Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Information

  • Patent Grant
  • RE42756
  • Patent Number
    RE42,756
  • Date Filed
    Wednesday, March 15, 2006
    18 years ago
  • Date Issued
    Tuesday, September 27, 2011
    13 years ago
  • US Classifications
    Field of Search
    • US
    • 606 032000
    • 606 041000
    • 606 108000
    • 606 191000
    • 606 049000
    • 606 028000
    • 606 200000
    • 600 569000
    • 600 585000
    • 623 001100
    • 604 104000
    • 607 122000
  • International Classifications
    • A61B17/00
    • A61B18/08
Abstract
An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum wire and/or tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to a method and apparatus for endovascular electrothrombic formation of thrombi in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas.


2. Description of the Prior Art


Approximately 25,000 intracranial aneurysms rupture every year in North America The primary purpose of treatment for ruptured intracranial aneurysm is to prevent rebleeding. At the present time, three general methods of treatment exist, namely an extravascular, endovascular and extra-endovascular approach.


The extravascular approach is comprised of surgery or microsurgery of the aneurysm or treatment site for the purpose of preserving the parent artery. This treatment is common with intracranial berry aneurysms. The methodology comprises the step of clipping the neck of the aneurysm, performing a suture-ligation of the neck, or wrapping the entire aneurysm. Each of these surgical procedures is performed by intrusive invasion into the body and performed from outside the aneurysm or target site. General anesthesia, craniotomy, brain retraction and arachnoid dissection around the neck of the aneurysm and placement of a clip are typically required in these surgical procedures. Surgical treatment of vascular intracranial aneurysm can expect a mortality rate of 4-8% with a morbidity rate of 18-20%. Because of the mortality and morbidity rate expected, the surgical procedure is often delayed while waiting for the best surgical time with the result that an additional percentage of patients will die from the underlying disease or defect prior to surgery. For this reason the prior art has sought alternative means of treatment.


In the endovascular approach, the interior of the aneurysm is entered through the use of a microcatheter. Recently developed microcatheters, such as those shown by Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 and as described in Engelson, “Catheter for Guidewire Tracking”, U.S. Pat. No. 4,739,768 (1988), allow navigation into the cerebral arteries and entry into a cranial aneurysm.


In such procedures a balloon is typically attached to the end of the microcatheter and it is possible to introduce the balloon into the aneurysm, inflate it, and detach it, leaving it to occlude the sac and neck with preservation of the parent artery. While endovascular balloon embolization of berry aneurysms is an attractive method in situations where an extravascular surgical approach is difficult, inflation of a balloon into the aneurysm carries some risk of aneurysm rupture due to possible over-distention of portions of the sac and due to the traction produced while detaching the balloon.


While remedial procedures exist for treating a ruptured aneurysm during classical extravascular surgery, no satisfactory methodology exists if the aneurysm breaks during an endovascular balloon embolization.


Furthermore, an ideal embolizing agent should adapt itself to the irregular shape of the internal walls of the aneurysm. On the contrary, in a balloon embolization the aneurysmal wall must conform to the shape of the balloon. This may not lead to a satisfactory result and further increases the risk of rupture.


Still further, balloon embolization is not always possible. If the diameter of the deflated balloon is too great to enter the intracerebral arteries, especially in the cases where there is a vasospasm, complications with ruptured intracranial aneurysms may occur. The procedure then must be deferred until the spasm is resolved and this then incurs a risk of rebleeding.


In the extra-intravascular approach, an aneurysm is surgically exposed or stereotaxically reached with a probe. The wall of the aneurysm is then perforated from the outside and various techniques are used to occlude the interior in order to prevent it from rebleeding. These prior art techniques include electrothrombosis, isobutyl-cyanoacrylate embolization, hog-hair embolization and ferromagnetic thrombosis.


In the use of electrothrombosis for extra-intravascular treatment the tip of a positively charged electrode is inserted surgically into the interior of the aneurysm. An application of the positive charge attracts white blood cells, red blood cells, platelets and fibrinogen which are typically negatively charged at the normal pH of the blood. The thrombic mass is then formed in the aneurysm about the tip. Thereafter, the tip is removed. See Mullan, “Experiences with Surgical Thrombosis of Intracranial Berry Aneurysms and Carotid Cavernous Fistulas”, J. Neurosurg., Vol. 41, December 1974; Hosobuchi, “Electrothrombosis Carotid-Cavernous Fistula”, J. Neurosurg., Vol. 42, January 1975; Araki et al., “Electrical Induced Thrombosis for the Treatment of Intracranial Aneurysms and Angiomas”, Excerpta Medica International Congress Series, Amsterdam 1965, Vol. 110, 651-654; Sawyer et al., “Bio-Electric Phenomena as an Etiological Factor in Intravascular Thrombosis”, Am. J. Physiol., Vol. 175, 103-107 (1953); J. Piton et al., “Selective Vascular Thrombosis Induced by a Direct Electrical Current; Animal Experiments”, J. Neuroradiology, Vol. 5, pages 139-152 (1978). However, each of these techniques involves some type of intrusive procedure to approach the aneurysm from the exterior of the body.


The prior art has also devised the use of a liquid adhesive, isobutyl-cyanoacrylate (IBCA) which polymerizes rapidly on contact with blood to form a firm mass. The liquid adhesive is injected into the aneurysm by puncturing the sac with a small needle. In order to avoid spillage into the parent artery during IBCA injection, blood flow through the parent artery must be momentarily reduced or interrupted. Alternatively, an inflated balloon may be placed in the artery at the level of the neck of the aneurysm for injection. In addition to the risks caused by temporary blockage of the parent artery, the risks of seepage of such a polymerizing adhesive into the parent artery exists, if it is not completely blocked with consequent occlusion of the artery.


Still further, the prior art has utilized an air gun to inject hog hair through the aneurysm wall to induce internal thrombosis. The success of this procedure involves exposing the aneurysm sufficiently to allow air gun injection and has not been convincingly shown as successful for thrombic formations.


