1. Field of the Technology
The present disclosure generally relates to hot isostatic pressing. Certain aspects of the present disclosure relate to canisters and methods for hot isostatic pressing.
2. Description of the Background of the Technology
Hot isostatic pressing, which is often referred to by the shorthand “HIPping”, is a manufacturing process for making large powder metallurgy articles, including, but not limited to, large cylinders. HIPping conventionally is used to consolidate metal and metal alloy powders into powder canister forging compacts, which may be cylindrical or have other billet shapes. The HIPping process improves the material's mechanical properties and workability for subsequent forging and other processing.
A typical HIP process includes loading powdered metal and/or powdered metal alloy (“metallurgical powder”) into a flexible membrane or a hermitic canister, which acts as a pressure barrier between the powder and the surrounding pressurizing medium. The pressurizing medium may be a liquid or, more commonly, an inert gas such as argon. In HIP processes in which a canister is used, the powder-loaded canister is placed in a pressure chamber and heated to a temperature at which the metallurgical powder inside the canister forms metallurgical bonds. The chamber is pressurized and held at high pressure and temperature. The canister deforms, and the metallurgical powder within the canister is compressed. The use of isostatic pressure ensures a uniform compaction pressure throughout the mass of metallurgical powder, which results in a homogeneous density distribution in the consolidated compact.
A HIPping canister may have a cylindrical shape or any other desired shape suitable for forming the desired compacted shape from metallurgical powder placed in the canister. One conventional HIPping canister design, shown schematically in
Conventional HIPping canister designs have several disadvantages. For example, it is difficult to clean the interior of conventional cylindrical HIPping canisters after assembly. Also, it may not be possible to completely fill the interior of a conventional HIPping canister with metallurgical powder due to the difficulty in moving the powder horizontally after it enters the canister through a fill stem. Certain HIPping canisters designs include multiple fill stems to improve canister filling and enhance degassing efficiency. Including additional fill stems, however, adds cost, provides additional points of possible canister failure during HIP, and typically has only a small effect on increasing vacuum degassing efficiency. Welds securing fill stems through the endplates (and securing the endplates to the canister body) are under extreme stress during HIP consolidation due to locally high distortion, and including multiple fill stems to address powder fill problems increase the risk of weld failure during HIP consolidation. Also, conventional canister designs including multiple fill stems must be inverted during HIPping to ensure that all stems are filled with metallurgical powder and to prevent stem collapse during consolidation, and this procedure increases risk to personnel and creates an opportunity for part damage.
Accordingly, there is a need for an improved HIPping canister design. Such a design preferably addresses powder filling problems associated with conventional canister designs, but without a requirement for including additional fill stems on the canister.
One non-limiting aspect of the present disclosure is directed to an endplate of a HIPping canister. The endplate comprises a central region and a main region extending radially from the central region and terminating in a corner about a periphery of the endplate. The corner includes a peripheral lip configured to mate with a body portion of the canister. The thickness of the endplate increases from the central region to the corner and defines a taper angle. An inner surface of the corner includes a radiused portion by which the main region smoothly transitions into the lip.
Another non-limiting aspect of the present disclosure is directed to a canister for HIPping a powdered material. The HIPping canister comprises a cylindrical body portion including a circular first end and a circular second end. A first endplate is welded to the circular first end of the body portion. A second endplate is welded to the circular second end of the body portion. The first endplate comprises a central region and a main region extending radially from the central region and terminating in a corner about a periphery of the first endplate. The corner includes a peripheral lip configured to mate with the circular first end of the body portion of the canister. The thickness of the first endplate increases from the central region to the corner and defines a taper angle. An inner surface of the corner includes a radiused portion by which the main region smoothly transitions into the lip. The first endplate further comprises a fill stem therethrough through which powder may be introduced into an interior volume of the HIPping canister.
Yet another non-limiting aspect of the present disclosure is directed to a method for HIPping a powdered material. The method comprises providing a HIPping canister comprising a cylindrical body portion including a circular first end and a circular second end. A first endplate is welded to the circular first end of the body portion. A second endplate is welded to the circular second end of the body portion. The first endplate comprises a central region and a main region extending radially from the central region and terminating in a corner about a periphery of the first endplate. The corner includes a peripheral lip configured to mate with the circular first end of the body portion of the canister. The thickness of the first endplate increases from the central region to the corner and defines a taper angle. An inner surface of the corner includes a radiused portion by which the main region smoothly transitions into the lip. The first endplate further comprises a fill stem therethrough through which powder may be introduced into an interior volume of the HIPping canister. At least one metallurgical powder is introduced into the interior volume of the HIPping canister through the fill stem. Air is evacuated from the interior volume of the HIPping canister through the fill stem. The fill stem is crimped to hermetically seal the interior volume from the external atmosphere, and the HIPping canister is hot isostatically pressed.
