.42 (dd, J=3 Hz, 9 Hz, 1H), 3.46-3.56 (m, 1H), 3.59 (d, J=9 Hz, 1H), 3.91 (s, 3H), 4.24 (s, 4H), 5.95 (s, 2H), 6.57 (s, 1H), 6.68 (s, 1H), 6.82 (d, J=8 Hz, 1H), 6.88 (dd, J=2 Hz, 8 Hz, 1H), 6.95 (d, J=2 Hz, 1H).


EXAMPLE 440
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(4-methoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 7.32 (1H, d, J=10), 7.22 (1H, m), 7.10 (1H, d, J=9), 7.03 (6.98) (1H, d, J=3), 6.90-6.80 (4H, m), 6.79 (2H, d, J=9), 6.77 (1H, t, J=8), 5.85 (2H, s), 4.92 (4.10) (1H, d, J=15), 4.42 (4.22) (1H, d, J=15), 3.81 (1H, m), 3.79 (3.78) (3H, s), 3.76 (3H, s), 3.62 (1H, m), 3.43 (2H, m), 3.30-2.70 (5H, m), 1.42 (1H, m), 1.23 (2H, m), 1.01 (1H, m), 0.83 (0.75) (3H, t, J=8). MS (DCl/NH3) m/e 575 (M+H+). Anal calcd for C33H38N2O7 0.5H2O: C, 67.91; H, 6.73; N, 4.80. Found: C, 67.78; H, 6.44; N, 4.55.


EXAMPLE 441
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(pentanesulfonylamino)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.76 (d, 3H, J=7), 0.84 (d, 3H, J=7), 0.92 (t, 3H, J=7), 1.36 (m, 4H), 1.70 (m, 3H), 2.90 (m, 2H), 3.02 (m, 2H), 3.1-3.8 (m, 7H), 3.84 (d, 2H, J=8), 3.91 (s, 3H), 5.96 (s, 2H), 6.80 (d, 1H, J=8), 6.88 (dd, 1H, J=2, 8), 7.00 (d, 1H, J=2), 7.19 (t, 1H, J=9), 7.35 (m, 2H). MS (DCl/NH3) m/e 593 (M+H)+. Anal calcd for C30H41N2O7F.0.5 TFA: C, 57.31; H, 6.44; N, 4.31. Found: C, 57.08; H, 6.15; N, 3.95.


EXAMPLE 442
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(3-fluorophenylamino)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.10-1.30 (m, 4H), 2.70-2.90 (m, 2H), 3.13 (t, J=8 Hz, 1H), 3.40-3.90 (m, 6H), 3.79 (s, 3H), 5.93 (s, 2H), 6.75 (d, J=8 Hz, 1H), 6.80-7.20 (m, 9H), 7.40 (m, 1H). MS (DCl) m/e 549 (M+H)+. Anal calcd for C31H33N2O6F.0.8H2O: C, 66.13; H, 6.19; N, 4.98. Found: C, 66.21; H, 5.83; N, 4.84.


EXAMPLE 443
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-fluorophenyl)-1-(N-butyl-N-(3-chlorophenylamino)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.50 (m, 4H), 2.65-2.85 (m, 2H), 3.05-3.85 (m, 7H), 5.93 (s, 2H), 6.75 (d, J=8 Hz, 1H), 6.85 (dd, J=8 Hz, 1H), 6.90-7.10 (m, 4H), 7.10-7.25 (m, 3H), 7.33-7.45 (m, 2H). MS (DCl) m/e 553 (M+H)+. Anal calcd for C30H30N2O5FCl: C, 65.16; H, 5.47; N, 5.07. Found: C, 65.37; H, 5.41; N, 4.98.


EXAMPLE 444
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(3,4-dimethoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 7.33 (1H, d, J=10), 7.23 (1H, m), 7.03 (6.97) (1H, d, J=3), 6.90-6.60 (6H, m), 6.47 (1H, m), 5.93 (2H, m), 4.83 (4.09) (1H, d, J=15), 4.45 (4.22) (1H, d, J=15), 3.83 (3.86) (3H, s), 3.79 (1H, m), 3.77 (3.76) (3H, s), 3.75 (3.65) (3H, s), 3.60 (1H, m), 3.43 (2H, m), 3.28 (1H, m), 3.20-2.70 (4H, m), 1.43 (1H, m), 1.23 (2H, m), 1.02 (1H, m), 0.84 (0.77) (3H, t, J=8). MS (DCl/NH3) m/e 605 (M+H+). Anal calcd for C34H40N2O8: C, 67.53; H, 6.67; N, 4.63. Found: C, 67.28; H, 6.63; N, 4.38.


EXAMPLE 445
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(2-methoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 7.33 (1H, d, J=10), 7.11 (2H, m), 7.03 (1H, dd, J=8, 3), 6.90-6.60 (7H, m), 5.93 (2H, m), 4.83 (4.15) (1H, d, J=15), 4.47 (4.30) (1H, d, J=15), 3.81 (1H, m), 3.78 (3.73) (3H, s), 3.72 (3H, s), 3.59 (1H, m), 3.43 (2H, m), 3.30 (1H, m), 3.20-2.70 (4H, m), 1.42 (1H, m), 1.23 (2H, m), 1.01 (1H, m), 0.83 (0.77) (3H, t, J=8). MS (DCl/NH3) m/e 575 (M+H+). Anal calcd for C33H38N2O7: C, 68.97; H, 6.66; N, 4.87. Found: C, 68.70; H, 6.56; N, 4.61.


EXAMPLE 446
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(3-methoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 7.31 (1H, d, J=10), 7.13 (1H, d, J=9), 7.16 (1H, dt, J=8, 3), 7.03 (1H, dd, J=10, 2), 6.90-6.60 (6H, m), 6.50 (1H, m), 5.94 (2H, m), 4.82 (4.19) (1H, d, J=15), 4.50 (4.23) (1H, d, J=15), 3.78 (3.76) (3H, s), 3.77 (1H, m), 3.75 (3.67) (3H, s), 3.59 (1H, m), 3.57-3.35 (2H, m), 3.25 (1H, m), 3.20-2.70 (4H, m), 1.43 (1H, m), 1.23 (2H, m), 1.02 (1H, m), 0.84 (0.77) (3H, t, J=8). MS (DCl/NH3) m/e 575 (M+H+). Anal calcd for C33H38N2O7: C, 68.97; H, 6.66; N, 4.87. Found: C, 68.72; H, 6.55; N, 4.60.


EXAMPLE 447
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(3-chloropropanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 2.15 (pen, 2H, J=7), 2.33 (m, 1H), 2.81 (m, 2H); 2.93 (t, 1H, J=9); 3.1-3.6 (m, 10H), 3.24 (s, 3H); 3.65 (t, 2H, J=6), 3.70 (d, 1H, J=9), 3.87 (s, 3H), 5.92 (s, 2H), 6.74 (d, 1H, J=8), 6.84 (dd, 1H, J=2, 8), 6.97 (d, 1H, J=2), 7.07 (t, 1H, J=9), 7.17 (m, 2H). MS (DCl/NH3) m/e 601 (M+H)+. Anal calcd for C27H34N2O8ClFS: C, 53.95; H, 5.70; N, 4.66. Found: C, 53.65; H, 5.49; N, 4.26.


EXAMPLE 448
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(pentanesulfonyl)amino)ethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.93 (m, 3H), 1.34 (m, 4H), 1.69 (m, 2H), 2.33 (m, 1H), 2.75-3.1 (m, 7H), 3.23 (s, 3H), 3.3-3.6 (m, 6H), 3.70 (d, 1H, J=9), 3.86 (s, 3H), 5.92 (s, 2H), 6.74 (d, 1H, J=8), 6.84 (dd, 1H, J=2, 8), 6.97 (d, 1H, J=2), 7.07 (t, 1H, J=9), 7.18 (m, 2H). MS (DCl/NH3) m/e 595 (M+H)+. Anal calcd for C29H39N2O8FS: C, 58.57; H, 6.61; N, 4.71. Found: C, 58.21; H, 6.29; N, 4.29.


EXAMPLE 449
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-4-heptyl)-N-(4-fluoro-3-methylphenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.89 (m, 6H), 1.18-1.36 (m, 8H), 2.15 (bs, 1.5 (CH3 rotamer)), 2.28 (bs, 1.5 (CH3 rotamer)), 2.64 (t, J=14.9 Hz, 1H), 2.82 (m, 1H), 3.07-3.29 (m, 2H), 3.32-3.41 (m, 1H), 3.53-3.60 (m, 1H), 3.70-3.79 (m, 1H), 3.79 (s, 3H), 4.68 (m, 1H), 5.92 (m, 2H), 6.69-6.90 (m, 6H), 6.93-7.07 (m, 4H). MS (DCl) m/e 605 (M+H+). Anal calcd for C35H41FN2O6: C, 69.52; H, 6.83; N, 4.63. Found: C, 69.31; H, 6.78; N, 4.35.


EXAMPLE 450
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-(5-nonyl)-N-(4-fluoro-3-methylphenyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.81-0.90 (m, 6H), 1.30 (m, 12H), 2.14 (s, 1.5 (CH3 rotamer)), 2.30 (s, 1.5 (CH3 rotamer)), 2.60 (t, J=14.8 Hz, 1H), 2.80 (m, 1H), 3.09-3.24 (m, 2H), 3.33-3.42 (m, 1H), 3.50-3.55 (m, 1H), 3.65-3.77 (m, 1H), 3.79 (s, 3H), 4.64 (m, 1H), 5.93 (m, 2H), 6.70-6.84 (m, 5H), 6.91-7.13 (m, 5H). MS (DCl) m/e 633 (M+H+). Anal calcd for C37H45FN2O6: C, 70.23; H, 7.17; N, 4.43. Found: C, 70.14; H, 7.13; N, 4.19.


EXAMPLE 451
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((N-(5-nonylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.80 (t, J=7.0 Hz, 3H), 0.84 (t, J=7.1 Hz, 3H), 1.15-1.55 (m, 12H), 2.88 (d, J=15.9 Hz, 1H), 3.07 (m, 2H), 3.26 (d, J=16.3 Hz, 1H), 3.36 (dd, J=4.4, 9.8 Hz, 1H), 3.64 (m, 1H), 3.76 (m, 1H), 3.79 (s, 3H), 3.98 (d, J=9.5 Hz, 1H), 5.93 (m, 2H), 6.77 (d, J=7.8 Hz, 1H), 6.85 (dd, J=1.7, 8.1 Hz, 1H), 6.93 (m, 2H), 6.99 (d, J.=1.7 Hz, 1H), 7.39 (m, 2H). MS (DCl) m/e 525 (M+H+). Anal calcd for C30H46N2O6.0.35H2O: C, 67.86; H, 7.73; N, 5.28. Found: C, 67.87; H, 7.63; N, 5.11.


EXAMPLE 452
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(2-fluorophenyl)amino)carbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (dt, J=7 Hz, 3H), 1.15-1.32 (m, 4H), 3.77 (d, J=2 Hz, 3H), 2.65-5.92 (m, 9H), 5.93 (d, J=4 Hz, 2H), 6.70-6.90 (m, 4H), 7.00-7.45 (m, 7H). MS (DCl) m/e 549 (M+H)+. Anal calcd for C31H33N2O6.0.4H2O: C, 66.99; H, 6.13; N, 5.04. Found: C, 67.01; H, 6.23; N, 4.68.


EXAMPLE 453
trans,trans-2-(4-Methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-benzothiazolyl)amino)ethyl]pyrrolidine-3-carboxylic acid

The title compound was prepared by the method of Example 418, substituting 2-chlorobenzothiazole for 2-bromopyrimidine. 1H NMR (300 MHz, CDCl3) δ 0.88 (t, J=7 Hz, 3H), 1.59 (sextet, J=7 Hz, 2H), 2.25-2.37 (m, 1H), 2.85-2.97 (m, 3H), 3.28-3.36 (m, 2H), 3.50-3.58 (m, 3H), 3.60-3.65 (m, 1H), 3.67 (d, J=9 Hz, 1H), 3.71 (s, 3H), 5.87 (d, J=2 Hz, 1H), 5.91 (d, J=2 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 6.73 (dd, J=2 Hz, 9 Hz, 1H), 6.76 (d, J=8 Hz, 2H), 6.91 (d, J=2 Hz, 1H), 7.01 (t, J=8 Hz, 1H), 7.22 (t, J=8 Hz, 1H), 7.29 (d, J=8 Hz, 2H), 7.40 (d, J=7 Hz, 1H), 7.55 (d, J=7 Hz, 1H).


EXAMPLE 454
trans,trans-2-(2-Ethoxyethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CDCl3, 300 MHz) δ 0.91 (t, J=7.4 Hz, 3H), 0.94 (t, J=7.4 Hz, 3H), 1.19 (t, J=7.0 Hz, 3H), 1.24-1.38 (m, 5H), 1.46-1.60 (m, 4H), 2.03-2.12 (m, 2H), 3.07 (t, J=8.0 Hz, 1H), 3.07-3.34 (m, 6H), 3.43-3.52 (m, 3H), 3.59-3.74 (m, 3H), 3.80-4.01 (m, 2H), 5.93 (s, 2H), 6.72 (d, J=8.1 Hz, 1H), 6.79 (dd, J=8.2 Hz, 1.7 Hz, 1H), 6.87 (d, J=1.7 Hz, 1H). MS(DCl/NH3) m/e 477 (M+H)+. Anal calcd for C26H40N2O6.0.4 TFA: C, 61.64; H, 7.80; N, 5.36. Found: C, 61.63; H, 7.84; N, 5.29.


EXAMPLE 455
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-(morpholin-4-ylethyl)sulfonylamino)ethyl]pyrrolidine-3-carboxylic acid

Ethyl 2-(4-methoxy-3-fluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-[2-vinylsulfonyl]amino)ethyl]pyrrolidine-3-carboxylic acid, prepared by the procedures of Example 125, was reacted with excess morpholine for 4 hours at room temperature. Chromatography on silica gel eluting with EtOAc gave a 65% yield of an intermediate ethyl ester which was hydrolyzed to the title compound with NaOH in ethanol/water. 1H NMR (300 MHz, CDCl3) δ 0.81 (t, J=7 Hz, 3H), 1.46 (sextet, J=7 Hz, 2H), 2.43-2.52 (m, 4H), 2.70-2.92 (m, 5H), 2.97-3.33 (m, 6H), 3.60 (dd, J=3 Hz, 9 Hz, 1H), 3.51-3.59 (m, 1H), 3.62-3.70 (m, 5H), 3.88 (s, 3H), 5.95 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.70 (dd, J=2 Hz, 8 Hz, 1H), 6.90 (t, J=9 Hz, 1H), 6.96 (d, J=2 Hz, 1H), 7.10 (d, J=8 Hz, 1H), 7.18. (dd, J=2 Hz, 12 Hz, 1H).


EXAMPLE 456
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-((2,2,2-trifluoroethoxyethane)sulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 95-96° C. 1H NMR (CD3OD, 300 MHz) δ 0.80 (t, J=7 Hz, 3H), 1.35-1.48 (m, 2H), 3.07 (sextet, J=7 Hz, 2H), 3.23-3.55 (m, 8H), 3.80-3.87 (m, 2H), 3.93 (s, 3H), 3.94-4.02 (m, 4H), 4.66 (d, J=12 Hz, 1H), 5.96 (s, 2H), 6.83 (d, J=8 Hz, 1H), 6.94 (d, J=8 Hz, 1H), 7.06 (d, J=2 Hz, 1H),7.23 (t, J=9 Hz, 1H), 7.43 (d, J=9 Hz, 1H), 7.49 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 635 (M+H)+.


EXAMPLE 457
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-fluorophenyl)-1-(N-butyl-N-(3-methylphenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.50 (m, 4H), 2.31 (s, 3H), 2.65-2.80 (m, 2H), 3.19 (t, J=7 Hz, 1H), 3.25 (d, J=10 Hz, 1H), 3.35-3.65 (m, 4H), 3.79 (d, J=10 Hz, 1H), 5.93 (s, 2H), 6.74 (d, J=7 Hz, 1H), 6.80-6.90 (m, 3H), 6.91-7.09 (m, 3H), 7.10-7.35 (m, 4H). MS (DCl) m/e 533 (M+H)+. Anal calcd for C31H33N2O5F: C, 69.91; H, 6.25; N, 5.26. Found: C, 69.56; H, 6.26; N, 5.23.


EXAMPLE 458
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-(2-methoxyethyl)-N-(butanesulfonylamino)ethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.94 (m, 3H), 1.23 (hex, 2H, J=8), 1.69 (m, 2H), 3.08 (m, 2H), 3.20 (s, 3H), 3.3-3.5 (m, 10H), 3.77 (m, 2H), 3.92 (s, 3H), 4.60 (m, 1H), 5.96 (s, 2H), 6.81 (d, 1H, J=8), 6.88 (dd, 1H, J=2, 8), 6.99 (d, 1H, J=0.2), 7.22 (t, 1H, J=9), 7.38 (m, 2H). MS (APCl) m/e 581 (M+H)+. Anal calcd for C28H37N2O8FS.1.1 TFA: C, 51.37; H, 5.44; N, 3.97. Found: C, 51.27; H, 5.35; N, 4.11.


EXAMPLE 459
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-Benzodioxol-5-yl)-1-[2-(N-propyl-N-(2-methylpropanesulfonyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared and isolated as a white solid. m.p. 77-78° C. 1H NMR (CDCl3, 300 MHz) δ 0.83 (t, J=7 Hz, 3H),1.06 (d, J=6 Hz, 6H),1.45 (q, J=7 Hz, 2H), 2.20 (septet, J=6 Hz, 1H), 2.26-2.36 (m, 1H), 2.62-2.78 (m, 3H), 2.85-2.95 (m, 2H), 2.97-3.10 (m, 2H), 3.15-3.35 (m, 2H), 3.43 (dd, J=3 Hz, J=9 Hz, 1H), 3.53-3.62 (m, 1H), 3.66 (d, J=9 Hz, 1H), 3.88 (s, 3H), 5.95 (s, 2H), 6.74 (d, J=8 Hz, 1H), 6.82 (dd, J=2 Hz, J=8 Hz, 1H), 6.92 (t, J=8 Hz, 1H), 6.97 (d, J=2 Hz, 1H), 7.12 (d, J=9 Hz, 1H), 7.18 (dd, J=2 Hz, J=12 Hz, 1H). MS (DCl/NH3) m/e 565 (M+H)+.


EXAMPLE 460
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(4-nitrobenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 8.11 (2H, m),7.32 (3H, dd, J=9, 2), 7.16 (7.07) (1H, bd, J=10), 6.98 (6.94) (1H, d, J=2), 6.85 (2H, d, J=9), 6.83-6.70 (2H, m), 5.99 (5.97) (2H, d, J=2), 5.02 (4.18) (1H, d, J=15), 4.63 (4.38) (1H, d, J=15), 3.79 (3.77) (3H, s), 3.72 (1H, d, J=10), 3.61 (1H, m), 3.48 (1H, bd, J=15), 3.43-3.20 (2H, m), 3.06 (2H, m), 2.90 (1H, m), 3.79 (1H, bd, J=14), 1.43 (1H, m), 1.23 (2H, m), 1.02 (1H, m), 0.84 (0.78) (3H, t, J=8). MS (DCl/NH3) m/e 590 (M+H+). Anal calcd for C32H35N3O8: C, 65.18; H, 5.98; N, 7.13. Found: C, 65.89; H, 5.85; N, 6.85.


EXAMPLE 461
trans,trans-2-(4-Ethylphenyl)-4-(3,4-difluorophenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was 1 prepared. 1H NMR (CD3OD, 300 MHz) δ 0.78 (t, 3H, J=7), 0.87 (t, 3H, J=7), 1.02 (hex, 2H, J=7),1.22 (t, 3H, J=7), 1.27 (m, 2H), 1.45 (m, 2H, J=7), 2.63 (q, 2H, J=7), 2.77 (d, 1H, J=14), 2.94 (dd, 1H, J=7, 9), 3.05 (m, 3H), 3.3-3.5 m, 3H), 3.44 (d, 1H, J=14), 3.66 (m, 1H), 3.75 (d, 1H, J=10), 7.20 (td, 2H, J=1,8), 7.22 (m, 2H), 7.32 (td, 2H, J=1,8), 7.43 (ddd, 1H, J=2,8,12). MS (DCl/NH3) m/e 501 (M+H)+. Anal calcd for C29H38N2O3F2.0.6H2O: C, 68.11; H, 7.73; N, 5.48. Found: C, 68.03; H, 7.53; N, 5.37.


EXAMPLE 462
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(4-fluoro-3-methylphenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.50 (m, 4H), 2.21 (d, J=2 Hz, 3H), 2.64 (d, J=14 Hz, 1H), 2.75 (dd, J=10 Hz, 1H), 3.05 (t, J=7 Hz, 1H), 3.25 (d, J=15 Hz, 1H), 3.35-3.70 (m, 5H), 3.77 (s, 3H), 5.92 (s, 2H), 6.70-6.92 (m, 6H), 6.96-7.10 (m, 4H). MS (DCl) m/e 563 (M+H)+. Anal calcd for C32H35N2O6F.0.5H2O: C, 67.24; H, 6.35; N, 4.90. Found: C, 67.16; H, 6.06; N, 4.81.


EXAMPLE 463
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-((3-isopropyl)phenyl)amino)carbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, 3H), 1.17 (d, J=7 Hz, 6H), 1.20-1.50 (m, 4H), 2.63 (d, J=15 Hz, 1H), 2.75 (t, J=7 Hz, 1H), 2.85 (m, 1H), 3.00 (t, J=7 Hz, 1H), 3.25 (d, J=15 Hz, 1H), 3.40-3.70 (m, 5H), 3.75 (s, 3H), 5.90 (s, 2H), 6.65-6.80 (m, 3H), 6.71 (dt, J=7 Hz, 3H), 7.07 (m, 3H), 7.20-7.35 (m, 2H). MS (DCl) m/e 573 (M+H)+. Anal calcd for C34H40N2O6 0.15H3PO4: C, 69.52; H, 6.94; N, 4.77. Found: C, 63.31; H, 6.72; N, 4.43.


EXAMPLE 464
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N-butyl-N-(3-ethylphenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (m, J=7 Hz, 3H), 1.16 (t, J=7 Hz, 3H), 1.20-1.47 (m, 4H), 2.50 (q, J=7 Hz, 2H), 2.70-2.85 (m, 2H), 3.13 (t, J=7 Hz, 1H), 3.20-4.5 (m, 6H), 3.78 (s, 3H), 3.83 (d, J=8 Hz, 1H), 5.92 (s, 2H), 6.72 (d, J=8 Hz, 1H), 6.80-6.90 (m, 5H), 7.02-7.13 (m, 3H), 7.15-7.25 (m, 2H). MS (DCl) m/e 559 (M+H)+. Anal calcd for C33H38N2O6.0.3H2O: C, 70.27; H, 6.90; N, 4.97. Found: C, 70.31; H, 6.63; N, 4.60.


EXAMPLE 465
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-ethylphenyl)-1-(((N-(3-chlorophenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.87 (t, 3H, J=7 Hz), 1.23 (t, 3H, J=7 Hz), 1.28 (m, 2H), 1.41 (m, 2H), 2.63 (q, 2H, J=7 Hz), 2.67 (m, 1H), 2.92 (m, 1H), 3.20 (m, 2H), 3.42 (m, 1H), 3.60 (q, 2H, J=7 Hz), 3.93 (m, 1H), 5.92 (s, 2H), 6.75 (d, 1H, J=8 Hz), 6.84 (m, 3H), 6.95 (brs, 1H), 7.02 (s, 1H), 7.10 (brs, 3H), 7.25 (m, 2H). MS (APCl) m/e 563 (M+H)+. Anal. calc'd for C32H35N2O5Cl.0.80H3PO4: C, 59.92; H, 5.88; N, 4.37. Found: C, 59.90; H, 5.83; N, 4.07.


EXAMPLE 466
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-ethylphenyl)-1-(((N-(3-chlorophenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.86 (t, 3H, J=7 Hz), 1.23 (t, 3H, J=7 Hz), 1.25 (m, 2H), 1.40 (m, 2H), 2.64 (q, 2H, J=7 Hz), 2.70 (m, 1H), 2.95 (m, 1H), 3.20 (m, 2H), 3.40 (m, 1H), 3.57 (m, 3H), 3.90 (m, 1H), 4.25 (s, 4H), 6.80 (d, 1H, J=8 Hz), 6.95 (d, 1H, J=2 Hz), 6.95 (m, 2H), 7.07 (br s, 3H), 7.22 (m, 3H). MS (APCl) m/e 577. (M+H)+. Anal. calc'd for C33H37N2O5Cl.0.85H2O: C, 66.90; H, 6.58; N, 4.73. Found: C, 66.92; H, 6.25; N, 4.36.


EXAMPLE 467
trans,trans-4-(Benzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-(3-chlorophenyl)-N-butylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.85 (t, 3H, J=7 Hz), 1.26 (t, 3H, J=7 Hz), 1.30 (m, 2H), 1.40 (m, 2H), 2.60 (q, 2H, J=7 Hz), 2.72 (m, 1H), 2.93 (m, 1H), 3.22 (m, 2H), 3.50 (m, 1H), 3.55 (m, 2H), 3.75 (m, 1H), 3.90 (br d, 1H), 6.75 (d, 1H, J=1 Hz), 6.80 (br d, 1H), 6.95 (br s, 1H), 7.08 (m, 4H), 7.20 (t, 1H, J=8 Hz), 7.28 (t, 1H, J=8 Hz), 7.42 (m, 2H), 7.58 (d, 1H, J=1 Hz), 7.63 (s, 1H). MS (APCl) m/e 559 (M+H)+. Anal. calc'd for C33H35N2O4Cl.0.45H2O: C, 69.88; H, 6.38; N, 4.94. Found: C, 69.83; H, 6.04; N, 4.87.


EXAMPLE 468
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-butyl-N-phenylamino)ethyl]pyrrolidine-3-carboxylic acid

Ethyl 2-(4-methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(bromoethyl]-pyrrolidine-3-carboxylate, prepared using the procedures of Example 61A (300 mg), was reacted with N-butyl aniline (190 mg) in 1 mL of dioxane containing 130 mg of diisopropylethylamine to give the ethyl ester. The ester was hydroyzed with sodium hydroxide to give 148 mg of the title compound as a white powder. 1H NMR (300 MHz, CDCl3) δ 0.90 (t, J=9 Hz, 3H), 1.28 (sextet, J=7 Hz, 2H), 1.46 (quintet, J=7 Hz, 2H), 2.20-2.32 (m, 1H), 2.68-2.77 (m, 1H), 2.82-2.95 (m, 2H), 3.12-3.22 (m, 2H), 3.30-3.44 (m, 3H), 3.45-3.55 (m, 1H), 3.62 (d, J=9 Hz, 1H), 3.83 (s, 3H), 3.90 (s, 3H), 5.95 (s, 2H), 6.51 (d, J=7 Hz, 2H), 6.55-6.62 (m, 2H), 6.69 (d, J=2 Hz, 1H), 6.84 (t, J=8 Hz, 1H), 7.02-7.15 (m, 3H), 7.19 (dd, J=2 Hz, 12 Hz, 1H).


EXAMPLE 469
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-ethylphenyl)-1-(((N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.78 (t, 3H, J=7 Hz), 0.88 (t, 3H, J=7 Hz), 1.05 (q, 2H, J=7 Hz), 1.23 (t, 3H, J=7 Hz), 1.28 (m, 2H), 1.45 (m, 2H), 2.64 (q, 2H, J=7 Hz), 2.78 (m, 1H), 2.9-3.2 (envelope, 4H), 3.30 (m, 1H), 3.40 (m, 3H), 3.60 (m, 1H), 3.80 (m, 1H), 4.25 (s, 4H), 6.80 (d, 1H, J=8 Hz), 6.90 (m, 1H), 6.98 (d, 1H, J=2 Hz), 7.17 (d, 2H, J=8 Hz), 7.30 (m, 2H). MS (APCl) m/e 523 (M+H)+. Anal. calc'd for C31H42N2O5.1.1 HOAc: C, 67.73; H, 7.94; N, 4.76. Found: C, 67.81; H, 7.55; N, 4.48.


EXAMPLE 470
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(3-methylphenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7.1 Hz, 3H), 1.30 (m, 2H), 1.44 (m, 2H), 2.30 (s, 3H), 2.80 (d, J=15.2 Hz, 1H), 2.85 (t, J=9.3 Hz, 1H), 3.19 (t, J=9.3 Hz, 1H), 3.33 (d, J=10.2 Hz, 1H), 3.42-3.61 (m, 3H), 3.79 (s, 3H), 3.91 (d, J=9.8 Hz, 1H), 4.22 (m, 4H), 6.75-6.86 (m, 6H), 6.95 (d, J=2.0 Hz, 1H), 7.09 (d, J=8.8 Hz, 2H), 7.22 (d, J=10.2 Hz, 1H), 7.26 (t, J=7.6 Hz, 1H). MS (DCl) m/e 559 (M+H+). Anal calcd for C33H38N2O6.0.4 CH3CO2C2H5: C, 69.97; H, 6.99; N, 4.72. Found: C, 0.06; H, 6.66; N, 4.48.


EXAMPLE 471
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(3-chlorophenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7.0 Hz, 3H), 1.25 (m, 2H), 1.40 (m, 2H), 2.78 (d, J=14.6 Hz, 1H), 2.86 (t, J=9.0 Hz, 1H), 3.16 (t, J=9.5 Hz, 1H), 3.34-3.43 (m, 2H), 3.48-3.62 (m, 3H), 3.79 (s, 3H), 3.85 (d, J=9.5 Hz, 1H), 4.22 (m, 4H), 6.78 (d, J=8.5 Hz, 1H), 6.81-6.86 (m, 3H), 6.93-7.09 (m, 5H), 7.33-7.38 (m, 2H). MS (DCl) m/e 579 (M+H+). Anal calcd for C32H35ClN2O6.1.1 CH3CO2C2H5.0.15 H3PO4: C, 63.30; H, 6.46; N, 4.06. Found: C, 63.54; H, 6.09; N, 3.98.


