The present invention relates to endotracheal tubes and more particularly, but not exclusively, to an endotracheal tube that enables the monitoring of patient temperature and heart and lung sounds.
Endotracheal tubes are generally used during anesthesia and also to assist patients with breathing or lung protection. An endotracheal tube facilitates the use of positive pressure ventilation when assistance with breathing is required. For positive pressure ventilation to work, there must be a direct connection to the lungs from the ventilation machine, therefore, an endotracheal tube is required. Endotracheal tubes can also prevent entry of foreign materials into the lungs.
Endotracheal tubes commonly have a cuff, which is an egg-shaped bulb at one end of the tube. The cuff provides a snug attachment to the tracheal wall. The opposite end of the tube exits the patient's mouth or nasal cavity and is hooked to a ventilator. The ventilator pumps air, oxygen and/or anesthesia into the lungs.
Many endotracheal tubes have an inflatable cuff. The inside of the cuff is sometimes filled with a resilient material and most of the time with air. Resilient materials provide a snug fit without causing any damage to the tracheal wall. In addition, many endotracheal tubes include a temperature and/or auditory instrument to assist with the monitoring of body conditions. The temperature of the patient is commonly measured using a temperature sensor placed on the outside or in the outer wall of the endotracheal tube. In addition, many endotracheal tubes have used an inner cuff and an outer cuff to provide audio feedback concerning the patient's heart and lung sounds.
Heretofore, separate tubes have been used for altering pressure within the cuff or monitoring auditory sounds. Alternatively, one tube has been used with separate connectors, one for the device to inflate or deflate the cuff and the other for monitoring the auditory data provided through the tube. One problem with having dual connectors is the awkwardness for the user. In addition, manufacturing costs are increased by the need to provide two different channels. Placement of the temperature sensor on the outside or within the outer section of the tube is costly and difficult. Furthermore, placing the temperature sensor on the outside of the tube exposes the temperature sensor to potential damage from the mishandling of the tube. By placing the sensor on the outside of the tube, the sensor may end up positioned in the air space between the tracheal wall and the tube. The sensor's effectiveness is decreased when the sensor is in the air space because of poor heat transfer.
Therefore, needs remain in this area of technology.
One aspect includes a method for determining body conditions during medical treatment. The method includes the steps of providing an endotracheal tube for insertion into a trachea including a cuff containing resilient material, a temperature sensor, a stop cock; and a conduit operatively coupled to a universal connector; preparing the tube for insertion into the trachea; inserting the tube into the trachea; preparing the tube for monitoring body conditions; and using the endotracheal tube for monitoring body conditions.
Another aspect includes an endotracheal tube. The endotracheal tube includes an elongated member including a proximal portion and a distal portion, the elongated member further including an outer and inner surface defining a lumen therethrough; a cuff including a flexible outer cover operatively coupled to the outer surface of the distal portion of the elongated member and an adhesive joint defining the cuff into two separate areas including a proximal cuff area defined between the flexible outer cover and the adhesive joint, and a distal cuff area defined between the flexible outer cover and the adhesive joint; a first conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the conduit lies in said proximal cuff area and the proximal end of the conduit lies outside of the lumen; a second conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the second conduit lies inside said distal cuff area and the proximal end of the conduit lies outside of the lumen.
Yet a further aspect is an endotracheal tube. The endotracheal tube includes an elongated member including a proximal portion and a distal portion, the elongated member further including an outer and inner surface defining a lumen therethrough; a cuff including a flexible inner cover and a flexible outer cover operatively coupled to the outer surface of the distal portion of the elongated member, the cuff including an inner cuff area defined by the flexible inner cover containing a resilient material, and an outer cuff area defined by the flexible outer cover containing air, wherein said inner cuff area is enclosed within said outer cuff area; a first conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the conduit lies in said inner cuff area and the proximal end of the conduit lies outside of the lumen; a second conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the second conduit lies inside said outer cuff area and the proximal end of the conduit lies outside of the lumen; and a temperature sensing member including a temperature sensor, wherein the temperature sensor lies inside the inner cuff area.
