This present application relates generally to prostheses and surgical methods, and specifically to tubular prostheses, including endovascular grafts and stent-grafts, and surgical techniques for using the prostheses to maintain patency of body passages such as blood vessels, and treating aneurysms.
Endovascular prostheses are sometimes used to treat aortic aneurysms. Such treatment includes implanting a stent or stent-graft within the diseased vessel to bypass the anomaly. An aneurysm is a sac formed by the dilation of the wall of the artery. Aneurysms may be congenital, but are usually caused by disease or, occasionally, by trauma. Aortic aneurysms which commonly form between the renal arteries and the iliac arteries are referred to as abdominal aortic aneurysms (“AAAs”). Other aneurysms occur in the aorta, such as thoracic aortic aneurysms (“TAAs”) and aortic uni-iliac (“AUI”) aneurysms.
PCT Publication WO 2008/107885 to Shalev et al., and US Patent Application Publication 2010/0063575 to Shalev et al. in the US national stage thereof, which are incorporated herein by reference, describe a multiple-component expandable endoluminal system for treating a lesion at a bifurcation, including a self expandable tubular root member having a side-looking engagement aperture, and a self expandable tubular trunk member comprising a substantially blood impervious polymeric liner secured therealong. Both have a radially-compressed state adapted for percutaneous intraluminal delivery and a radially-expanded state adapted for endoluminal support.
The following references may be of interest:
U.S. Pat. No. 4,938,740
U.S. Pat. No. 5,824,040 to Cox et al.
U.S. Pat. No. 7,044,962 to Elliott
US Patent Application Publication 2006/0229709 to Morris et al.
US Patent Application Publication 2006/0241740 to Vardi et al.
US Patent Application Publication 2008/0109066 to Quinn
Some applications of the present invention provide a multi-component stent-graft system comprising a fenestrated stent-graft and a crossing stent-graft. A central portion of the fenestrated stent-graft is shaped so as to define first and second lateral apertures that face in generally radially opposing directions. A central portion of the crossing stent-graft is at least partially not covered by covering elements of the crossing stent-graft, so as to allow blood flow through the central portion. When the multi-component stent-graft system is assembled, the crossing stent-graft passes through the apertures and the central portion of the fenestrated stent-graft, so as to form blood-impervious seals with the apertures, and allow blood flow through and between the fenestrated and crossing stent-grafts.
For some applications, the fenestrated stent-graft is deployed such that first and second end portions thereof are at least partially positioned in respective first and second branching blood vessels of a main blood vessel of a patient, and the central portion of the stent-graft is positioned in the main blood vessel. After the fenestrated stent-graft assumes a radially-expanded state, the crossing stent-graft is introduced into the main blood vessel, and, while in a radially-compressed state, is passed through the second and the first apertures, such that the central portion of the crossing stent-graft is within the central portion of the fenestrated stent-graft, and the first and the second end portions of the crossing stent-graft pass through the first and the second apertures, respectively.
The crossing stent-graft is transitioned to its radially-expanded state, such that first and second end portions thereof form blood-impervious seals with the first and the second apertures, respectively. As a result, interior spaces defined by all of the following are in fluid communication with one another: the first and the second end portions and the central portion of the fenestrated stent-graft, and the first and the second end portions and the central portion of the crossing stent-graft.
For some applications, the main blood vessel is a descending abdominal aorta, and the branching blood vessels are the left and right renal arteries. For some applications, the stent-graft system is used for treating an abdominal aortic aneurysm, such as a sub-renal aortic aneurysm.
For applications in which the ends of the fenestrated stent-graft are positioned in the left and right renal arteries, the fenestrated stent-graft is typically deployed prior to introducing the crossing stent-graft. There is thus no need to position the fenestrated stent-graft with respect to the crossing stent-graft while deploying the fenestrated stent-graft. Therefore, the ends of the fenestrated stent-graft are readily positioned properly in the renal arteries, even though the renal arteries generally branch from the aorta at different respective axial positions along the aorta. The crossing stent-graft is also readily passed through the apertures of the fenestrated stent-graft. In contrast, when deploying some aortic stent-grafts that comprise branching tubular structures, it is sometimes difficult to insert these tubular structures into the renal arteries, particularly since the renal arteries having differing axial positions in different patients. In addition, it could be necessary to use a plurality of guidewires, which would increase the crossing profile of the deployment tool.
There is therefore provided, in accordance with an application of the present invention, apparatus including an endovascular stent-graft system, which includes:
a fenestrated stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, and which includes a fenestrated support structure and a fenestrated covering element, which is securely attached to and covers at least a portion of the fenestrated support structure, wherein the fenestrated support structure and the fenestrated covering element are shaped so as to together define first and second lateral apertures in the central portion, which apertures face in generally radially opposing directions, when the fenestrated stent-graft is in a radially-expanded state thereof; and
a crossing stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, and which includes a crossing support structure and one or more crossing covering elements, which are securely attached to and at least partially cover the first and the second end portions, such that the central portion is at least partially uncovered when the crossing stent-graft is in a radially-expanded state thereof,
wherein the fenestrated and the crossing stent-grafts are sized and shaped such that, when the crossing stent-graft is disposed through the first and the second apertures such that the central portion of the crossing stent-graft is within the central portion of the fenestrated stent-graft, the first and the second end portions of the crossing stent-graft (a) pass through the first and the second apertures, respectively, and (b) when the fenestrated and the crossing stent-grafts are in their radially-expanded states, form blood-impervious seals with the first and the second apertures, respectively, such that interior spaces defined by all of the following are in fluid communication with one another: the first and the second end portions and the central portion of the fenestrated stent-graft, and the first and the second end portions and the central portion of the crossing stent-graft.
For some applications, the central portion of crossing stent-graft is generally sized to fit a perimeter of each of the apertures, when the stent-grafts are unconstrained in their radially-expanded states.
For some applications, the one or more crossing covering elements include first and second covering elements, which are securely attached to and at least partially cover the first and the second end portions of the crossing stent-graft, respectively.
For some applications, when the crossing stent-graft is unconstrained in its radially-expanded state: one end of the first covering element defines a generally elliptical circumferential junction between the first end portion and the central portion of the crossing stent-graft, one end of the second covering element defines a generally elliptical circumferential junction between the second end portion and the central portion of the crossing stent-graft, and the central portion of the crossing stent-graft is entirely uncovered. For some applications, a perimeter of the central portion of the crossing stent-graft varies by less than 30% therealong, when the crossing stent-graft is unconstrained in its radially-expanded state. For some applications, a longitudinal length of the central portion of the crossing stent-graft is between 25% and 120% of a distance between the apertures, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, the central portion of the fenestrated stent-graft is generally fusiform, when the fenestrated stent-graft is unconstrained in its radially-expanded state. For some applications, the fenestrated stent-graft is generally fusiform, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, a perimeter of the central portion of the crossing stent-graft varies by less than 50% therealong, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, one or both of the apertures are generally elliptical, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, respective centers of the apertures are positioned less than a distance from a longitudinal midpoint of the fenestrated stent-graft, which distance is measured along a longitudinal axis of the fenestrated stent-graft and equals 40% of a longitudinal length of the fenestrated stent-graft, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, the first and the second end portions of the fenestrated stent-graft have respective ends that coincide with respective ends of the fenestrated stent-graft, and each of the ends of the first and the second end portions has a perimeter of between 10 and 100 mm, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, a greatest perimeter of the central portion of the fenestrated stent-graft is between 6 and 16 cm, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, the first and the second end portions of the crossing stent-graft have respective medial ends, at which the first and the second end portions are joined to the central portion of the crossing stent-graft, respectively, and at least one of the first and the second end portions of the crossing stent-graft is outwardly flared toward the central portion of the crossing stent-graft, when the crossing stent-graft is in its radially-expanded state.