EXAMPLE 472
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(4-pyridylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 2.84 (t, J=9.6 Hz, 1H), 2.88 (dd, J=9.6, 7.3 Hz, 1H), 3.09 (dd, J=3.3, 9.6 Hz, 1H), 3.21 (d, J=14.3 Hz, 1H), 3.53 (m, 1H), 3.78 (s, 3H), 3.81 (m, 2H), 5.92 (m, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.82 (dd, J=1.8, 8.1 Hz, 1H), 6.93 (m, 2H), 6.95 (d, J=1.5 Hz, 1H), 7.43 (m, 4H), 8.44 (d, J=5.2 Hz, 2H). MS (DCl) m/e 433 (M+H+). Anal calcd for C25H24N2O5.0.3 CH3CO2C2H5: C, 68.57; H, 5.80; N, 6.10. Found: C, 68.68; H, 5.60; N, 5.81.


EXAMPLE 473
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(3-tert-butylphenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.88 (t, J=7.2 Hz, 3H), 1.23 (s, 9H), 1.26-1.45 (m, 4H), 2.74 (dd, J=15.1 Hz, 1H), 2.84 (m, 1H), 3.13 (t, J=9.0 Hz, 1H), 3.29 (d, J=15.1 Hz, 1H), 3.50-3.66 (m, 4H), 3.77 (s, 3H), 3.84 (d, J=9.6 Hz, 1H), 5.92 (s, 2H), 6.74 (d, J=7.7 Hz, 1H), 6.79-6.85 (m, 4H), 6.86-6.90 (m, 1H), 6.99 (t, J=1.8 Hz, 1H), 7.06 (d, J=1.8 Hz, 1H), 7.13 (m, 2H), 7.33 (t, J=7.7 Hz, 1H), 7.42 (m, 1H). MS (DCl) m/e 587 (M+H+). Anal calcd for C35H42N2O6: C, 71.65; H, 7.22; N, 4.77. Found: C, 71.56; H, 7.33; N, 4.69.


EXAMPLE 474
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(3-n-butylphenylamino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.88 (t, J=7.3 Hz, 3H), 0.92 (t, J=7.3 Hz, 3H), 1.23-1.59 (m, 8H), 2.58 (t, J=7.6 Hz, 2H), 2.75 (d, J=15.3 Hz, 1H), 2.80 (dd, J=8.5, 9.5 Hz, 1H), 3.12 (t, J=9.3 Hz, 1H), 3.29 (d, J=15.6 Hz, 1H), 3.46 (dd, J=4.9, 9.7 Hz, 1H), 3.52-3.64 (m, 3H), 3.78 (s, 3H), 3.83 (d, J=9.8 Hz, 1H), 5.92 (s, 2H), 6.74 (d, J=8.1 Hz, 1H), 6.79-6.87 (m, 4H), 7.05 (d, J=1.7 Hz, 1H), 7.10 (d, J=8.8 Hz, 2H), 7.20 (d, 7.8H), 7.29 (t, J=7.6 Hz, 1H). MS (DCl) m/e 587 (M+H+). Anal calcd for C35H42N2O6: C, 71.65; H, 7.22; N, 4.77. Found: C, 71.33; H, 7.28; N, 4.74.


EXAMPLE 475
trans,trans-4-(3,4-Difluorophenyl)-2-(4-ethylphenyl)-1-(N-(n-butyl)-N-(3-methylphenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.87 (t, 3H, J=7), 1.19 (t, 3H, J=7), 1.28 (m, 2H), 1.43 (m, 2H), 2.28 (s, 3H), 2.60 (q, 2H, J=7), 2.66 (m, 2H), 3.06 (m, 1H), 3.21 (d, 1H, J=15), 3.42 (dd, 1H, J=4,9), 3.58 (m, 3H), 3.71 (d, 1H, J=9), 6.80 (s, 2H), 7.06 (s, 4H), 7.18 (m, 4H), 7.45 (m, 1H). MS (APCl) m/e 535 (M+H)+. Anal calcd for C32H36N2O3F2.1.3 HOAc: C, 67.83; H, 6.78; N, 4.57. Found: C, 67.83; H, 6.46; N, 4.70.


EXAMPLE 476
trans,trans-2-(4-Ethylphenyl)-4-(3,4-difluorophenyl)-1-(N-(n-butyl)-N-(3-chlorophenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.82 (t, 3H, J=7), 1.16 (t, 3H, J=7), 1.23 (m, 2H), 1.35 (m, 2H), 2.55 (q, 2H, J=7), 2.66 (m, 2H), 3.01 (t, 1H, J=9), 3.16 (d, 1H, J=15), 3.32 (dd, 1H, J=4,9), 3.56 (m, 3H), 3.67 (d, 1H, J=9), 6.94 (d, 1H, J=7), 7.02 (m, 5H), 7.14 (m, 2H), 7.32 (m, 3H). MS (APCl) m/e 555 (M+H)+. Anal calcd for C31H33N2O3ClF2.0.6 TFA: C, 61.88; H, 5.42; N, 4.48. Found: C, 61.90; H, 5.62; N, 3.98.


EXAMPLE 477
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-fluorophenyl)-1-(N-butyl-N-(3-chlorophenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.10-1.30 (m, 4H), 2.60-2.75 (m, 2H), 3.03 (t, J=7 Hz, 1H), 3.15-3.75 (m, 6H), 4.02 (m, 4H), 6.75 (d, J=6 Hz, 1H), 6.85 (dd, J=7 Hz, 1H), 6.90 (7.19, J=m Hz, 6H), 7.32-7.43 (m, 3H). MS (DCl) m/e 567 (M+H)+. Anal calcd for C31H32N2O5FCl.1.6H2O: C, 62.49; H, 5.95; N, 4.70. Found: C, 62.20; H, 5.54; N, 4.42.


EXAMPLE 478
trans,trans-4-(Benzofuran-5-yl)-2-(4-ethylphenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 0.78 (t, 3H, J=7 Hz), 0.84 (t, 3H, J=7 Hz), 1.05 (q, 2H, J=7 Hz), 1.21 (t, 3H, J=7 Hz), 1.25 (m, 2H), 1.45 (m, 2H), 2.62 (q, 2H, J=7 Hz), 2.80 (d, 1H, J=13 Hz), 3.0 (m, 2H), 3.15 (m, 2H), 3.35 (m, 1H), 3.43 (m, 2H), 3.52 (m, 1H), 4.40 (m, 2H), 6.73 (d, 1H, J=1 Hz), 7.14 (d, 2H, J=8 Hz), 7.26 (s, 1H), 7.31 (d, 2H, J=8 Hz), 7.44 (s, 2H), 7.60 (d, 1H, J=1 Hz), 7.65 (s, 1H). MS (APCl) m/e 505 (M+H)+. Anal. calc'd for C31H40N2O4: C, 73.78; H, 7.99; N, 5.55. Found: C, 73.69; H, 7.97; N, 5.21.


EXAMPLE 479
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-(pyrrolidine-1-carbonylmethyl)amino)ethyl]pyrrolidine-3-carboxylic acid

Ethyl 2-(4-methoxy-3-fluorophenyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[2-(N-propyl-aminoethyl]-pyrrolidine-3-carboxylate, prepared according to the procedures of Example 61B (300 mg), N-bromoacetyl pyrrrolidine (132 mg) and diisopropylethylamine (154 mg) were heated for 1 hour at 50° C. in 1 mL of acetonitrile to give the intermediate ethyl ester. The ester was hydrolyzed to the title compound by the method of Example 1D. 1H NMR (300 MHz, CDCl3) δ 0.88 (t, J=7 Hz, 3H), 1.30-1.45 (m, 2H), 1.75-1.92 (m, 4H), 2.30-2.40 (m, 1H), 2.47-2.58 (m, 2H), 2.70-3.00 (m, 5H), 3.24-3.45 (m, 6H), 3.50-3.70 (m, 2H), 3.83 (s, 3H), 3.86 (d, J=9 Hz, 1H), 3.88 (s, 3H), 5.93 (s, 2H), 6.58 (d, J=2 Hz, 1H), 6.70 (d, J=2 Hz, 1H), 6.87 (t, J=8 Hz, 1H), 7.10 (d, J.=9 Hz, 1H), 7.21 (dd, J=2 Hz, 12 Hz, 1H).


EXAMPLE 480
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-((N-(perhydroazepinylcarbonyl)-(D)-leucyl)amino)pyrrolidine-3-carboxylic acid
EXAMPLE 480A
D-Leucine O-benzyl ester Tosylate salt

To benzyl alcohol (8.2 g) dissolved in benzene (30 mL) was added D-leucine (5.0 g) and p-toluenesulfonic acid monohydrate (8.0 g). The reaction was warmed to reflux with removal of water overnight. Once TLC indicated consumption of starting material, the reaction was cooled, and the resulting solid was filtered and washed with EtOAc to give the title compound as a white powder (14.26 g, 99%).


EXAMPLE 480B
N-Perhydroazepinylcarbonyl-D-Leucine O-Benzyl ester

To the compound resulting from Example 480A (1.0 g) dissolved in chloroform (20 mL) was added triethylamine (0.4 mL). The solution was cooled to 0° C., and carbonyldiimidazole was added. After 1.5 hours, TLC indicated complete consumption of starting material, so hexamethylene imine (0.327 mL) was added. After 1 hour, an additional amount of hexamethylene imine (0.330 mL) was added, and the reaction was stirred at ambient temperature overnight. The solution was washed with sodium bicarbonate (2×20 mL), 1 N H3PO4 (2×20 mL), and brine (20 mL), dried over Na2SO4, decanted and evaporated. The residue was purified by flash chromatography on silica gel eluting with 25-50% EtOAc in hexanes to give the title compound as a crystalline solid (0.835 g, 89%).


EXAMPLE 480C
N-Perhydroazepinylcarbonyl-D-Leucine

To the compound resulting from Example 480B (200 mg) dissolved in dry ethanol (1.0 mL) was added 10% palladium on carbon (10 mg). After flushing the flask with nitrogen, the reaction was stirred vigorously under an atmosphere of hydrogen for 1 hour. The reaction was filtered through infusorial earth and evaporated to give the title compound (140 mg).


EXAMPLE 480D
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(cyanomethyl)-pyrrolidine-3-carboxylic acid ethyl ester

To the compound resulting from Example 1C (510 mg of a 50% wt. solution in toluene) dissolved in acetonitrile (2.0 mL) was added diisopropylethylamine (0.24 mL), followed by bromoacetonitrile (0.072 mL). After 2 hours, TLC indicated complete comsumption of starting material. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel eluting with 20-40% EtOAc in hexanes to give the title compound as a colorless oil (0.28 g, 99%).


EXAMPLE 480E
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-aminoethyl)-pyrrolidine-3-carboxylic acid ethyl ester

To the compound resulting from Example 480D (275 mg) dissolved in 10 mL each of triethylamine and ethanol was added Raney nickel catalyst (0.2 g), and the reaction was placed under a hydrogen atmosphere (4 atmospheres) for 3 days. The reaction was filtered and evaporated. The residue was dissolved in methylene chloride (10 mL) and extracted with 1 M HCl (5×1 mL). The combined aqueous extracts were basified and then extracted with methylene chloride (5×2 mL). The combined organic extracts were dried with MgSO4, filtered and evaporated to give the title compound as an unstable oil (0.14 g).


EXAMPLE 480F
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-((N-(perhydroazepinylcarbonyl)leucyl)amino)ethyl)-pyrrolidine-3-carboxylic acid, ethyl ester

The compound resulting from Example 480E (0.10 g) was dissolved in methylene chloride (3.0 mL), and the compound resulting from Example 480C (0.07 g) was added. The solution was cooled to 0° C., and EDCl (0.052 g) was added. After 4 hours, the reaction was evaporated and partitioned between water (1 mL), and EtOAc (10 mL). The orgainc solution was washed with water (1 mL) and brine (1 mL), dried over MgSO4, filtered and evaporated. The residue was purified by flash chromatography on silica gel eluting with 50-60% EtOAc in hexanes to give the title compound as a colorless oil (0.075 g, 48%).


EXAMPLE 480G
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-((N-(perhydroazepinylcarbonyl)leucyl)amino)ethyl)pyrrolidine-3-carboxylic acid

The compound resulting from Example 480F (0.75 g) was dissolved in ethanol (1.0 mL) and 5 M NaOH (0.050 mL) was added. After 2 hours, additional 5 M NaOH (0.090 mL) was added. After an additional 3.5 hours, the reaction was evaporated. The residue was dissolved in water (5 mL) and washed with diethyl ether (2×2 mL). The aqueous solution was acidified with 1 N H3PO4 to pH≈3. The solid which precipitated dissolved when the mixture was extracted with chloroform (3×3 mL). The chloroform extracts were washed with brine (2 mL), dried with MgSO4, filtered and evaporated to give the title compound as a tan solid (0.053 g). Purification by HPLC (Vydac mC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA provided suitable material (0.049 g) after lyophilization of the desired fractions. 1H NMR (CDCl3, 300 MHz) δ 0.82 (dd, 6.4, 4.4 Hz, 6H), 0.87 (dd, J=5.7, 5.7 Hz, 6H), 1.04-1.28 (m, 3H), 1.34-1.65 (m, 19H), 2.95 (br m, 2H), 3.15-3.40 (m, 14H), 3.40-3.55 (m, 4H), 3.58-3.68 (m, 2H), 3.70-3.76 (br m, 2H), 3.80 (s, 3H), 3.81 (s, 3H), 4.15 (br m, 2H), 5.10 (br m, 2H), 5.93 (s, 3H), 5.95 (s, 3H), 6.70-6.97 (m, 13H), 7.43-7.56 (br m, 3H), 8.2 (br s, 1H), 8.5 (br s, 1H). MS(DCl/NH3) m/e 623 (M+H)+. Anal calcd for C34H46N4O7.2.00 TFA: C, 53.65; H, 5.69; N, 6.58. Found: C, 53.66; H, 5.66; N, 6.54.


EXAMPLE 481
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(N,N-di(n-hexyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.80-0.95 (m, 6H), 1.0 (m, 2H), 1.07 (1.55, J=m Hz, 14H), 2.70 (d, J=13 Hz, 1H), 2.85-3.15 (m, 4H), 3.20-3.60 (m, 9H), 3.64 (d, J=10 Hz, 1H), 3.79 (s, 3H), 5.90 (m, 2H), 6.70 (d, 8H), 1, 6.80-6.93 (m, 3H), 7.05 (2, 1H), 7.35 (d, J=10 Hz, 2H). Anal calcd for C33H46N2O6.1.7H2O: C, 66.35; H, 8.34; N, 4.69. Found: C, 66.32; H, 8.04; N, 4.52.


EXAMPLE 482
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-fluorophenyl)-1-(N-butyl-N-(3-methylphenyl)aminocarbonylmethyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7 Hz, 3H), 1.20-1.35 (m, 2H), 1.35-1.40 (m, 2H), 2.32 (s, 3H), 2.55-2.70 (m, 2H), 2.97 (t, J=7 Hz, 1H), 3.22 (d, J=14 Hz, 1H), 3.25-3.70 (m, 5H), 4.20 (m, 4H), 6.97 (d, J=2 Hz, 1H), 7.09 (m, 2H), 7.15-7.35 (m, 2H). MS (DCl) m/e 547 (M+H)+. Anal calcd for C32H35N2O5F.1.2H2O: C, 67.64; H, 6.63; N, 4.93. Found: C, 67.73; H, 6.37; N, 4.70.


EXAMPLE 483
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(3-nitrobenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ (rotamer) 8.14 (2H, m), 8.05 (7.83) (1H, m), 7.60-7.30 (3H, m), 7.13 (1H, m), 7.10-6.70 (5H, m), 5.94 (2H, m), 5.43 (5.33) (1H, d, J=12), 4.75 (1H, bd, J=15), 4.60-4.20 (2H, m), 4.10 (2H, m), 3.80 (3.76) (3H, s), 3.75-3.40 (3H, m), 3.20-2.80 (2H, m), 1.50 (1H, m), 1.30 (1H, m), 1.20-1.00 (2H, m), 0.91 (0.78) (3H, t, J=8). MS (DCl/NH3) m/e 590 (M+H+). Anal calcd for C32H35N3O8.2.1 TFA: C, 52.44; H, 4.51; N, 5.07. Found: C, 52.25; H, 4.83; N, 5.71.


EXAMPLE 484
trans,trans-4-(1,2-Dihydrobenzofuran-5-yl)-2-(4-ethylphenyl)-1-(((N-butyl-N-(3,4-dimethoxybenzyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H (300 MHz, CDCl3) δ (rotamer) 7.40 (2H, m), 7.30-7.10 (4H, m), 6.90-6.70 (3H, m), 6.48 (1H, m), 5.45 (1H, m), 4.65 (1H, d, J=15), 4.57 (2H, dt, J=9, 3), 4.40-4.00 (5H, m), 3.87 (3.85) (3H, s), 3.84 (1H, m), 3.83 (3.79) (3H, s), 3.56 (2H, m), 3.20 (2H, t, J=10), 2.90 (1H, m), 2.64 (2H, q, J=8), 1.52 (1H, m), 1.31 (2H, m), 1.22 (3H, dt, J=9, 2), 1.07 (1H, m), 0.92 (0.78) (3H, t, J=8). MS (DCl/NH3) m/e 601 (M+H+). Anal calcd for C36H44N2O6.1.35 TFA: C, 61.59; H, 6.06; N, 3.71. Found: C, 61.69; H, 6.04; N, 3.63.


EXAMPLE 485
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-(((N-butyl-N-(4-heptyl)amino)carbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.71-1.04 (m, 11H), 1.07-1.35 (m, 6H), 1.73-1.53 (m, 4H), 2.79-3.25 (m, 5H), 3.35-3.44 (m, 1H), 3.51-3.68 (m, 3H), 3.78-3.89 (m, 1H), 3.79 (s, 3H), 5.92 (m, 2H), 6.74 (dd, J=1.7, 8.1 Hz, 1H), 6.85 (td, J=1.7, 8.1 Hz, 1H), 6.93 (m, 2H), 7.02 (dd, J=1.7, 9.5 Hz, 1H), 7.36 (m, 2H). MS (C.I.) m/e 553 (M+H+). Anal calcd for C32H44N2O6: C, 69.54; H, 8.02; N, 5.07. Found: C, 69.31; H, 7.89; N, 5.06.


EXAMPLE 486
trans,trans-2-(4-Methylcyclohexyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.88 (3H, d, J=7 Hz), 0.92 (3H, t, J=7 Hz), 0.96 (3H, t, J=7 Hz), 1.05 (1H, m), 1.22-1.40 (7H, m), 1.45-1.65 (6H, m), 1.67-1.84 (4H, m), 3.17-3.45 (6H, m), 3.70 (1H, brm), 3.82 (1H, dd, J=9 Hz, 15 Hz), 3.86 (1H, d, J=15 Hz), 5.93 (2H, s), 6.73 (1H, d, J=8 Hz), 6.78 (1H, dd, J=2 Hz, 8 Hz), 6.88 (1H, d, J=2 Hz). MS (DCl/NH3) m/e 501 (M+H)+. Anal calcd for C29H44N2O5.0.25 CF3CO2H: C, 66.96; H, 8.43; N, 5.29. Found: C, 66.79; H, 8.60; N, 4.87.


EXAMPLE 487
trans,trans-2-(2-Propylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.85 (6H, m), 0.92 (3H, t, J=7 Hz), 0.97 (3H, t, J=7 Hz), 1.12-1.40 (13H, m), 1.42-1.68 (6H, m), 2.90 (1H, m), 3.14-3.30 (2H, m), 3.33 (4H, m), 3.72 (1H, brm), 3.90 (1H, brm), 5.93 (2H, dd, J=2 Hz, 4 Hz), 6.73 (1H, d, J=8 Hz), 6.78 (1H, dd, J=2 Hz, 8 Hz), 6.88 (1H, d, J=2 Hz). MS (DCl/NH3) m/e 517 (M+H)+. Anal calcd for C30H48N2O5.0.35 CF3CO2H: C, 66.24; H, 8.76; N, 5.03. Found: C, 66.26; H, 8.82; N, 4.98.


EXAMPLE 488
trans,trans-4-(1,4-Benzodioxan-6-yl)-2-(4-fluorophenyl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.83 (t, J=7 Hz, 3H), 0.89 (t, J=7 Hz, 3H), 0.90-1.17 (m, 4H), 1.20-1.65 (m, 5H), 2.77d (13, 1H), 2.87 (dd, J=8, 2 Hz, 1H), 2.95-3.60 (m, 7H), 3.71 (d, J=9 Hz, 1H), 4.21 (s, 4H), 6.72 (d, 1H), 6.91 (dd, J=8 Hz, 1H), 6.97 (d, J=2 Hz, 1H), 7.05 (t, J=7 Hz, 2H), 7.40-7.50 (m, 2H). MS (DCl) m/e 513 (M+H)+. Anal calcd for C29H37N2O5F.1.2C F3COOH: C, 58.07; H, 5.93; N, 4.31. Found: C, 57.94; H, 5.81; N, 4.56.


EXAMPLE 489
trans,trans-2-(3-Methylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.83 (3H, t, J=7 Hz), 0.85 (3H, d, J=7 Hz), 0.91 (3H, t, J=7 Hz), 0.97 (3H, t, J=7 Hz), 1.05-1.22 (2H, m), 1.22-1.41 (7H, m), 1.43-1.68 (5H, m), 1.89 (1H, m), 2.94 (1H, t, J=6 Hz), 3.15-3.27 (3H, m), 3.29-3.60 (5H, m), 3.72 (1H, brd, J=6 Hz), 3.92 (1H, brd, J=13.5 Hz), 5.93 (2H, dd, J=2 Hz, 4 Hz), 6.73 (1H, d, J=8 Hz), 6.78 (1H, dd, J=2 Hz, 8 Hz), 6.88 (1H, d, J=2 Hz). MS (DCl/NH3) m/e 489 (M+H)+. Anal calcd for C28H44N2O5.0.30 CF3CO2H: C, 65.70; H, 8.54; N, 5.36. Found: C, 65.93; H, 8.81; N, 4.84.


EXAMPLE 490
trans,trans-2-(2-Ethylbutyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared and isolated as an amorphous solid. 1H NMR (CDCl31, 300 MHz) δ 0.85 (6H, m), 0.92 (3H, t, J=7 Hz), 0.97 (3H, t, J=7 Hz), 1.13-1.41 (13H, m), 1.43-1.72 (6H, m), 2.96 (1H, brm), 3.12-3.52 (6H, m), 3.55-3.70 (1H, m), 3.70-3.86 (2H, m), 3.99 (1H, brm), 5.93 (2H, dd, J=2 Hz, 4 Hz), 6.73 (1H, d, J=8 Hz), 6.78 (1H, dd, J=2 Hz, 8 Hz), 6.88 (1H, d, J=2 Hz). MS (DCl/NH3) m/e 489 (M+H)+. Anal calcd for C28H44N2O5.0.45 CF3CO2H: C, 64.28; H, 8.30; N, 5.19. Found: C, 64.16; H, 8.38; N, 5.08.


EXAMPLE 491
trans,trans-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-isobutyl-N-(butanesulfonylamino))ehtyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 66, the title compound was prepared. 1H NMR (CD3OD, 300 MHz) δ 0.74 (d, 3H, J=7), 0.83 (d, 3H, J=7), 0.94 (t, 3H, J=7), 1.44 (hex, 2H), 1.67 (m, 4H), 2.91 (d, 2H, J=8), 3.04 (dd, 2H, J=8,10), 3.1-3.6 (m, 5H), 3.78 (m, 2H), 3.92 (s, 3H), 4.60 (m, 1H), 5.97 (s, 2H), 6.82 (d, 1H, J=8), 6.89 (dd, 1H, J=2, 8), 7.01 (d, 1H, J=2), 7.22 (t, 1H, J=9), 7.39 (m, 2H). MS (ESI) m/e 579 (M+H)+.


EXAMPLE 492
trans,trans-2-(4-Methoxy-3-fluorophenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propyl-N-[4-ethylpyrimidin-2-yl]amino)ethyl]pyrrolidine-3-carboxylic acid

1-Dimethylamino-1-pentene-3-one, prepared by the method described in Syn. Comm. 12 (1), 35 (1982), was converted to 2-amino-4-ethylpyrimidine with guanidine by the method of Chem. Ber. 97, 3397 (1964). This material was converted to 2-bromo-4-ethyl-pyrimidine with NaNO2 and HBr, using the method of Helv. Chim. Acta 75, 1629 (1992). This bromopyrimidine was reacted with ethyl 2-(4-methoxphenyl)-4-(1,3-benzodioxol-5-yl)-1-[2-(N-propylamino)propyl]-pyrrolidine-3-carboxylate, prepared using the procedures of Example 61B, using the procedure for Example 418, to give the title compound as a white powder. 1H NMR (300 MHz, CDCl3) δ 0.83 (t, J=7 Hz, 3H), 1.11 (t, J=7 Hz, 3H), 1.45 (sextet, J=7 Hz, 2H), 2.18-2.27 (m, 1H), 2.45 (q, J=7 Hz, 2H), 2.80-2.97 (m, 3H), 3.40-3.75 (m, 7H), 3.83 (s, 3H), 5.95 (s, 2H), 6.25 (d, J=4 Hz, 1H), 6.68 (d, J=8 Hz, 1H), 6.79 (dd, J=2 Hz, 8 Hz, 1H), 6.82 (t, J=9 Hz, 1H), 6.92 (d, J=2 Hz, 1H), 7.05 (d, J=9 Hz, 1H), 7.15 (dd, J=2 Hz, 12 Hz, 1H), 8.10 (d, J=4 Hz, 1H).


EXAMPLE 493
trans,trans-4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1-((N-butyl-N-(3,4-dimethylphenyl)aminocarbonyl)methyl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CD3OD) δ 0.87 (t, J=7.3 Hz, 3H), 1.23-1.36 (m, 2H), 1.38-1.43 (m, 2H), 2.22 (s, 3H), 2.29 (s, 3H), 2.79 (d, J=14.9 Hz, 1H), 2.84 (dd, J=8.6, 9.7 Hz, 1H), 3.16 (t, J=9.5 Hz, 1H), 3.32 (d, J=15.3 Hz, 1H), 3.43-3.61 (m, 4H), 3.79 (s, 3H), 3.88 (d, J=9.8 Hz, 1H), 5.93 (s, 2H), 6.74 (m, 3H), 6.83 (m, 3H), 7.04 (d, J=1.7 Hz, 1H), 7.11 (m, 3H). MS (C.I.) m/e 559 (MH+). Anal calcd for C33H38N2O6.0.3H2O: C, 70.27; H, 6.90; N, 4.97. Found: C, 70.24; H, 6.62; N, 4.58.


EXAMPLE 494
trans,trans-2-(3-Methylpent-3-en-1-yl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedure described in Example 1, the title compound was prepared and isolated as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.92 (3H, t, J=7 Hz), 0.97 (3H, t, J=7 Hz), 1.22-1.40 (5H, m), 1.44-1.61 (8H, m), 1.82 (1H, brm), 2.02 (2H, m), 3.05-3.30 (4H, m), 3.3.8 (1H, m), 3.55 (1H, brm), 3.85 (2H, m), 4.12 (1H, brd, J=15 Hz), 5.11 (1H, dd, J=6 Hz, 12 Hz), 5.93 (2H, s), 6.73 (1H, d, J=8 Hz),6.78 (1H, dd, J=2 Hz, 8 Hz),6.88 (1H, d, J=2 Hz). MS(DCl/NH3) m/e 487 (M+H)+. Anal calcd for C28H42N2O5.0.7 CF3CO2H: C, 62.34; H, 7.60; N, 4.95. Found: C, 62.49; H, 7.43; N, 4.73.


EXAMPLE 495
1-(N-Phenylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid
EXAMPLE 495A
N-Phenylbromoacetamide

To a stirred solution of aniline (7.40 mmol) in methylene chloride (25 mL) at −50° C. was added successively N,N-diisopropylethylamine (1.58 mL, 8.14 mmol, 1.1 eq) and bromoacetyl bromide (0.72 mL, 7.40 mmol, 1 eq) such that the temperature did not exceed 40° C. On completion of the addition, the cooling bath was removed, and the reaction mixture was allowed to warm to room temperature. After stirring for a further 30 minutes, the mixture was diluted with ether (70 mL) and poured into 1 N sodium bisulfate solution. The phases were separated, and the upper layer was washed successively with water and brine. The organic phase was dried (Na2SO4) and the solvent evaporated to half volume, at which point the product crystallized. The crystals were removed by vacuum filtration to afford the title compound.


EXAMPLE 495B
trans,trans-1-(N-Phenylaminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 and the compound resulting from Exampe 495A, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.8 (bs, 1H) 7.49 (2H, d, J=8 Hz), 7.38 (4H, m), 7.11 (1H, tt, J=8&2 Hz), 6.99 (1H, d, J=2 Hz), 6.91 (2H, d, J=8 Hz), 6.86 (1H, d, J=2 Hz), 6.81 (1H, d, J=8 Hz), 5.99 (1H, d, J=2 Hz), 5.98 (1H, d, J=2 Hz), 3.94 (1H, d, J=10 Hz), 3.78 (3H, s), 3.70 (1H, ddd, J=6, 5&3 Hz), 3.42 (1H, dd, J=10&3 Hz), 3.41 (1H, d, J=16 Hz), 3.18 (1H, dd, J=11&9 Hz), 3.01 (1H, t, J=10 Hz), 2.93 (1H, d, J=16 Hz). MS (DCl, NH3) m/e 475 (M+H+). Anal. Calc for C27H26N2O6.1 H2O: C, 65.85, H, 5.73, N 5.69, Found: C, 65.95, H, 5.52, N, 5.38.


EXAMPLE 496
trans,trans-1-(N-(2,3-Dimethylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.68 (1H, bs), 7.64 (d, J=8 Hz), 7.38, (2H, d, J=8 Hz), 7.09 (1H, t, J=8 Hz), 6.97, (1H, d, J=8 Hz), 6.90 (1H, d, J=2 Hz), 6.88 (2H, d, J=8 Hz), 6.82 (1H, dd, J=8&3 Hz), 6.76 (1H, d, J=8 Hz), 5.97 (1H, d, J=2 Hz), 5.96 (1H, d, J=2 Hz), 3.95 (1H, d, J=10 Hz), 3.80 (3H, s), 3.70 (1H, ddd, J=6, 5&3 Hz), 3.48 (1H, dd, J=10&3 Hz), 3.44 (1H, d, J=16 Hz), 3.18 (1H, dd, J=11&9 Hz), 3.06 (1H, t, J=10 Hz), 2.96 (1H, d, J=16 Hz), 2.31 (3H, s), 2.16 (3H, s). MS (DCl, NH3) m/e 503 (M+H+). Anal. Calc for C29H30N2O6.0.5H2O: C, 68.09, H, 6.11, N, 5.48. Found: C, 68.13, H, 5.91, N, 5.29.


