Endovascular devices and methods

Information

  • Patent Grant
  • 11826070
  • Patent Number
    11,826,070
  • Date Filed
    Monday, May 3, 2021
    2 years ago
  • Date Issued
    Tuesday, November 28, 2023
    5 months ago
Abstract
Devices and methods for the treatment of chronic total occlusions are provided. One disclosed embodiment comprises a method of facilitating treatment via a vascular wall defining a vascular lumen containing an occlusion therein. The method includes providing an intravascular device having a distal portion with a side port, inserting the device into the vascular lumen, positioning the distal portion in the vascular wall, directing the distal portion within the vascular wall such that the distal portion moves at least partially laterally, and directing the side port towards the vascular lumen.
Description
FIELD OF THE INVENTION

The inventions described herein relate to devices and associated methods for the treatment of chronic total occlusions. More particularly, the inventions described herein relate to devices and methods for crossing chronic total occlusions and subsequently performing balloon angioplasty, stenting, atherectomy, or other endovascular methods for opening occluded blood vessels.


BACKGROUND OF THE INVENTION

Due to age, high cholesterol and other contributing factors, a large percentage of the population has arterial atherosclerosis that totally occludes portions of the patient's vasculature and presents significant risks to patient health. For example, in the case of a total occlusion of a coronary artery, the result may be painful angina, loss of cardiac tissue or patient death. In another example, complete occlusion of the femoral and/or popliteal arteries in the leg may result in limb threatening ischemia and limb amputation.


Commonly known endovascular devices and techniques are either inefficient (time consuming procedure), have a high risk of perforating a vessel (poor safety) or fail to cross the occlusion (poor efficacy). Physicians currently have difficulty visualizing the native vessel lumen, cannot accurately direct endovascular devices toward visualized lumen, or fail to advance devices through the lesion. Bypass surgery is often the preferred treatment for patients with chronic total occlusions, but less invasive techniques would be preferred.


SUMMARY OF THE INVENTION

To address this and other unmet needs, the present invention provides, in exemplary non-limiting embodiments, devices and methods for the treatment of chronic total occlusions. The disclosed methods and devices are particularly beneficial in crossing coronary total occlusions but may also be useful in other vessels including peripheral arteries and veins. In exemplary embodiments, total occlusions are crossed using methods and devices intended to provide a physician the ability to place a device within the subintimal space, delaminate the connective tissues between layers within the lesion or vessel wall, or remove tissues from the chronic total occlusion or surrounding vessel.


In an aspect of the disclosure, a subintimal device may be used to guide conventional devices (for example guide wires, stents, lasers, ultrasonic energy, mechanical dissection, or atherectomy) within the vessel lumen. Additionally, a subintimal device may be used to delaminate vessel wall layers and also may be used to remove tissue from the occlusive lesion or surrounding vessel wall. In one example, the positioning of a subintimal device or the establishment of a delamination plane between intima and medial layers is achieved through the use of a mechanical device that has the ability to infuse a fluid (for example saline). Fluid infusion may serve to apply a hydraulic pressure to the tissues and aid in layer delamination and may also serve to protect the vessel wall from the tip of the subintimal device and reduce the chance of vessel perforation. The infusion of fluid may be controlled by pressure or by volume.


Subintimal device placement may be achieved with a subintimal device directing catheter. The catheter may orient a subintimal device so that it passes along the natural delamination plane between intima and media. The catheter may orient the subintimal device in various geometries with respect to the vessel. For example, the subintimal device may be directed substantially parallel with respect to the vessel lumen or in a helical pattern such that the subintimal device encircles the vessel lumen in a coaxial fashion. The subintimal device directing catheter may be an inflatable balloon catheter having proximal and distal ends with two wire lumens. One lumen may accept a conventional guide wire while the second lumen may accept the subintimal device. In an alternative embodiment, the wire directing catheter may be a guide catheter with distal geometry that steers the subintimal device with the appropriate orientation to enter the subintimal space.


In an additional disclosure, a subintimal device intended to mechanically delaminate tissue layers may use a device that is inserted into the subintimal space in a first collapsed configuration and is released or actuated into a second expanded configuration. The device may then be withdrawn or manipulated to propagate the area of delamination.