For some applications, the first and the second end portions of the fenestrated stent-graft have respective ends that coincide with respective ends of the fenestrated stent-graft, and a ratio of (a) a greatest perimeter of the central portion of the fenestrated stent-graft to (b) a perimeter of each of the ends of the first and the second end portions of the fenestrated stent-graft is between 4 and 15, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, a perimeter of the first end portion of the crossing stent-graft varies by less than 20% along a length thereof, when the crossing stent is unconstrained in its radially-expanded state. For some applications, a perimeter of the second end portion of the crossing stent-graft varies by less than 20% along a length thereof, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, the fenestrated covering element does not extend to at least one end of the fenestrated stent-graft, such that the fenestrated support structure is not covered near the end. For some applications, the one or more crossing covering elements do not extend to at least one end of the crossing stent-graft, such that the crossing support structure is not covered near the end.
For some applications, an average perimeter of the central portion of the crossing stent-graft (a) is less than an average perimeter of the first end portion of the crossing stent-graft and (b) is less than an average perimeter of the second end portion of the crossing stent-graft, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, a greatest perimeter of at least one of the first end portion and the second end portion of the crossing stent-graft is between 6 and 13 cm, when the crossing stent-graft is unconstrained in its radially-expanded state. For some applications, a greatest perimeter of the central portion of the crossing stent-graft is between 1.5 and 10 cm, when the crossing stent-graft is unconstrained in its radially-expanded state.
For any of the applications described above, each of the crossing support structure and the fenestrated support structure may include a metal. For some applications, the metal is selected from the group consisting of: a super-elastic metal, and a shape memory alloy. For some applications, the metal includes Nitinol.
For any of the applications described above, the fenestrated and the crossing stent-grafts may be self-expanding.
For any of the applications described above, the crossing stent-graft, when in its radially-expanded state, may have an hour-glass shape, and the central portion of the crossing stent-graft may be shaped so as to define a stricture in the hour-glass shape.
For any of the applications described above, the crossing stent-graft may be configured to be implanted in a main blood vessel having an aneurysm, and the first and the second end portions of the fenestrated stent-graft may be configured to be implanted at least partially in respective branching blood vessels of the main blood vessel, such that the central portion of the fenestrated stent-graft is positioned in the main blood vessel.
For any of the applications described above, the fenestrated stent-graft may be configured to be implanted in a main blood vessel having an aneurysm, and the first and the second end portions of the crossing stent-graft may be configured to be implanted at least partially in respective branching blood vessels of the main blood vessel, such that the central portion of the crossing stent-graft is positioned in the main blood vessel.
For any of the applications described above, the apparatus may further include:
a first delivery shaft, and the fenestrated stent-graft is initially placed in the first delivery shaft in a radially-compressed state of the fenestrated stent-graft, and the fenestrated stent-graft is configured to transition to its radially-expanded state upon being deployed from the first delivery shaft; and
a second delivery shaft, and the crossing stent-graft is initially placed in the second delivery shaft in a radially-compressed state of the crossing stent-graft, and the crossing stent-graft is configured to transition to its radially-expanded state upon being deployed from the second delivery shaft.
There is further provided, in accordance with an application of the present invention, a method for treating a patient, the method including:
providing (a) a fenestrated stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, which central portion is shaped so as to define first and second lateral apertures that face in generally radially opposing directions, when the fenestrated stent-graft is in a radially-expanded state thereof, and (b) a crossing stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, and which includes a crossing support structure and one or more crossing covering elements, which are securely attached to and at least partially cover the first and the second end portions, such that the central portion is at least partially uncovered when the crossing stent-graft is in a radially-expanded state thereof;
deploying the fenestrated stent-graft such that the first and the second end portions thereof are at least partially positioned in respective first and second branching blood vessels of a main blood vessel of the patient, the central portion of the fenestrated stent-graft is positioned in the main blood vessel, and the fenestrated stent-graft is in its radially-expanded state;
thereafter, introducing the crossing stent-graft into the main blood vessel, and passing the crossing stent-graft, while in a radially-compressed state thereof, through the second and the first apertures, such that the central portion of the crossing stent-graft is within the central portion of the fenestrated stent-graft, and the first and the second end portions of the crossing stent-graft pass through the first and the second apertures, respectively; and
transitioning the crossing stent-graft to its radially-expanded state, such that the first and the second end portions of the crossing stent-graft form blood-impervious seals with the first and the second apertures, respectively, such that interior spaces defined by all of the following are in fluid communication with one another: the first and the second end portions and the central portion of the fenestrated stent-graft, and the first and the second end portions and the central portion of the crossing stent-graft.
For some applications, deploying the fenestrated stent-graft includes laparoscopically introducing the fenestrated stent-graft into the first branching blood vessel, and advancing the fenestrated stent-graft across the main blood vessel to the second branching blood vessel. Alternatively or additionally, for some applications, introducing the crossing stent-graft includes endovascularly introducing the crossing stent-graft into the main blood vessel.
For some applications, the method further includes identifying that the patient suffers from an aneurysm of the main blood vessel, and introducing the crossing stent-graft includes introducing the crossing stent-graft responsively to the identifying.
For some applications, providing the fenestrated stent-graft includes providing the fenestrated stent-graft in which the central portion thereof is generally fusiform, when the fenestrated stent-graft is unconstrained in its radially-expanded state. For some applications, providing the fenestrated stent-graft includes providing the fenestrated stent-graft which is generally fusiform, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
There is still further provided, in accordance with an application of the present invention, a method for treating a patient, the method including:
providing (a) a fenestrated stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, which central portion is shaped so as to define first and second lateral apertures that face in generally radially opposing directions, when the fenestrated stent-graft is in a radially-expanded state thereof, and (b) a crossing stent-graft, which includes first and second end portions and a central portion disposed longitudinally therebetween, and which includes a crossing support structure and one or more crossing covering elements, which are securely attached to and at least partially cover the first and the second end portions, such that the central portion is at least partially uncovered when the crossing stent-graft is in a radially-expanded state thereof;
deploying the fenestrated stent-graft in a main blood vessel of the patient such that the first and the second apertures generally face first and second branching blood vessels of the main blood vessel, and the fenestrated stent-graft is in its radially-expanded state;
thereafter, introducing the crossing stent-graft into the first branching blood vessel, and passing the crossing stent-graft, while in a radially-compressed state thereof, through the first and the second apertures, and into the second branching blood vessel, such that the central portion of the crossing stent-graft is within the central portion of the fenestrated stent-graft, and the first and the second end portions of the crossing stent-graft pass through the first and the second apertures, respectively; and
transitioning the crossing stent-graft to its radially-expanded state, such that the first and the second end portions of the crossing stent-graft form blood-impervious seals with the first and the second apertures, respectively, such that interior spaces defined by all of the following are in fluid communication with one another: the first and the second end portions and the central portion of the fenestrated stent-graft, and the first and the second end portions and the central portion of the crossing stent-graft.