EXAMPLE 497
trans,trans-1-(N-(2,4-Dimethylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.60 (1H, bs), 7.78 (d, J=8 Hz), 7.38, (2H, d, J=8 Hz), 6.99 (1H, m), 6.95, (1H, d, J=8 Hz), 6.94 (1H, d, J=2 Hz), 6.88 (2H, d, J=8 Hz), 6.82 (1H, dd, J=8&3 Hz), 6.77 (1H, d, J=8 Hz), 5.97 (1H, d, J=2 Hz), 5.96 (1H, d, J=2 Hz), 3.92 (1H, d, J=10 Hz), 3.79 (3H, s), 3.68 (1H, ddd, J=6, 5&3 Hz), 3.43 (1H, dd, J=110&3 Hz), 3.42 (1H, d, J=16 Hz), 3.18 (1H, dd, J=11&9 Hz), 3.04 (1H, t, J=10 Hz), 2.95 (1H, d, J=16 Hz), 2.29 (3H, s), 2.24 (3H, s). MS (DCl, NH3) m/e 503 (M+H+). Anal. Calc for C29H30N2O6.0.75H2O: C, 67.50, H, 6.15, N 5.43. Found: C, 67.42; H, 5.95; N, 5.13.


EXAMPLE 498
trans,trans-1-(N-(2,5-Dimethylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.62 (1H, bs), 7.79 (1H, bs), 7.38, (2H, d, J=8 Hz), 7.03 (1H, d, J=8 Hz), 6.95, (1H, d, J=8 Hz), 6.94 (1H, d, J=2 Hz), 6.88 (2H, d, J=8 Hz), 6.82 (1H, dd, J=8&3 Hz), 6.77 (1H, d, J=8 Hz), 5.97 (2H, s), 3.92 (1H, d, J=10 Hz), 3.78 (3H, s), 3.70 (1H, ddd, J=6, 5&3 Hz), 3.48 (1H, dd, J=10&3 Hz), 3.42 (1H, d, J=16 Hz), 3.18 (1H, dd, J=11&9 Hz), 3.04 (1H, t, J=10 Hz), 2.95 (1H, d, J=16 Hz), 2.29 (3H, s), 2.24 (3H, s). MS (DCl, NH3) m/e 503 (M+H+). Anal. Calc for C29H30N2O6.0.5H2O: C, 68.09; H, 6.11; N, 5.48. Found: C, 67.72; H, 5.89; N, 5.25.


EXAMPLE 499
trans,trans-1-(N-(3,4-Dimethylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.73 (1H, bs), 7.38 (2H, bd, J=8 Hz), 7.30, (1H, d, J=3 Hz), 7.20 (1H, bs), 7.08, (1H, d, J=8 Hz), 7.01 (1H, bs), 6.90 (2H, d, J=8 Hz), 6.85 (1H, bs), 6.80 (1H, d, J=8 Hz), 5.99 (1H, d, J=3 Hz), 5.98 (1H, d, J=3 Hz), 3.92 (1H, d, J=10 Hz), 3.78 (3H, s), 3.70 (1H, ddd, J=6, 5&3 Hz), 3.48 (1H, dd, J=10&3 Hz), 3.42 (1H, d, J=16 Hz), 3.18 (1H, dd, J=111&9 Hz), 3.04 (1H, t, J=10 Hz), 2.95 (1H, d, J=16 Hz), 2.25 (3H, s), 2.21 (3H, s). MS (DCl, NH3) m/e 503 (M+H+). Anal. Calc for C29H30N2O6.0.75H2O: C, 67.50; H, 6.15; N 5.43. Found: C, 67.24; H, 5.94; N, 5.20.


EXAMPLE 500
trans,trans-1-(N-(3,5-Dimethylphenyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1, the title compound was prepared. 1H NMR (300 MHz, CDCl3) δ 8.75 (1H, bs), 7.35, (2H, d, J=8 Hz), 7.10 (2H, s), 7.02 (1H, d, J=3 Hz), 6.90 (2H, d, J=8 Hz), 6.84 (1H, d, J=2 Hz), 6.80, (1H, d, J=8 Hz), 6.76. (1H, bs), 5.99 (1H, d, J=3 Hz), 5.98 (1H, d, J=3 Hz), 3.92 (1H, d, J=10 Hz), 3.79 (3H, s), 3.68 (1H, ddd, J=6, 5&3 Hz), 3.40 (2H, m), 3.18 (1H, dd, J=11&9 Hz), 2.98 (1H, t, J=10 Hz), 2.88 (1H, d, J=16 Hz), 2.3 (6H, s). MS (DCl, NH3) m/e 503 (M+H+). Anal. Calc for C29H30N2O6.0.5H2O: C, 68.09; H, 6.11; N 5.48. Found: C, 67.93; H, 6.01; N, 5.19.


EXAMPLE 501
Alternate Preparation of (+)-trans trans-1-(N,N-Di(n-butyl)aminocarbonylmethyl)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylic acid Hydrochloride Salt
EXAMPLE 501A
N,N-Dibutyl bromoacetamide

To a solution of bromoacetyl bromide (72.3 mL, 830 mmol) in toluene (500 mL) cooled to 0° C. was added a solution of dibutylamine (280.0 mL, 1.66 mol) in toluene (220 mL) via an addition funnel maintaining the reaction temperature below 10° C. Upon completion of the addition, the reaction mixture was stirred at 0° C. for 15 minutes. A solution of 2.5% aqueous H3PO4 (500 mL) was slowly introduced, and the reaction mixture was allowed to warm to room temperature with vigorous stirring. The solution is 2.5% phosphoric acid by weight. The layers were separated and the organic phase washed with water (500 mL) and concentrated to provide the bromoacetamide as a solution in toluene.


EXAMPLE 501B
5-(2-Nitrovinyl)-1,3-benzodioxole

To piperonal (15.55 kg, 103.5 mol) under mechanical stirring and under nitrogen was added ammonium acetate (13.4 kg, 173.8 mol), acetic acid (45.2 kg), and nitromethane (18.4 kg, 301.4 mol) sequentially. The mixture was warmed to 70° C. After about 30 minutes, the yellow product began to crystallize. The reaction temperature was raised to 80° C. and stirred for about 10 hours until minimal piperonal remains. The somewhat thick reaction mixture was cooled to 10° C. and filtered. The precipitate was washed with acetic acid (2×8 kg) and then water (2×90 kg). The product was dried under a nitrogen purge and then in a vacuum oven at 50° C. for 2 days to afford 15.94 kg (80%) of the title compound as a bright yellow solid.


EXAMPLE 501C
4-Methoxybenzoyl acetate

To potassium t-amylate (25 wt %, 50.8 kg, 99.26 mol) in toluene (15.2 kg) cooled to 5° C. under mechanical stirring and under nitrogen was added a mixture of 4-methoxyacetophenone (6.755 kg, 4-4.98 mol) and diethyl carbonate (6.40 kg, 54.18 mol) in toluene over 1 hour maintaining the temperature below 10° C. The reaction mixture was heated to 60° C. for 8 hours until no 4-methoxyacetophenone was detected by HPLC. The mixture was cooled to 20° C. and quenched by adding to a mixture of acetic acid (8 kg) and water (90 kg) over 30 minutes while maintaining the temperature at <20° C. The layers were separated, and the organic layer was washed with 5% sodium bicarbonate solution (41 kg) and concentrated to 14.65 kg. The temperature is maintained below 50° C. during the distillation. The yellow product concentrate was assayed by HPLC against an external standard and the yield was found to be 9.40 kg (94%).


EXAMPLE 501D
Ethyl 2-(4-methoxybenzoyl)-4-nitromethyl-3-(1,3-benzodioxol-5-yl)butyrate

To the compound resulting from Example 501B (7.5 kg, 37.9 mol) suspended in THF (56 kg) with mechanical stirring under nitrogen was added the compound resulting from Example C (8.4 kg, 37.9 mol). The mixture was cooled to 17° C., sodium ethoxide (6.4 g, 0.095 mol) was added, and the reaction was stirred for 30 minutes. After about 15 minutes, the nitrostyrene was completely dissolved. Sodium ethoxide (6.4 g, 0.095 mol) was added, and the mixture was stirred at 25° C. until HPLC shows less than 1 area % ketoester remaining. The reaction was concentrated to 32.2 kg which was determined by HPLC assay to be ˜14.9 kg (95%).


EXAMPLE 501E
Ethyl cis, cis-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate

Raney nickel (20.0 g), from which the water had been decanted, was charged to a stirred hydrogenator equipped with a thermocouple. THF (20 mL), the crude compound resulting from Example 501D (40.82 g, 0.0482 mol), and acetic acid (2.75 mL, 0.0482 mol) were added sequentially. The mixture was put under a hydrogen atmosphere at 60 psi until the hydrogen uptake slowed dramatically. TFA was added, and the mixture was hydrogenated at 200 psi until HPLC shows no residual imine and <2 area % nitrone. The catalyst was filtered away and washed with 100 mL of methanol. The filtrate was assayed by HPLC and found to contain 13.3 g (75% yield) of the cis, cis-pyrrolidine compound. The filtrate was concentrated and chased with additional THF (200 mL) to give a final volume of 100 mL. The mixture was neutralized with 2 N NaOH solution (50 mL), diluted with water (200 mL), and extracted with ethyl acetate (2×100 mL). The combined nearly colorless ethyl acetate layers were assayed against an external standard by HPLC to be 13.0 g (73%) of the title compound.


EXAMPLE 501F
Ethyl trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate

The solution of the compound resulting from Example 501E (38.1 g, 0.103 mol) was chased with ethanol (200 mL) to a final volume of 100 mL and sodium ethoxide (3.40 g, 0.050 mol) was added. The mixture was heated to 75° C. When HPLC shows <3% of the cis,cis isomer remaining, the mixture was cooled to room temperature. The product was assayed by HPLC against an external standard and found to contain 34.4 g (90% yield) of the title compound. The crude compound solution was concentrated and the residue taken up in isopropyl acetate (400 mL). The organic layer was washed with water (2×150 mL) and then extracted with 0.25 M phosphoric acid solution (2×400 mL). The combined phosphate layers were stirred with ethyl acetate (200 mL) and neutralized to pH 7 with solid sodium bicarbonate (21 g). The organic layer was separated and found to contain 32.9 g (87%) of the title compound.


EXAMPLE 501 g
Ethyl(2R,3R,4S)-(+)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate, (S)-(+) mandelate salt

The solution resulting from Example 501F was chased with acetonitrile (100 mL) to give a final volume of 50 mL. (S)-(+)-Mandelic acid (2.06 g, 0.0136 mmol) was added and allowed to dissolve. The mixture was seeded with the product and allowed to stir at room temperature for 16 hours. The reaction mixture was cooled to 0° C. and stirred for 5 hours. The product was filtered and dried in a vacuum oven with a nitrogen purge for 1 day at 50° C. to give 5.65 g (40%) of the title compound. The purity of the product can be determined by chiral HPLC using Chiralpak AS, isocratic elution with 95:5:0.05 hexane-ethanol-diethylamine; flow −1 mL/min.; UV detection at 227 nm. Retention times: (+)-enantiomer: 15.5 min.; (−)-enantiomer: 21.0 min.


EXAMPLE 501H
(2R,3R,4S)-(+)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound resulting from Example 501 g (20.0 g, 0.0383 mol) was suspended in ethyl acetate (150 mL) and 5%, sodium bicarbonate solution (150 mL). The mixture was stirred at room temperature until the salt dissolved and carbon dioxide evolution had ceased. The organic layer was separated and concentrated. The residue was chased with acetonitrile (200 mL) to a final volune of 100 mL and cooled to 10° C. Diisopropylethylamine (11.8 mL, 0.0574 mol) and the compound resulting from Example A (10.5 g, 0.0421 mol) were added, and the mixture was stirred for 12 hours at room temperature. The reaction mixture was concentrated and chased with ethanol (200 mL) to a final volume of 100 mL. Sodium hydroxide solution (40%, 20 mL, 0.200 mol) was added, and the mixture was heated at 60° C. for 4 hours until HPLC showed no starting material remaining. The reaction mixture was poured into water (400 mL) and washed with hexanes (2×50 mL). The aqueous layer was washed with hexane (2×20 mL). A stirred mixture of the aqueous layer and ethyl acetate (400 mL) was neutralized to pH 5 with concentrated HCl (12 mL). The organic layer was separated and found to contain 18.3 g (94% yield) of the title compound.


EXAMPLE 501I
(2R,3R,4S)-(+)-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
hydrochloride salt

To a solution of the compound of Example 501H in ethyl acetate at room temperature in a mechanically stirred vessel equipped with a thermocouple, was added 39.4 mL of 1 N HCl in ethanol (0.0394 mol) The resultant solution was filtered to remove foreign matter, concentrated in vacuo, and chased with ethyl acetate (400 mL). The solution was seeded repeatedly, as the solvent was removed, until crystallization was initiated. The mixture was concentrated to a volume of 100 mL, and the product was filtered and washed with ethyl acetate (25 mL). The resultant white solid was dried in a vacuum oven under a nitrogen purge at 50° C. to afford 17.6 g (90%) of the title compound.


EXAMPLE 502
trans,trans-2-(2-Methylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 502A
(±)-Ethyl 3-methylhexanoate

To a slurry of 60% sodium hydride (2.26 g, 57 mmol) in 10 mL of hexanes and 100 mL of diethyl ether was added triethylphosphonoacetate (10.3 mL, 52 mmol). Once gas evolution ceased, 2-pentanone (6.0 mL, 64 mmol) was added. After 3 hours at room temperature, the reaction was quenched with water, and partitioned into ether. The organic layer was washed with water and brine, dried with anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure. The residue was dissolved in 50 mL of ethanol and 10% palladium on carbon (6.0 g) was added. The vessel was pressurized to 4 atmosphere of hydrogen, and was shaken at room temperature for 3 hours. The reaction was filtered and the solvent was removed under reduced pressure to give 3.0 g of the title compound.


EXAMPLE 502B
(±)-Ethyl 5-methyl-3-oxooctanoate

To a solution of ethyl 3-methylhexanoate in 150 mL of ethanol was added sodium hydroxide (2.3 g, 57.6 mmol). After 48 hours at room temperature, solvent was removed under reduced pressure, and the residue was dissolved in 150 mL of water. The solution was washed with ether, then acidified with concentrated hydrochloric acid and washed with methylene chloride. The organic layer was dried with anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure to give 2.7 g of the corresponding acid from which 3.9 g of the title compound was prepared by the method of Bram and Vilkas, Bul. Chem. Soc. Fr., 945 (1964).


EXAMPLE 502C
trans,trans-2-(2-Methylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1 and substituting ethyl 5-methyl-3-oxooctanoate for ethyl(4-methoxybenzoyl)acetate afforded the title compound, which was isolated by lyophilization from dilute aqueous TFA/CH3CN. Note that the multiplicity of the signals in the aryl region of the NMR spectrum reflects a 1:1 mixture of diastereomers on the alkyl chain. 1H NMR (CDCl3, 300 MHz) δ 0.8-1.0 (m, 12H), 1.2-1.4 (m, 7H), 1.45-1.6 (m, 6H), 1.6-1.74 (m, 1H), 1.8-2.0 (m, 1H), 3.1-3.4 (m, 5H), 3.67-3.78 (m, 1H), 3.8-3.91 (m, 1H), 4.0-4.2 (m, 2H), 4.34.5 (m, 2H), 5.93 (d, J=1.5 Hz, 2H), 6.73 (dd, J=8.1, 1.2 Hz, 1H), 6.79 (ddd, J=7.8, 1.8, 1.8 Hz, 1H), 6.86 (dd, J=3.9, 1.5 Hz, 1H). MS (DCl/NH3) m/e 489 (M+H)+. Anal calcd for C28H44N2O5.1.0 TFA.0.5H2O: C, 58.91; H, 7.58; N, 4.58. Found: C, 58.91; H, 7.58; N, 4.45.


EXAMPLE 503
trans,trans-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Ethyl 3,3-dimethylhexanoate was prepared using the general procedure of Cahiez et al., Tetrahedron Lett., 31, 7425 (1990). Using the procedures described in Example 502 and substituting ethyl 3,3-dimethylhexanoate for ethyl 3-methylhexanoate afforded the title compound, which was isolated by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CDCl3, 300 MHz) δ 0.80-0.99 (m, 15H), 1.10-1.37 (m, 8H), 1.43-1.58 (m, 4H), 1.77-1.97 (m, 2H), 3.48-3.12 (m, 5H), 3.60-3.69 (m, 1H), 3.75-3.86 (m, 1H), 3.95-4.16 (m, 2H), 4.28-4.4 (m, 2H), 5.94 (s, 2H), 6.74 (d, J=7.8 Hz, 1H), 6.8 (dd, J=8.1, 1.5 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS (DCl/NH3) m/e 503 (M+H)+. Anal calcd for C29H46N2O5.1.05 TFA: C, 60.01; H, 7.62; N, 4.50. Found: C, 60.21; H, 7.37; N, 4.33.


EXAMPLE 504
trans,trans-2-(2-(1,3-Dioxo-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 504A
Ethyl 5-(1,3-dioxolyl)-3-oxopentanoate

The title compound was synthesized from ethyl acetoacetate and 2-bromomethyl-1,3-dioxane, according to the procedure of Huckin and Weiler, Tetrahedron Lett. 3927, (1971).


Sodium hydride 4.97 g (0.124 mol), as a 60% mineral oil dispersion, was weighed into a 250 mL flask, into which 80 ml of tetrahydrofuran was directly added. The flask was capped with septum cap, flushed with nitrogen, and cooled in an ice bath. To above stirred slurry was added dropwise 15.0 mL (0.118 mol) ethyl acetoacetate. After the addition was complete, the resulting mixture was stirred at 0° C. for additional 10 min. To above mixture was then added 48.4 mL (0.121 mol) n-butyl lithium, a 2.50 M solution in hexane, in a dropwise manner. The resulting orange color solution was stirred for 10 min before 13.5 mL (0.130 mol) bromomethyl-1,3-dioxane was added in one portion. The reaction mixture was then allowed to warm to room temperature and stirred for additional 120 min before it was then quenched by slow addition of 9.8 ml (ca. 0.12 mol) concentrated hydrochloric acid. The biphasic mixture was poured to 50 ml of water and extracted with 150 ml of ethyl ether. The aqueous layer was extracted thoroughly with additional ethyl ether. The ethereal extracts were combined, washed with 2×50 ml of saturated brine, dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure to give an brown oily residue. The crude product was purified using silica gel flash chromatography eluting with 20% ether/hexane to give 5.40 g (20%) of b-keto ester as a light yellow oil.


EXAMPLE 504C
trans,trans-2-(2-(1,3-Dioxo-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502 and substituting ethyl 5-(1,3-dioxolyl)-2-oxopentanoate for ethyl 3-methylhexanoate afforded the title compound. 1H NMR (CDCl3, 300 MHz) δ 0.93 (t, J=7.2 Hz, 3H), 0.95 (t, J=7.2 Hz, 3H), 1.23-1.38 (m, 4H), 1.52 (sextet, J=7.9 Hz, 4H), 1.85-1.95 (m, 2H), 2.02-2.17 (m, 2H), 3.18 (dd, J=6.0 Hz, 9.0 Hz, 2H), 3.30 (dd, J=9.0 Hz, 18.0 Hz, 2H), 3.35 (m, 1H), 3.79 (dd, J=3.6 Hz, 6.9 Hz, 1H), 3.83-3.88 (m, 3H), 3.97 (dd, J=4.8 Hz, 6.0 Hz, 1H), 4.05 (q, J=9.6 Hz, 0.2H), 4.30-4.40 (m, 1H), 4.37 (s, 2H), 4.87 (t, J=3.6 Hz, 1H), 5.94 (s, 2H), 6.73 (d, J=8.1 Hz, 1H), 6.79 (dd, J=1.8 Hz, 8.1 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS (APCl) (M+H)+ at m/e 505. Anal calcd for C27H40N2O7.1.2 TFA: C, 55.05; H, 6.47; N, 4.37. Found: C, 55.12; H, 6.44; N, 4.27.


EXAMPLE 505
trans,trans-2-(2-(2-Tetrahydro-2H-pyran)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 505A
Ethyl 5-(2-tetrahydro-2H-pyran)-3-oxopentanoate

Using the procedure of Huckin and Weiler, Tetrahedron Lett. 3927, (1971), the title compound was prepared from ethyl acetoacetate and 2-(bromomethyl)tetrahydro-2H-pyran as a light yellow oil.


EXAMPLE 505B
trans,trans-2-(2-(2-Tetrahydro-2H-pyran)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502 and substituting ethyl 5-(2-tetrahydro-2H-pyran)-2-oxopentanoate for ethyl 3-methylhexanoate afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) as a mixture of two diastereoisomers: δ 0.89 (t, J=8.1 Hz, 3H), 0.89 (t, J=8.1 Hz, 3H), 0.91 (t, J=8.1 Hz, 3H), 0.91 (t, J=8.1 Hz, 3H), 1.20-1.40 (m, 10H), 1.42-1.66 (m, 18H), 1.71 (brm, 2H), 1.85 (brm, 2H), 1.96-2.23 (brm, 4H), 3.10-3.29 (m. 8H), 3.29-3.52 (m, 6H), 3.54-3.81 (m, 6H), 4.01 (q, J=9 Hz, 2H), 4.12-4.25 (m, 4H), 4.43 (d, J=9 Hz, 2H), 4.50 (d, J=2.7 Hz, 2H), 5.94 (s, 2H), 5.95 (s, 2H), 6.76 (s, 2H), 6.76 (s, 2H), 6.81 (s, 1H), 6.81 (s, 1H). MS (APCl) (M+H)+ at m/e 517. Anal calcd for C29H44N2O6.1.4 TFA: C, 56.48; H, 6.77; N, 4.14. Found: C, 56.46; H, 6.99; N, 3.83.


EXAMPLE 506
trans,trans-2-(2,2,4-Trimethyl-3-pentenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 506A
Methyl 3,3,5-trimethyl-4-hexenoate

To a slurry of isopropyltripenylphosphonium iodide (20.5 g, 47 mmol) in 200 mL of tetrahydrofuran was added n-butyllithium (27 mL of a 1.6 M solution in hexane, 43 mmol), and the solution was briefly warmed to 0° C. After recooling, a solution of methyl 3,3-dimethyl-4-oxobutenoate (5.7 g, 40 mmol), prepared according to the procedure of Hudlicky et al., Synth. Commun., 16 169 (1986) in 10 mL of tetrahydrofuran was added, and the reaction was warmed to 0° C. for 30 min. The reaction was quenched with dilute hydrochloric acid, and partitioned with ethyl acetate. The organic layer was washed with water, and brine, dried with anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 10% ethyl acetate in hexanes to give 2.1 g (30%) of the title compound.


EXAMPLE 506B
trans,trans-2-(2,2,4-Trimethyl-3-pentenyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502 and substituting methyl 3,3,5-trimethyl-4-hexenoate for ethyl 3-methylhexanoate afforded the title compound, which was isolated by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CDCl3, 300 MHz) δ 0.92 (t, J=7.2 Hz, 3H), 0.94 (t, J=7.2 Hz, 3H), 1.11 (s, 3H), 1.13 (s, 3H), 1.24-1.37 (m, 4H), 1.46-1.59 (m, 4H), 1.61 (d, J=1.2 Hz, 3H), 1.69 (d, J=1.2 Hz, 3H), 2.04-2.11 (m, 2H), 3.10-3.20 (m, 2H), 3.30-3.39 (m, 3H), 3.67-3.82 (m, 2H), 3.95-4.08 (m, 1H), 4.32 (m, 2H), 4.37-4.47 (m, 1H), 4.99 (s, 1H), 5.95 (s, 2H), 6.73 (d, J=7.8 Hz, 1H), 6.78 (dd, J=8.4, 1.2 Hz, 1H), 6.84 (d, J=1.2 Hz, 1H). MS (DCl/NH3) m/e 515 (M+H)+. Anal calcd for C30H46N2O5.1.05 TFA: C, 60.77; H, 7.48; N, 4.42. Found: C, 60.83; H, 7.20; N, 4.43.


EXAMPLE 507
trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 507A
Methyl 3,3-dimethyl-3-(1,3-dioxolan-2-yl)propanoate

Methyl 3,3-dimethyl-4-oxobutanoate (10 g, 70 mmol), prepared according to the procedure of Hudlicky et al., Synth. Commun., 16 169 (1986), was dissolved in 40 mL of benzene, followed by addition of ethylene glycol (20 mL), and p-toluenesulfonic acid monohydrate (1.3 g). The reaction was refluxed with azeotropic removal of water for 1 hour. The reaction was poured into 200 mL of ether, washed with saturated sodium bicarbonate, water and brine, dried with anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure to give 12.4 g (94%) of the title compound.


EXAMPLE 507B
trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502 and substituting methyl 3,3-dimethyl-3-(1,3-dioxolan-2-yl)propanoate for ethyl 3-methylhexanoate afforded the title compound, which was isolated by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CDCl3, 300 MHz) δ 0.82-1.00 (m, 12H), 1.24-1.40 (m, 4H), 1.43-1.64 (m, 5H), 1.76-1.84 (m, 1H), 2.93-3.00 (m, 1H), 3.15-3.47 (m, 6H), 3.60-3.70 (m, 3H), 3.74-3.95 (m, 5H), 4.48 (s, 1H), 5.94 (m, 2H), 6.72 (d, J=8.0 Hz, 1H), 6.83 (dd, J=8.0, 1.2 Hz, 1H), 6.94 (d, J=1.2 Hz, 1H). MS (DCl/NH3) m/e 533 (M+H)+. Anal calcd for C29H44N2O7.1.1 TFA∘0.2H2O: C, 56.63; H, 6.93; N, 4.23. Found: C, 56.60; H, 6.96; N, 4.25.


EXAMPLE 508
trans trans-2-(2-(1,3-Dioxo-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl-N -methyl-3-fluorophenyl)]amino carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 508A
4-Heptanol

To an ice cooled solution of 1.14 g (10.0 mmol) of 4-heptanone in 20 mL of diethyl ether was added 370 mg (10.0 mmol) of LiAlH4, in portions to keep ether reflux at a minimum. After 45 minutes, the reaction was quenched by sequential dropwise addition of 0.4 mL H2O, 0.4 mL 15% (w/v) NaOH(aq), and 1.2 mL H2O. After stirring another 45 minutes, MgSO4 was added until the salts were free flowing, then the reaction was filtered. The salts were washed with diethyl ether (3×5 mL), then the filtrate and washings were concentrated to a colorless oil. Yield 1.16 g (100%).


EXAMPLE 508B
4-Methanesulfonyloxyheptane

To an ice cooled solution of 834 mg (7.19 mmol) of 4-heptanol in 35 mL of CH2Cl2 was added 1.5 mL of triethylamine. Next, 0.7 mL (9 mmol) of methanesulfonyl chloride was added, dropwise, over 1 minute. The mixture was stirred at 0° C. for 30 minutes, then extracted with H2O (1×15 mL), 5% NH4OH (2×15 mL), 1M HCl (2×15 mL), and brine (1×15 mL), dried over MgSO4, filtered, and concentrated to an oil. Yield 1.31 g (94%). 1H NMR (300 MHz, CDCl3) d 0.96 (t, 6, J=9), 1.43 (m, 4), 1.64 (m, 4), 3.00 (s, 3), 4.73 (quintet, 1 J=5).


EXAMPLE 508C
4-Fluoro-3-methylaniline

To a solution of 20 g (129 mmol) of 2-fluoro-5-nitrotoluene in 400 mL of ethanol was added 2 g of 10% Pd—C. The mixture was shaken under 45 P.S.I. H2 until hydrogen uptake ceased. The catalyst was filtered away and washed with ethanol, then the combined filtrate and washings were concentrated to 15.2 g (94%) of a colorless oil.


EXAMPLE 508D
N-Heptyl-4-fluoro-3-methylaniline

To a solution of 4.10 g (3.28 mmol) of 4-fluoro-3-methylaniline in 30 mL of acetonitrile was added 7.64 g (3.93 mmol) of 4-methanesulfonyloxyheptane, and 3.4 g (4.1 mmol) of NaHCO3(s). The mixture was stirred at reflux for 24 hours, then poured into 150 mL of H2O and extracted with diethyl ether (2×30 mL). The combined ether layers were back extracted with brine (1×30 mL), dried over MgSO4, filtered, and concentrated to an oil. This was purified via silica gel chromatography, eluting with 97.5:2.5 hexanes:ethyl acetate, to give 2.56 g (35%) of a pale yellow oil.


EXAMPLE 508E
N,N-(4-Heptyl)-(4-fluoro-3-methyl)phenylbromoacetamide

To an ice cooled solution of 4.88 g (21.9 mmol) of N-(4-heptyl)-4-fluoro-3-methylaniline and 4.9 mL (61 mmol) of pyridine in 100 mL of toluene was added a solution of 4.90 mL (56.2 mmol) of bromoacetyl bromide in 7 mL of toluene. The solution was stirred for 24 hours, gradually warming to 25° C., then extracted with 1M HCl (1×100 mL). The aqueous layer was back extracted with diethyl ether (1×50 mL), then the combined organic layers were washed with H2O (2×50 mL), saturated NaHCO3(aq) (2×50 mL), and brine (1×50 mL), dried over MgSO4, filtered, and concentrated in vacuo to an oil. This was purified via silica gel chromatography, eluting with 90:10 hexanes:ethyl acetate to give 7.48 g (99%) of a light yellow oil. 1H NMR (300 MHz, CDCl3) d 0.94 (t, 6, J=5), 1.33 (m, 4), 1.43 (m, 4), 2.30 (s, 1.5), 2.31 (s, 1.5), 3.54 (s, 2), 4.72 (quintet, 1, J=5), 6.96-7.04 (m, 2), 7.07 (d, 1, J=7).