An additional aspect of the disclosure may allow the physician to remove tissues from the lesion or vessel wall. In one embodiment, a subintimal device is circumferentially collapsed around the total occlusion. Tissue removal is performed through simple device withdrawal or through a procedure that first cuts connective tissues (i.e. the intimal layer proximal and distal of the lesion) and then removes the targeted tissue. In another embodiment, a tissue removal device is passed through the lesion within the native vessel lumen. The targeted tissues may be mechanically engaged and removed through device withdrawal.





BRIEF DESCRIPTION OF THE DRAWINGS

It is to be understood that both the foregoing summary and the following detailed description are exemplary. Together with the following detailed description, the drawings illustrate exemplary embodiments and serve to explain certain principles. In the drawings,



FIG. 1 shows an illustration of a heart showing a coronary artery that contains a chronic total occlusion;



FIG. 2 is a schematic representation of a coronary artery showing the intimal, medial and adventitial layers;



FIG. 3 is a partial sectional view of a subintimal device directing balloon catheter embodiment with fluid infusion through the subintimal device lumen within the device directing catheter;



FIG. 4 is a partial sectional view of a subintimal device directing balloon catheter embodiment with fluid infusion through the subintimal device;



FIG. 5 is a partial sectional view of an additional subintimal device directing guiding catheter embodiment with fluid infusion through the subintimal device;



FIGS. 6A and B are partial sectional views of a expandable delamination catheter;



FIGS. 7 A-D are partial sectional views of a circumferential subintimal tissue removal device;



FIGS. 8A-C are an example of subintimal device construction;



FIGS. 9A and B are partial sectional views of an intraluminal rotational engagement tissue removal device;



FIG. 10 is a schematic illustration of an alternative subintimal device;



FIGS. 11A and 11B are schematic illustrations of an alternative subintimal device with a re-entry port;



FIGS. 12A-12D are schematic illustrations of a re-entry method using a balloon catheter; and



FIGS. 13A and 13B are schematic illustrations of an alternative subintimal device and associated pumping system.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.


Referring to FIG. 1, a diseased heart 100 includes a chronic total occlusion 101 of a coronary artery 102. FIG. 2 shows coronary artery 102 with intimal layer 200 (for sake of clarity, the multi layer intima is shown as a single homogenous layer). Concentrically outward of the intima is the medial layer 201 (which also is comprised of more than one layer but is shown as a single layer). The transition between the external most portion of the intima and the internal most portion of the media is referred to as the subintimal space. The outermost layer of the artery is the adventitia 202.


In an aspect of the disclosure, a subintimal device may be used to guide conventional devices (for example guide wires, stents, lasers, ultrasonic energy, mechanical dissection, or atherectomy) within the vessel lumen. Additionally, a subintimal device may be used to delaminate vessel wall layers and also may be used to remove tissue from the occlusive lesion or surrounding vessel wall. In one embodiment, FIG. 3 shows a subintimal device directing catheter is 300 with its distal balloon 301 that has been advanced over a conventional guide wire 302 and inflated proximal to chronic total occlusion 101. For the sake of clarity, FIG. 4 shows a subintimal device path that is substantially parallel to the vessel lumen, but other orientations (i.e. helical) may also be considered. Subintimal device lumen 303 is positioned adjacent to the intimal layer 200 and subintimal device 304 has been advanced as to perforate the subintimal layer. A fluid source (i.e. syringe) 305 is in fluid communication with subintimal device lumen 303 through infusion lumen 306. Fluid may flow from the fluid source 305 through the subintimal device lumen 303 under a controlled pressure or a controlled volume. The infused fluid may enter the subintimal space 307 directly from the subintimal device lumen 303 or from the volume 308 defined by the distal end of the balloon 301 and the proximal edge of the lesion 101. FIG. 4 shows an alternative fluid infusion path where fluid source 305 is in fluid communication with a lumen within the subintimal device 304. FIG. 5 shows an alternative subintimal device directing guide catheter 500 where the distal end 501 has a predefined shape or the distal end has an actuating element that allows manipulation by the physician intraoperatively.