For some applications, deploying the fenestrated stent-graft includes endovascularly introducing the crossing stent-graft into the main blood vessel. Alternatively or additionally, for some applications, introducing the crossing stent-graft includes laparoscopically introducing the crossing stent-graft into the first branching blood vessel, and advancing the crossing stent-graft across the main blood vessel to the second branching blood vessel.
For some applications, the method further includes identifying that the patient suffers from an aneurysm of the main blood vessel, and deploying the fenestrated stent-graft includes deploying the fenestrated stent-graft responsively to the identifying.
For some applications of either of the methods described above, the main blood vessel is an artery, such as a descending abdominal aorta. For some applications, one of the first and the second branching blood vessels is a left renal artery, and another of the first and the second branching blood vessels is a right renal artery.
For some applications of either of the methods described above:
deploying the fenestrated stent-graft includes introducing the fenestrated stent-graft while placed in a first delivery shaft in a radially-compressed state of the fenestrated stent-graft, and transitioning the fenestrated stent-graft to its radially-expanded state upon deploying the fenestrated stent-graft from the first delivery shaft, and
introducing the crossing stent-graft includes introducing the crossing stent-graft while placed in a second delivery shaft in a radially-compressed state of the crossing stent-graft, and transitioning the crossing stent-graft includes transitioning the crossing stent-graft to its radially-expanded state upon deploying the crossing stent-graft from the second delivery shaft.
For some applications of either of the methods described above, providing the crossing stent-graft includes providing the crossing stent-graft in which the central portion thereof is generally sized to fit a perimeter of each of the apertures, when the stent-grafts are unconstrained in their radially-expanded states.
For some applications of either of the methods described above, providing the crossing stent-graft includes providing the crossing stent-graft in which the one or more crossing covering elements include first and second covering elements, which are securely attached to and at least partially cover the first and the second end portions of the crossing stent-graft, respectively. For some applications, providing the crossing stent-graft includes providing the crossing stent-graft in which, when the crossing stent-graft is unconstrained in its radially-expanded state: one end of the first covering element defines a generally elliptical circumferential junction between the first end portion and the central portion of the crossing stent-graft, one end of the second covering element defines a generally elliptical circumferential junction between the second end portion and the central portion of the crossing stent-graft, and the central portion of the crossing stent-graft is entirely uncovered. For some applications, providing the crossing stent-graft includes providing the crossing stent-graft in which a perimeter of the central portion of the crossing stent-graft varies by less than 30% therealong, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications of either of the methods described above, providing the fenestrated stent-graft includes providing the fenestrated stent-graft in which one or both of the apertures are generally elliptical, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
FIGS. 1 and 2A-B are schematic illustrations of a multi-component stent-graft system in disassembled and assembled states, respectively, in accordance with an application of the present invention;
FIGS. 1 and 2A-B are schematic illustrations of a multi-component stent-graft system 10 in disassembled and assembled states, respectively, in accordance with an application of the present invention. Multi-component stent-graft system 10 comprises a fenestrated stent-graft 20 and a crossing stent-graft 22. The stent-grafts are configured to assume radially-compressed states, such as when initially positioned in one or more delivery shafts of one or more delivery tools, such as described hereinbelow with reference to
As shown in
Fenestrated support structure 36 typically comprises a plurality of structural stent elements. For some applications, at least some of, e.g., all of, the structural stent elements are interconnected (as shown in the figures), while for other applications, at least a portion of, e.g., all, of the structural stent elements are not interconnected (configuration not shown). For some applications, support structure 36 comprises a metal, such as a super-elastic alloy and/or a shape memory allow, e.g., Nitinol. For some applications, one or both of apertures 40 and 42 are circumscribed by respective generally annular structural stent elements of the support element.
Covering element 38 serves as a blood flow guide through at least a portion of fenestrated stent-graft 20. Covering element 38 (and covering element(s) 58 of crossing stent-graft 22, described hereinbelow) typically comprises at least one biologically-compatible substantially blood-impervious flexible sheet, which is attached (such as by stitching) to at least a portion of the support structure, on either side of the surface defined by the support structure. The flexible sheet may comprise, for example, a polymeric material (e.g., a polyester, or polytetrafluoroethylene), a textile material (e.g., polyethylene terephthalate (PET)), natural tissue (e.g., saphenous vein or collagen), or a combination thereof.
For some applications, covering element 38 does not extend to at least one of ends 28 and 30 of fenestrated stent-graft 20, such that support structure 36 is not covered near the end. For some applications, this uncovered portion is flared, when the fenestrated stent-graft is in its radially-expanded state. The uncovered portion may facilitate proper fixation and sealing of the stent-graft with the blood vessel wall.
For some applications, as shown in FIGS. 1 and 2A-B, central portion 34 of fenestrated stent-graft 20, and/or the entirety of fenestrated stent-graft 20, is generally fusiform, when the fenestrated stent-graft is in its radially-expanded state.
For some applications, each of ends 28 and 30 of fenestrated stent-graft 20 has a perimeter of at least 10 mm, no more than 100 mm, and/or between 10 and 100 mm, such as of at least 8 mm, no more than 14 mm, and/or between 8 and 14 mm, when the fenestrated stent-graft is unconstrained in its radially-expanded state, i.e., no forces are applied to the stent-graft by a delivery tool, walls of a blood vessel, or otherwise. For some applications, fenestrated stent-graft 20, when unconstrained in its radially-expanded state, has a total length L1 of at least 3 cm, no more than 20 cm, and/or between 3 and 20 cm. For some applications, central portion 34 has a length L2 of at least 1 cm, no more than 10 cm, and/or between 1 and 10 cm, when stent-graft 20 is unconstrained in its radially-expanded state. For some applications, first and second end portions 24 and 26 have respective lengths L3 and L4, each of which is at least 1 cm, no more than 10 cm, and/or between 1 and 10 cm, when stent-graft 20 is unconstrained in its radially-expanded state.