EXAMPLE 508F
trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl -N-methyl-3-fluorophenyl)]amino carbonylmethyl]-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 5-(1,3-dioxolyl)-2-oxopentanoate for ethyl 3-methylhexanoate and N,N-(4-heptyl)-(4-fluoro-3-methyl)phenyl-bromoacetamide for N,N-dibutylbromoacetamide afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.93 (brt, 6H), 1.23-1.47 (m, 8H), 1.67-2.10 (m, 4H), 2.32 (s, 3H), 3.16 (t, J=9.0 Hz, 1H), 3.52-3.67 (brm, 2H), 3.73 (t, J=9.0 Hz, 1H), 3.81-4.02 (m, 6H), 4.13 (brm, 1H), 4.72 (quintet, J=6.9 Hz, 1H), 4.86 (t, J=4.0 Hz, 1H), 5.93 (s, 2H), 6.72 (d, J=8.1 Hz, 1H), 6.78 (dd, J=1.8 Hz, 8.1 Hz, 1H), 6.85 (d, J=1.8 Hz, 1H), 6.96 (m, 2H), 7.08 (t, J=9.0 Hz, 1H). MS (DCl/NH3) (M+H)+ at m/e 599. Anal Calcd for C33H43N2O7F.0.8 TFA: C, 60.24; H, 6.40; N, 4.06. Found: C, 60.21; H, 6.14; N, 3.86.


EXAMPLE 509
trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 5-(1,3-dioxolyl)-2-oxopentanoate for ethyl 3-methylhexanoate and 6-methoxypiperonal for piperonal afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.93 (t, J=7.8 Hz, 3H), 0.95 (t, J=7.8 Hz, 3H), 1.31 (m, 4H), 1.53 (m, 4H), 1.90 (m, 2H), 2.09 (m, 2H), 3.19 (dd, J=8.4 Hz, 8.4 Hz, 2H), 3.30 (q, J=9.6 Hz, 2H), 3.25-3.42 (m, 1H), 3.73 (q, J=10.5 Hz, 1H), 3.78-3.94 (m, 4H), 3.88 (s, 3H), 3.96 (dd, J=5.1 Hz, 6.0 Hz, 1H), 4.03 (dd, J=3.0 Hz, 6.3 Hz, 2H), 4.33 (m, 3H), 4.87 (t, J=3.6 Hz, 1H), 5.94 (s, 2H), 6.53 (d, J=1.8 Hz, 1H), 6.63 (d, J=1.8 Hz, 1H). MS (DCl/NH3) (M+H)+ at m/e 535. Anal calcd for C28H42N2O8.1.05 TFA: C, 55.25; H, 6.63; N, 4.28. Found: C, 55.39; H, 6.66; N, 4.26.


EXAMPLE 510
trans,trans-2-((2-Methoxyphenoxy)-methyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting o-methoxyphenoxyacetic acid for 3-methylhexanoic acid, the above compound was prepared as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.85 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.15-1.35 (m, 4H), 1.40-1.55 (m, 4H), 3.05-3.25 (m, 4H), 3.28-3.55 (m, 4H), 3.58-3.68 (m, 1H), 3.75-3.80 (m, 1H), 3.82 (s, 3H), 3.91 (d, J=14 Hz, 1H), 4.05-4.15 (m, 1H), 4.23-4.33 (m, 1H),5.91 (s, 2H), 6.70 (d, J=8 Hz, 1H), 6.82-6.95 (m, 5H), 7.03 (s, 1H). MS (DCl/NH3) (M+H)+ at m/e 541. Anal calcd for C30H40N2O7: C, 66.65; H, 7.46; N, 5.18. Found: C, 66.37; H, 7.61; N, 5.09.


EXAMPLE 511
(2S,3R,4S)-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 511A
trans, trans-N-tert-Butoxycarbonyl-2-(2,2-dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylic acid

Ethyl trans, trans-2-(2,2-dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate (2.5 g, 6.9 mmol), prepared according to Example 503, was dissolved in 50 mL of methylene chloride and di-tert-butyldicarbonate (1.5 g) was added. After stirring overnight at room temperature, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with 10% ethyl acetate/hexanes to give the ethyl ester of the title compound (2.8 g) as a colorless oil. The ester was dissolved in 50 mL of ethanol followed by addition of sodium hydroxide (10 mL of a 5 M aqueous solution). After stirring for 20 hours at room temperature, the solvent was removed under reduced pressure, and the residue was dissolved in 150 mL of water, and acidified with concentrated phosphoric acid. The mixture was extracted with chloroform (3×50 mL), and the organic layers were washed wiith brine, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure to give the title compound (2.4 g) as a white foam.


EXAMPLE 511B
Methyl trans, trans-2-(2,2-dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylate: As a single enantiomer

The product from Example 510A (1.97 g, 4.5° mmol) was dissolved in 20 mL of THF and cooled to 0° C., followed by addition of DMF (0.017 mL, 5%), and oxalyl chloride (0.437 mL, 5.00 mmol). After 1 hour, solvent was removed at 0° C. under a stream of nitrogen. The residue was dissolved in 5 mL of benzene and evaporated. In a separate flask, (S)4-benzyl-2-oxazolidinone (1.2 g, 6.8 mmol) was dissolved in 30mL of THF followed by addition of n-butyllithium (4.0 mL of a 1.6 M solution in hexanes) at 0° C., and the slurry was stirred for 15 min. The acid chloride was dissolved in 20 mL of THF and cooled to 0° C., followed by dropwise addition of the lithium oxazolide suspension via cannula. After 30 min, the reaction was partitioned between ether and saturated bicarbonate. The organic phase was washed with water then brine, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with 15% ethyl acetate/hexanes to give the undesired diastereomer (1.17 g, 43%), then elution with 20% ethyl acetate/hexanes gave the desired diastereomer (1.04 g, 38%).


The desired diastereomer of the N-acyloxazolidinone (0.84 g, 1.42 mmol) was dissolved in 2.5 mL of dichloromethane, and 2.5 mL of trifluoroacetic acid was added. After 30 min, the volatiles were removed under a stream of nitrogen, and the residue was twice dissolved in 5 mL of toluene and evaporated under reduced pressure.


The TFA salt was stirred with 4 mL of acetonitrile followed by addition of diisopropylethyl amine (1.0 mL, 5.7 mmol), and N-4-heptyl-N-(4-fluoro-3-methylphenyl)bromoacetamide (589 mg, 1.7 mmol) as a solution in 2 mL of acetonitrile. After 21 hours, the reaction was warmed to 50° C. for 3.5 hours. The reaction was cooled, the solvent removed under reduced pressure, and the residue was purified by flash chromatography on silica gel eluting with 20-30% ethyl acetate/hexanes to give 0.939 g of amide as a colorless oil.


The above amide (200 mg, 0.26 mmol) was dissolved in 2.0 mL of THF and 0.7 mL of water. Solid lithium hydroxide monohydrate (22 mg, 0.53 mmol) was added at 0° C., followed by 30% hydrogen peroxide (0.050 mL, 0.55 mmol). After 1 hour, the reaction was warmed to room temperature. After an additional hour, the reaction was partitioned between 1:1 ethyl acetate:hexanes and water, 0.15 g of sodium thiosulfate was added and the mixture was mixed thoroughly. The organic layer was washed with water and brine, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The crude residue was dissolved in 2 mL of ether, and 1 mL of methanol. A solution of (trimethylsilyl)diazomethane in hexanes was added dropwise until the yellow color remained. The reaction was quenched by addition of 2 drops of glacial acetic acid, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on 10 g of silica gel eluting with 15-20% ethyl acetate/hexanes to give 70 mg of the title compound as a crystalline solid (mp 137.5° C.).


EXAMPLE 511C
(2S,3R,4S)-trans, trans-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylate

The product from Example 510B (65 mg, 0.10 mmol) was dissolved in 1.0 mL of methanol and sodium hydroxide (0.1 mL of a 5 M aqueous solution) was added. After 2 hours, the reaction was warmed to reflux. After 6 hours, the reaction was cooled, and the solvent was removed under reduced pressure. The residue was dissolved in water and acidified with concentrated phosphoric acid. The aqueous solution was washed with chloroform (3×5 mL), which was then washed with brine, dried with anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The title compound was isolated by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CDCl3, 300 MHz) d 0.78-0.95 (m, 15H), 1.04-1.46 (m, 12H), 1.76-2.95 (m, 2H), 2.31 (s, 3H), 3.23-3.33 (m, 1H), 3.47-3.58 (m, 1H), 3.6-3.75 (m, 2H), 3.80-3.95 (m, 2H), 4.05-4.15 (m, 1H), 4.73 (m, 1H), 5.94 (s, 2H), 6.70-6.80 (m, 2H), 6.82-6.93 (m, 2H), 6.96-7.14 (m, 2H). MS (DCl/NH3) m/e 597 (M+H)+. Anal calcd for C35H49N2FO5.0.05H2O ∘0.8TFA: C, 63.81; H, 7.30; N, 4.07. Found: C, 63.84; H, 7.18; N, 3.94. [a]D21=+46° (c 2.7 g/L, CHCl3).


EXAMPLE 512
trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl) aminocarbonylmethyl)-3-carboxylic acid
EXAMPLE 512A
2-Oxopyrrolidin-1-ylpropionic acid

To a stirred solution of 5.0 mL (40.5 mmol) 2-oxopyrrolidin-1-ylpropionitrile in 15 mL of dioxane was added 8.1 mL of hydrochloric acid, a 6.0 M aqueous solution. The resulting mixture was then refluxed at 110° C. over night. The reaction mixture was then allowed to cool to room temperature, extracted with methylene chloride three times. The extracts were combined and washed with saturated brine solution once, dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to give 1.60 g (25%) of acid as a brown oil.


EXAMPLE 512B
Ethyl 5-(2-oxopyrrolidin-1-yl)-3-oxopentanoate

The title compound was prepared from the above acid by adapting the method of Bram and Vilkas, Bul. Chem. Soc. Fr., 945 (1964).


EXAMPLE 512C
trans,trans-2-(2-(2-Oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 5-(2-oxopyrrolidin-1-yl)-3-oxopentanoate for ethyl 3-methylhexanoate afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.91 (t, J=7.5 Hz, 3H), 0.94 (t, J=7.5 Hz, 3H), 1.23-1.38 (m, 4H), 1.44-1.60 (m,4H), 2.05 (t, J=6.9 Hz, 2H), 2.12-2.25 (m,1H), 2.38 (td, J=4.2 Hz, 8.4 Hz, 2H), 2.47-2.61 (m, 1H),3.17 (dd, J=6.0 Hz, 8.7 Hz, 2H), 3.24 (t, J=9 Hz, 1H), 3.32 (t, J=7.8 Hz, 2H), 3.38-3.48 (m, 3H), 3.52 (t, J=9 Hz, 1H), 3.66 (t, J=6.9 Hz, 1H), 3.96 (m, 2H), 4.14 (m, 1H), 4.38 (brs, 2H), 5.93 (s, 2H), 6.74 (d, J=8.1 Hz, 1H), 6.89 (dd, J=1.8 Hz, 8.1 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS (DCl/NH3) (M+H)+at m/e 516. Anal calcd for C28H41N3O6.1.4 TFA: C, 54.78; H, 6.33; N, 6.22. Found: C, 54.69; H, 6.33; N, 6.14.


EXAMPLE 513
trans,trans-2-(2-(1,3-Dioxol-2-yl)ethyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 5-(1,3-dioxolyl)-2-oxopentanoate for ethyl 3-methylhexanoate, N-4-heptyl-N-(4-fluoro-3-methylphenyl) bromoacetamide for N,N-dibutyl bromoacetamide and 6-methoxypiperonal for piperonal afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.93 (br t, 6H), 1.23-1.47 (m, 8H), 1.67-2.10 (m, 4H), 2.32 (s, 3H), 3.16 (t, J=9 Hz, 1H), 3.60-4.03 (m, 8H), 3.88 (s, 3H), 4.21 (brs, 1H), 4.72 (quintet, J=6.6 Hz, 1H), 4.86 (t, J=3.6 Hz, 1H), 5.93 (s, 2H), 6.49 (s, 1H), 6.61 (s, 1H), 6.96 (m, 2H), 7.08 (t, J=9 Hz, 1H). MS (DCl/NH3) (M+H)+at m/e 629. Anal calcd for C34H45N2O8F.1.0 TFA: C, 58.21; H, 6.24; N, 3.77. Found: C, 58.11; H, 6.11; N, 3.58.


EXAMPLE 514
trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 5-methyl-3-oxooctanoate for ethyl 3-methylhexanoate and 6-methoxypiperonal for piperonal afforded the title compound as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.81 (s, 3H), 0.84 (s, 3H), 0.86 (t, J=6.9 Hz, 3H), 0.93 (t, J=6.9 Hz, 3H), 0.96 (t, J=6.9 Hz, 3H), 1.09-1.38 (m, 8H), 1.45-1.59 (m, 4H), 1.84-2.00 (m, 2H), 3.15 (dd, J=6.9 Hz, 10.0 Hz, 2H), 3.30-3.42 (m, 3H), 3.72 (t, J=10.5 Hz, 1H), 3.86 (t, J=10.5 Hz, 1H), 3.88 (s, 3H), 4.02 (q, J=10.0 Hz, 1H), 4.12 (d, J=16.8 Hz, 1H), 4.29 (d, J=16.8 Hz, 1H), 4.41 (brm, 1H), 5.94 (s, 1H), 6.52 (d, J=1.8 Hz, 1H), 6.67 (d, J=1.8 Hz, 1H). MS (DCl/NH3) (M+H)+at m/e 533. Anal calcd for C30H48N2O6.0.9 TFA: C, 60.12; H, 7.76; N, 4.41. Found: C, 60.18; H, 7.62; N, 4.33.


EXAMPLE 515
trans,trans-2-(2,2-dimethylpentyl)-4-(2,3-dihydro-benzofuran-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting ethyl 3,3-dimethylhexanoate for ethyl 3-methylhexanoate and 2,3-dihydro-benzofuran-5-carbaldehyde for piperonal afforded the title compound as an amorphous solid by lyophylization with CH3CN/TFA/H2O. 1H NMR (300 MHz, CDCl3) δ 0.83 (s, 3H), 0.85 (s, 3H), 0.86 (t, J=7.2 Hz, 3H), 0.92 (t, J=7.2 Hz, 3H), 0.95 (t, J=7.2 Hz, 3H), 1.09-1.39 (m, 8H), 1.44-1.59 (m, 4H), 1.88 (dd, J=15.0, 7.2 Hz, 1H), 2.00 (d, J=15.0 Hz, 1H), 3.09 (m, 2H), 3.18 (t, J=9.0 Hz, 2H), 3.27-3.38 (m, 3H), 3.65-3.95 (m, 2H), 4.05 (q, J=10.0 Hz, 1H), 4.18 (d, J=16.8 Hz, 1H), 4.30-4.45 (m, 2H), 4.55 (t, J=9.0 Hz, 2H), 6.70 (d, J=8.4 Hz, 1H), 7.04 (dd, J=8.4, 2.1 Hz, 1H), 7.23 (brs, 1H). MS (DCl/NH3) at m/e 501 (M+H)+. Anal calc'd for C30H48N2O4.1.05 TFA: C, 62.14; H, 7.97; N, 4.51. Found: C, 62.19; H, 8.00; N, 4.43.


EXAMPLE 516
trans,trans-2-(2,2,-Dimethyl-2-(1,3-dioxolan-2-yl)ethyl)-4-(1-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting methyl 3,3-dimethyl-3-(1,3-dioxolan-2-yl)propanoate for ethyl 3-methylhexanoate and 6-methoxypiperonal for piperonal afforded the title compound as an amorphous solid by lyophylization with CH3CN/TFA/H2O. 1H NMR (CDCl3, 300 MHz) δ 0.93 (t, J=7.2 Hz, 3H), 0.94 (t, J=7.2 Hz, 3H), 0.95 (s, 3H), 0.96 (s, 3H), 1.31 (sextet, J=7.2 Hz, 4H), 1.45 (m, 4H), 1.93 (dd, J=15.9, 6.0 Hz, 1H), 2.13 (d, J=15.9 Hz, 1H), 3.20 (dd, J=7.7, 7.7 Hz, 1H), 3.26-3.40 (m, 3H), 3.60 (m, 1H), 3.75-3.86 (m, 3H), 3.88 (s, 3H), 3.93-4.01 (m, 3H), 4.00-4.11 (m, 1H), 4.23 (d, J=15.9 Hz, 1H), 4.37-4.48 (m, 2H), 4.49 (s, 1H), 5.94 (s, 2H), 6.51 (d, J=2.1 Hz, 1H), 6.64 (d, J=2.1 Hz, 1H). MS (DCl/NH3) at m/e 563 (M+H)+. Anal calcd for C30H46N2O8.0.9 TFA: C, 57.41; H, 7.11; N, 4.21; found: C, 57.35; H, 6.86; N, 4.05.


EXAMPLE 517
trans,trans-2-(2-(2-Methoxyphenyl)-ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting o-methoxyphenylpropionic acid for 3-methylhexanoic acid, the above compound was prepared as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 0.85 (t, J=7 Hz, 3H), 0.91 (t, J=7 Hz, 3H), 1.10-1.27 (m, 4H), 1.42-1.60 (m, 4H), 1.72-1.89 (m, 1H), 1.91-2.02 (m, 1H), 2.55-2.77 (m, 2H), 2.94 (t, J=6 Hz, 1H), 3.05-330 (m, 6H), 3.59-3.82 (m, 3H), 3.73 (d, J=14 Hz, 1H), 3.77 (s, 3H), 5.91 (s, 2H), 6.70 (d, J=8 Hz, 1H), 6.78-6.88 (m, 3H),6.92 (d, J=2 Hz, 1H), 7.08-7.19 (m, 2H). MS (DCl/NH3) (M+H)+at m/e 539. Anal calcd for C31H42N2O6: C, 69.12; H, 7.86; N, 5.20. Found: C, 68.89; H, 7.70; N, 4.99.


EXAMPLE 518
trans,trans-2-(2,2-Dimethyl-3-(E)-pentenyl)-4-(1-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 518A
4-Methyl-3-penten-2-ol

To a stirred solution of 3-methyl-2-butenal (8.7 g, 103 mmol) in 100 mL of tetrahydrofuran under N2 at 0° C. was added methylmagnesium bromide (38 mL of a 3.0 M solution in ethyl ether, 114 mmol) dropwise. The resulting mixture was allowed to warm to room temperature slowly and stirred at room temperature for 1 hour before it was quenched with 25 mL of saturated NH4Cl. The resulting biphasic mixture was partitioned between ethyl ether and water. The organic layer was washed with brine, dried with anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure to give 8.4 g (81%) of alcohol as a colorless oil.


EXAMPLE 518B
trans-Ethyl 3,3-dimethyl-4-pentenoate

A mixture of 4-methyl-3-penten-2-ol (7.4 g, 74 mmol), triethyl orthoacetate (13.6 mL, 74 mmol) and propionic acid (0.28 mL, 3.7 mmol) was heated at 150° C. for 7 hours. The product was then distilled under normal pressure (200-220° C.) to give 5.0 g of crude ester as a colorless oil.


EXAMPLE 518C
trans,trans-2-(2,2-Dimethyl-3-(E)-pentenyl)-4-(1-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, substituting trans-ethyl 3,3-dimethyl-4-pentenoate for ethyl 3-methylhexanoate and 6-methoxypiperonal for piperonal afforded the title compound as an amorphous solid by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CDCl3, 300 MHz) δ 0.92 (t, J=7.2 Hz, 3H), 0.95 (t, J=7.2 Hz, 3H), 0.97 (s, 3H), 0.99 (s, 3H), 1.31 (sextet, J=7.2 Hz, 4H), 1.52 (quintet, J=7.2 Hz, 4H), 1.58 (d, J=5.4 Hz, 3H), 1.92 (dd, J=15.0, 6.6 Hz, 1H), 2.04 (d, J=15.0 Hz, 1H), 3.15 (dd, J=7.8, 7.8 Hz, 1H), 3.30-3.40 (m, 3H), 3.75 (m, 2H), 3.87 (s, 3H), 3.99 (q, J=9 Hz, 2H), 4.11-4.30 (m, 3H), 5.29 (d, J=15.6 Hz, 1H), 5.38 (dd, J=15.6, 6 Hz, 1H), 5.94 (s, 2H), 6.50 (d, J=1.8 Hz, 1H), 6.63 (d, J=1.8 Hz, 1H). MS (DCl/NH3) at m/e 531 (M+H)+. Analysis calc'd for C30H46N2O6.0.95 TFA: C, 59.95; H, 7.41; N, 4.38; found: C, 60.00; H, 7.33; N, 4.35.


EXAMPLE 519
trans,trans-2-(3-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 519A
3-(2-Pyridyl)-propionic Acid

In a 50 mL round-bottomed flask equipped with a stirring bar was placed 3-(2-pyridyl)-propanol (1 g, 7.6 mmol), water (13 mL) and concentrated sulfuric acid (0.5 g, 5.1 mmol). To this stirred solution was added over a period of 30 min potassium permanganate (1.8 g, 11.3 mmol) while the reaction temperature was maintained at 50° C. After the addition was completed, the mixture was held at 50° C. until the color of the reaction mixture turned brown, then heated at 80° C. for 1 hour and filtered. The filtrate was evaporated to dryness to yield quantitatively the desired acid (1.14 g) suitable for next step without further purification. To prepare a pure acid, the residue thus obtained was boiled in ethanol (10 mL) in the presence of charcoal (0.1 g) for 5 min, filtered and cooled to give crystalline 3-(2-pyridyl)-propionic acid (0.88 g, 78%).


EXAMPLE 519B
trans,trans-2-(3-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedure described in Example 502, the title compound was isolated by lyophilization from dilute aqueous TFA/CH3CN as an amorphous solid. 1H NMR (CDCl3, 300 MHz) δ 8.65 (d, J=6.0 Hz, 1H), 8.06 (t, J=6.91 Hz, 1H), 7.70 (d, J=9.0 Hz, 1H), 7.51 (t, J=6.91 Hz, 1H), 6.82-6.66 (m, 3H), 5.91 (s, 2H), 4.45 (s, 2H), 4.29-4.18 (m, 1H), 4.04 (dd, J=20.1, 10.5 Hz, 1H), 3.84 (t, J=12.6 Hz, 1H), 3.62 (dd, J=13.8, 9.6 Hz, 1H), 3.46-3.13 (m, 7H), 2.51 (broad s, 2H), 1.60-1.43 (m, 4H), 1.37-1.22 (m, 4H), 0.91 (t, J=8.4 Hz, 6H). MS (DCl/NH3) m/e 510 (M+H)+. Anal calcd for C29H39N3O5602 1.75 TFA: C, 55.04; H, 5.79; N, 5.92. Found: C, 55.08; H, 5.64; N, 5.81.


EXAMPLE 520
(2S,3R,4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 520A
(2S,3R,4S)-Ethyl-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)pyrrolidine-3-carboxylate-(S)-Mandelate

The racemic amino ester from Example 512 (3.45 g, 8.98 mmol) in 10 mL of ethyl acetate was treated with (S)-(+)-mandelic acid (0.75 g, 4.93 mmol). Upon the formation of the clear solution, hexane was dropped in slowly with stirring till the solution became light cloudy. The solution was left stirred at room temperature over night. The crystals was then collected by filtration, recrystalized from ethyl acetate/hexane twice to give a yield of 800 mg (17%) of pure salt.


EXAMPLE 520B
(2S,3R,4S)-Ethyl-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylate

To a stirred solution of pure mandelate (150 mg, 0.28 mmol) in CH3CN was added N,N-dibutylbromoacetamide (84 mg, 0.34 mmol) and diisopropylethylamine (98 uL, 0.56 mmol). The resulting mixture was stirred at room temperature over night. Solvent was then removed under reduced pressure and the crude product was purified by silica gel flash chromatography to give 140 mg (90% yield) of the title compound.


EXAMPLE 520C
(2S, 3R, 4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 502, the title compound was prepared as an amorphous solid by lyophylization with CH3CN/TFA/H2O. 1H NMR (CDCl3, 300 MHz) δ 0.91 (t, J=7.5 Hz, 3H), 0.94 (t, J=7.5 Hz, 3H), 1.23-1.38 (m, 4H), 1.44-1.60 (m, 4H), 2.05 (t, J=6.9 Hz, 2H), 2.12-2.25 (m, 1H), 2.38 (td, J=4.2 Hz, 8.4 Hz, 2H), 2.47-2.61 (m, 1H), 3.17 (dd, J=6.0 Hz, 8.7 Hz, 2H), 3.24 (t, J=9 Hz, 1H), 3.32 (t, J=7.8 Hz, 2H), 3.38-3.48 (m, 3H), 3.52 (t, J=9 Hz, 1H), 3.66 (t, J=6.9 Hz, 1H), 3.96 (m, 2H), 4.14 (m, 1H), 4.38 (brs, 2H), 5.93 (s, 2H), 6.74 (d, J=8.1 Hz, 1H), 6.89 (dd, J=1.8 Hz, 8.1 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS (DCl/NH3) (M+H)+ at m/e 516. Anal calcd for C28H41N3O6.0.85 TFA: C, 58.23; H, 6.89; N, 6.86. Found: C, 58.37; H, 6.90; N, 6.84.


EXAMPLE 521
(2S, 3R, 4S)-2-(2-(2-oxopyrrolidin-1-yl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N-4-heptyl-N-(4-fluoro-3-methylphenyl))aminocarbonylmethyllmethyl)-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 520, substituting N,N-(4-heptyl)-(4-fluoro-3-methyl)phenyl-bromoacetamide for N,N-dibutylbromoacetamide afforded the title compound as an amorphous solid by lyophylization with CH3CN/TFA/H2O. 1H NMR (CDCl3, 300 MHz) δ 0.85-0.98 (m, 6H), 1.22-1.55 (m, 8H), 2.04 (quintet, J=7.9 Hz, 4H), 2.32 (s, 3H), 2.36 (t, J=7.9 Hz, 2H), 2.61 (m, 1H), 3.14 (m, 1H), 3.25-3.61 (m, 5H), 3.66-3.77 (m, 1H), 3.79-3.90 (m, 2H), 3.92-4.03 (m, 1H), 4.69 (quintet, J=6.8 Hz, 1H), 5.95 (s, 2H), 6.71 (s, 2H), 6.78 (s, 1H), 6.93-7.13 (m, 3H); MS (DCl/NH3) at m/e 610 (M+H)+. Anal calc'd for C34H44N3O6F1.1.45 TFA: C, 57.18; H, 5.91; N, 5.42. Found: C, 57.20; H, 5.62; N, 5.52.


EXAMPLE 522
trans, trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 522A
3-(1-Pyrazolyl)-propionic Acid

In a 10 mL round-bottomed flask equipped with a condenser and a stirring bar was placed pyrazole (0.50 g, 7.3 mmol), acrylic acid (0.50 mL, 7.3 mmol) and triethylamine (3 mL). The reaction mixture was refluxed for 6 hours. After removing triethylamine, the viscous oil was dried on high vacuo during 12 hours to yield quantitatively the desired acid (1.0 g) suitable for the next step without further purification.


EXAMPLE 522B
trans, trans-2-(2-(1-pyrazolyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Using the procedure described in Example 502, the title compound was isolated by lyophilization from dilute aqueous TFA/CH3CN as an amorphous solid 1H NMR (CDCl3, 300 MHz) δ 7.56 (d, J=3.0 Hz, 1H), 7.50 (d, J=3 Hz, 1H), 6.83-6.66 (m, 3H), 6.28 (t, J=3 Hz, 1H), 5.91 (s, 2H), 4.55-3.98 (m, 6H), 3.83-3.72 (t, J=10.5 Hz, 1H), 3.61-3.40 (t, J=10.5 Hz, 1H), 3.36-3.12 (m, 5H), 2.69-2.43 (m, 2H), 1.59-1.42 (m, 4H), 1.38-1.21 (m, 4H), 0.91 (t, J=7.5 Hz, 6H). MS (DCl/NH3) at m/e 499 (M+H)+. Anal calcd for C27H38N4O5602 0.75 TFA: C, 58.60; H, 6.69; N, 9.59. Found: C, 58.53; H, 6.45; N, 9.67.


EXAMPLE 523
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 523A
N-Butyl-N-(3-hydroxypropyl)-amine

To a solution of 15.9 g (100 mmol) of methyl 3-N-(n-butyl)aminopropionate in 150 mL of diethyl ether at 0° C. was added 50 mL (0.35 mmol) of 1.0 M LiAlH4 in diethyl ether, keeping reflux at a minimum. The mixture was stirred at 0° C. for 2.25 hours, the quenched by sequential dropwise addition of 1.9 mL H2O, 1.9 mL 15% w/v NaOH(aq), and 5.7 mL H2O. After stirring for 30 min, the salts were filtered and washed with diethyl ether, then the filtrate was concentrated to 11.3 g (86%) of a light yellow oil.


EXAMPLE 523B
N-Butyl-N-(3-hydroxypropyl)-chloroacetamide

To an ice cooled solution of 1.319 (10.0 mmol) of N-butyl,N-(3-hydroxypropyl)amine in 20 mL of ethyl acetate was added a solution of 1.71 g (10.0 mmol) of chloroacetic anhydride in 10 mL of ethyl acetate. The mixture was stirred, and gradually warmed to room termperature over 18 hours. The reaction was extracted with H2O (1×50 mL), saturated NaHCO3(aq) (2×50 mL), and brine (1×50 mL), dried over MgSO4, filtered, and concentrated to an oil. The product was purified via silica gel chromatography, eluting with 80:20 hexanes:ethyl acetate to give 723 mg (35%) of a light yellow oil.


EXAMPLE 523C
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Using the procedures described in Example 1D, substituting N-butyl-N-(3-hydroxypropyl)-chloroacetamide for N-propyl bromoacetamide and adding DMSO as cosolvent, afforded the title compound, which was isolated by lyophilization from dilute aqueous TFA/CH3CN. 1H NMR (CD3OD, 300 MHz) δ 0.78-0.95 (m, 3H), 1.00-1.80 (m, 4H), 2.80-3.65 (m, 15H), 3.80 (d, J=1.5 Hz, 2H), 5.93 (s, 2H), 6.72-7.05 (m, 5H), 7.33-7.40 (m, 2H). MS (DCl/NH3) at m/e 513 (M+H)+. Anal calc'd for C28H36N2O7∘1.6H2O: C, 62.12; H, 7.30; N, 5.17. Found: C, 62.04; H, 7.21; N, 4.88.