Ferromagnetic thrombosis in the prior art in extra-intravascular treatments comprises the stereotactic placement of a magnetic probe against the sac of the aneurysm followed by injection into the aneurysm by an injecting needle of iron microspheres. Aggregation of the microspheres through the extravascular magnet is followed by interneuysmatic thrombus. This treatment has not been entirely successful because of the risk of fragmentation of the metallic thrombus when the extravascular magnet is removed. Suspension of the iron powder in methyl methymethacrylate has been used to prevent fragmentation. The treatment has not been favored, because of the need to puncture the aneurysm, the risk of occlusion of the parent artery, the use of unusual and expensive equipment, the need for a craniectomy and general anesthesia, and the necessity to penetrate cerebral tissue to reach the aneurysm.


Endovascular coagulation of blood is also well known in the art and a device using laser optically generated heat is shown by O'Reilly, “Optical Fiber with Attachable Metallic Tip for Intravascular Laser Coagulation of Arteries, Veins, Aneurysms, Vascular Malformation and Arteriovenous Fistulas”, U.S. Pat. No. 4,735,201 (1988). See also, O'Reilly et al., “Laser Induced Thermal Occlusion of Berry Aneurysms: Initial Experimental Results”, Radiology, Vol. 171, No. 2, pages 471-74 (1989). O'Reilly places a tip into an aneurysm by means of an endovascular microcatheter. The tip is adhesively bonded to a optic fiber disposed through the microcatheter. Optical energy is transmitted along the optic fiber from a remote laser at the proximal end of the microcatheter. The optical energy heats the tip to cauterize the tissue surrounding the neck of the aneurysm or other vascular opening to be occluded. The catheter is provided with a balloon located on or adjacent to its distal end to cut off blood flow to the site to be cauterized and occluded. Normally, the blood flow would carry away the heat at the catheter tip, thereby preventing cauterization. The heat in the tip also serves to melt the adhesive used to secure the tip to the distal end of the optical fiber. If all goes well, the tip can be separated from the optical fiber and left in place in the neck of the aneurysm, provided that the cauterization is complete at the same time as the hot melt adhesive melts.


A thrombus is not formed from the heated tip. Instead, blood tissue surrounding the tip is coagulated. Coagulation is a denaturation of protein to form a connective-like tissue similar to that which occurs when the albumen of an egg is heated and coagulates from a clear running liquid to an opaque white solid. The tissue characteristics and composition of the coagulated tissue is therefore substantially distinct from the thrombosis which is formed by the thrombotic aggregation of white and red blood cells, platelets and fibrinogen. The coagulative tissue is substantially softer than a thrombic mass and can therefore more easily be dislodged.


O'Reilly's device depends at least in part upon the successful cauterization timed to occur no later than the detachment of the heat tip from the optic fiber. The heated tip must also be proportionally sized to the neck of the aneurysm in order to effectively coagulate the tissue surrounding it to form a blockage at the neck It is believed that the tissue in the interior of the aneurysm remains substantially uncoagulated. In addition, the hot melt adhesive attaching the tip to the optic fiber melts and is dispersed into the adjacent blood tissue where it resolidifies to form free particles within the intracranial blood stream with much the same disadvantages which result from fragmentation of a ferromagnetic electrothrombosis.


Therefore, what is needed is an apparatus and methodology which avoids each of the shortcomings and limitations of the prior art discussed above.


BRIEF SUMMARY OF THE INVENTION

The invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire and/or tip near an endovascular opening into the vascular cavity. The wire may include a distinguishable structure at its distal end, which is termed a tip, in which case the remaining portion of the wire may be termed a guidewire. The term “wire” should be understood to collectively include both guidewires and tips and simply wires without distinct tip structures. However, the tip may also simply be the extension of the wire itself without substantial distinction in its nature. A distal tip of the wire is disposed into the vascular cavity to pack the cavity to mechanically form the occlusion within the vascular cavity about the distal tip. The distal tip is detached from the guidewire (or wire) to leave the distal tip within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.


In one embodiment, the step of detaching the distal tip from the guidewire (or wire) comprises the step of mechanically detaching the distal tip from the guidewire (or wire).


In another embodiment, the guidewire and tip (or wire) are used within a microcatheter and in the step of detaching the distal tip from the guidewire (or wire), the guidewire and tip (or wire) are longitudinally displaced within the microcatheter. The microcatheter has radio-opaque proximal and tip markers. The guidewire and tip (or wire) have collectively a single radio-opaque marker. The displacement of the guidewire and tip (or wire) moves the single radio-opaque marker to the proximity of the proximal marker on the microcatheter. At this point the tip will be fully deployed in the vascular cavity and tip separation may proceed. It is not necessary then in this embodiment to be able to see actual deployment of the tip before separation. The tip marker allows and enhances direct observation of the correct placement of the catheter tip into the opening of the vascular cavity.


In one embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a tip (or wire) having a plurality of filaments extending therefrom to pack the cavity.


In another embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a long flexible tip (or wire) folded upon itself a multiple number of times to pack the cavity.


The invention can also be characterized as a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire within a microcatheter near an endovascular opening into the vascular cavity. The microcatheter has a distal tip electrode. The distal tip of the wire is disposed into the vascular cavity to pack the cavity to form the occlusion within the vascular cavity about the distal tip of the wire by applying a current between the distal tip electrode and the distal end of the wire packed into the cavity. The distal tip of the wire is detached from the wire to leave the distal tip of the wire within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.


The invention is also a wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter comprising a core wire, and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity and coupled to the distal portion of the core wire. As a result, endovascular occlusion of the vascular cavity can be performed.


In one embodiment, the elongate tip portion is a long and substantially pliable segment adapted to be multiply folded upon itself to substantially pack said vascular cavity.


In another embodiment, the elongate tip portion is a segment adapted to be disposed in said vascular cavity and having a plurality of filaments extending therefrom to substantially pack said vascular cavity when disposed therein.


In still another embodiment, the microcatheter has a pair of radioopaque markers disposed thereon and the core wire has a radioopaque marker disposed thereon. The marker on the core wire is positioned in the proximity of one of the pair of markers on the microcatheter when the core wire is fully deployed. The other marker on the core wire marks the position of the catheter tip.


The invention is still further characterized as a microcatheter system for use in formation of an occlusion within a vascular cavity comprising a microcatheter having a distal end adapted for disposition in the proximity of the vascular cavity. The distal end has an electrode disposed thereon. A conductive guidewire is disposed in the microcatheter and longitudinally displaceable therein. The guidewire comprises a core wire, and an elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity. The tip portion is coupled to the distal portion of the core wire. The occlusion is formed by means of applying a current between the tip portion and the electrode on the microcatheter when the tip portion is disposed into the vascular cavity. As a result, endovascular occlusion of the vascular cavity can be performed.