Another aspect of the disclosure may place a subintimal device within the subintimal space in a first collapsed configuration and releases or actuated the subintimal device to a second expanded configuration. The device may then be withdrawn or manipulated to propagate the subintimal dissection. In one embodiment, FIG. 6A shows a subintimal device with internal expandable element 600 that contains one or more expanding elements contained in exterior sheath 602. FIG. 6B shows exterior sheath in a retracted position allowing expanding elements 601 to elastically expand. The subintimal device is intended to be delivered through the aforementioned subintimal device delivery catheters.


An additional aspect of the disclosure may allow the physician to remove tissues from the lesion or vessel wall. FIG. 7A shows an embodiment where subintimal device directing balloon catheter is inflated within coronary artery 102 just proximal to chronic total occlusion 101. Subintimal device 304 is partially delivered around chronic total occlusion 102 coaxially outside the intimal layer 200 and coaxially inside medial layer 201 in a helical pattern. FIG. 7B shows a subintimal device capture catheter 702 positioned across the chronic total occlusion 101 over conventional guide wire 703 and within subintimal device 304. The distal 704 and proximal 705 ends of the subintimal device have been captured and rotated as to reduce the subintimal device outside diameter and contain the lesion 101 and intima 200 within the coils internal diameter. The device may be withdrawn through the use of a cutting element. For example, FIGS. C and D show the advancement of a cutting element 706 in two stages of advancement showing the cutting of intima 200 proximal of the occlusion 707 and intimal distal of the occlusion 708.


An additional aspect of the subintimal device is the construction of the device body. The flexibility and torquability of the device body can affect the physician's ability to achieve a subintimal path. The subintimal device body may be constructed in part or in to total of a single layer coil with geometric features along the coil length that allow adjacent coils to engage (for example mechanical engagement similar to the teeth of a gear). FIG. 8A shows coil 801 closely wound such that the multitude of teeth 802 along the coil edges are in contact such that the peaks of one coil falls within the valleys of the adjacent coil. A conventional coil reacts to an applied torsional load by diametrically expanding or contracting, thus forcing the wire surfaces within a turn of the coil to translate with respect to its neighboring turn. The construction of coil 801 resists the translation of wire surfaces within the coil thus resisting the diametric expansion or contraction (coil deformation). An increased resistance to coil deformation increases the torsional resistance of the device body while the coiled construction provides axial flexibility. An exemplary construction may include a metallic tube where the coil pattern 801 and teeth 802 are cut from the tube diameter using a laser beam. FIG. 8B shows subintimal device body 804 that is for example a continuous metallic tube with distal laser cut coil segment 801 and proximal solid tube 803. Tube materials include but are not limited to stainless steel and nickel titanium. Alternatively, the coil may be wound from a continuous wire. The wire has a cross section that for example has been mechanically deformed (stamped) to form the teeth and allow coil engagement. FIG. 8C shows an example of a laser cut tooth pattern from the circumference of a tube that has been shown in a flat configuration for purposes of illustration.


In another embodiment, a tissue removal device may be passed through the lesion within the native vessel lumen. FIG. 9A shows corkscrew device 900 with exterior sheath 902 engaging occlusion after delamination of the intimal layer 901 has been performed by the aforementioned methods and devices. FIG. 9B shows removal of the occlusion and a portion of the intimal layer through axial withdrawal of the corkscrew device.


With reference to FIG. 10, an alternative subintimal device 1000 is shown schematically. Subintimal device 1000 is similar to the device shown and described with reference to FIGS. 8A-8C, and may include any of the variants described previously, such as distal atraumatic tip configurations, fluidic dissection mechanisms, etc. Subintimal device 1000 may be sized and shaped for intravascular navigation and includes an elongate tubular shaft 1004, at least a distal portion of which includes a helical interlocking gear 1006 and a helical wire coil 1008 disposed thereon. A helically shaped inner mandrel or tube 1010 may be disposed in the tubular shaft 1004 such that the shaft 1004 rotates freely thereon. The shaft 1004 may have a linear or straight configuration in a relaxed state and a helical configuration (shown) when the helically shaped inner member 1010 is disposed therein. The device 1000 may be disposed in a constraining sheath (not shown) and navigated to the intravascular site, such as the site of an occlusion. When the device 1000 is advanced distally out the end of the constraining sheath or when the sheath is pulled proximally relative thereto, the distal portion of the device 1000 assumes a helical shape as shown. The shaft 1004 may be rotated relative to the inner member 1010 to cause rotation of the helical wire threads 1008, which may be used to engage the vessel wall and advance around an occlusion in a subintimal path as described previously. A bearing (not shown) may be disposed on the inner member 1010 to engage the proximal or distal end of the shaft 1004 to enable the shaft 1004 and the inner member 1010 to be advanced in unison.