A further non-limiting aspect of the present disclosure is directed to a billet formed by HIPping a metallurgical powder. The HIPped billet comprises at least one substantially flat end face formed during HIPping. The substantially flat end face reduces or eliminates the need to machine the billet end face after HIPping. In one non-limiting embodiment, the billet comprises a nickel-base superalloy.
The features and advantages of methods and articles of manufacture described herein may be better understood by reference to the accompanying drawings in which:
The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of certain non-limiting embodiments according to the present disclosure.
It is to be understood that certain descriptions of the embodiments disclosed herein have been simplified to illustrate only those elements, features, and aspects that are relevant to a clear understanding of the disclosed embodiments, while eliminating, for purposes of clarity, other elements, features, and aspects. Persons having ordinary skill in the art, upon considering the present description of the disclosed embodiments, will recognize that other elements and/or features may be desirable in a particular implementation or application of the disclosed embodiments. However, because such other elements and/or features may be readily ascertained and implemented by persons having ordinary skill in the art upon considering the present description of the disclosed embodiments, and are therefore not necessary for a complete understanding of the disclosed embodiments, a description of such elements and/or features is not provided herein. As such, it is to be understood that the description set forth herein is merely exemplary and illustrative of the disclosed embodiments and is not intended to limit the scope of the invention as defined solely by the claims.
In the present description of non-limiting embodiments, other than in the operating examples or where otherwise indicated, all numbers expressing quantities or characteristics are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, any numerical parameters set forth in the following description are approximations that may vary depending on the desired properties one seeks to obtain in the subject matter according to the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter provided herein should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Also, any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited herein is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicants reserve the right to amend the present disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently disclosed herein such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. §112, first paragraph, and 35 U.S.C. §132(a).
The grammatical articles “one”, “a”, “an”, and “the”, as used herein, are intended to include “at least one” or “one or more”, unless otherwise indicated. Thus, the articles are used herein to refer to one or more than one (i.e., to at least one) of the grammatical objects of the article. By way of example, “a component” means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.
The present disclosure includes descriptions of various embodiments. It is to be understood that all embodiments described herein are exemplary, illustrative, and non-limiting. Thus, the invention is not limited by the description of the various exemplary, illustrative, and non-limiting embodiments. Rather, the invention is defined solely by the claims, which may be amended to recite any features expressly or inherently described in or otherwise expressly or inherently supported by the present disclosure.
As discussed above, conventional HIPping canister designs have several disadvantages. In addition to difficulties during the HIPping process associated with conventional canister designs, there may be disadvantages to the billets formed using conventional HIPping canisters. For example, it may be difficult to successfully forge certain nickel-base superalloy billets made by HIPping due to strain rate sensitivity cracking of the billets. The present inventors observed that the billet cracking during forging originated at sharp corners on the billet formed adjacent regions of the HIPping canister in which an endplate transitioned into the body portion of the canister. Providing an arched or dome-shaped endplate may reduce the incidence of this cracking phenomenon.
During the HIPping process, metallurgical power is consolidated and densified to full density through application of high temperature and isostatic pressure. The HIPping canister collapses during consolidation. Although the strain on the canister during HIPping is generally uniform, certain regions of the canister, such as corners, are under greater stress and highly localized strain. If, for example, the interior volume of a HIPping canister is not completely filled with metallurgical powder in a corner region where an endplate transitions into the body portion of the canister, the degree of localized strain in the region can be severe and may cause weld failure and resultant incomplete densification of the metallurgical powder.
An aspect of the present disclosure is directed to a HIPping canister endplate design that may reduce the stress concentration in the corner regions of the HIPping canister as the canister deforms during HIPping.
Still referring
Referring now to
With regard to an HIPping canister endplate according to the present disclosure, it will be understood, that the radiused inner surface region 226 need not have a circular cross-section and may have any cross-sectional shape that smoothly transitions from the main region 218 into the peripheral lip 224 and spreads out the stresses experienced in the corner 220 during HIPping. Non-limiting examples of other possible cross-sectional shapes for the curved inner surface region 226 include, for example, rounded and elliptical shapes.
In a non-limiting embodiment according to the present disclosure, the peripheral lip 224 of the endplate 210 includes a chamfer 228 that extends around the periphery of the endplate 210. The chamfer 228 is configured to accept a weld bead (not shown) securing the endplate 210 to the body portion (not shown) of the HIPping canister. In a non-limiting embodiment, the chamfer 228 comprises a chamfer width in a range if about 0.125 inch to about 0.25 inch and is angled relative to an axis of the endplate 210 so as to form a chamfer angle in a range of about 30° to about 60°, or about 45°.