More generally speaking, the invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of disposing a body into the cavity to substantially impede movement of blood in the cavity. The body is employed in the cavity to form the occlusion within the vascular cavity. As a result, the vascular cavity is occluded by the body.


The step of disposing the body in the vascular cavity comprises the step of packing the body to substantially obstruct the cavity.


In one embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a detachable elongate wire tip multiply folded upon itself in the cavity.


The step of disposing the body into the vascular cavity comprises disposing in the vascular cavity means for slowing blood movement in the cavity to initiate formation of the occlusion in the cavity.


In another embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a body having a compound filamentary shape.


The step of employing the body in the vascular cavity to form the occlusion comprises the step of applying an electrical current to the body or mechanically forming the occlusion in the body or both simultaneously.


The invention is also wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter. The invention comprises a core wire and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The core wire is adapted to being packed into the vascular cavity to form the occlusion in the vascular cavity and is coupled to the distal portion of the core wire. The tip portion includes a first segment for disposition into the cavity and a second segment for coupling the first portion to the core wire. The second segment is adapted to be electrolysized upon application of current. An insulating coating is disposed on the first segment. The second segment is left exposed to permit selective electrolysis thereof. As a result, endovascular occlusion of the vascular cavity can be performed.


The invention can better be visualized by now turning to the following drawings wherein like elements are referenced by like numerals.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an enlarged partially cross-sectioned side view of a first embodiment of the distal end of the guidewire and tip of the invention.



FIG. 2 is an enlarged longitudinal cross section of a second embodiment of the guidewire and tip of the invention.



FIG. 3 is an enlarged side view of a third embodiment of the invention with a microcatheter portion cut away in a longitudinal cross-sectional view.



FIG. 4 is a simplified depiction of the wire of FIG. 3 shown disposed within a simple cranial aneurysm.



FIG. 5 is a depiction of the wire of FIG. 4 shown after electrolytic detachment of the tip.



FIG. 6 is a plan view of another embodiment of the guidewire and tip portion wherein the type is provided with a plurality of polyester filamentary hairs.



FIGS. 7 and 8 are a diagrammatic depictions of the use of the invention wherein position markers have been provided on the catheter and wire to assist in proper fluoroscopic manipulation.



FIG. 9 is a simplified cross-sectional view of the catheter and wire showing a ground electrode disposed on the distal tip of the catheter.





The invention and its various embodiments are best understood by now turning to the following detailed description.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.


When the tip is separated from the wire by electrolytic separation of the tip from the wire, a portion of the wire connected between the tip and the body of the wire is comprised of stainless steel and exposed to the bloodstream so that upon continued application of a positive current to the exposed portion, the exposed portion is corroded away at least at one location and the tip is separated from the body of the wire.



FIG. 1 is an enlarged side view of a first embodiment of the distal end of the wire and tip shown in partial cross-sectional view. A conventional Teflon laminated or similarly insulated stainless steel wire 10 is disposed within a protective nicrocatheter (not shown). Stainless steel wire 10 is approximately 0.010-0.020 inch (0.254-0.508 mm) in diameter. In the illustrated embodiment, wire 10 is tapered at its distal end to form a conical section 12 which joins a section 14 of reduced diameter which extends longitudinally along a length 16 of wire 10. Section 16 then narrows gradually down to a thin threadlike portion 18 beginning at a first bonding location 20 and ending at a second bonding location 22.


The stainless steel wire 10, comprised of that portion disposed within the microcatheter body, tapered section 12, reduced diameter section 16 and threadlike section 18, is collectively referred to as a core wire which typically is 50-300 cm. in length.


In the illustrated embodiment the portion of the core wire extending from tapered section 12 to second bonding location 22 is collectively referred to as the grinding length and may typically be between 20 and 50 cm. in length.


Reduced diameter portion 14 and at least part of sections 12 and first bonding location 20 may be covered with an insulating Teflon laminate 24 which encapsulates the underlying portion of wire 10 to prevent contact with the blood.


A stainless steel coil 26 is soldered to the proximate end of threadlike portion 18 of wire 10 at first bonding location 20. Stainless steel coil 26 is typically 3 to 10 cm. in length and like wire 10 has a diameter typically between 0.010. to 0.020 inch (0.254-0.508 mm).


The distal end of stainless steel coil 26 is soldered to the distal end of threadlike portion 18 of wire 10 and to the proximal end of a platinum secondary coil 28 at second bonding location 22. Secondary coil 28 itself forms a spiral or helix typically between 2 to 10 mm in diameter. The helical envelope formed by secondary coil 28 may be cylindrical or conical. Like wire 10 and stainless steel coil 26, secondary coil 28 is between approximately 0.010 and 0.020 inch (0.254-0.508 mm) in diameter. The diameter of the wire itself forming stainless steel coil 26 and coil 28 is approximately between 0.001-0.005 inch.


The distal end of secondary coil 28 is provided with a platinum soldered tip 30 to form a rounded and smooth termination to avoid puncturing the aneurysm or tearing tissue.


Although prebiased to form a cylindrical or conical envelope, secondary coil 28 is extremely soft and its overall shape is easily deformed. When inserted within the microcatheter (not shown), secondary coil 28 is easily straightened to lie axially within the microcatheter. Once disposed out of the tip of the microcatheter, secondary coil 28 forms the shape shown in FIG. 1 and may similarly be loosely deformed to the interior shape of the aneurysm.


As will be described below in greater detail in connection with the third embodiment of FIG. 3, after placement of secondary coil 28 within the interior of the aneurysm, a direct current is applied to wire 10 from a voltage source exterior to the body. The positive charge on secondary coil 28 within the cavity of the aneurysm causes a thrombus to form within the aneurysm by electrothrombosis. Detachment of the tip occurs either: (1) by continued application of current for a predetermined time when the portion 18 is exposed to blood; or (2) by movement of the wire to expose portion 18 to blood followed by continued current application for a predetermined time. Ultimately, both threadlike portion and stainless steel coil 26 will be completely disintegrated at least at one point, thereby allowing wire 10 to be withdrawn from the vascular space while leaving secondary coil 28 embedded within the thrombus formed within the aneurysm.