With reference to FIGS. 11A and 11B, an alternative subintimal device 1100 is shown schematically. Subintimal device 1100 may be similar to device 1000 described previously, with the helical interlocking gear and helical wire coil eliminated for sake of illustration. Subintimal device 1100 includes an elongate tubular shaft 1102 having a lumen extending therethrough and a re-entry port 1106 disposed distally in the region of the helical shape. In this embodiment, the distal portion of the shaft 1102 may have a helical shape in its relaxed state such that the re-entry port 1106 is always oriented toward the center of the helix as shown in FIG. 11A. With this arrangement, a re-entry device 1110 such as a guide wire or flexible stylet with a tissue penetrating tip may be advanced through the lumen 1104 of the shaft 1102 to exit the re-entry port 1106 as shown in FIG. 11B. This arrangement may be used to establish re-entry of the native lumen of a vessel once the device 1100 traverses an occlusion in the subintimal space.


With reference to FIGS. 12A-12D, an alternative re-entry method is schematically shown. In this method, a subintimal device such as guide wire 1210 is advanced into the subintimal space 1202 across an occlusion 1200 in a manner similar to the methods described previously, for example. As shown in FIG. 12A, the guide wire 1210 extends across an occlusion 1200 disposed in subintimal space 1202 between intimal/medial layers 1204 and adventitial layer 1206, where re-entry of the native lumen 1208 distal of the occlusion 1200 is desired. A balloon catheter 1220 is then advanced over the guide wire 1210 until the balloon portion is disposed adjacent the distal end of the occlusion as shown in FIGS. 12B and 12C. The guide wire 1210 is pulled proximally and balloon is then inflated causing radial displacement of the distal end of the balloon catheter 1220 as shown in FIG. 12C. Inflating the balloon of the balloon catheter 1220 orients the tip of the catheter toward the intimal/medial layers 1204. The guide wire 1210 may be removed from the balloon catheter 1220 and a sharpened stylet 1230 or the like may be advanced through the guide wire lumen of the catheter 1220 until the distal end of the stylet 1230 penetrates the intimal/medial layers 1204 as shown in FIG. 12D, thus establishing re-entry from the subintimal path 1202 and into the native lumen 1208.


With reference to FIGS. 13A and 13B, an alternative fluidic subintimal system 1300 with subintimal device 1310 and associated pumping system 1320 is shown schematically. The fluidic system 1300 is similar in certain aspects to the arrangements described with reference to FIGS. 3, 4 and 5, the various aspects of which may be combined or used in the alternative as will be appreciated by those skilled in the art. System 1300 includes a subintimal device 1310 which may comprise any of the tubular subintimal devices described herein. Generally, subintimal device 1310 includes a tubular shaft 1312 having a proximal end connected to a pumping mechanism 1320. A plunger rod 1314 is slidingly disposed in the tubular shaft 1312 as shown in FIG. 13B and its proximal end is connected to a linear actuator 1322 of the pumping mechanism as shown in FIG. 13A. As seen in FIG. 13B, a ring seal 1315 is disposed in the lumen of shaft 1312 around the rod 1314. The rod 1314 extends through the tubular shaft 1312 to a point proximal of the distal end thereof to define a pumping chamber 1316. A source of liquid 1330 (e.g., saline bag) is connected to the proximal end of the subintimal device 1310 via a fluid line 1332 and optional valve 1334 to supply liquid to the annular lumen between the rod 1314 and the inner wall of the tubular shaft 1312. As the linear actuator moves the rod 1314 back and forth in the tubular shaft 1312, liquid is caused to be expelled out of the chamber 1316 in a pulsatile fashion, which may be used to hydraulically dissect tissues to define a subintimal path as described previously, for example. The stroke length, stroke rate and stroke volume may be adjusted to achieve the desired effect. For example, the stroke volume of the chamber 1316 may be relatively small (0.01 cc-1.0 cc, for example) such that liquid exits the chamber 1316 with high energy that dissipates quickly to minimize trauma to tissues as they are dissected.