For some applications, a greatest perimeter P1 (labeled in
For some applications, a ratio of (a) greatest perimeter P1 of central portion 34 of fenestrated stent-graft 20 to (b) a perimeter P2 (labeled in
For some applications, first aperture 40 has a perimeter P3 of at least 3 cm, no more than 12 cm, and/or between 3 and 12 cm, when the fenestrated stent-graft is unconstrained in its radially-expanded state. For some applications, second aperture 42 has a perimeter P4 of at least 3 cm, no more than 12 cm, and/or between 3 and 12 cm, when the fenestrated stent-graft is unconstrained in its radially-expanded state. For some applications, perimeters P3 and P4 are generally equal, such as within 10% of each other, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
For some applications, respective centers 64 and 66 of apertures 40 and 42 are positioned less than a distance from a longitudinal midpoint 68 the fenestrated stent-graft 20, which distance is measured along a longitudinal axis of the fenestrated stent-graft and equals 40% of longitudinal length L1 of fenestrated stent-graft 20, such as 10%, when the fenestrated stent-graft is unconstrained in its radially-expanded state.
Also as shown in
Typically, central portion 54 is completely uncovered. For some applications, as shown in the figures, the one or more crossing covering elements 58 include first and second covering elements 58A and 58B, which are securely attached to and at least partially cover first and second end portions 44 and 46, respectively. For some applications, when crossing stent-graft 22 is unconstrained in its radially-expanded state: (a) one end 60A of first covering element 58A defines a generally elliptical circumferential junction 62A between first end portion 44 and central portion 54, (b) one end 60B of second covering element 58B defines a generally elliptical circumferential junction 62A between second end portion 46 and central portion 54, and (c) central portion 54 is entirely uncovered.
Alternatively, central portion 54 is partially covered, e.g., less than 40%, such as less than 20% or less than 10% of a surface area thereof is covered when crossing stent-graft 22 is in its radially-expanded state. For example, the one or more crossing covering elements may comprise exactly one crossing covering element 58, a central portion of which extends along central portion 54 between end portions of the crossing covering element that cover first and second end portions 44 and 46, respectively.
For some applications, the one or more covering elements 58 do not extend to at least one of ends 44 and 46 of crossing stent-graft 202, such that support structure 56 is not covered near the end. For some applications, this uncovered portion is flared. The uncovered portion may facilitate proper fixation and sealing of the stent-graft with the blood vessel wall.
Crossing support structure 56 typically comprises a plurality of structural stent elements. For some applications, at least some of, e.g., all of, the structural stent elements are interconnected (as shown in the figures), while for other applications, at least a portion of, e.g., all, of the structural stent elements are not interconnected (configuration not shown). The one or more crossing covering elements serve as blood flow guides through at least a portion of first end portion 44 and at least a portion of second end portion 46, respectively.
For some applications, crossing stent-graft 22, when in its radially-expanded state, has an hour-glass shape, and central portion 54 is shaped so as to define a stricture in the hour-glass shape. Alternatively, for some applications, a perimeter of first end portion 44 varies by less than 20%, such as less than 10%, along a length thereof, when the crossing stent-graft is unconstrained in its radially-expanded state. Similarly, for some applications, a perimeter of second end portion 46 varies by less than 20%, such as less than 10%, along a length thereof, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, each of ends 48 and 50 of crossing stent-graft 22 has a perimeter of at least 3 cm, no more than 18 cm, and/or between 3 and 18 cm, when the crossing stent-graft is unconstrained in its radially-expanded state. For some applications, crossing stent-graft 22 has a total length L5 of at least 3 cm, no more than 20 cm, and/or between 3 and 20 cm, when unconstrained in its radially-expanded state. For some applications, central portion 54 has a length L6 of at least 3 cm, no more than 20 cm, and/or between 3 and 20 cm, when stent-graft 22 is unconstrained in its radially-expanded state. For some applications, first and second end portions 44 and 46 have respective lengths L7 and L8, each of which is at least 1 cm, no more than 10 cm, and/or between 1 and 10 cm, when stent-graft 22 is unconstrained in its radially-expanded state.
For some applications, a greatest perimeter P5 of central portion 54 is at least 1.5 cm, no more than 10 cm, and/or between 1.5 and 10 cm, such as at least 4.5 cm, no more than 8 cm, and/or between 4.5 and 8 cm, when crossing stent-graft 22 is unconstrained in its radially-expanded state. For some applications, a greatest perimeter of at least one of first end portion 44 and second end portion 46 is at least 6 cm, no more than 13 cm, and/or between 6 and 13 cm, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, an average perimeter of central portion 54 (a) is less than an average perimeter of first end portion 44 and (b) is less than an average perimeter of second end portion 46, when the crossing stent-graft is unconstrained in its radially-expanded state.
For some applications, fenestrated and/or crossing stent-grafts 20 and 22 implement one or more of the techniques described in the patent applications incorporated by reference hereinbelow. For example, the stent-grafts may utilize one or more of the configurations of aortic stent-grafts described in these patent applications.
For some applications, a perimeter of central portion 54 varies by less than 50% therealong, such as less than 30% therealong, or less than 20% therealong, when crossing stent-graft 22 is unconstrained in its radially-expanded state.
Reference is again made to
For some applications, when the crossing stent-graft is unconstrained in its radially-expanded state longitudinal length L1 of central portion 54 of crossing stent-graft 22 is at least 25%, no more than 120%, and/or between 25% and 120% of a closest distance D1 between apertures 40 and 42 (as labeled in
Reference is made to
As shown in
Fenestrated stent-graft 20 is initially positioned in its radially-compressed state within a delivery shaft 120, typically near a distal end of the delivery shaft (e.g., such that at least one end of stent-graft 20 is within a distance of the distal end, which distance equals the sum of 2 cm and an axial length of the fenestrated stent-graft). As shown in
As shown in
Fenestrated stent-graft 20 typically self-expands, until it assumes its radially-expanded state, upon reaching its maximum unconstrained size, and/or being constrained from further expansion by the wall of the blood vessels.
As shown in
Crossing stent-graft 22 is initially positioned in its radially-compressed state within a delivery shaft 140, typically near a distal end of the delivery shaft (e.g., such that at least one end of stent-graft 22 is within a distance of the distal end, which distance equals the sum of 2 cm and an axial length of the crossing stent-graft). As shown in
As shown in
Crossing stent-graft 22 typically self-expands, until it assumes its radially-expanded state, upon reaching its maximum unconstrained size, and/or being constrained from further expansion by the wall of the aorta.
The guidewire is then withdrawn (alternatively, instead of delivering the stent-graft using this over-the-wire (OTW) approach, the guidewire may be withdrawn before releasing the stent-graft from delivery shaft 120, as mentioned above, and using a rapid-exchange methodology).
Reference is made to
After fenestrated stent-graft 20 has been deployed, crossing stent-graft 22 is introduced, e.g., laparoscopically, into the first branching blood vessel, e.g., the left or right renal artery (e.g., left renal artery 102A, as shown by way of example in
Crossing stent-graft 22 is transitioned to its radially-expanded state (typically by deploying the crossing stent-graft from its delivery shaft). First and second end portions 44 and 46 of crossing stent-graft 22 form blood-impervious seals with first and second apertures 40 and 42, respectively. As a result, interior spaces defined by all of the following are in fluid communication with one another: first and second end portions 24 and 26 and central portion 34 of fenestrated stent-graft 20, and first and second end portions 44 and 46 and central portion 54 of crossing stent-graft 22.