EXAMPLE 524
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-propyl-N-propoxyamino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 524A
N-Boc-O-allylhydroxylamine

O-Allylhydroxylamine hydrochloride hydrate (5.0 g) was dissolved in THF (15 mL). The solution was cooled to 0° C. in an ice bath. Diisopropylethylamine (8 mL) and di-t-butyldicarbonate (10.0 g) were added. The mixture was stirred at 0° C. for 1 hour at which point the bath was removed and the reaction allowed to warm to room temperature and stirred overnight. The THF was removed in vacuo and the residue taken up in EtOAc (25 mL), and washed with water (1×50 mL), saturated sodium bicarbonate solution (3×50 mL), 1N phosphoric acid (3×50 mL), and brine (1×50 mL). The organic layer was dried with sodium sulfate and evaporated to give a light yellow oil (6.5 g) which was used without any further purification.


EXAMPLE 524B
N-Boc-N-propyl-O-allylhydroxylamine

N-Boc-O-allylhydroxylamine (6.5 g) from the above procedure was dissolved in dry THF (25 mL) and the solution cooled to 0° C. in an ice bath. Sodium hydride (1.5 g, 60% dispersion in oil) was added portionwise over 5 min. The resulting mixture was stirred for 30 min at 0° C. 1-Iodopropane (3.8 mL) was added dropwise to the mixture. The reaction was stirred at 0° C. for 1 hour, then stirred overnight at room temperature. The THF was removed in vacuo and the residue taken up in EtOAc (50 mL) and washed with water (1×50 mL), saturated sodium bicarbonate solution (3×50 mL),1N phosphoric acid (3×50 mL), and brine (1×50 mL). The organic layer was dried with sodium sulfate and evaporated to give a light yellow oil, which was purified by flash chromatography on silica gel eluting with 5% EtOAc/hexanes to give the title compound as a colorless oil (6.0 g).


EXAMPLE 524C
N-Boc-N-propyl-N-propoxyamine

N-Boc-N-propyl-O-allylhydroxylamine (6.0 g) was dissolved in EtOAc (100 mL). 10% Palladium-on-carbon (0.5 g) was added, and the mixture was purged with nitrogen. The nitrogen line was exchanged for a balloon of hydrogen, and the mixture was stirred at room temperature for 6 hours. The catalyst was removed by filtration through a pad of Celite and the solvents were removed in vacuo to give a yellow oil which was purified by flash chromatography on silica gel eluting with 5% EtOAc/hexanes to give the title compound as a colorless oil (5.8 g).


EXAMPLE 524D
N-Propyl-N-propoxyamine hydrochloride

N-Boc-N-propyl-N-propoxyamine (5.8 g) was dissolved in 4 N HCl/dioxane (10 mL) and stirred at room temperature for 7 hours. The solvent was removed in vacuo and the residue triturated with diethyl ether. The resulting yellow solid (2.1 g) was collected by filtration and washed with diethyl ether.


EXAMPLE 524E
N-propyl-N-propoxy-bromoacetamide

N-Propyl-N-propoxyamine hydrochloride (0.30 g) was dissolved in acetonitrile and cooled to −20° C. Pyridine (0.2 mL) was added. Bromoacetyl bromide (0.15 g) was added dropwise over 5 min. The solution was stirred at −20° C. for 30 min. The bath was removed and the solution was stirred for 6 hours at room temperature. The solvent was removed in vacuo and the residue taken up in EtOAc (50 mL) and washed with water (1×25 mL), 1N phosphoric acid (3×25 mL), and brine (1×25 mL). The organic layer was dried with sodium sulfate and evaporated to give a dark orange oil (0.35 g). The product is a mixture of chloro- and bromoacetamides in a ratio of ˜3:1.


EXAMPLE 524F
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-hydroxypropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedure of Example 523C, employing N-propyl-N-propoxy-bromoacetamide and ethyl 2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate. The crude product was purified by preparative HPLC (Vydac mC18) eluting with a 10-70% gradient of CH3CN in 0.1% TFA. The appropriate fraction was lyophilized to give the product as a white solid. 1H NMR (CDCl3, 300 MHz) δ 0.87 (m, 6H, J=8 Hz), 1.49 (m, 2H, J=8 Hz), 1.61 (m, 2H, J=8 Hz), 3,55 (m, 6H), 3.80 (m, 2H), 3.81 (s, 3H), 4.00 (m, 2H), 4.13 (d, 2H, J=17 Hz), 5.96 (s, 2H), 6.77 (d, 1H, J=9 Hz), 6.90 (m, 3H), 7.05 (d, 1H, J=1 Hz), 7.44 (d, 2H, J=9 Hz). MS (DCl/NH3) m/e 499 (M+H)+. Anal calcd for C27H34N2O7.1.20 TFA: C, 55.57; H, 5.58; N, 4.41. Found: C, 55.59; H, 5.58; N, 4.55.


EXAMPLE 525
trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-propoxyamino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 525A
N-butyl-N-(2-hydroxyethyl)-amine

In a thick walled glass tube 5 ml (100 mmol) of ethylene oxide was condensed at −78° C. To this 12.5 ml. (120 mmol) of butylamine was added and the tube was sealed. The resultant solution was allowed to heat in an oil bath at 50° C. for 18 hours. Unreacted reagents were removed by evaporation to give the title compound.


EXAMPLE 525B
N-Butyl-N-(2-azidoethyl)-chloroacetamide

To 500 mg of N-butyl,N-2-hydroxyethylamine was added 2 mL of thinoyl chloride, dropwise. After the initial reaction had ceased, the reaction was stirred for 10 min, then concentrated to an oil. Diethyl ether was added and evaporated to aid in removal of the thionyl chloride. The residue was taken up in 10 mL of DMF, and 1.0 g (16 mmol) of sodium azide was added. The reaction was stirred at 75° C. for 2 hours, then poured into 50 mL of 0.6M NaHCO3(aq.) and extracted with diethyl ether (3×15 mL). The combined ether layers were back extracted with brine (1×15 mL), dried over MgSO4, and filtered. To the ether solution was added 850 mg (4.97 mmol) of chloroacetic anhydride. The reaction was stirred for 10 min, then concentrated to an oil. This was taken up in 10 mL of saturated NaHCO3(aq.) and extracted with diethyl ether (3×5 mL). The combined ether layers were back extracted with brine (1×5 mL), dried over MgSO4, filtered, and concentrated to an oil. This was purified via silica gel chromatography, eluting with 30% ethyl acetate:hexanes, to give 161 mg (17%) of an oil.


EXAMPLE 525C
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(2-aminoethyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

According to the procedure of Example 523C, N-butyl-N-(2-azidoethyl)-chloroacetamide was coupled with ethyl 2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate. The crude product was chromatographed on silica, using 40% EtOAc in hexanes to elute. The product was dissolved in a solution of ethanol and aqueous 2.5 N sodium hydroxide and stirred for 3 hours at room temperature. The solution was concentrated in vacuo and water added. The mixture was extracted with ether; the aqueous layer was acidified to pH 4 with 1N H3PO4 and extracted with EtOAc. The latter organic extract was washed with brine and dried over Na2SO4. To 100 mg (0.10 mmol) of the azide was added 1 mL of 1M HCl(aq.), 0.5 mL of dioxane, and 5 mg of 10% Pd—C. The suspension was stirred under 1 atm. of H2 for 5 hours, then filtered and concentrated to a white solid. The product was purified via HPLC, eluting with a 0 to 70 CH3CN in 0.1% aqueous TFA gradient to give the title compound as its TFA salt. 1H NMR (CD3OD, 300 MHz) δ 0.92 (t, J=7.0 Hz, 3H), 0.96 (t, rotamer), 1.23 (m, 2H), 1.41 (m, 2H), 3.06 (m, 4H), 3.39 (m, 2H), 3.69 (m, 2H), 3.84 (s, 3H), 3.94 (m, 3H), 4.18 (m, 2H), 5.05 (bd, J=10.7 Hz, 1H), 5.98 (s, 2H), 6.84 (d, J=7.7 Hz, 1H), 6.93 (dd, J=1.8, 8.1 Hz, 1H), 7.05 (m, 3H), 7.56 (m, 2H). MS (DCl/NH3) at m/e 498 (M+H)+. Anal calcd for C27H35N3O6602 3.15 TFA: C, 46.68. H, 4.49. N, 4.90. Found: C, 46.61; H, 4.73; N, 4.79.


EXAMPLE 526
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-aminopropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

To and ice-cold solution of the compound of Example 523C (100 mg, 0.19 mmol) in 1 mL of dichloromethane was added 17 mL of methanesulfonyl chloride, and 39 mL of triethylamine. The mixture was stirred for 20 min, then diluted with 1.5 mL of dichloromethane and extracted once with 5 mL of water to which had been added 1 drop of 85% H3PO4, then 5% ammonium hydroxide (1×2.5 mL), and brine (1×2.5 mL), dried over MgSO4, filtered, and concentrated to an oil. To a solution of 81 mg (0.13 mmol) of the mesylate in 1 mL of DMF was added 65 mg (10 mmol) of sodium azide. The mixture was stirred for 1 hour at 50° C., then poured into 10 mL of water and extracted with diethyl ether (3×5 mL). The combined ether layers were back extracted with brine (1×5 mL), dried over MgSO4, filtered, and concentrated to an oil. This was purified via silica gel chromatography, eluting with 60:40 hexanes:ethyl acetate to give 57 mg of a colorless oil. The product was dissolved in a solution of ethanol and aqueous 2.5 N sodium hydroxide and stirred for 3 hours at room temperature. The solution was concentrated in vacuo and water added. The mixture was extracted with ether; the aqueous layer was acidified to pH 4 with 1N H3PO4 and extracted with EtOAc. The latter organic extract was washed with brine and dried over Na2SO4. To this azide was added 1 mL of 1M HCl(aq.), 0.5 mL of dioxane, and 5 mg of 10% Pd—C. The suspension was stirred under 1 atm. of H2 for 5 hours, then filtered and concentrated to a white solid. The product was purified via HPLC, eluting with a 0 to 70 CH3CN in 0.1% aqueous TFA gradient to give the title compound as its TFA salt. 1H NMR (D6-DMSO, 300 MHz) δ 0.85 (apparent q, J=6.8 Hz, 3H), 1.17 (m, 2H), 1.30 (m, 2H), 1.67 (m, 2H), 2.71 (m, 2H), 3.04 (m, 1H), 3.21 (m, 3H), 3.45 (m, 1H), 3.75 (m, 3H), 3.97 (s, 3H), 3.85-4.80 (broad m, 3H), 6.03 (m, 2H), 6.87 (dd, J=1.4, 8.1 Hz, 1H), 6.92 (d, J=7.8 Hz, 1H), 7.01 (m, 2H), 7.16 (m, 1H), 7.55 (m, 2H), 7.72 (m, 2H), 7.85 (m, 1H); MS (DCl/NH3) (M+H)+at m/e 512. Anal calcd for C28H37N3O6602 3.0 TFA: C, 47.84. H, 4.72. N, 4.92. Found: C, 47.86; H, 4.75; N, 4.97.


EXAMPLE 527
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-dimethylaminopropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 527A
N-butyl-N-(3-bromopropyl)bromoacetamide

To 1.50 g (11.4 mmol) of N-butyl-N-(3-hydroxy)propylamine was added 3 mL of 48% HBr(aq.), and 1.5 mL of conc. H2SO4, The reaction was stirred at reflux for 3 hours, then cooled to room temperature and stirred for 22 hours. The mixture was poured over 50 mL of ice, and the solution was treated with 50 mL of 2M NaOH(aq.). The basic solution was extracted with ethyl acetate (3×25 mL), then the combined ethyl acetate layers were back extracted with brine (1×25 mL), dried, and filtered. To the ice cooled ethyl acetate solution was added 3 mL of triethylamine, then 1.5 mL of bromoacetyl bromide as a solution in 3.5 mL of ethyl acetate. The reaction was stirred at 0° C. for 30 min, then extracted with 1M HCl(aq.) (2×25 mL) saturated NaHCO3(aq.) (1×25 mL) and brine (1×25 mL). The organic layer was dried over MgSO4, filtered, and concentrated to an oil. This was purified via silica gel chromatography, eluting with 30% ethyl acetate in hexanes to give 1.47 g of a colorless oil.


EXAMPLE 527B
Ethyl trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-bromopropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

According to the procedure of Example 523C, N-butyl-N-(3-bromopropyl-bromoacetamide was coupled with ethyl 2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate. The crude product was chromatographed on silica, using 40% EtOAc in hexanes to elute.


EXAMPLE 527C
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-dimethylaminopropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

To 400 mg (0.663 mmol) of the compound of Example 527B in 4 mL of absolute EtOH was added 1.2 mL of 2.0 M Me2NH in THF. The reaction was heated at 50° C. for 3h, then stirred at room temperature for 18 hours. The mixture was concentrated, then reconcentrated from CH3CN to remove most of the trimethylamine. The product was purified via silica gel chromatography, eluting with 9:1 CH2Cl2: MeOH over about 20 mL of silica gel to give the ethyl ester. The product was dissolved in absolution of ethanol and aqueous 2.5 N sodium hydroxide and stirred for 3 hours at room temperature. The solution was concentrated in vacuo and water added. The mixture was extracted with ether; the aqueous layer was acidified to pH 4 with 1N H3PO4, and the product was purified by preparative HPLC. 1H NMR (CD3OD, 300 MHz) δ 0.92 (t, J=7.0 Hz, 3H), 1.22 (m, 2H), 1.39 (m, 2H), 1.90 (m, 2H), 2.87 (s, 6H), 3.07 (m, 4H), 3.24 (m, 1H), 3.43 (m, 1H), 3.62 (m, 1H), 3.84 (s, 3H), 3.88 (m, 3H), 4.07 (m, 1H), 4.17 (m, 1H), 4.97 (m, 1H), 5.97 (s, 2H), 6.83 (d, J=8.1 Hz, 1H), 6.93 (dd, J=1.7, 8.1 Hz, 1H), 7.05 (m, 3H), 7.53 (m, 2H). MS (DCl/NH3) at m/e 540 (M+H)+. Anal calcd for C30H41N3O6∘2.95 TFA: C, 49.22. H, 5.06. N, 4.80. Found: C, 49.16; H, 5.11; N, 4.62.


EXAMPLE 528
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-trimethylammoniopropyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 527C, substituting aqueous Me3N for Me2NH. 1H NMR (CD3OD, 300 MHz) δ 0.91 (m, 3H), 1.24 (m, 2H), 1.40 (m, 2H), 1.99 (m, 2H), 3.13 (s, 9H), 3.18 (s, rotamer), 3.20 (m, 3H), 3.39 (m, 4H), 3.72 (m, 1H), 3.84 (s, 3H), 4.03 (m, 3H), 4.35 (m, 1H), 5.19 (m, 1H) 5.97 (s, 2H), 6.84 (d, J=8.1 Hz, 1H), 6.96 (dd, J=1.7, 7.9 Hz, 1H), 7.10 (m, 3H), 7.62 (m, 2H). MS (DCl/NH3) at m/e 554 (M+H)+. Anal calcd for C31H44N3O6∘0.1H2O∘1.65 TFA: C, 47.25. H, 4.96. N, 4.32. Found: C, 47.25; H, 4.74; N, 4.75.


EXAMPLE 529
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-aminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 529A
N-butyl-N-(4-hydroxybutyl)-amine

A solution of 8.1 g (110 mmol) of n-butylamine and 8.6 g of butyrolactone in 50 ml toluene was allowed to reflux under nitrogen atmosphere for 50 hours. Volatile solvents were removed in vacuo. To a solution of 3.18 gm (20 mmol) of the resultant N-butyl 4-hydroxybutyramide in 50 ml of toluene were added 120 ml (120 mmol) DIBAL (25% W). The solution was heated with stirring at 70° C. for 18 hours. After cooling to 0° C., the reaction was quenched with methanol (⅓ amount of DIBAL solution was used) followed by addition of saturated solution of Rochelle's salt. The mixture was extracted twice with EtOAc; the organic extracts were washed with brine and dried over Na2SO4.


EXAMPLE 529B
N-butyl-N-(4-hydroxybutyl)-chloroacetamide

Pyridine (2 ml) was added to an ice cold solution of 0.58 gm (4 mmol) of N-butyl-N-(4-hydroxybutyl)-amine in 10 ml of EtOAc. To this solution 0.769 gm (4.5 mmol) chloroacetic anhydride was added in small portions. The reaction mixture was allowed to stir for 5 hours at 0° C., and then was allowed to warm to room temperature. Bicarbonate was added, and the resultant mixture was extracted with EtOAc. The organic layer was washed with water and brine. The crude material was purified by column chromatography.


EXAMPLE 529C
Ethyl trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-hydroxybutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

According to the procedure of Example 523C, N-butyl-N-(4-hydroxybutyl-chloroacetamide was coupled with ethyl 2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate. The crude product was chromatographed on silica gel.


EXAMPLE 529D
Ethyl trans,trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-bromobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

To the solution of 0.180 gm (0.33 mmol) of the compound of Example 529C in 2 ml DMF 0.086 gm (1 mmol) of lithium bromide and 0.120 ml (0.66 mmol) of PBr3 was added. The reaction mixture was allowed to stir at 0° C. for 2 hours and was slowly warmed to room temperature. Bicarbonate was added, and the resultant mixture was extracted with EtOAc. The organic layer was washed with water and brine. The crude material was purified by column chromatography.


EXAMPLE 529E
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-aminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

To a solution of 0.135 gm (0.21 mmol) of the compound of Example 529D in 2 ml DMF was added 0.1 gm of sodium azide. Reaction was allowed to stir at room temperature for 18 hours under nitrogen atmosphere. After addition of water, the product was extracted into EtOAc. The crude product (117 mg) was dissolved in 10 ml ethanol under nitrogen atmosphere. To this 45 mgs of 10% Pd/C catalyst was added, the nitrogen from the reaction flask was evacuated and was flushed with hydrogen by placing a balloon filled with hydrogen.


The reaction was allowed to stir for 4 hours under hydrogen atmosphere, and was worked up by filtering through a Celite pad. The product was dissolved in a solution of ethanol and aqueous 2.5 N sodium hydroxide and stirred for 8 hours at room temperature. The solution was concentrated in vacuo and water added. The mixture was extracted with ether; the aqueous layer was acidified to pH 4 with 1N H3PO4, and the product was purified by preparative HPLC. 1H NMR (CD3OD, 300 MHz) δ 0.90 (t, J=7 Hz, 3H), 1.10-1.65 (m, 6H), 2.85-2.95 (m, 2H), 3.00-4.10 (m, 14H), 5.50 (d, J=3 Hz, 2H), 5.97 (s, 2H), 6.82 (d, J=8 Hz, 1H), 6.91 (dd, J=7 Hz, 1H), 7.00-7.06 (m, 3H), 7.45-7.55 (m, 2H). MS (DCl/NH3) at m/e 526 (M+H)+. Anal calc'd for C29H39N3O6.2.2 TFA: C, 51.75; H, 5.35; N, 5.41. Found: C, 51.75; H, 5.31; N, 5.30.


EXAMPLE 530
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

The title compound was prepared from the compound of Example 529D, employing the procedures of Example 527C. 1H NMR (CD3OD, 300 MHz) δ 0.90 (dt, J=7 Hz, 3H), 1.1-1.75 (m, 8H), 2.75 (d, J=7 Hz, 6H), 3.0-4.25 (m, 16H), 5.97 (s, 2H), 6.83 (d, J=8 Hz, 1H), 6.93 (dd, J=8 Hz, 1H), 7.02-7.08 (m, 3H), 7.49-7.56 (m, 2H). MS (DCl/NH3) at m/e 554 (M+H)+. Anal calc'd for C31H43N3O6∘2.1 TFA: C, 53.31; H, 5.73; N, 5.30. Found: C, 53.50; H, 5.38; N, 5.34.


EXAMPLE 531
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-pyridyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 531A
N-butyl-N-(3-pyridyl)-amine

To a solution of 941 mg (10 mmol) of 3-aminopyridine and 0.9 mL of butyraldehyde in 30 mL of CH3OH was added 10 mL of glacial acetic acid. The mixture was stirred at room temperature for 1 hour, then the reaction was cooled with an ice bath, and 650 mg (10.3 mmol) of sodium cyanoborohydride was added. The ice bath was removed, and the reaction was stirred for 4.5 hours at room temperature. The mixture was poured into 300 mL of 0.67M NaOH(aq.), and extracted with ethyl acetate (3×50 mL). The combined organic layers were back extracted with brine (1×50 mL), dried over MgSO4, filtered, and concentrated to an oil. The product was isolated via silica gel chromatography, eluting with 3:1 ethyl acetate:hexanes to give 1.18 g (79%) of a colorless solid.


EXAMPLE 531B
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-pyridyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

The compound of Example 531A was reacted according to the procedures of Example 523, to give the title compound. 1H NMR (D6-DMSO, 300 MHz) δ 0.80 (t, J=6.4 Hz, 3H), 1.15-1.99 (m, 4H), 2.59 (m, 1H), 3.05 (m, 2H), 3.26 (m, 2H), 3.49 (m, 2H), 3.56 (t, J=7.1 Hz, 2H), 3.73 (s, 3H), 6.00 (s, 2H), 6.80 (m, 3H), 6.85 (d, J=8.1 Hz, 1H), 6.98 (m, 2H), 7.04 (m, 1H), 7.41 (dd, J=1, 4.7 Hz, 8.1H),7.58 (m, 1H), 8.36 (bs, 1H), 8.54 (bs, 1H), 12.24 (bs, 1H). MS (DCl/NH3) at m/e 532 (M+H)+. Anal calcd for C30H33N3O6∘0.1H3PO4: C, 66.55. H, 6.20. N, 7.76. Found: C, 66.59; H, 6.06; N, 7.60.


EXAMPLE 532
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-aminomethylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 532A
N-butyl-N-(3-hydroxymethylphenyl)-amine

To a solution of 3.69 g (30 mmol) of 3-amino benzyl alcohol in 20 ml DMSO was added 3.78 g (45 mmol) solid NaHCO3 and 2.91 ml (27 mmol) 1-bromobutane. The reaction was allowed to stir at 50° C. for 18 hours (overnight). Reaction was worked up by adding 250 ml water and product was extracted in ethyl acetate. Water was added, and the resultant mixture was extracted with EtOAc. The organic layer was washed with water and brine.


EXAMPLE 532B
N-butyl-N-(3-hydroxymethylphenyl)-bromoacetamide

To a solution of 3.42 g (19.2 mmol) of the compound of Example 532A in 20 ml toluene, was added 2.42 ml (30 mmol) pyridine. The mixture was cooled to 0° C.; 4.025 gm (20.0 mmol) of bromoacetyl bromide (diluted with 5 ml toluene) was added in a dropwise fashion.


The reaction mixture was allowed to stir for 5 hours at 0° C. and then was allowed to warm to room temperature. Saturated potassium carbonate solution was added, and the mixture was stirred vigorously for 2 hours. The mixture was extracted with EtOAc; the organic layer was washed with 1N H3PO4, water, and brine.


EXAMPLE 532C
Ethyl trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-chloromethylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

According to the procedure of Example 523C, N-butyl-N-(3-hydroxymethylphenyl)-bromoacetamide was coupled with ethyl 2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate. The crude product (129 mg) was dissolved in 0.5 ml of DMF and cooled to 0° C.; 19 mg of LiCl was added, followed by 85 μl of thionyl chloride. The mixture was allowed to stir for 30 min; water was added, and the mixture was extracted with EtOAc. The organic extracts were washed with water and brine, and dried over Na2SO4.


EXAMPLE 532D
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-aminomethylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

The compound of Example 532C (182 mg) was dissolved in 1 mL of DMF. Two drops of water were added, followed by 126 mg (2.0 mmol, 6.5 eq) of sodium azide. The resultant solution was heated at 115° C. for 3 hours. Water was added, and the mixture was extracted with EtOAc. The organic extracts were washed with water and brine, and dried over Na2SO4.


EXAMPLE 532E
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-aminomethylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

In a 50 ml round bottom flask 0.090 gm Tin (II) chloride was suspended in 1 ml acetonitrile. Triethylamine (0.2 mL) was added, followed by 0.19 ml of thiophenol; the reaction mixture turned yellow. Reaction flask was cooled to 0° C. in ice bath; a solution of 0.185 gm of the compound of Example 532D in 2 ml acetonitrile was added. The mixture was allowed to stir for 30 min. Ether (10 ml) was added, followed by addition of 10 ml 2 N HCl. The aqueous extract was basified with 4N NaOH and extracted with dichloromethane. The organic layer was washed with water and brine. The crude product was dissolved in a solution of ethanol and aqueous 2.5 N sodium hydroxide and stirred for 8 hours at room temperature. The solution was concentrated in vacuo and water added. The mixture was extracted with ether; the aqueous layer was acidified to pH 4 with 1N H3PO4, and the product was purified by preparative HPLC. 1H NMR (CD3OD, 300 MHz) δ 0.88 (t, J=7 Hz, 3H), 1.15-1.45 (m, 4H), 3.40-4.20 (m, 14H), 5.97 (s, 2H), 6.82 (d, J=8 Hz, 1H), 6.88 (dd, J=8 Hz, 1H), 6.97-7.20 (m, 5H), 7.40 (d, J=9 Hz, 2H), 7.56 (d, J=5 Hz, 2H). MS (DCl/NH3) at m/e 560 (M+H)+. Anal calcd for C32H37N3O6∘4.2 TFA: C, 46.72; H, 4.00; N, 4.05. Found: C, 46.66; H, 4.06; N, 4.00.


EXAMPLE 533
trans, trans-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(3-trimethylammoniomethylphenyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

To a stirred solution of 0.128 gm of the compound of Example 532C in 0.5 ml methanol, 0.25 ml of an aqueous solution of trimethylamine was added. The mixture was allowed to stir at room temperature under nitrogen atmosphere for 4 hours. 1N HCl was added; the aqueous was washed with ether to extract organic impurities. The aqueous layer was dried azeotropically with toluene, and the residue was dried under high vacuum. Yield 0.115 gm. 1H NMR (300 MHz, D6-DMSO) δ 0.83 (t, J=7 Hz, 3H), 1.15-1.40 (m, 4H), 2.62 (s, 2H), 3.35 (s, 9H), 3.40-3.80 (m, 10H), 4.47 (s, 2H), 6.00 (s, J=3 Hz, 2H), 6.75-6.90 (m, 3H), 7.25-7.37 (m, 2H), 7.45-7.60 (m, 3H). MS (DCl/NH3) at m/e 602 (M+H)+.


EXAMPLE 534
(2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-(2-(N-pentananesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 534A
Ethyl(3-fluoro-4-methoxy)benzoylacetate

Sodium hydride (17 g of a 60% suspension in mineral oil) is washed three times with toluene. The powder is suspended in 138 mL of toluene, and 35 mL of diethyl carbonate is added. The mixture is heated to 90° C., and a solution of 25 g of 3-fluoro-4-methoxyacetophenone and 50 ml of diethyl carbonate in 50 ml of toluene was added portionwise. Heating is continued for 30 min, then the reaction is cooled to room temperature. A solution of 50 ml of concentrated HCl in 75 ml of ice water is added slowly, and the mixture is stirred. The mixture is extracted with toluene; the combined organic extracts are washed with brine and bicarbonate solutions. The product is dried over Na2SO4 and decolorized with charcoal to give 34.5 g (97%) of the title compound.


EXAMPLE 534B
Ethyl 2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 534A (12.5 g) and 5-(nitrovinyl)-1,3-benzodioxole (13.1 g, 20% excess) were suspended in a mixture of 75 ml of THF and 13 ml of iPrOH. DBU (0.25 g) was added, and the mixture was stirred at room temperature for 30 min. An additional 0.1 g of DBU was added, and the solution was stirred for 1 hour. The solvents were removed in vacuo; toluene was added, along with brine containing 3 ml of concentrated HCl. The mixture was extracted twice with toluene; the organics were dried over MgSO4. The residue was flashed on silica, using CH2Cl2 to elute. Yield 75%. This material (17.4 g) is combined with 35 g of Raney Nickel (washed) in 250 mL of EtOAc. The mixture is shaken under 4 atm of hydrogen for 18 hours. The solution is concentrated in vacuo; the residue is chromatographed on silica, eluting with 4% EtOAc in CH2Cl2. Yield 10.13 g=66%. The product is combined with 26 ml of THF and 50 ml of EtOH; 2.18 g of NaBH3CN are added, along with a trace of bromcresol green as indicator. A solution of 1:2 concentrated HCl/EtOH is added dropwise to maintain pH at green-yellow; after color persists, the reaction mixture is stirred for an additional 20 min. The solvents are removed in vacuo; the residue is stirred with mixture of toluene and KHCO3 solution. The organic phase is washed with water and brine, and dried over MgSO4. The crude product is purified by flash chromatography on silica, eluting with 2:1 EtOAc/hexanes. Yield 5.92 g (58%) of a 2:1 mixture of trans-trans and cis-trans isomers.