From the foregoing, it will be apparent to those skilled in the art that the present invention provides, in exemplary non-limiting embodiments, devices and methods for the treatment of chronic total occlusions. Further, those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims
  • 1. A method of facilitating treatment of a blood vessel, comprising: advancing a guidewire within a vascular wall of the blood vessel past an occlusion disposed within a lumen of the blood vessel;advancing a balloon catheter over the guidewire until a balloon disposed on a distal portion of the balloon catheter is disposed adjacent a distal end of the occlusion;withdrawing the guidewire from the balloon catheter; andinflating the balloon within the vascular wall to orient a distal end of the balloon catheter towards the lumen of the blood vessel.
  • 2. The method of claim 1, wherein the balloon catheter includes a lumen extending distally to a distal opening proximate the distal end of the balloon catheter.
  • 3. The method of claim 2, wherein inflating the balloon within the vascular wall orients the distal opening towards the lumen of the blood vessel.
  • 4. The method of claim 1, wherein at least a portion of an exterior surface of the balloon catheter is exposed between a proximal end of the balloon and a distal end of the balloon.
  • 5. The method of claim 1, further comprising: advancing a sharpened stylet through the balloon catheter until a distal end of the sharpened stylet penetrates the vascular wall and is positioned within the lumen of the blood vessel.
  • 6. The method of claim 5, wherein the distal end of the balloon catheter directs the distal end of the sharpened stylet toward the lumen of the blood vessel.
  • 7. The method of claim 1, wherein a portion of an exterior surface of the balloon catheter is exposed between a proximal end of the balloon and a distal end of the balloon; wherein the portion of the exterior surface is defined by a longitudinal dimension that is greater than a circumferential dimension.
  • 8. The method of claim 1, wherein at least a portion of the balloon is inflated in a direction away from the lumen of the blood vessel.
  • 9. A method of facilitating treatment of a blood vessel, comprising: advancing a guidewire within a subintimal space of the blood vessel until a distal end of the guidewire is positioned distal of a total occlusion disposed within a lumen of the blood vessel;advancing an intravascular device over the guidewire until a balloon disposed on a distal portion of an elongate shaft of the intravascular device is disposed adjacent a distal end of the occlusion, wherein the guidewire is slidably disposed within a lumen of the elongate shaft;withdrawing the guidewire from the lumen of the elongate shaft; andinflating the balloon within the subintimal space to orient a distal opening of the elongate shaft towards the lumen of the blood vessel.
  • 10. The method of claim 9, wherein the lumen of the elongate shaft extends within the elongate shaft to the distal opening.
  • 11. The method of claim 10, wherein the distal opening is disposed at a distalmost end of the elongate shaft.
  • 12. The method of claim 9, wherein a radially outwardly facing surface of the elongate shaft is exposed between a proximal end of the balloon and a distal end of the balloon.
  • 13. The method of claim 9, further comprising: advancing a sharpened stylet through the lumen of the elongate shaft until a distal end of the sharpened stylet penetrates through a wall of the blood vessel and into the lumen of the blood vessel.