Reference is made to
In this configuration, first and second end portions 44 and 46 have medial ends 150 and 152, respectively, at which the first and second end portions are joined to the central portion, respectively. One or both of first and second end portions 44 and 46 are outwardly flared toward central portion 54, when the stent-graft is in its radially-expanded state, so as to define outward flares 154 and 156, respectively. Optionally, one or both of first and second end portions 44 and 46 are additionally slightly indented radially inward near the outward flares, away from central portion 54, so as to define radial indentations 158 and 160, respectively. Typically, first and second covering elements 58A and 58B at least partially, such as completely, cover the outward flares. The flares aid in proper axial positioning of crossing stent-graft 22 with respect to apertures 40 and 42 during deployment of the crossing stent-graft, by helping guide the crossing stent-graft into proper axial position. The flares may also help axially secure the crossing stent-graft to the fenestrated stent-graft by preventing axial movement of the crossing stent-graft with respect to the fenestrated stent-graft. In addition, the flares may help form the blood-impervious seals between first and second portions 44 and 46 of crossing stent-graft 22 and first and second apertures 40 and 42 of fenestrated stent-graft 20, as described hereinabove. The flared portions (together with radially-indented portions) may serve as interface members, and may generally have the shape of an hourglass. The radially-indented (narrower) portions may be sized to conform with the perimeters of apertures 40 and 42.
For some applications of the present invention, a kit is provided that comprises fenestrated stent-graft 20 and crossing stent-graft 22. For some applications, the kit further comprises delivery shaft 120, delivery shaft 140, guidewire 110, and/or guidewire 130.
For some applications, at least one of stent-grafts 20 and 22 comprises one or more anchoring elements that extend radially outwardly when the stent-graft assumes its radially-expanded state. The anchoring elements anchor the stent-graft to a vascular wall, helping prevent dislodgement.
For some applications, stent-graft system 10 is used to treat an aneurysm, such as an aortic aneurism, or an aneurism of another blood vessel. For example, the aneurism may be of the sub-renal aorta, as shown in
Although stent-graft system 10 has sometimes been described hereinabove as being deployed in the descending abdominal aorta and the left and right renal arteries, the stent-graft system may, for some applications, also be deployed at other branching body lumens. For example, the main body lumen may be the aorta, and the branching body lumen may include the inferior or superior mesenteric arteries, or the celiac artery.
The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
This application is a National Stage of International Application No. PCT/IL2010/001037, filed on Dec. 8, 2010, which claims priority from U.S. Provisional Application No. 60/267,453, filed on Dec. 8, 2009, the contents of all of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2010/001037 | 12/8/2010 | WO | 00 | 9/21/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/070576 | 6/16/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4180613 | Vassiliou | Dec 1979 | A |
4355426 | MacGregor | Oct 1982 | A |
4505767 | Quin | Mar 1985 | A |
4562596 | Kornberg | Jan 1986 | A |
4577631 | Kreamer | Mar 1986 | A |
4617932 | Kornberg | Oct 1986 | A |
4665906 | Jervis | May 1987 | A |
4739762 | Palmaz | Apr 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4938740 | Melbin | Jul 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
5042707 | Taheri | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5192286 | Phan et al. | Mar 1993 | A |
5234448 | Wholey et al. | Aug 1993 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5486183 | Middleman et al. | Jan 1996 | A |
5507769 | Marin et al. | Apr 1996 | A |
5509923 | Middleman et al. | Apr 1996 | A |
5522880 | Barone et al. | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5549662 | Fordenbacher | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5562724 | Vorwerk et al. | Oct 1996 | A |
5607445 | Summers | Mar 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5632746 | Middleman et al. | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643340 | Nunokawa | Jul 1997 | A |
5653743 | Martin | Aug 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5728134 | Barak | Mar 1998 | A |
5749879 | Middleman et al. | May 1998 | A |
5755770 | Ravenscroft | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755777 | Chuter | May 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5782903 | Wiktor | Jul 1998 | A |
5782906 | Marshall et al. | Jul 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5827321 | Roubin | Oct 1998 | A |
5843170 | Ahn | Dec 1998 | A |
5855600 | Alt | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5876432 | Lau et al. | Mar 1999 | A |
5906641 | Thompson et al. | May 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5948018 | Dereume | Sep 1999 | A |
5980552 | Pinchasik | Nov 1999 | A |
6015431 | Thornton et al. | Jan 2000 | A |
6016810 | Ravenscroft | Jan 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6059824 | Taheri | May 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6117145 | Wood et al. | Sep 2000 | A |
6156064 | Chouinard | Dec 2000 | A |
6200339 | Leschinsky et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6270524 | Kim | Aug 2001 | B1 |
6283991 | Cox et al. | Sep 2001 | B1 |
6290720 | Khosravi et al. | Sep 2001 | B1 |
6312458 | Golds | Nov 2001 | B1 |
6319287 | Frimberger | Nov 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6395018 | Castaneda | May 2002 | B1 |
6406420 | McCarthy | Jun 2002 | B1 |
6428565 | Wisselink | Aug 2002 | B1 |
6506211 | Skubitz et al. | Jan 2003 | B1 |
6613075 | Healy et al. | Sep 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6635083 | Cheng et al. | Oct 2003 | B1 |
6645242 | Quinn | Nov 2003 | B1 |
6648911 | Sirhan | Nov 2003 | B1 |
6652567 | Deaton | Nov 2003 | B1 |
6656214 | Fogarty et al. | Dec 2003 | B1 |
6673080 | Reynolds et al. | Jan 2004 | B2 |
6692520 | Gambale et al. | Feb 2004 | B1 |