FIG. 2 illustrates in enlarged partially cross-sectional view a second embodiment of the invention. Stainless steel core 32 terminates in a conical distal portion 34. Stainless steel coil 36, shown in cross-sectional view, is soldered to distal portion 34 of wire 32 at bonding location 38. The opposing end of the stainless steel coil 36 is provided with a soldered, rounded platinum tip 40. In the illustrated embodiment, stainless steel core wire 32 is approximately 0.010 inch in diameter with the length of stainless steel coil 36 being approximately 8 cm. with the longitudinal length of platinum tip 40 being between 3 and 10 mm. The total length of wire 32 from tip 40 to the proximate end is approximately 150 cm.


The embodiment of FIG. 2 is utilized in exactly the same manner as described above in connection with FIG. 1 to form a thrombic mass within an aneurysm or other vascular cavity. The embodiment of FIG. 2 is distinguished from that shown in FIG. 1 by the absence of the extension of stainless core 32 through coil 36 to tip 40. In the case of the embodiment of FIG. 2 no inner core or reinforcement is provided within stainless steel coil 36. Threadlike portion 18 is provided in the embodiment of FIG. 1 to allow increased tensile strength of the wire. However, a degree of flexibility of the wire is sacrificed by the inclusion even of threadlike tip 18, so that the embodiment of FIG. 2 provides a more flexible tip, at least for that portion of the micro-guidewire constituting the stainless steel coil 36.


It is expressly understood that the helical secondary coil tip of the embodiment of FIG. 1 could similarly be attached to stainless steel coil 36 of the embodiment of FIG. 2 without departing from the spirit and scope of the invention.


Thinned and threadlike portion guidewires disposed concentrically within coiled portions are well known and are shown in Antoshkiw, “Disposable Guidewire”, U.S. Pat. No. 3,789,841 (1974); Sepetka et al., “Guidewire Device”, U.S. Pat. No. 4,832,047 (1989); Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 (1989); Samson et al., “Guidewire for Catheters”, U.S. Pat. No. 4,538,622 (1985); and Samson et al., “Catheter Guidewire with Short Spring Tip and Method of Using the Samson”, U.S. Pat. No. 4,554,929 (1985).


Turn now to the third embodiment of the invention as shown in FIG. 3. FIG. 3 shows an enlarged side view of a wire, generally denoted by reference numeral 42, disposed within a microcatheter 44 shown in cross-sectional view. Like the embodiment of FIG. 1, a stainless steel coil 46 is soldered to a conical portion 48 of wire 22 at a first bonding location 50. A thin threadlike extension 52 is then longitudinally disposed within stainless steel coil 46 to a second bonding location 54 where stainless steel wire 46 and threadlike portion 52 are soldered to a soft platinum coil 56. Platinum coil 56 is not prebiased, nor does it contain any internal reinforcement, but is a free and open coil similar in that respect to stainless steel coil 36 of the embodiment of FIG. 2.


However, platinum coil 56 is particularly distinguished by its length of approximately 1 to 50 cm. and by its flexibility. The platinum or platinum alloy used is particularly pliable and the diameter of the wire used to form platinum coil 56 is approximately 0.001-0.005 inch in diameter. The distal end of platinum coil 56 is provided with a smooth and rounded platinum tip 58 similar in that respect to tips 30 and 40 of FIGS. 1 and 2, respectively.


When coil 56 is disposed within microcatheter 44, it lies along the longitudinal lumen 60 defined by microcatheter 44. The distal end 62 of microcatheter 60 is then placed into the neck of the aneurysm and the wire 42 is advanced, thereby feeding tip 58 in platinum coil 56 into aneurysm 64 until bonding location 50 resides in the neck of the aneurysm as best depicted in the diagrammatic cross-sectional view of FIG. 4.



FIG. 4 illustrates the insertion of the embodiment of FIG. 3 within a vessel 66 with distal tip of microcatheter 44 positioned near neck 68 of aneurysm 64. Coil 56 is fed into aneurysm 64 until at least a portion of stainless steel coil 46 is exposed beyond the distal tip 62 of microcatheter 44. A positive electric current of approximately 0.01 to 2 milliamps at 0.1-6 volts is applied to wire 42 to form the thrombus. Typically a thrombus will form within three to five minutes. The negative pole 72 of voltage source 70 is typically placed over and in contact with the skin.


After the thrombus has been formed and the aneurysm completely occluded, tip 58 and coil 56 are detached from wire 42 by electrolytic disintegration of at least one portion of stainless steel coil 46. In the illustrated embodiment this is accomplished by continued application of current until the total time of current application is almost approximately four minutes.


At least one portion of stainless steel coil 46 will be completely dissolved through by electrolytic action within 3 to 10 minutes, usually about 4 minutes. After separation by electrolytic disintegration, wire 42, microcatheter 44 and the remaining portion of coil 46 still attached to wire 42 are removed from vessel 66, leaving aneurysm 64 completely occluded as diagrammatically depicted in FIG. 5 by thrombus 74. It will be appreciated that the time of disintegration may be varied by altering the dimensions of the portions of the wire and/or the current.


The process is practiced under fluoroscopic control with local anesthesia at the groin. A transfemoral microcatheter is utilized to treat the cerebral aneurysm. The platinum is not affected by electrolysis and the remaining portions of the microcatheter are insulated either by a Teflon lamination directly on wire 42 and/or by microcatheter 44. Only the exposed portion of the wire 46 is affected by the electrolysis.


It has further been discovered that thrombus 74 continues to form even after detachment from wire 42. It is believed that a positive charge is retained on or near coil 56 which therefore continues to attract platelets, white blood cells, red blood cells and fibrinogen within aneurysm 64.