  • 14. The method of claim 13, wherein the distal end of the elongate shaft directs the distal end of the sharpened stylet toward the lumen of the blood vessel.
  • 15. The method of claim 9, wherein a portion of a radially outwardly facing surface of the elongate shaft is exposed between a proximal end of the balloon and a distal end of the balloon; wherein the portion of the radially outwardly facing surface is defined by a longitudinal dimension and a circumferential dimension;wherein the longitudinal dimension is greater than the circumferential dimension.
  • 16. The method of claim 9, wherein at least a portion of the balloon is inflated in a direction away from the lumen of the blood vessel.
  • 17. A method of facilitating treatment of an occlusion within a lumen of a blood vessel, comprising: advancing a guidewire within a vascular wall of the blood vessel until a distal end of the guidewire is disposed distal of the occlusion;maintaining the distal end of the guidewire within the vascular wall and distal of the occlusion while advancing an intravascular device over the guidewire until a balloon disposed on a distal portion of an elongate shaft of the intravascular device is disposed distal of the occlusion;withdrawing the guidewire from the intravascular device;inflating the balloon within the vascular wall to orient a distal opening of the elongate shaft towards the lumen of the blood vessel; andadvancing a distal end of a sharpened stylet out of the distal opening, through at least one layer of the vascular wall, and into the lumen of the blood vessel distal of the occlusion.
  • 18. The method of claim 17, wherein: prior to inflating the balloon, the distal portion of the elongate shaft is oriented substantially parallel to the lumen of the blood vessel; andafter inflating the balloon, the distal portion of the elongate shaft is oriented at an oblique angle to the lumen of the blood vessel.
  • 19. The method of claim 17, wherein the balloon includes: a proximal end and a distal end;a first balloon portion extending from the proximal end to the distal end, the first balloon portion being configured to extend radially outward in a first direction from the elongate member; anda second balloon portion extending from the proximal end to the distal end, the second balloon portion being configured to extend radially outward in a second direction from the elongate member;wherein the second direction is substantially opposite the first direction.
  • 20. The method of claim 19, wherein a radially outwardly facing surface of the elongate shaft is exposed between the first balloon portion and the second balloon portion.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. application Ser. No. 16/419,574, filed May 22, 2019, which is a continuation of U.S. application Ser. No. 13/079,179, filed Apr. 4, 2011, now U.S. Pat. No. 10,342,569, which is a continuation of U.S. application Ser. No. 11/518,428, filed Sep. 11, 2006, now U.S. Pat. No. 7,938,819, which claims the benefit of U.S. Provisional Application No. 60/716,287, filed Sep. 12, 2005, under 35 U.S.C. § 119(e). In addition, this application also claims the benefit of U.S. Provisional Application No. 60/717,726, filed Sep. 15, 2005, under 35 U.S.C. § 119(e). In addition, this application also claims the benefit of U.S. Provisional Application No. 60/727,819, filed Oct. 18, 2005, under 35 U.S.C. § 119(e). The entire disclosures of each of the above-referenced applications are incorporated by reference herein.