6695833 | Frantzen | Feb 2004 | B1 |
6733523 | Shaolian | May 2004 | B2 |
6743195 | Zucker | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6814749 | Cox et al. | Nov 2004 | B2 |
6814752 | Chuter | Nov 2004 | B1 |
6824560 | Pelton | Nov 2004 | B2 |
6846321 | Zucker | Jan 2005 | B2 |
6907285 | Denker et al. | Jun 2005 | B2 |
6908477 | McGuckin, Jr. | Jun 2005 | B2 |
6929660 | Ainsworth et al. | Aug 2005 | B1 |
6942691 | Chuter | Sep 2005 | B1 |
6964679 | Marcade et al. | Nov 2005 | B1 |
6986774 | Middleman et al. | Jan 2006 | B2 |
7008441 | Zucker | Mar 2006 | B2 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7044962 | Elliott | May 2006 | B2 |
7105020 | Greenberg et al. | Sep 2006 | B2 |
7112217 | Kugler et al. | Sep 2006 | B1 |
7115127 | Lindenbaum et al. | Oct 2006 | B2 |
7144421 | Carpenter et al. | Dec 2006 | B2 |
7160318 | Greenberg | Jan 2007 | B2 |
7198638 | Dong | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7223266 | Lindenbaum et al. | May 2007 | B2 |
7279003 | Berra et al. | Oct 2007 | B2 |
7294145 | Ward | Nov 2007 | B2 |
7306623 | Watson | Dec 2007 | B2 |
7341598 | Davidson et al. | Mar 2008 | B2 |
7407509 | Greenberg et al. | Aug 2008 | B2 |
7425219 | Quadri | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7473272 | Pryor | Jan 2009 | B2 |
7537609 | Davidson et al. | May 2009 | B2 |
7540881 | Meyer et al. | Jun 2009 | B2 |
7544160 | Gross | Jun 2009 | B2 |
7637939 | Tischler | Dec 2009 | B2 |
7645298 | Hartley et al. | Jan 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7662168 | McGuckin, Jr. et al. | Feb 2010 | B2 |
7678141 | Greenan et al. | Mar 2010 | B2 |
7708704 | Mitelberg | May 2010 | B2 |
7722626 | Middleman et al. | May 2010 | B2 |
7731732 | Ken | Jun 2010 | B2 |
7803178 | Whirley | Sep 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7887575 | Kujawski | Feb 2011 | B2 |
7955374 | Erickson et al. | Jun 2011 | B2 |
7959662 | Erbel et al. | Jun 2011 | B2 |
8066755 | Zacharias | Nov 2011 | B2 |
8080053 | Satasiya | Dec 2011 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8172892 | Chuter | May 2012 | B2 |
8221494 | Schreck et al. | Jul 2012 | B2 |
8251963 | Chin et al. | Aug 2012 | B2 |
8292951 | Muzslay | Oct 2012 | B2 |
8353898 | Lutze et al. | Jan 2013 | B2 |
20010004705 | Killion | Jun 2001 | A1 |
20010014823 | Resseman et al. | Aug 2001 | A1 |
20010034550 | Buirge | Oct 2001 | A1 |
20010037142 | Stelter | Nov 2001 | A1 |
20010044647 | Pinchuk et al. | Nov 2001 | A1 |
20010044651 | Steinke | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010047198 | Drasler | Nov 2001 | A1 |
20010053930 | Kugler et al. | Dec 2001 | A1 |
20020040236 | Lau | Apr 2002 | A1 |
20020052643 | Wholey | May 2002 | A1 |
20020052644 | Shaolian et al. | May 2002 | A1 |
20020072790 | McGuckin, Jr. | Jun 2002 | A1 |
20020099441 | Dehdashtian | Jul 2002 | A1 |
20020107564 | Cox | Aug 2002 | A1 |
20020123791 | Harrison | Sep 2002 | A1 |
20020156495 | Brenneman et al. | Oct 2002 | A1 |
20020156517 | Perouse | Oct 2002 | A1 |
20020198585 | Wisselink | Dec 2002 | A1 |
20030033005 | Houser | Feb 2003 | A1 |
20030040791 | Oktay | Feb 2003 | A1 |
20030074055 | Haverkost | Apr 2003 | A1 |
20030093145 | Lawrence-Brown et al. | May 2003 | A1 |
20030130720 | DePalma et al. | Jul 2003 | A1 |
20030153944 | Phung et al. | Aug 2003 | A1 |
20030153968 | Geis et al. | Aug 2003 | A1 |
20030191523 | Hojeibane | Oct 2003 | A1 |
20030199967 | Hartley et al. | Oct 2003 | A1 |
20030204236 | Letort | Oct 2003 | A1 |
20030204242 | Zarins et al. | Oct 2003 | A1 |
20030212449 | Cox | Nov 2003 | A1 |
20030236567 | Elliot | Dec 2003 | A1 |
20040015227 | Vardi et al. | Jan 2004 | A1 |
20040015229 | Fulkerson | Jan 2004 | A1 |
20040098091 | Erbel | May 2004 | A1 |
20040106972 | Deaton | Jun 2004 | A1 |
20040106978 | Greenberg et al. | Jun 2004 | A1 |
20040117003 | Ouriel et al. | Jun 2004 | A1 |
20040133266 | Clerc et al. | Jul 2004 | A1 |
20040138735 | Shaolian | Jul 2004 | A1 |
20040171978 | Shalaby | Sep 2004 | A1 |
20040181149 | Langlotz et al. | Sep 2004 | A1 |
20040215319 | Berra et al. | Oct 2004 | A1 |
20040215327 | Doig et al. | Oct 2004 | A1 |
20040260383 | Stelter | Dec 2004 | A1 |
20050033406 | Barnhart et al. | Feb 2005 | A1 |
20050049678 | Cocks et al. | Mar 2005 | A1 |
20050065545 | Wallace | Mar 2005 | A1 |
20050085900 | Case | Apr 2005 | A1 |
20050102018 | Carpenter et al. | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050131512 | Vonderwalde | Jun 2005 | A1 |
20050131517 | Hartley et al. | Jun 2005 | A1 |
20050149166 | Schaeffer et al. | Jul 2005 | A1 |
20050154448 | Cully | Jul 2005 | A1 |
20050159803 | Lad | Jul 2005 | A1 |
20050165480 | Jordan | Jul 2005 | A1 |
20050171598 | Schaeffer et al. | Aug 2005 | A1 |
20050171599 | White | Aug 2005 | A1 |
20050177132 | Lentz et al. | Aug 2005 | A1 |
20050177222 | Mead | Aug 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216018 | Sennett et al. | Sep 2005 | A1 |
20050222667 | Hunt | Oct 2005 | A1 |
20050222668 | Schaeffer et al. | Oct 2005 | A1 |
20050222669 | Purdy | Oct 2005 | A1 |
20050228480 | Douglas et al. | Oct 2005 | A1 |
20050234542 | Melsheimer | Oct 2005 | A1 |
20050266042 | Tseng | Dec 2005 | A1 |
20050273155 | Bahler | Dec 2005 | A1 |
20060015170 | Jones et al. | Jan 2006 | A1 |
20060030921 | Chu | Feb 2006 | A1 |
20060052799 | Middleman et al. | Mar 2006 | A1 |
20060069426 | Weinberger | Mar 2006 | A1 |
20060095114 | Hartley et al. | May 2006 | A1 |
20060100684 | Elliott | May 2006 | A1 |
20060116748 | Kaplan | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060155358 | LaDuca et al. | Jul 2006 | A1 |
20060155359 | Watson | Jul 2006 | A1 |
20060155366 | LaDuca et al. | Jul 2006 | A1 |
20060167476 | Burdulis, Jr. et al. | Jul 2006 | A1 |
20060173530 | Das | Aug 2006 | A1 |
20060193892 | Furst et al. | Aug 2006 | A1 |
20060229709 | Morris et al. | Oct 2006 | A1 |
20060241740 | Vardi et al. | Oct 2006 | A1 |
20060281966 | Peacock, III | Dec 2006 | A1 |
20070021822 | Boatman | Jan 2007 | A1 |
20070043425 | Hartley et al. | Feb 2007 | A1 |
20070050011 | Klein | Mar 2007 | A1 |
20070055350 | Erickson et al. | Mar 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070055360 | Hanson | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070061002 | Paul, Jr. | Mar 2007 | A1 |
20070073373 | Bonsignore | Mar 2007 | A1 |
20070088425 | Schaeffer | Apr 2007 | A1 |