EXAMPLE 534C
Ethyl(2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

To the racemic amino ester above (15.0 g, 38.8 mmol), dissolved in 75 ml methylene chloride and cooled in an ice bath, was added Boc anhydride (9.30 g, 42.7 mmol). After stirring 2 hours at room temperature, the solution was concentrated in vacuo; the residue was dissolved in 50 ml ethanol and treated with a solution of 3.75 g sodium hyroxide in 19 ml water. The solution was warmed until all was soluble. After stirring for 2 hours at room temperature, the solution was concentrated and redissolved in 200 ml of water. This was extracted with 75 ml of diethyl ether. The ether layer was extracted with 40 ml of water. The combined aqueous phases were acidified with 7.5 g acetic acid; the mixture was stirred until a solid formed. The solid was filtered, washed with water and dissolved in methylene chloride. After drying with sodium sulfate, the solution was concentrated and the residue crystallized from 1:1 ether:hexane to get 15.99 g of product, m.p. 200-203 (90% yield). The crude acid was suspended in 80 ml ethyl acetate and treated with 4.00 g (33.1 mmol) of (S)-(−)-a-methylbenzylamine. After heating to dissolve the acid, 80 ml of ether was added. Scratching with a glass rod caused the product to crystallize. The solids were filtered and washed with ether-ethyl acetate solution to give 8.22 g (81% yield based on 50% maximum recovery) of salt, m.p. 165-168° C. After one recrystallization, chiral HPLC analysis, using a Regis Whelk-O column, indicated >99.5% e.e. The salt was dissolved in 500 ml of 36% HCl in ethanol; a white solid forms. The resultant suspension was heated for 16 hours at 52° C. After concentrating in vacuo, the residue was combined with toluene and stirred with potassium bicarbonate in water for 30 minutes. The toluene was separated, dried (Na2SO4) and concentrated. The residue was chromatographed on silica gel, eluting with 33% hexane-67% ethyl acetate to get 6.9 g (99%) of the resolved amino ester.


EXAMPLE 534D
Ethyl(2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)1-(2-(N-propylamino)ethyl)-pyrrolidine-3-carboxylate

The compound of Example 534C was dissolved in 1,2-dibromoethane (10 mL per 1 g of starting material); diisopropylethylamine (1 mL per 1 g of starting material) and Nal (100 mg per 1 g of starting material) were added, and the mixture was stirred at 100° C. for 1 hour. Toluene was added, and the mixture was washed with bicarbonate. The solvents were concentrated, and the resultant black residue was chromatographed on silica gel, eluting with 4:1 hexane-EtOAc to give the N-(2-bromoethyl)pyrrolidine (85-92%). This compound was combined with n-propylamine (3.5 eq.) and Nal (10% by weight of bromide) in ethanol (5 mL per 1 g of bromide), and was heated at 80° C. for 2 hours. Toluene was added, and the mixture was washed with bicarbonate, dried (Na2SO4), and concentrated. More toluene was added, and removed in vacuo, to get rid of the primary amine. The residue was dissolved in heptane and filtered to remove a small amount of insoluble material. Evaporation of the solvent gave the desired product (86-93% yield), which was used for the next step without further purification.


EXAMPLE 534E
1-Pentanesulfonyl chloride

1-Pentanesulfonic acid, sodium salt (10 g, 57.5 mmol) was charged into a 250 ml round bottom flask (allow headroom). Thionyl chloride (20 mL) is added; gas evolves, and a while solid forms. The mixture is heated at 60° C. for 3 hours. The solvents are removed in vacuo; toluene is added and removed in vacuo to remove residue of SOCl2. The residue is partitioned between CH2Cl2 and ice water; the organic layer is dried over Na2SO4. The crude product is purified by distillation (bp 54-56° C. @ 0.5 mm Hg) to give a clear oil, 61% yield.


EXAMPLE 534F
(2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)1-(2-(N-propyl-N-pentanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 534D (200 mg, 0.43 mmol) was dissolved in 5 mL of CH3CN; 110 mg (2 eq) of N,N-diisopropylethylamine and 72.8 mg (1.2 eq) of 1-pentanesulfonyl chloride were added sequentially, the resultant solution was allowed to stir at room temperature for 30 min. The solvent was evaporated under reduced pressure and the residue was dissolved in EtOAc. The solution was washed with saturated NaHCO3 solution, 1N H3PO4, and brine, dried over Na2SO4 and evaporated to give a yellowish oil which was purified by flash chromatography on silica gel eluting with 40% EtOAc/hexane to give 220 mg of product (85%). This ester was dissolved in 5 mL of EtOH, to which was added NaOH (46 mg, 3 eq) solution in 2 mL of H2O. This mixture was stirred for 3 hours at room temperature. The solution was concentrated in vacuo using low (<40° C.) heat. Water (10 mL) and ether (50 mL) were added; the ether layer was extracted with 5 mL of water. The combined aqueous mixture was back-extracted with ether and then neutralized with acetic acid. This solution was extracted twice with ether. The ether was dried (Na2SO4) and concentrated in vacuo. EtOAc (1 mL) and ether (1 mL) were added to dissolve the product, and hexane was added dropwise to produce a white solid. The solid was collected and dried in vacuo to give 125 mg of the title compound.


EXAMPLE 534H
(2R,3R,4S)-2-(3-Fluoro-4-methoxyphenyl)-4-(1,3-Benzodioxol-5-yl) 1-(2-(N-propyl-N-pentanesulfonylamino)ethyl)-pyrrolidine-3-carboxylic acid, hydrochloride salt

The free amine is dissolved in iPrOH; a slight excess of HCl in iPrOH is added, and the solution is concentrated in vacuo. More IPA is added, and the solution is reconcentrated. The resultant sticky material is stirred with ether overnight to give a white powder, which is collected by filtration and dried overnight in vacuo at 60° C. Yield 95%.


EXAMPLE 535

The compounds in Table 3C may be prepared using methods presented in the above Examples.