US Referenced Citations (219)
Number Name Date Kind
4020829 Wilson et al. May 1977 A
4233983 Rocco Nov 1980 A
4569347 Frisbie Feb 1986 A
4581017 Sabota Apr 1986 A
4621636 Fogarty Nov 1986 A
4747821 Kensey et al. May 1988 A
4762130 Fogarty et al. Aug 1988 A
4774949 Fogarty Oct 1988 A
4819634 Shiber Apr 1989 A
4878495 Grayzel Nov 1989 A
4976689 Buchbinder et al. Dec 1990 A
4979939 Shiber Dec 1990 A
4990134 Auth Feb 1991 A
5071406 Jang Dec 1991 A
5127917 Nederhauser et al. Jul 1992 A
5193546 Shaknovich Mar 1993 A
5201753 Lampropoulos et al. Apr 1993 A
5263493 Avitall Nov 1993 A
5275610 Eberbach Jan 1994 A
5324263 Kraus et al. Jun 1994 A
5356418 Shturman Oct 1994 A
5372587 Hammerslag et al. Dec 1994 A
5383856 Bersin Jan 1995 A
5385152 Abele et al. Jan 1995 A
5409453 Lundquist et al. Apr 1995 A
5415637 Khosravi May 1995 A
5464395 Faxon et al. Nov 1995 A
5501667 Verdun, Jr. Mar 1996 A
5505702 Arney Apr 1996 A
5534007 St. Germain et al. Jul 1996 A
5555883 Avitall Sep 1996 A
5571122 Kelly et al. Nov 1996 A
5571169 Plaia et al. Nov 1996 A
5603720 Kieturakis Feb 1997 A
5643298 Nordgren et al. Jul 1997 A
5645529 Fagan et al. Jul 1997 A
5655548 Nelson et al. Aug 1997 A
5695506 Pike et al. Dec 1997 A
5728133 Kontos Mar 1998 A
5741270 Hansen et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5779721 Nash Jul 1998 A
5783227 Dunham Jul 1998 A
5807241 Heimberger Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830222 Makower Nov 1998 A
5830224 Cohn et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5910133 Gould Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5935108 Katoh et al. Aug 1999 A
5944686 Patterson et al. Aug 1999 A
5954713 Newman et al. Sep 1999 A
5957900 Ouchi Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5989276 Houser et al. Nov 1999 A
6010449 Selmon et al. Jan 2000 A
6013055 Bampos et al. Jan 2000 A
6015405 Schwartz et al. Jan 2000 A
6022343 Johnson et al. Feb 2000 A
6036707 Spaulding Mar 2000 A
6059750 Fogarty et al. May 2000 A
6068638 Makower May 2000 A
6071281 Burnside et al. Jun 2000 A
6071292 Makower et al. Jun 2000 A
6081738 Hinohara et al. Jun 2000 A
6099542 Cohn et al. Aug 2000 A
6117064 Apple et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159225 Makower Dec 2000 A
6183432 Milo Feb 2001 B1
6186972 Nelson et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6203559 Davis et al. Mar 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6231546 Milo et al. May 2001 B1
6231587 Makower May 2001 B1
6235000 Milo et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6254588 Jones et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6277133 Kanesaka Aug 2001 B1
6283940 Mulholland Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6330884 Kim Dec 2001 B1
6337142 Harder et al. Jan 2002 B2
6358244 Newman et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6379319 Garibotto et al. Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6398798 Selmon et al. Jun 2002 B2
6416523 Lafontaine Jul 2002 B1
6428552 Sparks Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6447539 Nelson et al. Sep 2002 B1
6475226 Belef et al. Nov 2002 B1
6485458 Takahashi Nov 2002 B1
6491660 Guo et al. Dec 2002 B2
6491707 Makower et al. Dec 2002 B2
6506178 Schubart et al. Jan 2003 B1
6508824 Flaherty et al. Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6561998 Roth et al. May 2003 B1
6565583 Deaton et al. May 2003 B1
6569143 Alchas et al. May 2003 B2
6569145 Shmulewitz et al. May 2003 B1
6569150 Teague et al. May 2003 B2
6579311 Makower Jun 2003 B1
6589164 Flaherty Jul 2003 B1
6599304 Selmon et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6613081 Kim et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6655386 Makower et al. Dec 2003 B1
6656195 Peters et al. Dec 2003 B2
6660024 Flaherty et al. Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6685716 Flaherty et al. Feb 2004 B1
6694983 Wolf et al. Feb 2004 B2
6709444 Makower Mar 2004 B1
6719725 Milo et al. Apr 2004 B2
6726677 Flaherty et al. Apr 2004 B1
6746426 Flaherty et al. Jun 2004 B1
6746462 Selmon et al. Jun 2004 B1