20070106368 | Vonderwalde | May 2007 | A1 |
20070112344 | Keilman | May 2007 | A1 |
20070135677 | Miller et al. | Jun 2007 | A1 |
20070142896 | Anderson et al. | Jun 2007 | A1 |
20070150051 | Arnault de la et al. | Jun 2007 | A1 |
20070156167 | Connors et al. | Jul 2007 | A1 |
20070167898 | Peters et al. | Jul 2007 | A1 |
20070168018 | Amplatz | Jul 2007 | A1 |
20070179598 | Duerig | Aug 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070208410 | Berra et al. | Sep 2007 | A1 |
20070213805 | Schaeffer et al. | Sep 2007 | A1 |
20070213807 | Roubin | Sep 2007 | A1 |
20070219610 | Israel | Sep 2007 | A1 |
20070219627 | Chu | Sep 2007 | A1 |
20070225797 | Krivoruhko | Sep 2007 | A1 |
20070233229 | Berra et al. | Oct 2007 | A1 |
20070237973 | Purdy et al. | Oct 2007 | A1 |
20070244542 | Greenan et al. | Oct 2007 | A1 |
20070244543 | Mitchell | Oct 2007 | A1 |
20070244547 | Greenan | Oct 2007 | A1 |
20070250154 | Greenberg | Oct 2007 | A1 |
20070255388 | Rudakov et al. | Nov 2007 | A1 |
20080002871 | Gunzert-Marx et al. | Jan 2008 | A1 |
20080015673 | Chuter | Jan 2008 | A1 |
20080015682 | Majercak et al. | Jan 2008 | A1 |
20080058918 | Watson | Mar 2008 | A1 |
20080109066 | Quinn | May 2008 | A1 |
20080114444 | Yu | May 2008 | A1 |
20080114445 | Melsheimer et al. | May 2008 | A1 |
20080140178 | Rasmussen et al. | Jun 2008 | A1 |
20080147173 | McIff et al. | Jun 2008 | A1 |
20080167704 | Wright et al. | Jul 2008 | A1 |
20080195191 | Luo | Aug 2008 | A1 |
20080249598 | Sherry | Oct 2008 | A1 |
20080262595 | Chu et al. | Oct 2008 | A1 |
20080262598 | Elmaleh | Oct 2008 | A1 |
20080269789 | Eli | Oct 2008 | A1 |
20080275540 | Wen | Nov 2008 | A1 |
20080275542 | LaDuca et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080294234 | Hartley et al. | Nov 2008 | A1 |
20080300665 | Lootz | Dec 2008 | A1 |
20080319528 | Yribarren et al. | Dec 2008 | A1 |
20090012597 | Doig et al. | Jan 2009 | A1 |
20090012602 | Quadri | Jan 2009 | A1 |
20090030497 | Metcalf et al. | Jan 2009 | A1 |
20090030502 | Sun et al. | Jan 2009 | A1 |
20090048663 | Greenberg | Feb 2009 | A1 |
20090054967 | Das | Feb 2009 | A1 |
20090062899 | Dang | Mar 2009 | A1 |
20090069881 | Chalekian et al. | Mar 2009 | A1 |
20090069882 | Venturelli | Mar 2009 | A1 |
20090082841 | Zacharias | Mar 2009 | A1 |
20090099648 | Yu | Apr 2009 | A1 |
20090099649 | Chobotov et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105809 | Lee et al. | Apr 2009 | A1 |
20090112233 | Xiao | Apr 2009 | A1 |
20090125096 | Chu et al. | May 2009 | A1 |
20090138067 | Pinchuk et al. | May 2009 | A1 |
20090149877 | Hanson et al. | Jun 2009 | A1 |
20090171437 | Brocker et al. | Jul 2009 | A1 |
20090227997 | Wang | Sep 2009 | A1 |
20090240316 | Bruszewski | Sep 2009 | A1 |
20090248134 | Dierking et al. | Oct 2009 | A1 |
20090254170 | Hartley et al. | Oct 2009 | A1 |
20090259290 | Bruszewski et al. | Oct 2009 | A1 |
20090287145 | Cragg et al. | Nov 2009 | A1 |
20100004728 | Rao | Jan 2010 | A1 |
20100029608 | Finley | Feb 2010 | A1 |
20100057186 | West et al. | Mar 2010 | A1 |
20100063575 | Shalev | Mar 2010 | A1 |
20100070019 | Shalev | Mar 2010 | A1 |
20100082091 | Berez | Apr 2010 | A1 |
20100161026 | Brocker et al. | Jun 2010 | A1 |
20100161028 | Chuter et al. | Jun 2010 | A1 |
20100211159 | Schmid | Aug 2010 | A1 |
20100249899 | Chuter et al. | Sep 2010 | A1 |
20100256725 | Rasmussen | Oct 2010 | A1 |
20100268327 | Bruszewski et al. | Oct 2010 | A1 |
20100312326 | Chuter et al. | Dec 2010 | A1 |
20100318171 | Porter | Dec 2010 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110125251 | Cottone | May 2011 | A1 |
20110152998 | Berez | Jun 2011 | A1 |
20110208289 | Shalev | Aug 2011 | A1 |
20110208296 | Duffy et al. | Aug 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110218607 | Arbefeuille et al. | Sep 2011 | A1 |
20110264184 | Heltai | Oct 2011 | A1 |
20110288622 | Chan et al. | Nov 2011 | A1 |
20120179236 | Benary | Jul 2012 | A1 |
20130158646 | Roeder | Jun 2013 | A1 |
20140350658 | Benary et al. | Nov 2014 | A1 |
20150073534 | Roeder et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2 497 704 | Mar 2004 | CA |
2817770 | Sep 2006 | CN |
1 177 780 | Feb 2002 | EP |
1 325 716 | Jul 2003 | EP |
1470797 | Oct 2004 | EP |
1759666 | Jul 2011 | EP |
2002-253682 | Sep 2002 | JP |
9806355 | Feb 1998 | WO |
9934748 | Jul 1999 | WO |
0028923 | May 2000 | WO |
03099108 | Dec 2003 | WO |
2004017868 | Mar 2004 | WO |
2005002466 | Jan 2005 | WO |
2005037138 | Apr 2005 | WO |
2005041781 | May 2005 | WO |
2005041783 | May 2005 | WO |
2006007389 | Jan 2006 | WO |
2006028925 | Mar 2006 | WO |
2006070372 | Jul 2006 | WO |
2007022495 | Feb 2007 | WO |
2007084547 | Jul 2007 | WO |
2007144782 | Dec 2007 | WO |
2008008291 | Jan 2008 | WO |
2008035337 | Mar 2008 | WO |
2008042266 | Apr 2008 | WO |
2008047092 | Apr 2008 | WO |
2008047354 | Apr 2008 | WO |
2008053469 | May 2008 | WO |
2008107885 | Sep 2008 | WO |
2008107885 | Sep 2008 | WO |
2008140796 | Nov 2008 | WO |
2009078010 | Jun 2009 | WO |
2009116041 | Sep 2009 | WO |
2009116042 | Sep 2009 | WO |
2009118733 | Oct 2009 | WO |
2010024869 | Mar 2010 | WO |
2010024879 | Mar 2010 | WO |
2010031060 | Mar 2010 | WO |
2010045238 | Apr 2010 | WO |
2010062355 | Jun 2010 | WO |
2010088776 | Aug 2010 | WO |
2010128162 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011004374 | Jan 2011 | WO |
2011007354 | Jan 2011 | WO |
2011007354 | Jan 2011 | WO |
2011055364 | May 2011 | WO |
2011064782 | Jun 2011 | WO |
2011064782 | Jun 2011 | WO |
2011067764 | Jun 2011 | WO |
2011070576 | Jun 2011 | WO |
2011080738 | Jul 2011 | WO |
2011095979 | Aug 2011 | WO |
2011106532 | Sep 2011 | WO |
2011106533 | Sep 2011 | WO |
2011106544 | Sep 2011 | WO |
Entry |
---|
“E-vita® open plus” product brochure (JOTEC GmbH, Hechingen, Germany), 2010. |
Fonseca A et al., “Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions,” J Invasive Cardiol 20(1):21-7 (Jan. 2008). |
Khlif H et al., “Contribution to the Improvement of Textile Vascular Prostheses Crimping,” Trends in Applied Sciences Research 6(9):1019-1027 (2011). |
An International Search Report dated Feb. 18, 2010, which issued during the prosecution of Applicant's PCT/IL08/000287. |
A Written Opinion dated Nov. 12, 2009, which issued during the prosecution of Applicant's PCT/IL08/000287. |