Another aspect is an endotracheal tube including an elongated member including a proximal portion and a distal portion, the elongated member further including an outer and inner surface defining a lumen therethrough; a cuff including a flexible inner cover and a flexible outer cover operatively coupled to the outer surface of the distal portion of the elongated member, the cuff including an inner cuff area defined by the flexible inner cover containing air and an outer cuff area defined by the flexible outer cover containing a resilient material, wherein the inner cuff area is enclosed within the outer cuff area; a first conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the conduit lies in the inner cuff area and the proximal end of the conduit lies outside of the lumen; a second conduit integrally formed with the elongated member having a proximal end and a distal end, wherein the distal end of the second conduit lies inside the outer cuff area and the proximal end of the conduit lies outside of the lumen; and a temperature sensing member including a temperature sensor, wherein the temperature sensor is coupled to the outer surface of the elongated member
For the purposes of promoting an understanding of the principles of the claimed methods and endotracheal tubes, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention, as defined by the claims, is thereby intended. Any alterations, modifications, and further applications of the principles of the methods and endotracheal tubes as illustrated are contemplated as would normally occur to one skilled in this art.
An endotracheal tube has a deflatable cuff containing a resilient material, such as foam. A conduit has one end that lies in the area inside of the deflatable cuff. The other end is attached to a universal connector for attaching to a device for either applying or removing pressure from the inside of the cuff or attaching an auditory sensing device. The conduit also contains a temperature sensing device including a temperature sensor that lies within the interior of the cuff. The temperature sensing device may be connected to a temperature monitor in one embodiment. The endotracheal tube allows the monitoring of the heart and lungs sounds through the auditory signals received through the conduit and also measures the body temperature through the temperature sensing device. In addition, the temperature sensing device passes through the conduit so that all three functions of deflation, temperature measurement, and auditory monitoring are combined through one conduit. Furthermore, efficient temperature sensing is enabled as well as simplicity in manufacturing. Some alternate embodiments are illustrated that provide variations of the original design.
Referring now to the figures,
In the illustrated embodiment, the elongated member 12 is a flexible tube. In other embodiments, the elongated member 12 is a rigid curved tube. The elongated member 12 may be composed of any biocompatible material. Some materials include, but are not limited to, polyvinylchloride, latex, silicone, rubber, or other materials readily apparent to those skilled in the art. The elongated member 12 is curved to conform to the shape of the human trachea. In differing embodiments, the elongated tube 12 passes through the nasal passage or alternatively through the throat. Commonly, the elongated member 12 is composed of a clear material to aid in viewing any obstructions that may become embedded therein. In some embodiments, however, it is contemplated that markings are placed upon the elongated member 12 or it is composed of a hazy or even opaque material. Polyvinylchloride materials are generally preferred, because a number of humans are allergic to latex materials. The elongated member 12 has a proximal portion 26 and a distal portion 28. The distal portion 28 will lie inside of the trachea of the patient after insertion of the tube into the trachea. The proximal portion 26 exits either the nasal cavity or the throat of the patient. The elongated member 12 also has a proximal end 30 and a distal end 32. The proximal end 30 is also located outside of the body after insertion of the tube into the trachea. The distal end 32 provides fluid communication with the lungs of the patient when inserted into the trachea. The elongated member 12 also includes an outer surface 34 and an inner surface 36. The combination of the outer surface 34 and the inner surface 36 defines a lumen 38 therein. The lumen 38 is generally uniform throughout the length of the endotracheal tube 10 and allows fluid communication between the ventilator (not shown) and the lungs of the patient. The illustrated embodiment has a lumen 38 that has a uniform diameter throughout the length of the elongated member 12. Other embodiments contemplate having a lumen 38 that has varying diameters throughout the length of the elongated member 12. The distal portion 28 also defines a vent 40. The vent 40 assists in supplying the anesthetic gases, such as nitrogen dioxide, air, and/or oxygen to pulmonary system of the patient. The elongated member 12 also includes a connector 42 that is operatively coupled to the proximal portion 26 of the elongated member 12. The connector 42 connects the endotracheal tube 10 to a ventilator or other anesthesia machine (not shown). The connector 42 may be bonded to the elongated member 12 through the use of an adhesive, an interference fit, heat sealing, or any other method readily apparent to one skilled in the art. In one alternative embodiment, the elongated member 12 is a one-piece integral member with the connector 42. Other embodiments contemplate a connector that may be inserted or removed from the elongated member 12. Moreover, other embodiments contemplate using a system of connectors to connect the endotracheal tube 10 to a ventilation machine (not shown) or an anesthesia machine (not shown).