6746464 Makower Jun 2004 B1
6786884 DeCant, Jr. et al. Sep 2004 B1
6800085 Selmon et al. Oct 2004 B2
6824550 Noriega et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6837868 Fajnsztajn Jan 2005 B1
6860892 Tanaka et al. Mar 2005 B1
6863684 Kim et al. Mar 2005 B2
6866676 Kieturakis et al. Mar 2005 B2
6884225 Kato et al. Apr 2005 B2
6905505 Nash et al. Jun 2005 B2
6929009 Makower et al. Aug 2005 B2
6936056 Nash et al. Aug 2005 B2
6942641 Seddon Sep 2005 B2
6949125 Robertson Sep 2005 B2
6991617 Hektner et al. Jan 2006 B2
7004173 Sparks et al. Feb 2006 B2
7056325 Makower et al. Jun 2006 B1
7059330 Makower et al. Jun 2006 B1
7083588 Shmulewitz et al. Aug 2006 B1
7094230 Flaherty et al. Aug 2006 B2
7105031 Letort Sep 2006 B2
7134438 Makower et al. Nov 2006 B2
7137990 Hebert et al. Nov 2006 B2
7159592 Makower et al. Jan 2007 B1
7179270 Makower Feb 2007 B2
7191015 Lamson et al. Mar 2007 B2
7229421 Jen et al. Jun 2007 B2
7316655 Garibotto et al. Jan 2008 B2
7377910 Katoh et al. May 2008 B2
7465286 Patterson et al. Dec 2008 B2
20010000041 Selmon et al. Mar 2001 A1
20010056273 C. Dec 2001 A1
20020029052 Evans et al. Mar 2002 A1
20020052637 Houser et al. May 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20030028200 Berg et al. Feb 2003 A1
20030040737 Merril et al. Feb 2003 A1
20030109809 Jen et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030236542 Makower Dec 2003 A1
20040015193 Lamson et al. Jan 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040102719 Keith et al. May 2004 A1
20040133225 Makower Jul 2004 A1
20040158143 Flaherty et al. Aug 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040249277 Kato et al. Dec 2004 A1
20040249338 DeCant, Jr. et al. Dec 2004 A1
20050038467 Hebert et al. Feb 2005 A1
20050049574 Petrick et al. Mar 2005 A1
20050171478 Selmon et al. Aug 2005 A1
20050177105 Shalev Aug 2005 A1
20050216044 Hong Sep 2005 A1
20050261663 Patterson et al. Nov 2005 A1
20060094930 Sparks et al. May 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060229646 Sparks Oct 2006 A1
20060271078 Modesitt Nov 2006 A1
20070083220 Shamay Apr 2007 A1
20070088230 Terashi et al. Apr 2007 A1
20070093779 Kugler et al. Apr 2007 A1
20070093780 Kugler et al. Apr 2007 A1
20070093781 Kugler et al. Apr 2007 A1
20070093782 Kugler et al. Apr 2007 A1
20070093783 Kugler et al. Apr 2007 A1
20070265596 Jen et al. Nov 2007 A1
20080103443 Kabrick et al. May 2008 A1
20080228171 Kugler et al. Sep 2008 A1
20080243065 Rottenberg et al. Oct 2008 A1
20080243067 Rottenberg et al. Oct 2008 A1
20090088685 Kugler et al. Apr 2009 A1
20090124899 Jacobs et al. May 2009 A1
20090209910 Kugler et al. Aug 2009 A1
20090270890 Robinson et al. Oct 2009 A1
20100063534 Kugler et al. Mar 2010 A1
20100069945 Olson et al. Mar 2010 A1
Foreign Referenced Citations (8)
Number Date Country
0178822 Oct 2001 WO
2007033052 Mar 2007 WO
2008063621 May 2008 WO
2009054943 Apr 2009 WO
2009100129 Aug 2009 WO
2009134346 Nov 2009 WO
2010019241 Feb 2010 WO
2010044816 Apr 2010 WO
Non-Patent Literature Citations (7)
Entry
Columbo, Antonio, et al; “Treating Chronic Total Occlusions Using Subliminal Tracking and Reentry: The Star Technique,” Catheterization and Cardiovascular Interventions, vol. 64:407-411 (2005).
International Search Report in PCT/US06/35244 dated Mar. 24, 2008.
Written Opinion of International Searching Authority in PCT/US06/35244 dated Mar. 24, 2008.
International Preliminary Report on Patentability in PCT/US06/35244 dated Mar. 26, 2009.
Office Action for U.S. Appl. No. 11/518,521 dated May 24, 2010 (9 pages).
Office Action for U.S. Appl. No. 11/518,521 dated Dec. 23, 2009 (10 pages).
Office Action for U.S. Appl. No. 11/518,521 dated Mar. 20, 2009 (9 pages).
Related Publications (1)
Number Date Country
20210251648 A1 Aug 2021 US
Provisional Applications (3)
Number Date Country
60727819 Oct 2005 US
60717726 Sep 2005 US
60716287 Sep 2005 US
Continuations (3)
Number Date Country
Parent 16419574 May 2019 US
Child 17306420 US
Parent 13079179 Apr 2011 US
Child 16419574 US
Parent 11518428 Sep 2006 US
Child 13079179 US