An International Search Report dated Apr. 28, 2011, which issued during the prosecution of Applicant's PCT/IB2010/052861. |
A Written Opinion dated Dec. 23, 2011, which issued during the prosecution of Applicant's PCT/IB2010/052861. |
An International Search Report dated Dec. 3, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000564. |
A Written Opinion dated Jan. 14, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000564. |
An International Search Report dated Nov. 5, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000549. |
A Written Opinion dated Jan. 9, 2012, which issued during the prosecution of Applicant's PCT/IL2010/000549. |
An International Search Report dated Oct. 6, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000999. |
An International Search Report dated Mar. 10, 2011, which issued during the prosecution of Applicant's PCT/IL2010/000917. |
An International Search Report dated Mar. 30, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001018. |
An International Search Report dated Jun. 16, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001037. |
An International Search Report dated Jul. 7, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001087. |
An International Search Report dated Aug. 11, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000135. |
An International Search Report dated Mar. 11, 2010, which issued during the prosecution of Applicant's PCT/IL2008/001621. |
A Written Opinion dated Jun. 15, 2010, which issued during the prosecution of Applicant's PCT/IL2008/001621. |
An International Search Report dated Sep. 3, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001312. |
A Written Opinion dated Jul. 31, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001312. |
An English translation of an Office Action dated Aug. 25, 2011, which issued during the prosecution of Chinese Patent Application No. 200880014919.9. |
An Office Action dated Nov. 12, 2010, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
An Office Action dated Apr. 27, 2011, which issued during the prosecution of U.S. Appl. No. 12/447,684. |
An Office Action dated Feb. 25, 2013, which issued during the prosecution of U.S. Appl. No. 13/031,871. |
An Office Action dated Feb. 27, 2013, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
An Extended European Search Report dated Dec. 13, 2012, which issued during the prosecution of Applicant's European App No. 08719912.1. |
An International Search Report together with Written Opinion both dated Sep. 6, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000190. |
An International Search Report together with Written Opinion both dated Aug. 31, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000148. |
An Office Action dated Oct. 11, 2012, which issued during the prosecution of U.S. Appl. No. 13/031,871. |
An Office Action dated Jun. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/808,037. |
An International Search Report together with Written Opinion both dated Sep. 24, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000060. |
An International Search Report together with Written Opinion both dated Oct. 1, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000241. |
An International Search Report together with Written Opinion both dated Oct. 4, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000269. |
An International Search Report together with Written Opinion both dated Nov. 27, 2012, which issued during the prosecution of Applicant's PCT/IL2012/000300. |
An Office Action dated Mar. 24, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
An Office Action dated Oct. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/529,936. |
An International Search Report together with Written Opinion both dated Jun. 14, 2013, which issued during the prosecution of Applicant's PCT/IL2012/050506. |
U.S. Appl. No. 61/219,758, filed Jun. 23, 2009. |
U.S. Appl. No. 61/221,074, filed Jun. 28, 2009. |
Fattori et al., Degenerative aneurysm of the descending aorta. Endovascular Treatment. pp. 1-11, 2007, European Association for Cardio-Thoracic Surgery. |
Van Prehn J et al., “Oversizing of aortic stent grafts for abdominal aneurysm repair: a systematic review of the benefits and risks,” Eur J Vasc Endovasc Surg. Jul. 2009;38(1):42-53. Epub May 9, 2009 (abstract only). |
An International Search Report dated May 23, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001087. |
An International Search Report dated Jun. 9, 2011, which issued during the prosecution of Applicant's PCT/IL2010/001018. |
Advisory Action, dated Feb. 13, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/807,880. |
Office Action, dated Feb. 28, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/512,778. |
Office Action, dated Mar. 28, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/519,971. |
Office Action, dated Jan. 28, 2014, issued by the State Intellectual Property Office of the People's Republic of China, in counterpart Application No. 201080036970.7. |
Office Action, dated Apr. 10, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/807,906. |
Office Action, dated Apr. 24, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/380,278. |
Office Action, dated Apr. 28, 2014, issued by the United States Patent and Trademark Office, in counterpart U.S. Appl. No. 13/939,798. |
Extended European Search Report, dated Feb. 24, 2014, issued by the European Patent Office, in counterpart Application No. 12803376.8. |
Communication dated Oct. 8, 2014, issued by the State Intellectual Property Office of the People's Republic of China in counterpart Application No. 201080036970.7. |
Non-final Office Action dated Feb. 5, 2015 in U.S. Appl. No. 13/384,075. |
European Search Report dated Feb. 26, 2015 in EP Application No. 12806964.8. |
International Search Report and Written Opinion dated Mar. 18, 2015 in PCT/IL2014/050973. |
English Translation of Office Action dated Mar. 19, 2015 in Chinese Application No. 201080036970.7. |
European Search Report dated Mar. 20, 2015 in EP Application No. 08861980.4. |
Restriction Requirement dated Feb. 23, 2015 in U.S. Appl. No. 13/513,397. |
Non-final Office Action dated Apr. 14, 2015 in U.S. Appl. No. 14/130,213. |
European Search Report dated Apr. 22, 2015 in EP Application No. 12828495.7. |
Number | Date | Country | |
---|---|---|---|
20130013051 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61267453 | Dec 2009 | US |