In one non-limiting embodiment according to the present disclosure, the endplate 210 further comprises at least one fill stem 230. The at least one fill stem 230 is configured to allow powdered materials to be introduced into an interior volume of a HIPping canister to which the endplate 210 is secured. The fill stem 230 also allows gases to be removed from the interior volume of the HIPping canister prior to HIP consolidation. In a non-limiting embodiment, a single fill stem 230 is welded to the periphery of a bore formed through the central region 216 of the endplate 210. It will be understood that although a single fill stem 230 is shown in
In a non-limiting embodiment of endplate 210, the endplate 210 includes only a single fill stem 230. Multiple fill stems are commonly used on conventional endplates to improve the efficiency of filling the canister with metallurgical powder. Metallurgical powder tends to remain in a conical configuration during vibratory loading of a canister with the powder. Because of this tendency, it is difficult to cause metallurgical powder introduced into a HIPping canister through a fill stem to move outward in a horizontal direction and thereby fill all regions of the canister. Endplate 210, which is designed to include a taper angle, improves the likelihood of completely filling an interior volume of a HIPping canister with metallurgical powder. The radiused portion of the inner surface region 226 of the corner 220 of the endplate 210 also helps to better ensure complete filling of the interior volume with metallurgical powder. The tapered design and radiused inner surface region of endplate 210 promote the flow of metallurgical powder to the outside edges of the interior volume of the HIPping canister and better ensure that there are no gaps between the metallurgical powder and the internal walls of the canister.
Including only a single fill stem on the HIPping canister, such as single fill stem 230 of endplate 210, eliminates the need to flip the canister during filling or HIPping. A single fill stem canister design can utilize an intrusive rod for metallurgical powder location measurements. With conventional multiple-stem HIPping canister endplates, this may not be possible, and the canister must be physically inverted prior to HIPping. Inverting large HIPping canisters filled with metallurgical powder is difficult due to canister weight and risks canister damage. In addition, each fill stem necessarily is an additional point of penetration into the canister and is an additional point of possible canister failure during pressurization in the HIP process.
The present inventors have discovered that an endplate design including a tapered construction, such as included in, for example, endplate 210, provides possible additional benefits. One such benefit is the possible improvement of as-HIP yield. Using a HIPping canister including a conventional flat endplate yields a HIP billet having a concave end surface, which must be machined to a flat surface prior to forging. Embodiments of endplates according to the present disclosure may yield billets having a flat end face, or at least a flatter (less concave) end face than billets produced using a conventional flat endplate. Therefore, use of embodiments of the endplate and canister designs contemplated herein can reduce or eliminate the need for post-HIP machining to provide flat end surfaces on the HIP billet prior to upset forging. Reducing the need for post-HIP machining reduces costs and time, and also may eliminate the need for a processing step that can result in part failure. Endplate designs herein also may add strength to the corner region of the HIP billet because consolidation involves more side-face movement than using flat endplates.
Use of embodiments of the endplate and canister designs contemplated herein including a tapered inner face and a corner including a radiused inner surface also may improve internal cleanliness of the canister. Specifications for powder metallurgy products may necessitate extreme cleanliness of the HIPping canister's internal surfaces during the HIPping process. It has been found that certain endplate designs as disclosed herein facilitate drainage from the interior volume of the canister during cleaning and water or powder purging.
Endplates for HIPping canisters typically are electropolished prior to use to improve the cleanliness of the final part. It has been observed that endplate design embodiments contemplated herein including a tapered inner face and a corner including a radiused inner surface may be more evenly electropolished. Thus, the tapered and radiused internal surfaces of certain embodiments of endplates according to the present disclosure improve canister cleanliness and enhance processing efficiency.
An additional advantage of certain endplate embodiments according to the present disclosure is that the design including tapered and radiused surfaces reduces the concavity of the end surfaces during HIP consolidation. The tapered dome shape and round corner of the endplate adds strength to the corner region and consolidation involves more side-face movement. The resulting flat-end consolidated billet is readily upset forged during subsequent forming operations.
It also has been determined that the radiused inner surface of the corner of certain endplate embodiments according to the present disclosure, such as endplate 210, reduces stress concentrations on the weld joint between the endplate and the body portion of the HIPping canister during HIP consolidation. As shown in
In non-limiting embodiments, an endplate according the present disclosure consists of or comprises low carbon steel, mild steel, or stainless steel. In a specific embodiment, an endplate according to the present disclosure is fabricated from AISI T-304 stainless steel (UNS S30400). In other non-limiting embodiments, an endplate according to the present disclosure consists of or comprises a nickel base superalloy, such as, but not limited to, an alloy selected from Alloy 600 (UNS N06600), Alloy 625 (UNS N06625), and Alloy 718 (UNS N07718). It will be understood, however, that an endplate according to the present disclosure may be made from any metal or metallic alloy compatible with the metallurgical powder to be included in the HIPping canister and having properties suitable for use in the HIPping process. In a non-limiting embodiment, at least a portion of the endplate is electropolished and has an electropolished finish, which may facilitate powder filling and improve cleanliness of the interior volume of the HIPping canister. In still another non-limiting embodiment, an endplate according to the present disclosure exhibits a surface roughness of about or no greater than 125 RMS (root mean square). Any technique useful for reducing surface roughness of the inner surfaces of the endplate may enhance powder filling and/or cleanliness of the interior volume of the canister.