Although the foregoing embodiment has been described as forming an occlusion within a blood-filled vascular cavity by means of electrothrombosis, the above disclosure must be read to expressly include formation of the occlusion by mechanical mechanisms without resort to the application of electrical current. A mechanical mechanism which can be safely disposed into the vascular cavity to impede, slow or otherwise initiate clotting of the blood or formation of the occlusion is within the scope of the invention. The insertion within the vascular cavity and maintenance therein of an object with an appropriate blood-clotting characteristics can and does in many cases cause the formation of an occlusion by itself. Depicted in FIG. 6 is an embodiment of the invention wherein such mechanical thrombosis can be achieved. Wire 10 has a tapering end portion 14 covered with a Teflon laminate 24 similar to that described in connection with the embodiment of FIG. 1. Wire 10 is attached by means of a mechanical coupling 100 to a platinum coil 102 which has a plurality of filaments or fine hairs 104 extending therefrom. In the illustrated embodiment, hairs 104 have a length as may be determined from the size of the vascular cavity in which coil 102 is to be used. For example, in a small vessel hair lengths of up to 1 mm are contemplated. An example of polyester filaments or hairs attached to a coil which was not used in electro-thrombosis may be seen in the copending application entitled Vasoocclusion Coil with Attached Fiberous Elements, filed Oct. 2, 1991, Ser. No. 07/771,013.


Coil 102 has sufficient length and flexibility that it can be inserted or coiled loosely into the vascular cavity. The length of coil 102 need not be so long that the coil itself is capable of being multiply folded on itself and fill or substantially fill the vascular cavity. Hairs 104 extending from coil 102 serve to substantially pack, fill or at least impede blood flow or access in the vascular cavity. Hairs 104, which are generally inclined backwardly away from extreme tip 106 when delivered, are thus easily able to slide forward with little friction through restrictions in the vessels and aneurysm. Additionally, hairs 104 do not have sufficient length, strength or sharpness to provide any substantial risk or potential for a puncture of the thin vascular wall. The plurality of hairs 104, when coiled within the vascular cavity, provide an extremely large surface for attachment of blood constituents to encourage and enhance the formation of a mechanical occlusion within the vascular opening.


In the preferred embodiment, coil 102 is mechanically coupled to thin tapered portion 104 of wire 10 by means of a small drop of polyester 100. Polyester may be substituted for the gold solder of the previously described embodiments in order to reduce concern or risk of toxic reactions in the body.


Tip portion 104 may also be mechanically separated from wire 10 by means other than electrolysis. One method is make the connection between tip 104 and wire 10 by means of a spring loaded mechanical clasp (not shown). The clasps are retained on tip 104 as long as the clasps remain inside of the catheter, but spring open and release tip 104 when extended from the catheter. The catheter and clasps may then be removed from the insertion site. This type of mechanical connection is described in the copending application entitled, “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,979 which is incorporated herein by reference and assigned to Target Therapeutics Inc. An alternative nonresilient mechanical ball and clasp capturing mechanism is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Ball and Keyway Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,912 which is also incorporated herein by reference and assigned to Target Therapeutics Inc.


In another embodiment wire 10 and tip portion 104 screw into each other and can be unscrewed from each other by rotation of the catheter or wire with respect to tip 104. An extendable sheath (not shown) in the microcatheter is advanced to seize tip 104 to prevent its rotation with wire 10 during the unscrewing process. This type of mechanical connection is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Threaded Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,898 which is incorporated herein by reference and assigned to Target Therapeutics Inc.


In any case the specific means disclosed here of mechanically detaching tip 104 from wire 10 forms no part of the present invention apart from its combination as a whole with other elements of the invention. Specific disclosure of the mechanical means of detachment have been set forth only for the purposes of providing an enabling disclosure of the best mode presently known for practicing the claimed invention.


Even where the occlusion is not formed by electrothrombosis, separation of tip 104 may be effected by electrolysis. In such situations, the electrolysing current may be concentrated on the sacrificial stainless steel portion of tip 104 by disposition of an insulative coating on the remaining platinum portion. For example, tip 104 may be provided with a polyethylene coating save at least a portion of the stainless steel length. This has the effect of decreasing the time required to electrolytically sufficiently disintegrate the steel portion to allow detachment of the platinum tip, which is an advantageous feature in those cases where a large aneurysm must be treated and a multiple number of coils must be deployed within the aneurysm.


Notwithstanding the fact that wire 10 and platinum coil 102 in the embodiment FIG. 6 or wire 10 and platinum coil 28, 36 and 56 in the embodiments of FIGS. 1-5 are radiopaque, there is still some difficulty when manipulating the device under fluoroscopy to be able to determine the exact position or movement of the probe relative to the aneurysm. This is particularly true when a large number of coils are deployed and one coil then radiographically hides another. FIG. 7 illustrates an improvement of, for example, the embodiment of FIGS. 4 and 5. Microcatheter 144 is positioned so that its distal end 162 within vessel 66 is positioned at the opening aneurysm 64. Microcatheter 144 is provided with radiopaque marker 108 at distal tip 162, a tip marker. Moving toward the proximal end of microcatheter 144 is a second radiopaque marker 110, a proximal marker. Radiopaque markers 108 and 110 are, for example, in the form of radiopaque rings made of platinum, approximately 1-3 mm in longitudinal length along the axis of microcatheter 144. Rings 110 and 108 are typically separated by about 3 cm on microcatheter 144. Similarly, wire 10 has a radiopaque marker 112 defined on it such that marker 112 on wire 10 is approximately with aligned with marker 110 on microcatheter 14 when coil 56 is fully deployed into aneurysm 64. Typically, full deployment will place the solder or connection point 54 of the order of 2-3 mm past opening 68 of aneurysm 64. Distal marker 108 on microcatheter 144 is used to facilitate the location of the microcatheter tip, which can often be obscured by the coils which have been previously deployed. The coils are a varying lengths depending on the application or size of the aneurysm or vascular cavity being treated. Coil lengths of 4-40 cm are common. Therefore, even though the thinness of coil 56 may make it difficult to see under standard fluoroscopy and even though the fineness of wire 10 may similarly be obscured or partly obscured, radiopaque markers 108, 110 and 112 are clearly visible. Manipulation of wire 10 to proximal marker 110 can then easily be observed under conventional fluoroscopy even when there are some loss of resolution or fluoroscopic visual obstruction of the coil.


