1. Field of the Invention
The present invention relates to the percutaneous treatment of vessels by an apparatus and method wherein the apparatus is delivered via catheter and comprises a surgical graft which is fixated in a vessel by means of a chemical or mechanical hardening-filler material system.
1. General Background
Previous methods of treating aortic aneurysms include treatment via surgical procedure in which an incision is made in the abdomen or chest of the patient, the diseased area is cleaned by the surgeon and an artificial graft is sutured in place. This highly invasive procedure usually results in long hospital stays and lengthy recoveries. Further, mortality and morbidity complications often result as a consequence of this surgical procedure.
Other percutaneous methods have been attempted, such as are disclosed in U.S. Pat. No. 4,577,631 (utilizing occlusion catheters with pressure sensitive adhesives), U.S. Pat. No. 4,740,207 (self-expanding stent-type materials) and U.S. Pat. Nos. 4,271,839, 4,776,337 and 4,762,132 (other stent derived devices).
There still exists a need, however, for a simple method of repairing a vessel with an intravascular graft which allows normal tissue ingrowth to occur at the repair site. There exists a specific need for a percutaneous approach in which a catheter could be loaded with a surgical graft that can be fixated in a vessel such as the aorta.
The present invention provides devices for repairing aortic aneurysms and the like. The intraluminal graft of the present invention in one embodiment comprises a flexible linear or bifurcated tubular sleeve delivered to a repair site in a body by suitable means such as a catheter. The sleeve is suitably made of woven or cast material, and has peripheral conduits or tubes at each end. Each conduit has at least a single port that is connected to an elongated introduction means associated with the catheter delivery means. The introduction means may be attached to the outer surface of the sleeve. The collapsed sleeve may be made rigid and circular by the introduction through the introduction means of a chemical or mechanical hardening means.
The chemical hardening means may be a polymeric material introduced through the introduction means through an external source, such as a catheter or syringe. Alternatively, the mechanical hardening means may comprise a single wire or multiple wires inserted into the conduits to support the ends, or any portion of the sleeve. The wires are not attached to the sleeve but reside in the conduits to provide a constant spring tension. The wires may be of any suitable material which retains its tension, such as spring wire or memory wire.
The introduction means may be detached from the sleeve after introduction of the chemical or mechanical hardening means.
The sleeve may alternatively be associated with a fixation means comprising either a series of cylindrical tubules or an enclosure which fits over the sleeve, with a hardening-filler system enclosed therein. The hardening-filler system includes an activatable hardening material which may be provided in the form of microspheres that upon external agitation may be disrupted, allowing the contents to react together and form a hardened material that fills the tubules or enclosure, thereby expanding and rigidifying the fixation means, and fixing the sleeve in place in the site of repair. Polymeric materials which are activatable include thioisocyanates, aldehydes, isocyanates, divinyl compounds, epoxides or acrylates. In addition to the aforementioned, photoactivatable crosslinkable groups as succinimidyl azido salicylate, succinimidyl-azidobenzoate, succinimidyl dithio acetate, azidoiodobenzene, fluoro nitrophenylazide, salicylate azides, benzophenone-maleimide, and the like may be used as photoactivatable crosslinking reagents. The material may also consist of a thin coating which can be activated by external forces such as laser, radio frequency, ultrasound or the like, with the same hardening result taking place. These materials would allow for normal tissue ingrowth to take place.
a and 7b represent an alternative embodiment comprising a bifurcated vascular graft including a dual guide wire delivery system;
a through 8d show placement of a bifurcated vascular graft according to the present invention;
a through 10c show filling of the cylindrical tubules after placement of the graft;
a through 11d are fragmentary views of vascular grafts according to the present invention; and
a and 12b are cross sectional views of a vascular graft according to the present invention.
The present invention provides a device and method for repairing an aneurysm or the like in a vessel, such as the aorta.
Referring to
Sleeve 10 has a proximal end 14, a distal end 16, an interior portion 18, an exterior portion 20 and peripheral circular conduits or tubes 22,24 located one at each end 14,16, respectively. Each conduit 22,24 has at least one inlet port 26 and at least one outlet or exhaust port 28, inlet(s) 26 being connected to elongated introduction means 30,32 respectively. Introduction means 30,32 may be attached to exterior portion 18 of sleeve 10. Referring to
The supporting wire may be made of stainless steel, spring steel, memory shape metals (such as nitinol, for example), titanium, or metal alloys of any kind, not limited to the aforementioned. Furthermore, the configuration of the supporting wire may be solid, braided or woven.