The endotracheal tube 10 also includes a cuff 14. The cuff 14 includes a flexible cover 46 that deforms upon the removal of pressure inside of the cuff 14. In addition, the flexible cover 46 defines the outer limits of the cuff 14. In the illustrated embodiment, the cuff 14 is filled with a resilient foam material. Upon the creation of a vacuum inside the cuff 14, the foam material will collapse. Once atmospheric pressure is reintroduced inside of the cuff 14, the foam will expand back out to its earlier shape. In the illustrated embodiment, the cuff 14 defines an egg-like shape. It is contemplated that other embodiments have a cuff that defines an alternate shape that is suitable to provide snug fixation against the trachea. As
The endotracheal tube 10 also includes a conduit 16. The conduit 16 is integrally formed with the elongated member 12 as illustrated in
For example, pressure altering device 18 as illustrated is a syringe with a nozzle. Other types of pressuring altering devices apparent to those skilled in the art are contemplated. For instance, the pressure altering device 18 can be a syringe with a nozzle and a stop cock 130 as illustrated in
The endotracheal tube 10 also includes a temperature sensing member 22. The temperature sensing member 22 of the illustrated embodiment is a thermocouple. Other temperature sensing members 22 readily apparent to those skilled in the art are also contemplated. The temperature sensing member 22 has a proximal portion 59 and a distal portion 60. The distal portion 60 lies either in the distal portion 54 of the conduit 16 as shown in
The endotracheal tube 10 also includes a clamp 24. In the illustrated embodiment, the clamp 24 includes a push face 72, pinchers 74 and a catch ridge 76. Other embodiments, however, use a different form of clamp 24. For one example, in one alternate embodiment the clamp 24 is a stop cock, affixed to the conduit 16 or the pressure altering device 18, that can be turned to prevent fluid communication through the conduit 16. In another embodiment, the endotracheal tube 10 does not use a clamp 24 at all and the physician has to manually hold the conduit shut. Other embodiments use other forms of a clamp 24 that are readily apparent to those skilled in the art.
The clamp 24, of the illustrated embodiment, is used to prevent and allow fluid communication through the conduit 16. For example, when a vacuum is being created inside of the cuff 14 using the pressure altering device 18, after the vacuum is created, the clamp 24 may be closed. Closing the clamp 24 prevents the cuff 14 from expanding as the pressure returns to the normal atmospheric pressure. Alternatively, the clamp 24 may be used to prevent the treating physician from hearing auditory signals if desired. The clamp 24 is operated by the user pressing down on the push face 72 which causes the clamp 24 to bend and catch on the catch ridge 76, thereby causing the pinchers 74 to close off fluid communication through the conduit 16. In the illustrated embodiment, the clamp 24 is composed of plastic. Other materials readily apparent to those skilled in the art may be used.
Auditory signals from the lungs and heart are received into the conduit 16. For example, the expanding and contracting of the lungs produces fluid flow through the lumen 38, the sound is transferred through the wall 86 and into the foam in the inner chamber 94. The sound is then continually transferred into the center of the conduit 16 through the conduit 16 and up to the universal connector 20. Therefore, the sounds of the expansion and contraction of the lungs may be monitored by the physician. Similarly, the heart will produce a sound throughout the entire medium portion of the body. The sound will eventually run into the flexible cover 46 and will be transferred through the flexible cover 46 into the inner chamber 94 to the conduit 16. The foam helps to transfer the sound waves. Sound travels quicker through solid material than air. Thus, the physician may also monitor the heart of the patient.