Further, in the previous embodiments, such as that shown in FIGS. 4 and 5, when electrothrombosis is used to form the occlusion within vascular aneurysm 64, coil 56 is used as the electrical anode while the cathode is a large skin electrode 72 typically conductively applied to the groin or scalp. FIG. 9 illustrates an alternative embodiment wherein microcatheter 144 is supplied with an end electrode 114 coupled to an electrical conductor 116 disposed along the length of microcatheter 144. Wire 116 is ultimately led back to voltage source 70 so that ring electrode 114 is used as the cathode during electrothrombosis instead of an exterior skin electrode 72. With the embodiment of FIG. 9, the electrical currents and electrical current paths which are set up during the electrothrombosis formation are local to the site of application which allows even smaller currents and voltages to be used to initiate electrothrombosis than in the situation when an exterior skin electrode must be utilized. The electrothrombosic current distributions are also better controlled and localized to the site of the thrombus formation. The possibility of stray thrombus formations occurring at unwanted sites or uncontrolled and possibly unwanted electrical current patterns being established elsewhere in the brain or body is therefore largely avoided.


Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the shape of the tip or distal platinum coil used in combination with the wire according to the invention may be provided with a variety of shapes and envelopes. In addition thereto, the composition of the micro-guidewire tip may be made of elements other than platinum including stainless steel, beryllium, copper and various alloys of the same with or without platinum. Still further, the diameter of the wire; various of the wire described above and the stainless steel coil immediately proximal to the detachable tip may be provided with differing diameters or cross sections to vary the times and current magnitudes necessary in order to effectuate electrolytic detachment from the tip. Still further, the invention may include conventional electronics connected to the proximal end of the wire for determining the exact instant of detachment of the distal tip from the wire.


Therefore, the illustrated embodiment has been set forth only for the purposes of clarity and example and should not be taken as limiting the invention as defined by the following claims, which include all equivalent means whether now known or later devised.

Claims
  • 1. A method for forming an occlusion within a body cavity comprising the steps of: disposing a wire near an opening into said cavity;disposing a distal tip of said wire into said cavity to pack said cavity to mechanically form said occlusion within said cavity about said distal tip; anddetaching said distal tip from said wire to leave said distal tip within said cavity without applying any force by said distal tip to any surface within said body cavity,whereby said cavity is occluded by said distal tip.
  • 2. The method of claim 1 wherein said step of detaching said distal tip from said wire comprises the step of mechanically detaching said distal tip from said wire.
  • 3. The method of claim 1 where said wire and tip are used within a catheter and where in said step of detaching said distal tip from said wire, said wire and tip are longitudinally displaced within said catheter, said catheter having a radio-opaque proximal marker, said wire and tip having collectively a single radio-opaque marker, said displacement of said wire and tip moving said single radio-opaque marker to the proximity of said proximal marker on said catheter when said tip is fully deployed.
  • 4. The method of claim 1 wherein said step of disposing said tip into said cavity to pack said cavity comprises the step of disposing a long flexible tip folded upon itself a multiple number of times to pack said cavity.
  • 5. A method for forming an occlusion within a cavity comprising the steps of: disposing a wire near an opening into said cavity;disposing a distal tip of said wire into said cavity to pack said cavity to mechanically form said occlusion within said cavity about said distal tip, anddetaching said distal tip from said wire to leave said distal tip within said cavity without applying any force by said distal tip to any surface within said cavity,where said step of disposing said tip into said cavity to pack said cavity comprises the step of disposing a tip having a plurality of filaments extending therefrom to pack said cavity,whereby said cavity is occluded by said distal tip.
  • 6. A wire for use in formation of an occlusion within a cavity used in combination with a catheter comprising: a core wire having a tip portion end; and a detachable elongate tip portion extending said core wire adapted to being packed into said cavity to form said occlusion in said cavity, said detachable elongate tip portion being temporarily coupled to said distal end of said core wire and detachable from said core wire without applying any force by said distal tip to any surface within said body cavity, whereby occlusion of said cavity can be performed.
  • 7. The wire of claim 6 wherein said elongate tip portion is a long and substantially pliable segment adapted to be multiply folded upon itself to substantially pack said cavity.
  • 8. The wire of claim 6 wherein said catheter has a pair of radioopaque markers disposed thereon and wherein said core wire has a radioopaque marker disposed thereon, said marker on said core wire being positioned in the proximity of one of said pair of markers on said catheter when said core wire is deployed, said other marker on said catheter indicating the distal end of said catheter.
  • 9. The wire of claim 6 where said core wire and tip portion are coupled by polyester.
  • 10. A wire for use in formation of an occlusion within a cavity used in combination with a catheter comprising: a core wire having a distal end; and a detachable elongate tip portion extending from said core wire and adapted to being packed into said cavity to form said occlusion in said cavity, said detachable elongate tip portion being temporarily coupled to said distal end of said core wire and detachable from said core wire without applying any force by said tip portion to any surface within said body cavity,wherein said elongate tip portion is a segment adapted to be disposed in said cavity and having a plurality of filaments extending therefrom to substantially pack said cavity when disposed therein, whereby occlusion of said cavity can be performed.
Parent Case Info

This application is a continuation of application Ser. No. 08/801,795 filed Feb. 14, 1997, issued as U.S. Pat. No. 5,855,578, which in turn wasis a continuation of application Ser. No. 08/485,821, filed Jun. 6, 1995, now abandoned, which is a divisional of application Ser. No. 08/311,508, filed on Sep. 23, 1994, issued as U.S. Pat. No. 5,540,680, which is a continuation application of application Ser. No. 07/840,211 filed on Feb. 24, 1992, issued as U.S. Pat. No. 5,354,295, and which in its turn wasis a continuation-in-part application of application Ser. No. 07/492,717, filed Mar. 13, 1990, issued as U.S. Pat. No. 5,122,136.