As shown in
Two part activatable hardening material may be supplied in the form of microspheres (not shown) that upon agitation by an external force may be disrupted. The external energy could originate from any suitable source including IR, visible or UV light through optic fiber on mechanical vibrational means from about 1 to 100,000 hertz supplied by mechanical or electrical transducers or by heat upon disruption of the microspheres, the activatable hardening material is liberated and allowed to harden. Disruption of the microspheres releases the separated components, allowing the components to react together and form a hardened material that fills series of tubules 40 thereby fixing sleeve 10 in place at the site of repair. Polymeric systems may be comprised of vinyl or divinyl compounds in which an initiator is contained in the microspheres, epoxies containing microencapsulated amine component, or diisocyanates with encapsulated amine or hydroxyl terminated prepolymers. Amino groups can be so isolated from methylacetimidate, ethyl acetimidate, dimethylglutarimidate, dimethyl, adipidate, dimethyl sebaimidate, diisothionyl propionimidate, dimethyl oxydipropionimidatesuccinate bis-esters, disuccinimidyl tartarate, dicyanatobenzene, dichlorodinitrobenzene, adipaldehyde, glutaraldehyde and the like.
These hardening-filler systems would allow for normal tissue ingrowth in series of tubules 40 to take place. Because the tubules comprise only a small fraction of the total surface area of the sleeve, these hardening filling systems would allow for tissue ingrowth to take place into the sleeve material not impeded by the tubules, providing further reinforcement of the placement of the sleeve 10.
In a further embodiment shown in
Referring now to
Referring to
The unique features of the device are the manner of its delivery and fixation at the site of repair, its low profile which may prevent interference with normal heart functions, and the non-invasive nature of the delivery which would reduce costs normally associated with closure of such a defect. The device and method of fixation provides a non-invasive treatment of aortic aneurysms and the like. The device is made of polymeric material and is delivered via catheter in a non-invasive procedure. In one embodiment, the device operates through chemical means to repair an aneurysm.
Advantages of the apparatus and method of the present invention are many. No preformed stent is required and the apparatus has a smaller insertion diameter than previous vascular grafts. Further, the vascular graft has a lower cost of production than previous graft materials and procedures.
The practice of the present invention achieves several objectives and advantages. Currently, there are no percutaneous devices available to cure a septal defect or the like. The device and method of the present invention provides an advantage over surgery in that the cost of the procedure is substantially less, the risk of infection is less, the hospital residency time is less and there is no physically deforming scar.
Further advantages include applicability to procedures such as repair of PDA, patent ductus anomaly. The non-invasive mode of delivery would reduce costs associated with this type of procedure. In addition, the low profile of the apparatus may minimize or prevent interference with normal heart functions.
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
The above Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto.
Number | Date | Country | |
---|---|---|---|
Parent | 09111264 | Jul 1998 | US |
Child | 09566335 | May 2000 | US |
Parent | 08600834 | Feb 1996 | US |
Child | 09111264 | Jul 1998 | US |
Parent | 09111264 | Jul 1998 | US |
Child | 09566335 | May 2000 | US |
Parent | 08600834 | Feb 1996 | US |
Child | 09111264 | Jul 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10842754 | May 2004 | US |
Child | 11891934 | Aug 2007 | US |
Parent | 10454896 | Jun 2003 | US |
Child | 10842754 | May 2004 | US |
Parent | 10369910 | Feb 2003 | US |
Child | 10454896 | Jun 2003 | US |
Parent | 10288185 | Nov 2002 | US |
Child | 10369910 | Feb 2003 | US |
Parent | 10003218 | Oct 2001 | US |
Child | 10288185 | Nov 2002 | US |
Parent | 09566335 | May 2000 | US |
Child | 10003218 | Oct 2001 | US |
Parent | 10288185 | Nov 2002 | US |
Child | 10842754 | US | |
Parent | 10003218 | Oct 2001 | US |
Child | 10288185 | Nov 2002 | US |
Parent | 09566335 | May 2000 | US |
Child | 10003218 | Oct 2001 | US |