TABLE 3C









  1


embedded image









  2


embedded image









  3


embedded image









  4


embedded image









  5


embedded image









  6


embedded image









  7


embedded image









  8


embedded image









  9


embedded image









 10


embedded image









 11


embedded image









 12


embedded image









 13


embedded image









 14


embedded image









 15


embedded image









 16


embedded image









 17


embedded image









 18


embedded image









 19


embedded image









 20


embedded image









 21


embedded image









 22


embedded image









 23


embedded image









 24


embedded image









 25


embedded image









 26


embedded image









 27


embedded image









 28


embedded image









 29


embedded image









 30


embedded image









 31


embedded image









 32


embedded image









 33


embedded image









 34


embedded image









 35


embedded image









 36


embedded image









 37


embedded image









 38


embedded image









 39


embedded image









 40


embedded image









 41


embedded image









 42


embedded image









 43


embedded image









 44


embedded image









 45


embedded image









 46


embedded image









 47


embedded image









 48


embedded image









 49


embedded image









 50


embedded image









 51


embedded image









 52


embedded image









 53


embedded image









 54


embedded image









 55


embedded image









 56


embedded image









 57


embedded image









 58


embedded image









 59


embedded image









 60


embedded image









 61


embedded image









 62


embedded image









 63


embedded image









 64


embedded image









 65


embedded image









 66


embedded image









 67


embedded image









 68


embedded image









 69


embedded image









 70


embedded image









 71


embedded image









 72


embedded image









 73


embedded image









 74


embedded image









 75


embedded image









 76


embedded image









 77


embedded image









 78


embedded image









 79


embedded image









 80


embedded image









 81


embedded image









 82


embedded image









 83


embedded image









 84


embedded image









 85


embedded image









 86


embedded image









 87


embedded image









 88


embedded image









 89


embedded image









 90


embedded image









 91


embedded image









 92


embedded image









 93


embedded image









 94


embedded image









 95


embedded image









 96


embedded image









 97


embedded image









 98


embedded image









 99


embedded image









 100


embedded image









 101


embedded image









 102


embedded image









 103


embedded image









 104


embedded image









 105


embedded image









 106


embedded image









 107


embedded image









 108


embedded image









 109


embedded image









 110


embedded image









 111


embedded image









 112


embedded image









 113


embedded image









 114


embedded image









 115


embedded image









 116


embedded image









 117


embedded image









 118


embedded image









 119


embedded image









 120


embedded image









 121


embedded image









 122


embedded image









 123


embedded image









 124


embedded image









 125


embedded image









 126


embedded image









 127


embedded image









 128


embedded image









 129


embedded image









 130


embedded image









 131


embedded image









 132


embedded image









 133


embedded image









 134


embedded image









 135


embedded image









 136


embedded image









 137


embedded image









 138


embedded image









 139


embedded image









 140


embedded image









 141


embedded image









 142


embedded image









 143


embedded image









 144


embedded image









 145


embedded image









 146


embedded image









 147


embedded image









 148


embedded image









 149


embedded image









 150


embedded image









 151


embedded image









 152


embedded image









 153


embedded image









 154


embedded image









 155


embedded image









 156


embedded image









 157


embedded image









 157


embedded image









 159


embedded image









 160


embedded image









 161


embedded image









 162


embedded image









 163


embedded image









 164


embedded image









 165


embedded image









 166


embedded image









 167


embedded image









 168


embedded image









 169


embedded image









 170


embedded image









 171


embedded image









 172


embedded image









 173


embedded image









 174


embedded image









 175


embedded image









 176


embedded image









 177


embedded image









 178


embedded image









 179


embedded image









 180


embedded image









 181


embedded image









 182


embedded image









 183


embedded image









 184


embedded image









 185


embedded image









 186


embedded image









 187


embedded image









 188


embedded image









 189


embedded image









 190


embedded image









 191


embedded image









 192


embedded image









 193


embedded image









 194


embedded image









 195


embedded image









 196


embedded image









 197


embedded image









 198


embedded image









 199


embedded image









 200


embedded image









 201


embedded image




























 202


embedded image









 203


embedded image









 204


embedded image









 205


embedded image









 206


embedded image









 207


embedded image









 208


embedded image









 209


embedded image









 210


embedded image









 211


embedded image









 212


embedded image









 213


embedded image









 214


embedded image









 215


embedded image









 216


embedded image









 217


embedded image









 218


embedded image









 219


embedded image









 220


embedded image









 221


embedded image









 222


embedded image









 223


embedded image









 224


embedded image









 225


embedded image









 226


embedded image









 227


embedded image









 228


embedded image









 229


embedded image









 230


embedded image









 231


embedded image









 232


embedded image









 233


embedded image









 234


embedded image









 235


embedded image









 236


embedded image









 237


embedded image









 238


embedded image









 239


embedded image









 240


embedded image









 241


embedded image









 242


embedded image









 243


embedded image









 244


embedded image









 245


embedded image









 246


embedded image









 247


embedded image









 248


embedded image









 249


embedded image









 250


embedded image









 251


embedded image









 252


embedded image









 253


embedded image









 254


embedded image









 255


embedded image









 256


embedded image









 257


embedded image









 258


embedded image









 259


embedded image









 260


embedded image









 261


embedded image









 262


embedded image









 263


embedded image









 264


embedded image









 265


embedded image









 266


embedded image









 267


embedded image









 268


embedded image









 269


embedded image









 270


embedded image









 271


embedded image









 272


embedded image









 273


embedded image









 274


embedded image









 275


embedded image









 276


embedded image









 277


embedded image









 278


embedded image









 279


embedded image









 280


embedded image









 281


embedded image









 282


embedded image









 283


embedded image









 284


embedded image









 285


embedded image









 286


embedded image









 287


embedded image









 288


embedded image









 289


embedded image









 290


embedded image









 291


embedded image









 292


embedded image









 293


embedded image









 294


embedded image









 295


embedded image









 296


embedded image









 297


embedded image









 298


embedded image









 299


embedded image









 300


embedded image









 301


embedded image









 302


embedded image









 303


embedded image









 304


embedded image









 305


embedded image









 306


embedded image









 307


embedded image









 308


embedded image









 309


embedded image









 310


embedded image









 311


embedded image









 312


embedded image









 313


embedded image









 314


embedded image









 315


embedded image









 316


embedded image









 317


embedded image









 318


embedded image









 319


embedded image









 320


embedded image









 321


embedded image









 322


embedded image









 323


embedded image









 324


embedded image









 325


embedded image









 326


embedded image









 327


embedded image









 328


embedded image









 329


embedded image









 330


embedded image









 331


embedded image









 332


embedded image









 333


embedded image









 334


embedded image









 335


embedded image









 336


embedded image









 337


embedded image









 338


embedded image









 339


embedded image









 340


embedded image









 341


embedded image









 342


embedded image









 343


embedded image









 344


embedded image









 345


embedded image









 346


embedded image









 347


embedded image









 348


embedded image









 349


embedded image









 350


embedded image









 351


embedded image









 352


embedded image









 353


embedded image









 354


embedded image









 355


embedded image









 356


embedded image









 357


embedded image









 358


embedded image









 359


embedded image









 360


embedded image









 361


embedded image









 362


embedded image









 363


embedded image









 364


embedded image









 365


embedded image









 366


embedded image









 367


embedded image









 368


embedded image









 369


embedded image









 370


embedded image









 371


embedded image









 372


embedded image









 373


embedded image









 374


embedded image









 375


embedded image









 376


embedded image









 377


embedded image









 378


embedded image









 379


embedded image









 380


embedded image









 381


embedded image









 382


embedded image









 383


embedded image









 384


embedded image









 385


embedded image









 386


embedded image









 387


embedded image









 388


embedded image









 389


embedded image









 390


embedded image









 391


embedded image









 392


embedded image









 393


embedded image









 394


embedded image









 395


embedded image









 396


embedded image









 397


embedded image









 398


embedded image









 399


embedded image









 400


embedded image









 401


embedded image









 402


embedded image









 403


embedded image









 404


embedded image









 405


embedded image









 406


embedded image









 407


embedded image









 408


embedded image









 409


embedded image




























 410


embedded image









 411


embedded image









 412


embedded image









 413


embedded image









 414


embedded image









 415


embedded image









 416


embedded image









 417


embedded image









 418


embedded image









 419


embedded image









 420


embedded image









 421


embedded image









 422


embedded image









 423


embedded image









 424


embedded image









 425


embedded image









 426


embedded image









 427


embedded image









 428


embedded image









 429


embedded image









 430


embedded image









 431


embedded image









 432


embedded image









 433


embedded image









 434


embedded image









 435


embedded image









 436


embedded image









 437


embedded image









 438


embedded image









 439


embedded image









 440


embedded image









 441


embedded image









 442


embedded image









 443


embedded image









 444


embedded image









 445


embedded image









 446


embedded image









 447


embedded image









 448


embedded image









 449


embedded image









 450


embedded image









 451


embedded image









 452


embedded image









 453


embedded image









 454


embedded image









 455


embedded image









 456


embedded image









 457


embedded image









 458


embedded image









 459


embedded image









 460


embedded image









 461


embedded image









 462


embedded image









 463


embedded image









 464


embedded image









 465


embedded image









 466


embedded image









 467


embedded image









 468


embedded image









 469


embedded image









 470


embedded image









 471


embedded image









 472


embedded image









 473


embedded image









 474


embedded image









 475


embedded image









 476


embedded image









 477


embedded image









 478


embedded image









 479


embedded image









 480


embedded image









 481


embedded image









 482


embedded image









 483


embedded image









 484


embedded image









 485


embedded image









 486


embedded image









 487


embedded image









 488


embedded image









 489


embedded image









 490


embedded image









 491


embedded image









 492


embedded image









 493


embedded image









 494


embedded image









 495


embedded image









 496


embedded image









 497


embedded image









 498


embedded image









 499


embedded image









 500


embedded image









 501


embedded image









 502


embedded image









 503


embedded image









 504


embedded image









 505


embedded image









 506


embedded image









 507


embedded image









 508


embedded image









 509


embedded image









 510


embedded image









 511


embedded image









 512


embedded image









 513


embedded image









 514


embedded image









 515


embedded image









 516


embedded image









 517


embedded image









 518


embedded image









 519


embedded image









 520


embedded image









 521


embedded image









 522


embedded image









 523


embedded image









 524


embedded image









 525


embedded image









 526


embedded image









 527


embedded image









 528


embedded image









 529


embedded image









 530


embedded image









 531


embedded image









 532


embedded image









 533


embedded image









 534


embedded image









 535


embedded image









 536


embedded image









 537


embedded image









 538


embedded image









 539


embedded image









 540


embedded image









 541


embedded image









 542


embedded image









 543


embedded image









 544


embedded image









 545


embedded image









 546


embedded image









 547


embedded image









 548


embedded image









 549


embedded image









 550


embedded image









 551


embedded image









 552


embedded image









 553


embedded image









 554


embedded image









 555


embedded image









 556


embedded image









 557


embedded image









 558


embedded image









 559


embedded image









 560


embedded image









 561


embedded image









 562


embedded image









 563


embedded image









 564


embedded image









 565


embedded image









 566


embedded image









 567


embedded image









 568


embedded image









 569


embedded image









 570


embedded image









 571


embedded image









 572


embedded image









 573


embedded image









 574


embedded image









 575


embedded image









 576


embedded image









 577


embedded image









 578


embedded image









 579


embedded image









 580


embedded image









 581


embedded image









 582


embedded image









 583


embedded image









 584


embedded image









 585


embedded image









 586


embedded image









 587


embedded image









 588


embedded image









 589


embedded image









 590


embedded image









 591


embedded image









 592


embedded image









 593


embedded image









 594


embedded image









 595


embedded image









 596


embedded image









 597


embedded image









 598


embedded image









 599


embedded image









 600


embedded image









 601


embedded image









 602


embedded image









 603


embedded image









 604


embedded image









 605


embedded image









 606


embedded image









 607


embedded image









 608


embedded image









 609


embedded image









 610


embedded image









 611


embedded image









 612


embedded image









 613


embedded image









 614


embedded image









 615


embedded image









 616


embedded image









 617


embedded image




























 618


embedded image









 619


embedded image









 620


embedded image









 621


embedded image









 622


embedded image









 623


embedded image









 624


embedded image









 625


embedded image









 626


embedded image









 627


embedded image









 628


embedded image









 629


embedded image









 630


embedded image









 631


embedded image









 632


embedded image









 633


embedded image









 634


embedded image









 635


embedded image









 636


embedded image









 637


embedded image









 638


embedded image









 639


embedded image









 640


embedded image









 641


embedded image









 642


embedded image









 643


embedded image









 644


embedded image









 645


embedded image









 646


embedded image









 647


embedded image









 648


embedded image









 649


embedded image









 650


embedded image









 651


embedded image









 652


embedded image









 653


embedded image









 654


embedded image









 655


embedded image









 656


embedded image









 657


embedded image









 658


embedded image









 659


embedded image









 660


embedded image









 661


embedded image









 662


embedded image









 663


embedded image









 664


embedded image









 665


embedded image









 666


embedded image









 667


embedded image









 668


embedded image









 669


embedded image









 670


embedded image









 671


embedded image









 672


embedded image









 673


embedded image









 674


embedded image









 675


embedded image









 676


embedded image









 677


embedded image









 678


embedded image









 679


embedded image









 680


embedded image









 681


embedded image









 682


embedded image









 683


embedded image









 684


embedded image









 685


embedded image









 686


embedded image









 687


embedded image









 688


embedded image









 689


embedded image









 690


embedded image









 691


embedded image









 692


embedded image









 693


embedded image









 694


embedded image









 695


embedded image









 696


embedded image









 697


embedded image









 698


embedded image









 699


embedded image









 700


embedded image









 701


embedded image









 702


embedded image









 703


embedded image









 704


embedded image









 705


embedded image









 706


embedded image









 707


embedded image









 708


embedded image









 709


embedded image









 710


embedded image









 711


embedded image









 712


embedded image









 713


embedded image









 714


embedded image









 715


embedded image









 716


embedded image









 717


embedded image









 718


embedded image









 719


embedded image









 720


embedded image









 721


embedded image









 722


embedded image









 723


embedded image









 724


embedded image









 725


embedded image









 726


embedded image









 727


embedded image









 728


embedded image









 729


embedded image









 730


embedded image









 731


embedded image









 732


embedded image









 733


embedded image









 734


embedded image









 735


embedded image









 736


embedded image









 737


embedded image









 738


embedded image









 739


embedded image









 740


embedded image









 741


embedded image









 742


embedded image









 743


embedded image









 744


embedded image









 745


embedded image









 746


embedded image









 747


embedded image









 748


embedded image









 749


embedded image









 750


embedded image









 751


embedded image









 752


embedded image









 753


embedded image









 754


embedded image









 755


embedded image









 756


embedded image









 757


embedded image









 758


embedded image









 759


embedded image









 760


embedded image









 761


embedded image









 762


embedded image









 763


embedded image









 764


embedded image









 765


embedded image









 766


embedded image









 767


embedded image









 768


embedded image









 769


embedded image









 770


embedded image









 771


embedded image









 772


embedded image









 773


embedded image









 774


embedded image









 775


embedded image









 776


embedded image









 777


embedded image









 778


embedded image









 779


embedded image









 780


embedded image









 781


embedded image









 782


embedded image









 783


embedded image









 784


embedded image









 785


embedded image









 786


embedded image









 787


embedded image









 788


embedded image









 789


embedded image









 790


embedded image









 791


embedded image









 792


embedded image









 793


embedded image









 794


embedded image









 795


embedded image









 796


embedded image









 797


embedded image









 798


embedded image









 799


embedded image









 800


embedded image









 801


embedded image









 802


embedded image









 803


embedded image









 804


embedded image









 805


embedded image









 806


embedded image









 807


embedded image









 808


embedded image









 809


embedded image









 810


embedded image









 811


embedded image









 812


embedded image









 813


embedded image









 814


embedded image









 815


embedded image




























 816


embedded image









 817


embedded image









 818


embedded image









 819


embedded image









 820


embedded image









 821


embedded image









 822


embedded image









 823


embedded image









 824


embedded image









 825


embedded image









 826


embedded image









 827


embedded image









 828


embedded image









 829


embedded image









 830


embedded image









 831


embedded image









 832


embedded image









 833


embedded image









 834


embedded image









 835


embedded image









 836


embedded image









 837


embedded image









 838


embedded image









 839


embedded image









 840


embedded image









 841


embedded image









 842


embedded image









 843


embedded image









 844


embedded image









 845


embedded image









 846


embedded image









 847


embedded image









 848


embedded image









 849


embedded image









 850


embedded image









 851


embedded image









 852


embedded image









 853


embedded image









 854


embedded image









 855


embedded image









 856


embedded image









 857


embedded image









 858


embedded image









 859


embedded image









 860


embedded image









 861


embedded image









 862


embedded image









 863


embedded image









 864


embedded image









 865


embedded image









 866


embedded image









 867


embedded image









 868


embedded image









 869


embedded image









 870


embedded image









 871


embedded image









 872


embedded image









 873


embedded image









 874


embedded image









 875


embedded image









 876


embedded image









 877


embedded image









 878


embedded image









 879


embedded image









 880


embedded image









 881


embedded image









 882


embedded image









 883


embedded image









 884


embedded image









 885


embedded image









 886


embedded image









 887


embedded image









 888


embedded image









 889


embedded image









 890


embedded image









 891


embedded image









 892


embedded image









 893


embedded image









 894


embedded image









 895


embedded image









 896


embedded image









 897


embedded image









 898


embedded image









 899


embedded image









 900


embedded image









 901


embedded image









 902


embedded image









 903


embedded image









 904


embedded image









 905


embedded image









 906


embedded image









 907


embedded image









 908


embedded image









 909


embedded image









 910


embedded image









 911


embedded image









 912


embedded image









 913


embedded image









 914


embedded image









 915


embedded image









 916


embedded image









 917


embedded image









 918


embedded image









 919


embedded image









 920


embedded image









 921


embedded image









 922


embedded image









 923


embedded image









 924


embedded image









 925


embedded image









 926


embedded image









 927


embedded image









 928


embedded image









 929


embedded image









 930


embedded image









 931


embedded image









 932


embedded image









 933


embedded image









 934


embedded image









 935


embedded image









 936


embedded image









 937


embedded image









 938


embedded image









 939


embedded image









 940


embedded image









 941


embedded image









 942


embedded image









 943


embedded image









 944


embedded image









 945


embedded image









 946


embedded image









 947


embedded image









 948


embedded image









 949


embedded image









 950


embedded image









 951


embedded image









 952


embedded image









 953


embedded image









 954


embedded image









 955


embedded image









 956


embedded image









 957


embedded image









 958


embedded image









 959


embedded image









 960


embedded image









 961


embedded image









 962


embedded image









 963


embedded image









 964


embedded image









 965


embedded image









 966


embedded image









 967


embedded image









 968


embedded image









 969


embedded image









 970


embedded image









 971


embedded image









 972


embedded image









 973


embedded image









 974


embedded image









 975


embedded image









 976


embedded image









 977


embedded image









 978


embedded image









 979


embedded image









 980


embedded image









 981


embedded image









 982


embedded image









 983


embedded image









 984


embedded image









 985


embedded image









 986


embedded image









 987


embedded image









 988


embedded image









 989


embedded image









 990


embedded image









 991


embedded image









 992


embedded image









 993


embedded image









 994


embedded image









 995


embedded image









 996


embedded image









 997


embedded image









 998


embedded image









 999


embedded image









1000


embedded image









1001


embedded image









1002


embedded image









1003


embedded image









1004


embedded image









1005


embedded image









1006


embedded image









1007


embedded image









1008


embedded image









1009


embedded image









1010


embedded image









1011


embedded image









1012


embedded image









1013


embedded image









1014


embedded image









1015


embedded image




























1016


embedded image









1017


embedded image









1018


embedded image









1019


embedded image









1020


embedded image









1021


embedded image









1022


embedded image









1023


embedded image









1024


embedded image









1025


embedded image









1026


embedded image









1027


embedded image









1028


embedded image









1029


embedded image









1030


embedded image









1031


embedded image









1032


embedded image









1033


embedded image









1034


embedded image









1035


embedded image









1036


embedded image









1037


embedded image









1038


embedded image









1039


embedded image









1040


embedded image









1041


embedded image









1042


embedded image









1043


embedded image









1044


embedded image









1045


embedded image









1046


embedded image









1047


embedded image









1048


embedded image









1049


embedded image









1050


embedded image









1051


embedded image









1052


embedded image









1053


embedded image









1054


embedded image









1055


embedded image









1056


embedded image









1057


embedded image









1058


embedded image









1059


embedded image









1060


embedded image









1061


embedded image









1062


embedded image









1063


embedded image









1064


embedded image









1065


embedded image









1066


embedded image









1067


embedded image









1068


embedded image









1069


embedded image









1070


embedded image









1071


embedded image









1072


embedded image









1073


embedded image









1074


embedded image









1075


embedded image









1076


embedded image









1077


embedded image









1078


embedded image









1079


embedded image









1080


embedded image









1081


embedded image









1082


embedded image









1083


embedded image









1084


embedded image









1085


embedded image









1086


embedded image









1087


embedded image









1088


embedded image









1089


embedded image









1090


embedded image









1091


embedded image









1092


embedded image









1093


embedded image









1094


embedded image









1095


embedded image









1096


embedded image









1097


embedded image









1098


embedded image









1099


embedded image









1100


embedded image









1101


embedded image









1102


embedded image









1103


embedded image









1104


embedded image









1105


embedded image









1106


embedded image









1107


embedded image









1108


embedded image









1109


embedded image









1110


embedded image









1111


embedded image









1112


embedded image









1113


embedded image









1114


embedded image









1115


embedded image









1116


embedded image









1117


embedded image









1118


embedded image









1119


embedded image









1120


embedded image









1121


embedded image









1122


embedded image









1123


embedded image









1124


embedded image









1125


embedded image









1126


embedded image









1127


embedded image









1128


embedded image









1129


embedded image









1130


embedded image









1131


embedded image









1132


embedded image









1133


embedded image









1134


embedded image









1135


embedded image









1136


embedded image









1137


embedded image









1138


embedded image









1139


embedded image









1140


embedded image









1141


embedded image









1142


embedded image









1143


embedded image









1144


embedded image









1145


embedded image









1146


embedded image









1147


embedded image









1148


embedded image









1149


embedded image









1150


embedded image









1151


embedded image









1152


embedded image









1153


embedded image









1154


embedded image









1155


embedded image









1156


embedded image









1157


embedded image









1158


embedded image









1159


embedded image









1160


embedded image









1161


embedded image









1162


embedded image









1163


embedded image









1164


embedded image









1165


embedded image









1166


embedded image









1167


embedded image









1168


embedded image









1169


embedded image









1170


embedded image









1171


embedded image









1172


embedded image









1173


embedded image









1174


embedded image









1175


embedded image









1176


embedded image









1177


embedded image









1178


embedded image









1179


embedded image









1180


embedded image









1181


embedded image









1182


embedded image









1183


embedded image









1184


embedded image









1185


embedded image









1186


embedded image









1187


embedded image









1188


embedded image









1189


embedded image









1190


embedded image









1191


embedded image









1192


embedded image









1193


embedded image









1194


embedded image









1195


embedded image









1196


embedded image









1197


embedded image









1198


embedded image









1199


embedded image









1200


embedded image









1201


embedded image









1202


embedded image









1203


embedded image









1204


embedded image









1205


embedded image









1206


embedded image









1207


embedded image









1208


embedded image









1209


embedded image









1210


embedded image









1211


embedded image









1212


embedded image









1213


embedded image









1214


embedded image









1215


embedded image









1216


embedded image









1217


embedded image









1218


embedded image









1219


embedded image









1220


embedded image









1221


embedded image









1222


embedded image









1223


embedded image









1224


embedded image









1225


embedded image









1226


embedded image









1227


embedded image









1228


embedded image









1229


embedded image









1230


embedded image









1231


embedded image









1232


embedded image









1233


embedded image









1234


embedded image









1235


embedded image









1236


embedded image









1237


embedded image









1238


embedded image









1239


embedded image









1240


embedded image









1241


embedded image









1242


embedded image









1243


embedded image









1244


embedded image









1245


embedded image









1246


embedded image









1247


embedded image









1248


embedded image









1249


embedded image









1250


embedded image









1251


embedded image









1252


embedded image









1253


embedded image









1254


embedded image









1255


embedded image









1256


embedded image









1257


embedded image









1258


embedded image









1259


embedded image









1260


embedded image









1261


embedded image









1262


embedded image









1263


embedded image









1264


embedded image









1265


embedded image









1266


embedded image









1267


embedded image









1268


embedded image









1269


embedded image




























1270


embedded image









1271


embedded image









1272


embedded image









1273


embedded image









1274


embedded image









1275


embedded image









1276


embedded image









1277


embedded image









1278


embedded image









1279


embedded image









1280


embedded image









1281


embedded image









1282


embedded image









1283


embedded image









1284


embedded image









1285


embedded image









1286


embedded image









1287


embedded image









1288


embedded image









1289


embedded image









1290


embedded image









1291


embedded image









1292


embedded image









1293


embedded image









1294


embedded image









1295


embedded image









1296


embedded image









1297


embedded image









1298


embedded image









1299


embedded image









1300


embedded image









1301


embedded image









1302


embedded image









1303


embedded image









1304


embedded image









1305


embedded image









1306


embedded image









1307


embedded image









1308


embedded image









1309


embedded image









1310


embedded image









1311


embedded image









1312


embedded image









1313


embedded image









1314


embedded image









1315


embedded image









1316


embedded image









1317


embedded image









1318


embedded image









1319


embedded image









1320


embedded image









1321


embedded image









1322


embedded image









1323


embedded image









1324


embedded image









1325


embedded image









1326


embedded image









1327


embedded image









1328


embedded image









1329


embedded image









1330


embedded image









1331


embedded image









1332


embedded image









1333


embedded image









1334


embedded image









1335


embedded image









1336


embedded image









1337


embedded image









1338


embedded image









1339


embedded image









1340


embedded image









1341


embedded image









1342


embedded image









1343


embedded image









1344


embedded image









1345


embedded image









1346


embedded image









1347


embedded image









1348


embedded image









1349


embedded image









1350


embedded image









1351


embedded image









1352


embedded image









1353


embedded image









1354


embedded image









1355


embedded image









1356


embedded image









1357


embedded image









1358


embedded image









1359


embedded image









1360


embedded image









1361


embedded image









1362


embedded image









1363


embedded image









1364


embedded image









1365


embedded image









1366


embedded image









1367


embedded image









1368


embedded image









1369


embedded image









1370


embedded image









1371


embedded image









1372


embedded image









1373


embedded image









1374


embedded image









1375


embedded image












embedded image









1377


embedded image









1378


embedded image









1379


embedded image









1380


embedded image









1381


embedded image









1382


embedded image









1383


embedded image









1384


embedded image









1385


embedded image









1386


embedded image









1387


embedded image









1388


embedded image









1389


embedded image









1390


embedded image









1391


embedded image









1392


embedded image









1393


embedded image









1394


embedded image









1395


embedded image









1396


embedded image









1397


embedded image









1398


embedded image









1399


embedded image









1400


embedded image









1401


embedded image









1402


embedded image









1403


embedded image









1404


embedded image









1405


embedded image









1406


embedded image









1407


embedded image









1408


embedded image









1409


embedded image









1410


embedded image









1411


embedded image









1412


embedded image









1413


embedded image









1414


embedded image









1415


embedded image









1416


embedded image









1417


embedded image









1418


embedded image









1419


embedded image









1420


embedded image









1421


embedded image









1422


embedded image









1423


embedded image









1424


embedded image









1425


embedded image









1426


embedded image









1427


embedded image









1428


embedded image









1429


embedded image









1430


embedded image









1431


embedded image









1432


embedded image









1433


embedded image









1434


embedded image









1435


embedded image









1436


embedded image









1437


embedded image









1438


embedded image









1439


embedded image









1440


embedded image









1441


embedded image









1442


embedded image









1443


embedded image









1444


embedded image









1445


embedded image









1446


embedded image









1447


embedded image









1448


embedded image









1449


embedded image









1450


embedded image









1451


embedded image









1452


embedded image









1453


embedded image




























1454


embedded image









1455


embedded image









1456


embedded image









1457


embedded image









1458


embedded image









1459


embedded image









1460


embedded image









1461


embedded image









1462


embedded image









1463


embedded image









1464


embedded image









1465


embedded image









1466


embedded image









1467


embedded image









1468


embedded image









1469


embedded image









1470


embedded image









1471


embedded image









1472


embedded image









1473


embedded image









1474


embedded image









1475


embedded image









1476


embedded image









1477


embedded image









1478


embedded image









1479


embedded image









1480


embedded image









1481


embedded image









1482


embedded image









1483


embedded image









1484


embedded image









1485


embedded image









1486


embedded image









1487


embedded image









1488


embedded image









1489


embedded image









1490


embedded image









1491


embedded image









1492


embedded image









1493


embedded image









1494


embedded image









1495


embedded image









1496


embedded image









1497


embedded image









1498


embedded image









1599


embedded image









1500


embedded image









1501


embedded image









1502


embedded image









1503


embedded image









1504


embedded image









1505


embedded image









1506


embedded image









1507


embedded image









1508


embedded image









1509


embedded image









1510


embedded image









1511


embedded image









1512


embedded image









1513


embedded image









1514


embedded image









1515


embedded image









1516


embedded image









1517


embedded image









1518


embedded image









1519


embedded image









1520


embedded image









1521


embedded image









1522


embedded image









1523


embedded image









1524


embedded image









1525


embedded image









1526


embedded image









1527


embedded image









1528


embedded image









1529


embedded image









1530


embedded image









1531


embedded image









1532


embedded image









1533


embedded image









1534


embedded image









1534


embedded image









1536


embedded image









1537


embedded image









1538


embedded image









1539


embedded image









1540


embedded image









1541


embedded image









1542


embedded image









1543


embedded image









1544


embedded image









1545


embedded image









1645


embedded image









1647


embedded image









1548


embedded image









1549


embedded image









1550


embedded image









1551


embedded image









1552


embedded image









1553


embedded image









1554


embedded image









1555


embedded image









1556


embedded image









1557


embedded image









1558


embedded image









1559


embedded image









1560


embedded image









1561


embedded image









1562


embedded image









1563


embedded image









1564


embedded image









1565


embedded image









1566


embedded image









1567


embedded image









1568


embedded image









1569


embedded image









1570


embedded image









1571


embedded image









1572


embedded image









1573


embedded image









1574


embedded image









1575


embedded image









1576


embedded image









1577


embedded image









1578


embedded image









1579


embedded image









1580


embedded image









1581


embedded image









1582


embedded image









1583


embedded image









1584


embedded image









1585


embedded image









1586


embedded image









1587


embedded image









1588


embedded image









1589


embedded image









1590


embedded image









1591


embedded image









1592


embedded image









1593


embedded image









1594


embedded image









1595


embedded image









1596


embedded image









1597


embedded image









1598


embedded image









1599


embedded image









1600


embedded image









1601


embedded image









1602


embedded image









1603


embedded image









1604


embedded image









1605


embedded image









1606


embedded image









1607


embedded image









1608


embedded image









1609


embedded image









1610


embedded image









1611


embedded image









1612


embedded image









1613


embedded image









1614


embedded image









1615


embedded image









1616


embedded image









1617


embedded image









1618


embedded image









1619


embedded image









1620


embedded image









1621


embedded image









1622


embedded image









1623


embedded image









1624


embedded image









1625


embedded image









1626


embedded image









1627


embedded image




























1628


embedded image









1629


embedded image









1630


embedded image









1631


embedded image









1632


embedded image









1633


embedded image









1634


embedded image









1635


embedded image









1636


embedded image









1637


embedded image









1638


embedded image









1639


embedded image









1640


embedded image









1641


embedded image









1642


embedded image









1643


embedded image









1644


embedded image









1645


embedded image









1646


embedded image









1647


embedded image









1648


embedded image









1649


embedded image









1650


embedded image









1651


embedded image









1652


embedded image









1653


embedded image









1654


embedded image









1655


embedded image









1656


embedded image









1657


embedded image









1658


embedded image









1659


embedded image









1660


embedded image









1661


embedded image









1662


embedded image









1663


embedded image









1664


embedded image









1665


embedded image









1666


embedded image









1667


embedded image









1668


embedded image









1669


embedded image









1670


embedded image









1671


embedded image









1672


embedded image









1673


embedded image









1674


embedded image









1675


embedded image









1676


embedded image









1677


embedded image









1678


embedded image









1679


embedded image









1680


embedded image









1681


embedded image









1682


embedded image









1683


embedded image









1684


embedded image









1685


embedded image









1686


embedded image









1687


embedded image









1688


embedded image









1689


embedded image









1690


embedded image









1691


embedded image









1692


embedded image









1693


embedded image









1694


embedded image









1695


embedded image









1696


embedded image









1697


embedded image









1698


embedded image









1699


embedded image









1700


embedded image









1701


embedded image









1702


embedded image









1703


embedded image









1704


embedded image









1705


embedded image









1706


embedded image









1707


embedded image









1708


embedded image









1709


embedded image









1710


embedded image









1711


embedded image









1712


embedded image









1713


embedded image









1714


embedded image









1715


embedded image









1716


embedded image









1717


embedded image









1718


embedded image









1719


embedded image









1720


embedded image









1721


embedded image









1722


embedded image









1723


embedded image









1724


embedded image









1725


embedded image









1726


embedded image









1727


embedded image









1728


embedded image









1729


embedded image









1730


embedded image









1731


embedded image









1732


embedded image









1733


embedded image









1734


embedded image









1735


embedded image









1736


embedded image









1737


embedded image









1738


embedded image









1739


embedded image









1740


embedded image









1741


embedded image









1742


embedded image









1743


embedded image









1744


embedded image









1745


embedded image









1746


embedded image









1747


embedded image









1748


embedded image









1749


embedded image









1750


embedded image









1751


embedded image









1752


embedded image









1753


embedded image









1754


embedded image









1755


embedded image









1756


embedded image









1757


embedded image









1758


embedded image









1759


embedded image









1760


embedded image









1761


embedded image









1762


embedded image









1763


embedded image









1764


embedded image









1765


embedded image









1766


embedded image









1767


embedded image









1768


embedded image









1769


embedded image









1770


embedded image









1771


embedded image









1772


embedded image









1773


embedded image









1774


embedded image









1775


embedded image









1776


embedded image









1777


embedded image









1778


embedded image









1779


embedded image









1780


embedded image









1781


embedded image












EXAMPLE 536
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 536A
Ethyl 5,5-dimethyl-3-oxooctanoate

Ethyl 3,3-dimethylhexanoate was prepared using the general procedure of Cahiez et al., Tetrahedron Lett., 31, 7425 (1990). To a solution of 63.8 g (370 mmol) of this compound in 400 mL of ethanol, cooled to 0° C., was added a solution of 30 g of NaOH in 150 mL of water. The resultant solution was warmed to ambient temperature and stirred overnight. Solvents were removed in vacuo; the residue was taken up in 700 mL of water, and extracted twice with 1:1 ether/hexanes. The aqueous layer was acidified to pH3 with 1N HCl and extracted twice with hexanes. The combined hexane extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. A 20.2 g (150 mmol) sample of the crude product is dissolved in 150 mL of THF; 27.3 g of 1,1′-carbonyldiimidazole is added portionwise, to control gas evolution. In meantime, 33.4 g of potassium ethylmalonate and 13.4 g of magnesium chloride are combined in 350 mL of THF (overhead mechanical stirring) and warmed to 50° C. for 3 hrs. This mixture is cooled to ambient temperature, and the above acid imidazolide solution is added. The resultant slurry is stirred overnight. Ether (600 mL), hexanes (600 mL) and aqueous 1N phosphoric acid (500 mL) are added, and the mixture is sitrred for 30 min. The aqueous layer is separated; the organics are washed sequentially with bicarb (2×), water and brine. The organics are dried over sodium sulfate, filtered and concentrated to give 30.2 g (95% yield) of a colorless liquid.


EXAMPLE 536B
4-Methoxy-6-(2-nitrovinyl)-1,3-benzodioxole

3-Methoxypiperonal (50.0 g) is combined with 71.9 mL of nitromethane in 250 mL of acetic acid; 36 g of ammonium acetate is added, and the mixture is heated to 50° C. for 4 hrs. Solvents are removed in vacuo; the residue is taken up in water and stirred for 20 min. The solution is filtered; the filtrate is washed with water, then ether, to give 51.8 g of a yellow solid.


EXAMPLE 536C
Ethyl trans,trans-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 536A (6.42 g, 30 mmol) was combined with 5.79 g of the compound of Example 536B in 40 mL of THF. DBU (0.5 mL) was added, and the mixture was stirred at ambient temperature for 6 hrs, during which time it turns reddish brown, and homogeneous. The solvents were removed in vacuo; the residue was taken up in EtOAc and washed sequentially with aqueous 1N phosphoric acid and brine. The organic phase was dried over sodium sulfate, filtered and concentrated. The residue was dissolved in 50 mL of THF; 12 g of Raney Nickel catalyst (washed sequentially with water and ethanol) was added, followed by 10 mL of acetic acid. The resultant mixture was hydrogenated under 4 atmospheres of hydrogen until hydrogen uptake ceased (˜3 hrs). The catalyst was removed by filtration; solvents were removed in vacuo. The residue was dissolved in 90 mL of 2:1 ethanol/THF; 30 mg of bromcresol green indicator was added, followed by 30 mL of 1N sodium cyanoborohydride in THF. Concentrated HCl was added dropwise to maintain pH at the indicator point, over 1 hr. The resultant solution was stirred overnight at ambient temperature. Bicarb was added, and the solvents were removed in vacuo; the residue was partitioned between water and EtOAc. The organic material was washed with water (2×) and brine. The organic phase was dried over sodium sulfate, filtered and concentrated. The crude product was dissolved in 100 mL of acetonitrile; 10 mL of Hünig's base was added, and the solution was warmed to 40° C. overnight. Removal of solvents in vacuo provided 5.0 g of a yellowish oil.


EXAMPLE 536D
Ethyl[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The crude compound of Example 536C (2.0 g) was combined with 4 mL of triethylamine in 40 mL of THF; 2.0 g of di-tert-butyldicarbonate was added, and the mixture was stirred at ambient temperature for 5 hrs. Solvents were removed in vacuo, and the residue was taken up in 60 mL of ethanol. Aqueous sodium hydroxide (10 mL of 2.5 N solution) was added, and the resultant solution was stirred overnight. Solvents were removed in vacuo; the residue was taken up in water and extracted with ether. The aqueous phase was acidified with aqueous 1N phosphoric acid and extracted with EtOAc. The organic extracts were washed with brine, dried over sodium sulfate, filtered, and concentrated to give 1.0 g of a colorless oil. A sample of this material (0.734 g, 1.58 mmol) was combined with 0.35 g of pentafluorophenol and 0.364 g of EDAC in 5 mL of DMF. The resultant solution was stirred at ambient temperature for 1 hr, then was poured onto 50 mL of 0.6 M sodium bicarbonate solution and extracted (3×15 mL) with ether. The combined ether extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo to give a foam, which was dissolved in 5 mL of THF and cooled to 0° C. Simultaneously, 0.418 g (2.37 mmol) of R-4-benzyl-2-oxazolidinone was combined with ˜0.1 mg of pyreneacetic acid in 5 mL of THF and cooled to 0° C. N-butyllithium (1.6 M in hexanes) was added to a red endpoint (persists ˜10 sec), and the solution was stirred for 10 min. The solution was transferred into the solution of the pentafluorophenyl ester, and the resultant solution was stirred at 0° C. for 40 min. Solvents were removed in vacuo; the residue was taken up in bicarb and extracted with ether (3×10 mL). The combined ether extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The crude mixture of diasteromeric products was separated by flash chromatography on silica gel, eluting with a gradient from 4:1->3:1->2:1 hexanes/EtOAc, giving 423 mg of the faster-moving and 389 mg of the slower-moving diastereomer, respectively. The faster-moving diastereomer was dissolved in 2 mL of a 2.0 M solution of sodium methoxide in methanol (freshly prepared, containing 5% methyl formate by volume) and stirred at ambient temperature for 16 hrs. Solvents were removed in vacuo, and the residue was partitioned between ether and aqueous 1N sodium hydroxide. The ether layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel, eluting with 4:1 hexanes/EtOAc. The resultant material was dissolved in 5 mL of TFA and stirred at ambient temperature for 1 hr. Solvents were removed in vacuo; the residue was suspended in bicarb and extracted with EtOAc. The organic phase was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo to give 98 mg of product.


EXAMPLE 536E
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 536D (48 mg) was combined with 35 mg of the compound of Example 501A in 3 mL of acetonitrile; 0.5 mL of Hünig's base was added, and the solution was allowed to stir overnight at ambient temperature. Solvents were removed in vacuo; the residue was partitioned between EtOAc and aqueous 1N phosphoric acid. The organic layer was washed with bicarb and brine, then dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography on silica gel, eluting with 2:1 hexanes/EtOAc. The product was dissolved in 4 mL of ethanol; 1 mL of 2.5 N aqueous sodium hydroxide was added, and the resultant solution was stirred overnight at ambient temperature. Solvents were removed in vacuo; the residue was taken up in water and extracted with ether. The aqueous phase was acidified to pH 3 with aqueous 1N phosphoric acid and extracted with EtOAc. The organic extracts were washed with brine, dried over sodium sulfate, filtered and concentrated to give a colorless oil. Lyophilization from acetonitrile/0.1% aqueous TFA gave 56 mg of a white solid.



1H NMR (CDCl3, 300 MHz) d 0.81 (s, 3H), 0.84 (s, 3H), 0.86 (t, J=6.9 Hz, 3H), 0.93 (t, J=6.9 Hz, 3H), 0.96 (t, J=6.9 Hz, 3H), 1.09-1.38 (m, 8H), 1.45-1.59 (m, 4H), 1.84-2.00 (m, 2H), 3.15 (dd, J=6.9 Hz, 10.0 Hz, 2H), 3.30-3.42 (m, 3H), 3.72 (t, J=10.5 Hz, 1H), 3.86 (t, J=10.5 Hz, 1H), 3.88 (s, 3H), 4.02 (q, J=10.0 Hz, 1H), 4.12 (d, J=16.8 Hz, 1H), 4.29 (d, J=16.8 Hz, 1H), 4.41 (brm, 1H), 5.94 (s, 1H), 6.52 (d, J=1.8 Hz, 1H), 6.67 (d, J=1.8 Hz, 1H). MS (ESI) (M+H)+ at m/e 533. Anal calcd for C30H48N2O6.0.7 TFA: C, 61.57; H, 8.01; N, 4.57. Found: C, 61.59; H, 8.20; N, 4.63.


EXAMPLE 537
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 537A
Ethyl trans, trans-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

Prepared according to the procedures of Example 536C above, substituting the compound of Example 501B (5-(2-nitrovinyl)-1,3-benxodioxole) for 4-methoxy-6-(2-nitrovinyl)-1,3-benzodioxole.


EXAMPLE 537B
Ethyl[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 537A (6.8 g) was dissolved in 100 mL of ether; a solution of 1.6 g of (S)-(+)-mandelic acid in 60 mL of ether was added, the total volume was made up to ˜200 mL, and the solution was seeded. The mixture was stirred slowly overnight. The resultant crystals were collected by filtration and recrystallized from ether/EtOAc to give 1.8 g of a white solid. Thsi material was partitioned between bicarb and ether; the ether layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to give the enantiomerically pure product (>98% e.e.).


EXAMPLE 537C
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

Prepared from the compound of Example 537B according to the procedures of Example 536E. 1H NMR (CDCl3, 300 MHz) d 0.80-0.99 (m, 15H), 1.10-1.37 (m, 8H), 1.43-1.58 (m, 4H), 1.77-1.97 (m, 2H), 3.48-3.12 (m, 5H), 3.60-3.69 (m, 1H), 3.75-3.86 (m, 1H), 3.95-4.16 (m, 2H), 4.28-4.4 (m, 2H), 5.94 (s, 2H), 6.74 (d, J=7.8 Hz, 1H), 6.8 (dd, J=8.1, 1.5 Hz, 1H), 6.87 (d, J=1.8 Hz, 1H). MS (APCl+) m/e 503 (M+H)+.


EXAMPLE 538
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 538A
N-Boc-N-butyl-O-allylhydroxylamine

O-Allylhydroxylamine hydrochloride hydrate (5.0 g) was dissolved in THF (15 mL). The solution was cooled to 0° C. in an ice bath. Diisopropylethylamine (8 mL) and di-t-butyldicarbonate (10.0 g) were added. The mixture was stirred at 0° C. for one hour at which point the bath was removed and the reaction allowed to warm to room temperature and stirred overnight. The THF was removed in vacuo and the residue taken up in EtOAc (25 mL), and washed with water (1×50 mL), saturated sodium bicarbonate solution (3×50 mL), 1N phosphoric acid (3×50 mL), and brine (1×50 mL). The organic layer was dried with sodium sulfate and evaporated to give a light yellow oil (6.5 g). This crude product was dissolved in dry THF (25 mL) and the solution cooled to 0° C. in an ice bath. Sodium hydride (1.5 g, 60% dispersion in oil) was added portionwise over five minutes. The resulting mixture was stirred for 30 minutes at 0° C. 1-Iodobutane (4.1 mL) was added dropwise to the mixture. The reaction was stirred at 0° C. for one hour, then stirred overnight at room temperature. The THF was removed in vacuo and the residue taken up in EtOAc (50 mL) and washed with water (1×50 mL), saturated sodium bicarbonate solution (3×50 mL), 1N phosphoric acid (3×50 mL), and brine (1×50 mL). The organic layer was dried with sodium sulfate and evaporated to give a light yellow oil, which was purified by flash chromatography on silica gel eluting with 5% EtOAc/hexanes to give the title compound as a colorless oil (6.0 g).


EXAMPLE 538B
N-butyl-N-propoxyamine trifluoroacetate

The compound of Example 538A (6.0 g) was dissolved in EtOAc (100 mL). 10% Palladium-on-carbon (0.5 g) was added, and the mixture was purged with nitrogen. The nitrogen line was exchanged for a balloon of hydrogen, and the mixture was stirred at room temperature for 6 hours. The catalyst was removed by filtration through a pad of Celite and the solvents were removed in vacuo to give a yellow oil which was purified by flash chromatography on silica gel eluting with 5% EtOAc/hexanes to give a colorless oil (5.8 g). A sample of the resultant material (1.15 g) was dissolved in CH2Cl2 (5 mL) and cooled in an ice bath. Trifluoroacetic acid (3 mL) was added and the solution stirred cold for two hours. The solvent was removed in vacuo, care being taken not to allow the solution to warm above room temperature. The residue contained considerable TFA and was used without further purification.


EXAMPLE 538C
N-butyl-N-propoxy-bromoacetamide

The salt of Example 538B (0.60 g) was dissolved in acetonitrile (5 mL) and cooled to −20° C. Hünig's base (5.5 mL) was added slowly. Bromoacetyl bromide (0.5 mL) was added dropwise over five minutes. The solution was stirred at −20° C. for 30 minutes. The bath was removed and the solution was stirred for six hours at room temperature. The solvent was removed in vacuo and the residue taken up in EtOAc (50 mL) and washed with water (1×25 mL), 1N phosphoric acid (3×25 mL), and brine (1×25 mL). The organic layer was dried with sodium sulfate and evaporated to give a dark orange oil (0.65 g) which was used without further purification.


EXAMPLE 538D
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 537B was reacted with the compound of Example 538C according to the procedures of Example 536E.


EXAMPLE 539
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-propyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 539A
N-propyl-N-propoxy bromoacetamide

Prepared according to the procedures of Example 538A-C, substituting iodopropane for iodobutane in Example 538A.


EXAMPLE 539B
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-propyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 537B was reacted with the compound of Example 539A according to the procedures of Example 536E.


EXAMPLE 540
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 536D was reacted with the compound of Example 538C according to the procedures of Example 536E.


EXAMPLE 541
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-propyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 536D was reacted with the compound of Example 539A according to the procedures of Example 536E.


EXAMPLE 542
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 542A
trans-Ethyl 3,3-dimethyl-4-hexenoate

A mixture of 4-methyl-3-penten-2-ol (7.4 g, 74 mmol), triethyl orthoacetate (13.6 mL, 74 mmol) and propionic acid (0.28 mL, 3.7 mmol) was heated at 150° C. for 7 hr. The product was then distilled under normal pressure (200-220° C.) to give 5.0 g of crude ester as a colorless oil.


EXAMPLE 542B
Ethyl trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The title compound is prepared according to the procedures of Examples 536A and 536C, substituting the compound of Example 542A for ethyl 3,3-dimethylhexanoate in Example 536A and the compound of Example 501B (5-(2-nitrovinyl)-1,3-benxodioxole) for 4-methoxy-6-(2-nitrovinyl)-1,3-benzodioxole in Example 536C.


EXAMPLE 542C
Ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 542B was resolved according to the procedure described in Example 537B.


EXAMPLE 542D
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 542C was reacted with the compound of Example 538C according to the procedures of Example 536E.


EXAMPLE 543
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-propyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 542C was reacted with the compound of Example 539A according to the procedures of Example 536E.


EXAMPLE 544
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid
EXAMPLE 544A
Ethyl trans,trans-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The title compound is prepared according to the procedures of Examples 536A and 536C, substituting the compound of Example 542A for ethyl 3,3-dimethylhexanoate in Example 536A.


EXAMPLE 544B
Ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 544A was resolved according to the procedure described in Example 536D.


EXAMPLE 544C
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-butyl))aminocarbonylmethyl)-Pyrrolidine-3-carboxylic acid

The compound of Example 544B was reacted with the compound of Example 538C according to the procedures of Example 536E.


EXAMPLE 545
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-((N-propoxy, N-(n-propyl))aminocarbonylmethyl)-pyrrolidine-3-carboxylic acid

The compound of Example 544B was reacted with the compound of Example 539A according to the procedures of Example 536E.


EXAMPLE 546
[2S,3R,4S]-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl-N-(2-methyl-3-fluorophenyl)]amino carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 546A
Ethyl trans,trans-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The title compound is prepared according to the procedures of Examples 536A and 536C, substituting the compound of Example 519A for 3,3-dimethylhexanoic acid in Example 536A.


EXAMPLE 546B
Ethyl[2S,3R,4S]-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate

The compound of Example 546A (1.5 g) was dissolved in CH2Cl2 (25 mL). Di-t-butyldicarbonate (0.9 g) was added and the solution stirred overnight at room temperature. The solvent was evaporated in vacuo and the residue taken up in EtOAc (50 mL), washed with water (1×50 mL), saturated sodium bicarbonate solution (3×50 mL), and brine (1×50 mL). The organic layer was dried with sodium sulfate and evaporated in vacuo to give an oil with was purified by flash chromatography on silica gel eluting with 1/10/10 EtOH/EtOAc/hexanes to give a colorless oil (1.5 g). The oil was dissolved in EtOH (10 mL) and 50% NaOH solution (0.5 mL) and water (5 mL) were added. The mixture was stirred overnight at room temperature. The solvents were evaporated in vacuo and the residue taken up in EtOAc (25 mL) and acidified with 1 N H3PO4 (10 mL). The layers were separated and the organic layer dried with sodium sulfate and evaporated to give a white semi-solid (1.3 g). A sample of the resultant Boc-protected amino acid (0.9 g) was dissolved in DMF (5 mL). (S)-Phenylalaninol (0.32 g), HOOBt (0.33 g), and EDCl (0.40 g) were added and the solution sitrred overnight at room temperature. Water (50 mL) was added and the mixture extracted with EtOAc (3×25 mL). The organic layers were combined, washed with water (2×50 mL), saturated sodium bicarbonate solution (3×50 mL), and brine (1×50 mL), and evaporated to give a yellow oil; tic indicated the presence of two diastereomeric products. The diastereomeric amides were separated by flash chromatography on silica gel eluting with 1/12/12 EtOH/EtOAc/hexanes to give faster-(450 mg) and slower-moving isomers (400 mg). The faster-moving diastereomer (400 mg) was taken up in 6 N HCl and heated at reflux overnight. The solvent was evaporated and the residue was taken up in toluene (75 mL) and evaporated. This was repeated two additional times to give a brown solid, which was dissolved in EtOH (50 mL). 4 N HCl/dioxane (10 mL) was added and the solution heated at reflux overnight. The EtOH was evaporated and the residue taken up in EtOAc which was treated with saturated sodium bicarbonate solution (3×50 mL), and brine (1×50 mL), and evaporated to give a brown solid. Flash chromatography on silica gel eluting with 30% EtOH/EtOAc gave a mixture of products (130 mg) which was approximately 70% desired material. This product was carried forward without additional purification.


EXAMPLE 546C
[2S,3R,4S]-2-(2-(2-pyridyl)ethyl)-4-(1,3-benzodioxol-5-yl)-1-[[N-4-heptyl-N-(2-methyl-3-fluorophenyl)]amino carbonylmethyl]-pyrrolidine-3-carboxylic acid

The compound of Example 546B was reacted with the compound of Example 508E according to the procedures of Example 536E.


EXAMPLE 547
[2S,3R,4S]-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid
EXAMPLE 547A
N-butyl-4-hydroxybutyramide

To 30 mL (390 mmol) of g-butyrolactone was added 45 ml (455 mmol) of n-butylamine. The solution was heated at 85° C. for 1.5 hr. then the excess n-butylamine was removed in vacuo. The product crystallized on standing to give about 62 g of a colorless, low melting solid.


EXAMPLE 547B
N-butyl-4-hydroxybutyl chloroacetamide

To an ice cooled solution of 3.40 g (91.9 mmol) of LiAlH4 in 90 mL of THF was added 2.4 mL of 98% H2SO4, dropwise, with stirring. After bubbling had ceased, a solution of 4.7 g of the compound of Example 547A in 10 mL of THF was added. The mixture was stirred at reflux for 24 hr. then cooled with an ice bath and quenched by sequential dropwise addition of 1.7 mL H2O, and 17 mL of 25% w/v aqueous NaOH. The white precipitate was filtered, and washed with about 50 mL of THF. The combined filtrate and washings were concentrated to 3.85 g of an oil. To an ice cooled solution of this material in 35 mL of ethyl acetate was added a solution of 5.0 g (29.2 mmol) of chloroacetic anhydride in 10 mL of ethyl acetate. The solution was stirred at 0° C. for 30 min, then extracted with saturated aqueous NaHCO3 solution (1×25 mL), 2 M NaOH (1×25 mL), 5% NH4OH (1×25 mL), 1M HCl (1×25 mL), and brine (1×25 mL), dried over MgSO4, filtered, and concentrated in vacuo to an oil. The product was purified via silica gel chromatography, eluting with 98:2 diethyl ether: methanol, to give 1.52 g (31%) of a colorless oil.


EXAMPLE 547C
Ethyl[2S,3R,4S]-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-hydroxybutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

To 1.52 g (6.85 mmol) of the compound of Example 547B was added 2.75 g (7.44 mmol) of the ethyl[2S,3R,4S]-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl) -pyrrolidine-3-carboxylate (prepared by neutralization of the compound of Example 501G), 10 mL of DMSO, and 2 mL of N,N-diisopropylethylamine. The solution was stirred at ambient temperature for 22 h, then poured into 100 mL of water and extracted with diethyl ether (3×25 mL). The combined ether layers were washed with water (1×25 mL), 4% (v/v) H3PO4 (1×25 mL), saturated aqueous NaHCO3 solution (1×25 mL), and brine (1×25 mL), dried over MgSO4, filtered, and concentrated to an oil. This was purified via silica gel chromatography, eluting with 98:2 diethyl ether: methanol to give 3.0 g (79%) of a colorless oil.