US Referenced Citations (177)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3452742 Muller Jul 1969 A
3521620 Cook Jul 1970 A
3547103 Cook Dec 1970 A
3605750 Sheridan et al. Sep 1971 A
3773034 Burns et al. Nov 1973 A
3789841 Antoshkiw Feb 1974 A
3868956 Alfidi et al. Mar 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4003369 Heilman et al. Jan 1977 A
4080706 Heilman et al. Mar 1978 A
4114603 Wilkinson Sep 1978 A
4147169 Taylor Apr 1979 A
4190057 Hill et al. Feb 1980 A
4213461 Pevsner Jul 1980 A
4323071 Simpson et al. Apr 1982 A
4327734 White, Jr. May 1982 A
4341218 U Jul 1982 A
4346712 Handa et al. Aug 1982 A
4402319 Handa et al. Sep 1983 A
4411648 Davis et al. Oct 1983 A
4413989 Schjeldahl et al. Nov 1983 A
4512338 Balko et al. Apr 1985 A
4517979 Pecenka May 1985 A
4522205 Taylor et al. Jun 1985 A
4538622 Samson et al. Sep 1985 A
4545367 Tucci Oct 1985 A
4545390 Leary Oct 1985 A
4554929 Samson et al. Nov 1985 A
4576174 Miyazaki et al. Mar 1986 A
4597389 Ibrahim et al. Jul 1986 A
4613324 Ghajar Sep 1986 A
4619274 Morrison Oct 1986 A
RE32348 Pevsner Feb 1987 E
4641654 Samson et al. Feb 1987 A
4655746 Daniels et al. Apr 1987 A
4660571 Hess et al. Apr 1987 A
4669465 Moore et al. Jun 1987 A
4682596 Bales et al. Jul 1987 A
4723556 Sussman Feb 1988 A
4729914 Kliment et al. Mar 1988 A
4735201 O'Reilly Apr 1988 A
4739768 Engelson Apr 1988 A
4748986 Morrison et al. Jun 1988 A
4782834 Maguire et al. Nov 1988 A
4787899 Lazarus Nov 1988 A
4793359 Sharrow Dec 1988 A
4800882 Gianturco Jan 1989 A
4813934 Engelson et al. Mar 1989 A
4820298 Leveen et al. Apr 1989 A
4821722 Miller et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4832047 Sepetka et al. May 1989 A
4838268 Keith et al. Jun 1989 A
4838879 Tanabe et al. Jun 1989 A
4878906 Lindemann et al. Nov 1989 A
4884579 Engelson Dec 1989 A
4907336 Gianturco Mar 1990 A
4917088 Crittenden Apr 1990 A
4943278 Euteneuer et al. Jul 1990 A
4944746 Iwata et al. Jul 1990 A
4950239 Gahara et al. Aug 1990 A
4968306 Huss et al. Nov 1990 A
4969458 Wiktor Nov 1990 A
4986830 Owens et al. Jan 1991 A
4989608 Ratner Feb 1991 A
4991069 Tiller Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4998933 Eggers et al. Mar 1991 A
5002556 Ishida et al. Mar 1991 A
5011482 Goode et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5021043 Becker et al. Jun 1991 A
5041090 Scheglov et al. Aug 1991 A
5055101 McCoy Oct 1991 A
5061914 Busch et al. Oct 1991 A
5102390 Crittenden et al. Apr 1992 A
5104376 Crittenden Apr 1992 A
5108407 Geremia et al. Apr 1992 A
5108416 Ryan et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5109867 Twyford, Jr. May 1992 A
5116652 Alzner May 1992 A
5122136 Guglielmi et al. Jun 1992 A
5133731 Butler et al. Jul 1992 A
5135516 Sahatjian et al. Aug 1992 A
5143085 Wilson Sep 1992 A
5154179 Ratner Oct 1992 A
5167624 Butler et al. Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5171297 Barlow et al. Dec 1992 A
5178618 Kandarpa Jan 1993 A
5180368 Garrison Jan 1993 A
5188621 Samson Feb 1993 A
5191297 Penman et al. Mar 1993 A
5201323 Vermeulen Apr 1993 A
5201754 Crittenden et al. Apr 1993 A
5209730 Sullivan May 1993 A
5217484 Marks Jun 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5242396 Evard Sep 1993 A
5246421 Saab Sep 1993 A
5250071 Palermo Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5263964 Purdy Nov 1993 A
5264421 Satoh et al. Nov 1993 A
5275594 Baker et al. Jan 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5306287 Becker Apr 1994 A
5312415 Palermo May 1994 A
5334210 Gianturco Aug 1994 A
5342294 Wiest et al. Aug 1994 A
5342387 Summers Aug 1994 A
5345927 Bonutti Sep 1994 A
5350397 Palermo et al. Sep 1994 A
5354295 Guglielmi et al. Oct 1994 A
5360443 Barone et al. Nov 1994 A
5382261 Palmaz Jan 1995 A
5423829 Pham et al. Jun 1995 A
5449372 Schmaltz et al. Sep 1995 A
5454826 Ueda Oct 1995 A
5522836 Palermo Jun 1996 A
5540680 Guglielmi et al. Jul 1996 A
5569245 Guglielmi et al. Oct 1996 A
5609608 Benett et al. Mar 1997 A
5645558 Horton Jul 1997 A
5645564 Northrup et al. Jul 1997 A
5718711 Berenstein et al. Feb 1998 A
5724534 Boursier et al. Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5743905 Eder et al. Apr 1998 A
5766219 Horton Jun 1998 A
5797953 Tekulve Aug 1998 A
5800454 Jacobsen et al. Sep 1998 A
5814062 Sepetka et al. Sep 1998 A
5826587 Berenstein et al. Oct 1998 A
5851206 Guglielmi et al. Dec 1998 A
5855578 Guglielmi et al. Jan 1999 A
5882334 Sepetka et al. Mar 1999 A
5891128 Gia et al. Apr 1999 A
5891130 Palermo et al. Apr 1999 A
5891155 Irie Apr 1999 A