In addition, heat from the air transferred through the lumen 38 and from the outer body through the trachea wall and the flexible cover 46 will be passed through the inner chamber 94 to the temperature sensor 66. This configuration provides a balanced temperature reading that incorporates both temperature reading from the air passing into and out of the lungs and from the surrounding tracheal wall. This provides an accurate temperature reading that can be assessed by the sensor 66 and identified by the temperature monitoring device that is connected to the temperature sensing member 22. Therefore, the physician can monitor the activities of the lungs, heart and temperature simultaneously. This is critical during anesthesiology because many patients may react negatively to the anesthesia gas or to other variables that can cause serious injury or even death.
The endotracheal tube 10 is prepared for insertion during the initial preparation step 96. The initial preparation step 96 consists of a first substep 102. During the substep 102, the pressure altering device 18, such as the pressure altering device 18 illustrated in
The second and most important general step is the insertion of the endotracheal tube 10 into the trachea. This is performed during an insertion step 98. The physician may need a stylus to help insert a endotracheal tube 10 that is formed of a flexible material. In an alternate embodiment where the endotracheal tube 10 is composed of a rigid material, the stylus may not be necessary. Many times the endotracheal tube 10 contains markings along the side to assist the physician with determining the proper length of the tube to be inserted into the trachea. The markings also provide clear and accurate viewing during this sensitive procedure. Once the endotracheal tube 10 is properly positioned inside of the trachea, the physician can proceed to the second preparation step 100.
In the second preparation step 100, the physician ensures that the endotracheal tube 10 is snuggly affixed to the trachea and that all connections are made for proper monitoring and care of the patient. After the endotracheal tube 10 has been properly positioned, a substep 110 may be performed. The substep 110 is to release the clamp 24 or stop cock 130 to reopen the conduit 16. By doing do, the physician restores atmospheric pressure to the inner chamber 94 of the cuff 14. This causes the resilient material inside of the inner chamber 94 to expand in a slow and gradual manner. This allows the cuff 14 to conform itself to the shape of the trachea without causing any trauma or damage to the trachea. Therefore, a snug fixation is achieved between the cuff 14 and the tracheal wall of the patient. Once the endotracheal tube 10 is snuggly affixed, the physician may proceed to a substep 112. The substep 112 occurs when the physician connects an auditory sensing device to the universal connector 20. The auditory sensing device in one embodiment is a stethoscope (not shown). Other embodiments contemplate other types of auditory sensing devices. Upon connection of the auditory sensing device, the physician may monitor the sounds produced by the lungs, heart, or both. These sounds may be extremely helpful to the physician while monitoring the body conditions of the patient during anesthesia or other procedures. Next, the physician can move to a substep 114 and connect the temperature monitoring device. The temperature monitoring device may connect to a machine that reads out an analog or digital reading of the temperature of the patient. Commonly, the temperature monitoring device includes an alarm that sounds when the temperature of the patient rises above or below an acceptable level. Knowing the temperature of the patient can be critical to the health and the safety of the patient during anesthesia or other procedures.
Next, the physician moves to a substep 116 and connects the endotracheal tube 10 to the ventilator. The ventilator may provide air, oxygen, or anesthesia depending on the needs of the procedure. The ventilator provides positive pressure to the lungs to inflate them and reduces pressure to deflate the lungs in order to keep the patient breathing during a procedure. The substeps 112, 114 and 116 may be varied in accordance with the preference of the physician. Similarly, the substep 112 may follow the substep 110. The substeps 114 and 116 may also proceed either the substeps 110 or 112.
Referring now to
Referring now to
Referring now to
An additional embodiment is disclosed in
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application is a continuation-in-part of prior U.S. patent application Ser. No. 10/876,305 filed Jun. 24, 2004, (attorney docket No. 31147-2) which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10876305 | Jun 2004 | US |
Child | 11166616 | Jun 2005 | US |