EXAMPLE 547D
Ethyl[2S,3R,4S]-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-bromobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylate

To an ice cooled solution of 2.80 g (5.05 mmol) of the compound of Example 547C in 27 mL of diethyl ether was added 1.4 mL (10 mmol) of triethylamine, then 0.58 mL of methanesulfonyl chloride. A white precipitate formed, and the suspension was stirred at 0° C. for 20 min. The reaction was diluted with 75 mL of diethyl ether, then extracted with saturated aqueous NaHCO3 solution (2×25 mL), 5% NH4OH (2×25 mL), and brine (1×25 mL), dried over MgSO4, filtered, and concentrated to 3.0 g of a colorless oil. To this material in 45 mL of DMF was added 6.0 g (69 mmol) of LiBr. The reaction warmed to about 50° C., then gradually cooled. The solution was stirred at ambient temperature for 4h, then poured into 450 mL of water, and extracted with diethyl ether (3×100 mL). The combined ether layers were back extracted with water (1×100 mL), and brine (1×100 mL), dried over MgSO4, filtered, and concentrated in vacuo to an oil. The product was purified via silica gel chromatography, eluting with 3:1 diethyl ether: petroleum ether, to give 2.65 g (90%) of a colorless oil.


EXAMPLE 547E
[2S,3R,4S]-2-(4-Methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

To a solution of the compound of Example 547D (0.825 g, 1.34 mmol) in 3 mL of ethanol was added 5 mL of 4.07 M dimethylamine in ethanol; the resultant solution was heated at reflux for 75 min. Solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel, eluting with 9:1 dichloromethane/methanol. The resultant material was taken up in 5 mL of 1.4N NaOH in 5:1 ethanol/water and stirred at ambient temperature for 14 hrs. Solvents were removed in vacuo; the residue was taken up in water, then adjusted to pH 6-7 with 1M HCl (˜7 mL required). The mixture was extracted with EtOAc (3×); the aqueous layer was concentrated in vacuo. The residue was washed 3× with acetonitrile; the combined washes were filtered through Celite and concentrated to give 596 mg of a white foam.


EXAMPLE 548
[2S 3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 547, substituting the compound of Example 537B (ethyl[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate) in Example 547C.


EXAMPLE 549
[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 547, substituting the compound of Example 536D (ethyl[2S,3R,4S]-2-(2,2-Dimethylpentyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate) in Example 547C.


EXAMPLE 550
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 547, substituting the compound of Example 542C (ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate) in Example 547C.


EXAMPLE 551
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N-butyl-N-(4-dimethylaminobutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 547, substituting the compound of Example 544A (ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate) in Example 547C.


EXAMPLE 552
[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-1-[(N,N-di(nbutyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procedures of Example 1, substituting the compound of Example 541C (ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate).


EXAMPLE 553
[2S,3R,4S]-2-(2,2-Dimethylpent-3-envl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-1-[(N,N-di(n-butyl)amino)carbonylmethyl]-pyrrolidine-3-carboxylic acid

Prepared according to the procesures of Example 1, substituting the compound of Example 544B (ethyl[2S,3R,4S]-2-(2,2-Dimethylpent-3-enyl)-4-(7-methoxy-1,3-benzodioxol-5-yl)-pyrrolidine-3-carboxylate).


As an indication that the compounds described herein act through binding to endothelin receptors, the compounds have been evaluated for their ability to displace endothelin from its receptor.


Binding Assay
ETA Receptor

Preparation of Membranes from MMQ Cells:


MMQ [MacLeod/MacQueen/Login cell line (prolactin secreting rat pituitary cells)] cells from 150 mL culture flasks were collected by centrifugation (1000×g for 10 min) and then homogenized in 25 mL of 10 mM Hepes (pH 7.4) containing 0.25 M sucrose and protease inhibitors [3 mM EDTA, 0.1 mM PMSF, and 5 μg/mL Pepstatin A] by a micro ultrasonic cell disruptor (Kontes). The mixture was centrifuged at 1000×g for 10 min. The supernatant was collected and centrifuged at 60,000×g for 60 min. The precipitate was resuspended in 20 mM Tris, pH 7.4 containing the above protease inhibitors and centrifuged again. The final pellet was resuspended in 20 mM Tris, pH 7.4 containing protease inhibitors and stored at −80° C. until used. Protein content was determined by the Bio-Rad dye-binding protein assay.


[125I]ET-1 Binding to Membranes:


Binding assays were performed in 96-well microtiter plates pretreated with 0.1% BSA. Membranes prepared from cells were diluted ˜100 fold in Buffer B (20 mM Tris, 100 mM NaCl, 10 mM MgCl2, pH 7.4, with 0.2% BSA, 0.1 mM PMSF, 5 μg/mL Pepstatin A, 0.025% bacitracin, and 3 mM EDTA) to a final concentration of 0.2 mg/mL of protein. In competition studies, membranes (0.02 mg) were incubated with 0.1 nM of [125I]ET-1 in Buffer B (final volume: 0.2 mL) in the presence of increasing concentrations of unlabeled ET-1 or a test compound for 4 hours at 25° C. After incubation, unbound ligands were separated from bound ligands by a vacuum filtration method using glass-fiber filter strips in PHD cell harvesters (Cambridge Technology, Inc., MA), followed by washing the filter strips with saline (1 mL) for three times. Nonspecific binding was determined in the presence of 1 μM ET-1. The data are shown in Table 4. The percent inhibition at a concentration of 1 mM is shown. The data show that the compounds of the invention bind to the endothelin receptor.









TABLE 4







Binding Data











% Inhibition of



Example
ETA at 1 μM














 1D
96.4



 2
58.4



 3
42.2



 4
78.2



 5
95.1



 6B
34.9



 7
63.4



 8
53.7



 9
69.2



 10
66.1



 14
86.6



 15
84.8



 16
96.0



 17
73.9



 18
97.3



 19
90.3



 20
80.9



 21
56.3



 22
86.3



 23
85.9



 26
83.0



 27
61.2



 28
63.8



 29
85.3



 30
80.0



 31B
93.6



 34
95.5



 35
91.8



 36
94.5



 37
47.9



 38
100.0



 39
83.6



 40
94.8



 41
89.9



 42
95.2



 43
99.2



 44
91.3



 45
85.4



 46
90.4



 47
95.1



 48
96.3



 52
84.0



 54
64.6



 55
50.5



 56
34.3



 57
93.2



 58
81.9



 59
70.8



 60
42.8



 61C
90.6



 62
94.1



 63
92.0



 64
95.0



 65
82.8



 66
87.7



 67
96.3



 68
84.6



 69D
37.4



 70
62.7



 71
81.4



 72C
80.7



 73C
96.3



 74
95.6



 75C
95.3



 76
93.1



 79
100.4



 80
89.4



 82
90.3



 83
85.0



 84
65.3



 86
52.6



 87
62.4



 88
84.3



 89
84.6



 91C
91.6



 92C
107.4



 93C
59.2



 95D
82.1



 96
86.1



 97
89.0



 98
86.8



 99
92.1



100
76.8



101
89.2



102
75.2



103
69.0



104
98.0



105
98.6



106
90.0



107
97.2



109
96.8



110
94.4



111
101.8



112
94.9



113
94.3



114
86.2



115
88.4



116
79.3



117
95.2



118
93.2



119
86.6



120
99.5



121
98.6



122
95.3



125
97.2



126
91.7



127
91.4



128
95.4



123
89.7



124
91.0



129
100.1



130
91.0



131
89.5



132
90.0



133
88.6



134
92.2



135B
77.7



136
79.4



138
83.0



139
98.6



140
106.3



141
92.8



142B
78.7



143
20.6



144
78.2



145
32.4



146
25.0



147
73.0



148
94.7



149
84.6



150
93.6



151
80.5



152
86.9



153
97.1



154
80.2



155
92.7



156
92.6



157
83.8



158
91.8



159
36.2



160B
80.3



161
93.6



162B
91.5



163
90.6



164
98.6



165
54.1



166
91.6



167
94.4



291
100.0



293
89.8



294
77.7



295
93.0



296
87.1



297
84.4



298
93.3



299
90.4



300
96.1



301
96.7



302
86.6



303
87.2



304
89.7



305
87.4



306
93.3



307
92.2



308
93.0



309
80.7



310
87.1



311
92.3



312
88.2



313
96.3



314
86.0



315
82.7



316
74.0



317
68.5



318
79.0



319
79.0



320
82.2



322
95.6



323
91.3



324
95.0



334
88.0



335
84.1



340
94.0



341
87.4



342
89.9



343
98.7



344
95.6



345
86.6



346
88.9



348
91.3



349
73.0



350
92.1



351
99.0



352
96.2



353
73.7



354
79.3



355
100



356
93.5



357
96.3



358
62.7



359
94.7



360
93.7



361
92.8



362
94.1



363
82.3



365
59.2



366
91.5



367
71.0



368
94.6



370
84.3



371
97.2



372
91.6



373
92.9



374
91.4



375
97.8



376
90.2



377
85.6



378
91.1



379
90.7



380
99.0



381
95.7



382
96.8



383
91.4



384
79.4



385
86.2



386
47.8



387
98.7



388
69.2



389
100



390
98.2



391
45.6



392
93.7



393
100



394
97.8



395
79.8



396
98.7



397
100



398
90.0



399
59.9



400
93.0



401
96.5



402
80.5



403
96.1



404
95.4



405
86.4



406
94.5



407
100



408
100



409
89.4



410
91.4



411
93.5



412
86.4



413
99.5



414
91.4



415
87.3



416
86.4



417
98.7



418
100



420
100



421
100



422
96.6



423
89.1



424
85.8



425
90.8



426
97.2



427
100



428
100



429
100



430
94.1



431
99.1



432
95.5



433
99.6



434
100



435
97.8



436
100



437
100



438
94.3



439
94.3



440
100



441
98.3



442
100



443
100



444
100



445
98.1



446
97.8



447
96.9



448
97.4



449
100.0



450
99.7



451
100



452
100



453
94.4



454
96.8



455
99.1



456
95.3



457
88.9



458
93.4



459
97.4



460
91.6



461
99.6



462
98.3



463
96.1



464
97.1



465
95.1



466
94.2



467
93.6



468
88.7



469
98.7



470
100



471
100



475
91.6



476
82.3



477
80.1



479
96.5



495
95.9



496
92.7



497
83.7



498
81.6



499
68.5



500
55.7



502
95.7



503
97.0



504
97.1



505
95.8



506
99.7



507
99.3



508
97.6



509
100



510
100



511
99.2



512
98.9



513
98.0



514
100



515
99.1



516
99.7



517
94.1



518
96.3



519
99.1



520
97.4



521
100



523
99.0



524
99.2



525
100



526
100



527
96.6



528
98.3



529
98.1



531
99.8



532
100



533
97.9



536
100



537
97.2










As further demonstration of the efficacy of the described compounds as functional antagonists of endothelin, the ability of the described compounds to inhibit ET-1-induced phosphatidylinositol hydrolysis was measured.


Determination of Phosphatidylinositol (PI) Hydrolysis

MMQ cells (0.4×106 cells/mL) were labeled with 10 μCi/mL of [3H]myoinositol in RPMI for 16 hours. The cells were washed with PBS, then incubated with Buffer A containing protease inhibitors and 10 mM LiCl for 60 minutes. The cells were then incubated with test compounds for 5 minutes, and then challenged with 1 nM ET-1. ET-1 challenge was terminated by the addition of 1.5 mL of 1:2 (v/v) chloroform-methanol. Total inositol phosphates were extracted after adding chloroform and water to give final proportions of 1:1:0.9 (v/v/v) chloroform-methanol-water as described by Berridge (Biochem. J. 206 587-595 (1982)). The upper aqueous phase (1 mL) was retained and a small portion (100 μL) was counted. The rest of the aqueous sample was analyzed by batch chromatography using anion-exchange resin AG1-X8 (Bio-Rad). The IC50 is the concentration of test compound required to inhibit the ET-induced increase in PI turnover by 50%. The results of the above study clearly indicate that the compounds act as functional ET antagonists.









TABLE 5







Phosphatidylinositol Hydrolysis










Example
IC50 μM














 1D
0.025



 14
0.017



 15
0.010



 16
0.009



 18
0.009



 19
0.024



 30
0.001



 31B
0.002



 43
0.0001



 46
0.002



 47
0.0005



 48
0.0004



291
0.0098



300
0.0012



534
0.05



553
0.0004










Table 6
ETA/ETB Selectivity

MMQ cells, porcine cerebellar tissues (known to contain ETB receptors) and chinese hamster ovary cells (CHO) permanently transfected with the human ETA or ETB receptor were homogenized in 25 ml of 10 mM Hepes (pH 7.4) containing 0.25 M sucrose and a protease inhibitor [50 mM EDTA, 0.1 mM PMSF, 5 μg/ml Pepstatin A, and 0.025% Bacitracin] using a micro ultrasonic cell disrupter. The mixture was centrifuged at 1000×g for 10 min. The supernatant was collected and centrifuged at 60,000×g for 60 min. The precipitate was resuspended in 20 mM Tris, pH 7.4 containing protease inhibitor and centrifuged again. The final membrane pellet was resuspended in 20 mM Tris, pH 7.4 containing protease inhibitors and stored at −80° C. until used. Protein content was determined by the Bio-Rad dye-binding protein assay.


Binding assays were performed in 96-well microtiter plates pretreated with 0.1% BSA. Membranes prepared from cells were diluted ˜100 fold in Buffer B (20 mM Tris, 100 mM NaCl, 10 mM MgCl2, pH 7.4, with 0.2% BSA, 0.1 mM PMSF, 5 μg/mL. Pepstatin A, 0.025% bacitracin, and 50 mM EDTA) to a final concentration of 0.2 mg/mL of protein. In competition binding studies, membranes (0.02 mg) were incubated with 0.1 nM of [125I]ET-1 (for ETA assay in MMQ or CHO cells transfected with human ETA receptor) or [125I]ET-3 (for ETB assay in porcine cerebellum or CHO cells transfected with human ETB receptor) in Buffer B (final volume: 0.2 mL) in the presence of increasing concentrations of the test compound for 3 hours at 25° C. After incubation, unbound ligands were separated from bound ligands by a vacuum filtration method using glass-fiber filter strips in PHD cell harvesters (Cambridge Technology, Inc., MA), washing the filter strips three times with saline (1 mL). Nonspecific binding was determined in the presence of 1 μM ET-1. IC50 values are calculated using an average of at least two separate determinations. The data shows the selectivity of the compounds of the invention in binding to the endothelin receptors.
















TABLE 6






rET-A
rET-A


hET-A




EXAMPLE
(% I @
IC50
pET-B IC50
Selectivity
IC50
hET-B IC50
Selectivity


NO.
1 μM)
(nM)
(nM)
(rA/pB ratio)
(nM)
(nM)
(hA/hB ratio)






















502
95.7
3.0
71,000
23,000





503
97.0
1.4
50,000
35,000
0.92
52,000
56,000


504
97.1
3.1
>100,000
>32,000
4.6
>100,000
>21,000


505
95.8
2.0
60,000
30,000
5.7
68,000
12,000


506
99.7
3.2
>100,000
>31,000
3.0
61,000
20,000


507
99.3
3.0
>100,000
>33,000
1.63
>100,000
>60,000


508
97.6
1.9
45,000
23,000
2.1
51,000
24,000


509
100
0.56
30,000
53,000
0.51
23,000
45,000


510
100
0.50
35,000
68,000
1.0
11,000
11,000


511
99.2
0.81
N.D.

0.60
15,000
25,000


512
98.9
0.42
>80,000
>190,000
0.58
60,000
>102,000


513
98.0
0.30
8,800
29,000
0.36
14,000
37,000


514
100
1.0
26,000
26,000
0.36
9,800
29,000


515
99.1
1.6
>62,000
>37,000
6.7
>100,000
>15,000


516
99.7
0.71
29,000
40,000
1.8
37,000
21,000


517
94.1
1.0
30,000
30,000
0.43
12,000
29,000


518
96.3
1.3
85,000
63,000
0.31
38,000
124,000


519
99.1
0.38
14,000
36,000
0.23
19,000
83,000


520
97.4
0.20
28,000
130,000


521
100
0.67
37,000
54,000


523
99.0
0.42
360
880
0.33
290
880


524
99.2
0.79
1,700
2,100
0.82
890
1,100


525
100
8.2
560
70


526
100
42


17
7,400
440


527
96.6
7.9
10,000
1,300


528
98.3
11
43,000
3,800


529
98.1
3.6
6,300
1,700


531
99.8
1.2


0.71
870
1,200


532
100
5.1
3,200
630


533
97.9
76
7,900
100
40
22,000
560


534

0.12
0.36
3.0
0.08
0.28
3.5


536
100
0.52
17,000
33,000
0.92
52,000
56,000


537
97.2
0.96
5,900
6,200
0.23
1,900
8,200


552
97.3
0.78
7100,000
7125,000
1.0
>96,000
>96,000


553
100
0.26
42,400
160,000
0.29
39,500
136,000









Determination of Plasma Protein Binding

A stock solution of the test compound in 50% ethanol (2 mg/mL) was diluted 10× into PBS. A 0.4 mL sample of this secondary stock solution was added to 3.6 mL of fresh plasma, and incubated at room temperature for 1 hour. A 1 mL sample of this incubation mixture was transferred to a Centrifree ultrafiltration tube. The sample was centrifuged in a fixed-bucket rotor for approximately 2 min and the filtrate was discarded. The sample was centrifuged for another 15-30 min. A 100 μL sample of the ultrafiltrate was transfered to a micro HPLC sample vial containing 150 ML of HPLC mobile phase and mixed thoroughly. A 50 μL sample was injected and the concentration of drug in the ultrafiltrate was determined by HPLC analysis compared against a standard sample prepared identically in the absence of plasma. Ultrafiltrate concentrations are calculated from a calibration curve. Protein binding is calculated according to the equation:

% PB=[1−(Cu/Ci)]*100%

    • where Cu is the ultrafiltrate concentration and Ci is the initial plasma concentration.


      Data:
  • Example #43 >99.5%
  • Example #532 96.8%.
  • Example #533 82.6%


The ability of the compounds of the invention to lower blood pressure can be demonstrated according to the methods described in Matsumura, et al., Eur. J. Pharmacol. 185 103 (1990) and Takata, et al., Clin. Exp. Pharmacol. Physiol. 10 131 (1983).


The ability of the compounds of the invention to treat ischemia reperfusion injury in kidney transplantation can be demonstrated according to the method described in Aktan et al (Transplant Int 1996, 9, 201-207).


The ability of the compounds of the invention to treat myocardial ischemia can be demonstrated according to the method described in Watanabe, et al., Nature 344 114 (1990).


The ability of the compounds of the invention to treat coronary angina can be demonstrated according to the method described in Heistad, et al., Circ. Res. 54 711 (1984).


The ability of the compounds of the invention to treat cerebral vasospasm can be demonstrated according to the methods described in Nakagomi, et al., J. Neurosurg. 66 915 (1987) or Matsumura, et al., Life Sci. 49 841-848 (1991).


The ability of the compounds of the invention to treat cerebral ischemia can be demonstrated according to the method described in Hara et al., European. J. Pharmacol. 197: 75-82, (1991).


The ability of the compounds of the invention to treat acute renal failure can be demonstrated according to the method described in Kon, et al., J. Clin. Invest. 83 1762 (1989).


The ability of the compounds of the invention to treat chronic renal failure can be demonstrated according to the method described in Benigni, et al., Kidney Int. 44 440-444 (1993).


The ability of the compounds of the invention to treat gastric ulceration can be demonstrated according to the method described in Wallace, et al., Am. J. Physiol. 256 G661 (1989).


The ability of the compounds of the invention to treat cyclosporin-induced nephrotoxicity can be demonstrated according to the method described in Kon, et al., Kidney Int. 37 1487 (1990).


The ability of the compounds of the invention to treat endotoxin-induced toxicity (shock) can be demonstrated according to the method described in Takahashi, et al., Clinical Sci. 79 619 (1990).


The ability of the compounds of the invention to treat asthma can be demonstrated according to the method described in Potvin and Varma, Can. J. Physiol. and Pharmacol. 67 1213 (1989).


The ability of the compounds of the invention to treat transplant-induced atherosclerosis can be demonstrated according to the method described in Foegh, et al., Atherosclerosis 78 229-236 (1989).


The ability of the compounds of the invention to treat atherosclerosis can be demonstrated according to the methods described in Bobik, et al., Am. J. Physiol. 258 C408 (1990) and Chobanian, et al., Hypertension 15 327 (1990).


The ability of the compounds of the invention to treat LPL-related lipoprotein disorders can be demonstrated according to the method described in Ishida, et al., Biochem. Pharmacol. 44 1431-1436 (1992).


The ability of the compounds of the invention to treat proliferative diseases can be demonstrated according to the methods described in Bunchman ET and CA Brookshire, Transplantation Proceed. 23 967-968 (1991); Yamagishi, et al., Biochem. Biophys. Res. Comm. 191 840-846 (1993); and Shichiri, et al., J. Clin. Invest. 87 1867-1871 (1991). Proliferative diseases include smooth muscle proliferation, systemic sclerosis, cirrhosis of the liver, adult respiratory distress syndrome, idiopathic cardiomyopathy, lupus erythematosus, diabetic retinopathy or other retinopathies, psoriasis, scleroderma, prostatic hyperplasia, cardiac hyperplasia, restenosis following arterial injury or other pathologic stenosis of blood vessels.


The ability of the compounds of the invention to treat acute or chronic pulmonary hypertension can be demonstrated according to the method described in Bonvallet et al., Am. J. Physiol. 266 H1327 (1994). Pulmonary hypertension can be associated with congestive heart failure, mitral valve stenosis, emphysema, lung fibrosis, chronic obstructive pulmonary disease (COPD), acute repiratory distress syndrome (ARDS), altitude sickness, chemical exposure, or may be idiopathic.


The ability of the compounds of the invention to treat plaletet aggregation, and thrombosis, can be demonstrated according to the method described in McMurdo et al. Eu. J. Pharmacol. 259 51 (1994).


The ability of the compounds of the invention to treat cancers can be demonstrated according to the method described in Shichiri, et al., J. Clin. Invest. 87 1867 (1991).


The ability of the compounds of the invention to treat IL-2 (and other cytokine) mediated cardiotoxicity and vascular permeability disorders can be demonstrated according to the method described in Klemm et al., Proc. Nat. Acad. Sci. 92 2691 (1995).


The ability of the compounds of the invention to treat nociception can be demonstrated according to the method described in Yamamoto et al., J. Pharmacol. Exp. Therap. 271 156 (1994).


The ability of the compounds of the invention to treat colitis can be demonstrated according to the method described in Hogaboam et al (EUR. J. Pharmacol. 1996, 309, 261-269).


The ability of the compounds of the invention to treat ischemia-repurfusion injury in kidney transplantation can be demonstrated according to the method described in Aktan et al (Transplant Int 1996, 9, 201-207).


The ability of the compounds of the invention to treat angina, pulmonary hypertension, raynaud's disease, and migraine can be demonstrated according to the method described in Ferro and Webb (Drugs 1996, 51, 12-27).


The compounds of the present invention can be used in the form of salts derived from inorganic or organic acids. These salts include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxy-ethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, p-toluenesulfonate and undecanoate. Also, the basic nitrogen-containing groups can be quaternized with such agents as loweralkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.


Examples of acids which may be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, sulphuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid and citric acid.


Basic addition salts can be prepared in situ during the final isolation and purification of the compounds of formula (I), or separately by reacting the carboxylic acid function with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia, or an organic primary, secondary or tertiary amine. Such pharmaceutically acceptable salts include, but are not limited to, cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, aluminum salts and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Other representative organic amines useful for the formation of base addition salts include diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.


The compounds of the invention are useful for antagonizing endothelin in a human or other mammal. In addition, the compounds of the present invention are useful (in a human or other mammal) for the treatment of hypertension, acute or chronic pulmonary hypertension, Raynaud's disease, congestive heart failure, myocardial ischemia, reperfusion injury, coronary angina, cerebral ischemia, cerebral vasospasm, chronic or acute renal failure, non-steroidal antiinflammatory drug induced gastric ulceration, cyclosporin induced nephrotoxicity, endotoxin-induced toxicity, asthma, fibrotic or proliferative diseases, including smooth muscle proliferation, systemic sclerosis, cirrhosis of the liver, adult respiratory distress syndrome, idiopathic cardiomyopathy, lupus erythematosus, diabetic retinopathy or other retinopathies, psoriasis, scleroderma, prostatic hyperplasia, cardiac hyperplasia, restenosis following arterial injury or other pathologic stenosis of blood vessels, LPL-related lipoprotein disorders, transplantation-induced atherosclerosis or atherosclerosis in general, platelet aggregation, thrombosis, cancers, prostate cancer, IL-2 and other cytokine mediated cardiotoxicity and permeability disorders, and nociception, especially treatment of bone pain associated with bone cancer.


Total daily dose administered to a host in single or divided doses may be in amounts, for example, from 0.001 to 1000 mg/kg body weight daily and more usually 0.1 to 100 mg/kg for oral administration or 0.01 to 10 mg/kg for parenteral administration. Dosage unit compositions may contain such amounts of submultiples thereof to make up the daily dose.


The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.


It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy.


The compounds of the present invention may be administered orally, parenterally, sublingually, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.


Injectable preparations, for example, sterile injectable aqueous or oleagenous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-propanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.


Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.


Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.


Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.


The compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically aceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and phosphatidyl cholines (lecithins), both natural and synthetic.


Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq.


A representative solid dosage form, for example, a tablet or a capsule, comprises:


















Compound of the invention:
35% w/w



Starch, Pregelatinized, NF
50% w/w



Microcrystalline Cellulose, NF
10% w/w



Talc, Powder, USP
 5% w/w










While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more cardiovascular agents independently selected from diuretics, adrenergic blocking agents, vasodilators, calcium channel blockers, renin inhibitors, angiotensin converting enzyme (ACE) inhibitors, angiotensin II antagonists, potassium channel activators and other cardiovascular agents.


Representative diuretics include hydrochlorothiazide, chlorothiazide, acetazolamide, amiloride, bumetanide, benzthiazide, ethacrynic acid, furosemide, indacrinone, metolazone, spironolactone, triamterene, chlorthalidone and the like or a pharmaceutically acceptable salt thereof.


Representative adrenergic blocking agents include phentolamine, phenoxybenzamine, prazosin, terazosin, tolazine, atenolol, metoprolol, nadolol, propranolol, timolol, carteolol and the like or a pharmaceutically acceptable salt thereof.


Representative-vasodilators-include hydralazine, minoxidil, diazoxide, nitroprusside and the like or a pharmaceutically acceptable salt thereof.


Representative calcium channel blockers include amrinone, bencyclane, diltiazem, fendiline, flunarizine, nicardipine, nimodipine, perhexilene, verapamil, gallopamil, nifedipine and the like or a pharmaceutically acceptable salt thereof.


Representative renin inhibitors include enalkiren, zankiren, RO 42-5892, PD-134672 and the like or a pharmaceutically acceptable salt thereof.


Representative angiotensin II antagonists include DUP 753, A-81988 and the like.


Representative ACE inhibitors include captopril, enalapril, lisinopril and the like or a pharmaceutically acceptable salt thereof.


Representative potassium channel activators include pinacidil and the like or a pharmaceutically acceptable salt thereof.


Other representative cardiovascular agents include sympatholytic agents such as methyldopa, clonidine, guanabenz, reserpine and the like or a pharmaceutically acceptable salt thereof.


The compounds of the invention and the cardiovascular agent can be administered at the recommended maximum clinical dosage or at lower doses. Dosage levels of the active: compounds in the compositions of the invention may be varied so as to obtain a desired therapeutic response depending on the route of administration, severity of the disease and the response of the patient. The combination can be administered as separate compositions or as a single dosage form containing both agents.


When administered as a combination, the therapeutic agents can be formulated as separate compositions which are given at the same time or different times, or the therapeutic agents can be given as a single composition.


The foregoing is merely illustrative of the invention and is not intended to limit the invention to the disclosed compounds, processes, compositions and methods. Variations and changes which are obvious to one skilled in the art are intended to be within the scope and nature of the invention which are defined in the appended claims.

Claims
  • 1. A method for treating raynaud's disease comprising administering to a mammal in need of such treatment a therapeutically effective amount of (2S, 3R, 4S)-2-(2,2 -Dimethylpentyl)-4-(7-methoxy-1, 3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonylmethyl)-pyrroldine-3-carboxylic acid.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 10/266,270, filed Oct. 8, 2002 now U.S. Pat. No. 6,946,481, which is a continuation-in-part application of U.S. patent application Ser. No. 08/794,506, filed Feb. 4, 1997 which is a continuation-in-part of U.S. patent application Ser. No. 08/600,625, filed Feb. 13, 1996 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/497,998, filed Aug. 2, 1995 now abondoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/442,575, filed May 30, 1995 now U.S. Pat. No. 5,767,144 which is a continuation-in-part of U.S. patent application Ser. No. 08/334,717, filed Nov. 4, 1994 now abondoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/293,349, filed Aug. 19, 1994 now abandoned.

US Referenced Citations (4)
Number Name Date Kind
6784197 Differding et al. Aug 2004 B2
6858227 Lal et al. Feb 2005 B1
6900227 Alanine et al. May 2005 B2
7138423 Wu et al. Nov 2006 B2
Related Publications (1)
Number Date Country
20060229280 A1 Oct 2006 US
Continuations (1)
Number Date Country
Parent 10266270 Oct 2002 US
Child 11063476 US
Continuation in Parts (6)
Number Date Country
Parent 08794506 Feb 1997 US
Child 10266270 US
Parent 08600625 Feb 1996 US
Child 08794506 US
Parent 08497998 Aug 1995 US
Child 08600625 US
Parent 08442575 May 1995 US
Child 08497998 US
Parent 08334717 Nov 1994 US
Child 08442575 US
Parent 08293349 Aug 1997 US
Child 08334717 US