5895385 Guglielmi et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5911717 Jacobsen et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919187 Guglielmi et al. Jul 1999 A
5925037 Guglielmi et al. Jul 1999 A
5925062 Purdy Jul 1999 A
5928226 Guglielmi et al. Jul 1999 A
5944714 Guglielmi et al. Aug 1999 A
5944733 Engelson Aug 1999 A
5947962 Guglielmi et al. Sep 1999 A
5947963 Guglielmi Sep 1999 A
5690666 Engleson et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976126 Guglielmi Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
6010498 Guglielmi Jan 2000 A
6063220 Andersson May 2000 A
6066133 Guglielmi et al. May 2000 A
6083220 Guglielmi et al. Jul 2000 A
6096034 Kupiecki et al. Aug 2000 A
6168592 Kupiecki et al. Jan 2001 B1
6168615 Ken et al. Jan 2001 B1
6238415 Sepetka et al. May 2001 B1
6344041 Kupiecki et al. Feb 2002 B1
6425893 Guglielmi Jul 2002 B1
6468266 Bashiri et al. Oct 2002 B1
6620152 Guglielmi Sep 2003 B2
20020151883 Guglielmi Oct 2002 A1
Foreign Referenced Citations (149)
Number Date Country
0197237 Mar 2001 AT
5865286 Nov 1986 AU
591906 Nov 1986 AU
3934589 Nov 1989 AU
621923 Nov 1989 AU
7447491 Oct 1991 AU
0636217 Oct 1991 AU
0673502 Sep 1993 AU
3429195 May 1996 AU
704583 May 1996 AU
5624496 Jan 1997 AU
0723902 Jan 1997 AU
1308988 Oct 1992 CA
2160640 Apr 1996 CA
2179863 Dec 1996 CA
2055492 Nov 2000 CA
3 203 410 Nov 1982 DE
158084 Dec 1982 DE
3334174 Mar 1984 DE
3334174 Mar 1984 DE
223 065 Jun 1985 DE
3690224 Aug 1987 DE
69001759 Jan 1994 DE
3690224 Nov 1998 DE
69226024 Jan 1999 DE
69228134 May 1999 DE
69131340 Oct 1999 DE
69131466 Nov 1999 DE
69131467 Nov 1999 DE
69231550 Jun 2001 DE
69520186 Jun 2001 DE
69233026 Jan 2004 DE
69627243 Jan 2004 DE
69133297 Jun 2004 DE
0803230 Oct 1997 DK
0 117 940 Sep 1984 EP
0 119 688 Sep 1984 EP
0058708 May 1985 EP
0220285 Nov 1986 EP
0212936 Mar 1987 EP
0249371 Dec 1987 EP
0249371 Dec 1987 EP
0253620 Jan 1988 EP
0253620 Jan 1988 EP
0255331 Feb 1988 EP
0255331 Feb 1988 EP
0296224 Jun 1988 EP
0296224 Mar 1989 EP
0220285 Nov 1989 EP
0471683 Apr 1990 EP
0366407 May 1990 EP
0366407 May 1990 EP
0471754 May 1990 EP
0 397 357 Nov 1990 EP
0 422 632 Apr 1991 EP
0442657 Aug 1991 EP
0516717 Sep 1991 EP
0471683 Jan 1992 EP
0220285 Jul 1992 EP
0493878 Jul 1992 EP
0493878 Jul 1992 EP
0494495 Jul 1992 EP
0495861 May 1993 EP
0484468 Mar 1994 EP
0375775 Aug 1994 EP
0629125 May 1995 EP
0484486 Jan 1996 EP
0707830 Apr 1996 EP
0750886 Jan 1997 EP
0 804 906 May 1997 EP
0 800 790 Oct 1997 EP
0 800 790 Oct 1997 EP
0 803 230 Oct 1997 EP
0 803 230 Nov 1997 EP
0 804 904 Nov 1997 EP
0 804 905 Nov 1997 EP
0 629 125 Jun 1998 EP
0 804 906 Jan 1999 EP
0587782 Apr 1999 EP
0914803 May 1999 EP
0 484 468 Jun 1999 EP
0 800 790 Jul 1999 EP
0 804 905 Jul 1999 EP
1 005 837 Jun 2000 EP
1 005 837 Jun 2000 EP
0 803 230 Nov 2000 EP
0 707 830 Feb 2001 EP
1 005 837 Apr 2003 EP
0750886 Apr 2003 EP
0 914 803 Jul 2003 EP
1 323 385 Jul 2003 EP
1 323 385 Jul 2003 EP
1 329 196 Jul 2003 EP
9615332 Nov 1991 FI
941937 Jun 1994 FI
2185190 Jul 1987 GB
2208607 Apr 1989 GB
2245495 Jan 1992 GB
219694 Jan 1991 HU
0913536 Jan 1991 HU
115609 Oct 1995 IL
0115609 Oct 1995 IL
1224838 Oct 1990 IT
62-502950 Nov 1987 JP
5-500322 Jan 1993 JP
5-38366 Feb 1993 JP
5-23153 Mar 1993 JP
6-26576 Apr 1994 JP
7-503165 Apr 1995 JP
2501389 Mar 1996 JP
8-196544 Aug 1996 JP
9-98981 Apr 1997 JP
3131386 Nov 2000 JP
3152399 Jan 2001 JP
10-0200441 Jun 1999 KR
914433 Jan 1992 NO
943106 Aug 1994 NO
962745 Jan 1997 NO
101162 Dec 1992 PT
WO 8200768 Mar 1982 WO
WO 8404686 Dec 1984 WO
WO 8606285 Nov 1986 WO
WO 8700062 Jan 1987 WO
WO 8801851 Mar 1988 WO
WO 9001840 Feb 1990 WO
WO 9002585 Mar 1990 WO
WO 9113592 Jan 1991 WO
WO 9104716 Apr 1991 WO
WO 9113592 Sep 1991 WO
WO 9201425 Feb 1992 WO
WO 9208342 May 1992 WO
WO 9214408 Sep 1992 WO
WO 9221400 Dec 1992 WO
WO 9311825 Jun 1993 WO
WO 9316650 Sep 1993 WO
WO 9406503 Mar 1994 WO
WO 9410936 May 1994 WO
WO 9523558 Sep 1995 WO
WO 9525480 Sep 1995 WO
WO 9748351 Dec 1997 WO
WO 9802100 Jan 1998 WO
WO 9804195 Feb 1998 WO
WO 9804196 Feb 1998 WO
WO 9804198 Feb 1998 WO
WO 9804315 Feb 1998 WO
WO 0132085 May 2001 WO
WO 0214408 Feb 2002 WO
WO 03017852 Mar 2003 WO
81-2814 Apr 1981 ZA
Divisions (1)
Number Date Country
Parent 08311508 Sep 1994 US
Child 08485821 US
Continuations (3)
Number Date Country
Parent 08801795 Feb 1997 US
Child 08944582 US
Parent 08485821 Jun 1995 US
Child 08801795 US
Parent 07840211 Feb 1992 US
Child 08311508 US
Continuation in Parts (1)
Number Date Country
Parent 07492717 Mar 1990 US
Child 07840211 US
Reissues (1)
Number Date Country
Parent 08944582 Oct 1997 US
Child 11377894 US