Endplates constructed according to the present disclosure may be generally circular and configured to fit a cylindrical body portion of a HIPping canister. However, it will be understood that the endplates according to the present disclosure can be of any shape designed to fit the body portion of the HIPping canister to be provided. Regardless of overall shape, any such endplate embodiment according to the present disclosure will embody the tapered inner face and/or corner radiused inner surface features described herein.
Referring now to
Referring now to
Still referring to the non-limiting embodiment of
In a non-limiting embodiment according to the present disclosure, the peripheral lip 224 of the endplate 210, 304 includes a chamfer 228. The chamfer 228 is configured to accept a weld bead 308 for welding the endplate 210, 304 to the body portion 302 of a hot isostatic pressing canister 300. In a non-limiting embodiment, the chamfer 228 may comprise a chamfer length in a range of about 0.125 inch to about 0.25 inch, and a chamfer angle in a range of about 30° to about 60°, or about 45°.
In non-limiting embodiments, an endplate, fill stem, and canister body portion according the present disclosure consists of or comprises low carbon steel, mild steel, or stainless steel. In a specific embodiment, an endplate, fill stem, and canister body portion according to the present disclosure is fabricated from AISI T-304 stainless steel (UNS S30400). In other non-limiting embodiments, an endplate, fill stem, and canister body portion according to the present disclosure consists of or comprises a nickel base superalloy, such as, but not limited to Alloy 600 (UNS N06600), Alloy 625 (UNS N06625), or Alloy 718 (UNS N07718). It will be understood, however, that an endplate, fill stem, and canister body portion according to the present disclosure may be made from any metal or metallic alloy compatible with the metallurgical powder to be included in the HIPping canister and having properties suitable for use in the HIPping process.
Referring to the flow diagram of
Now referring to the non-limiting schematic example shown in
The examples that follow are intended to further describe certain non-limiting embodiments, without restricting the scope of the present invention. Persons having ordinary skill in the art will appreciate that variations of the following examples are possible within the scope of the invention, which is defined solely by the claims.
Two HIPping canister endplates were constructed according to the diagram in
A HIPping canister according to an embodiment of the present disclosure was made as follows. A 62.75 inch wide sheet of 0.5 inch thick AISI T-304 stainless steel was submerged arc welded to form a cylindrical canister body portion having an outside diameter of 24.28 inch. All welds were made according to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code. The welded side seam was X-ray inspected to ensure integrity. Endplates from Example 1 were TIG welded to each end of the stainless steel cylinder to form a HIPping canister. A 1-inch diameter bore was provided in the center of one of the endplates, while the second endplate was solid and lacked a bore. A 13-inch long T-304 stainless steel tube having a 1.5 inch outside diameter and a 1.0 inch inside diameter was TIG welded to the periphery of the bore to provide a fill stem to allow powder to be introduced into, and air to be removed from, the interior volume of the HIPping canister.
The interior volume of the HIPping canister of Example 2 was thoroughly cleaned with abrasive cloth (flap wheel), rinsed with deionized water, and purged through the fill stem. The interior wall of the canister was then electropolished using an electrochemical process, rinsed with deionized water, and dried. After drying, the HIP canister was filled with 5471.5 pounds of RR1000 alloy powder. The powder-filled HIPping canister was placed into a out-gas furnace and evacuated to a pressure of less than 1 Torr, and the fill stem was crimped to hermetically seal the canister. The canister was then placed into a HIP furnace. The HIP furnace was pressurized with argon gas and heated according to the temperature-time plot of
After HIPping, the HIPped canister including the consolidated billet therein made in Example 3 is cooled to room temperature. The canister may be pickled in hydrochloric or sulfuric acid to dissolve the canister and expose the RR1000 alloy billet. The ends of the alloy billet are flatter than the ends of a like billet made by a HIP process in an identical fashion but using a conventional HIPping canister.
It will be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although only a limited number of embodiments of the present invention are necessarily described herein, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.
This application claims priority under 35 U.S.C. §120 as a continuation of co-pending U.S. patent application Ser. No. 13/309,865, filed Dec. 2, 2011, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3431597 | Nowak et al. | Mar 1969 | A |
3992202 | Dulis et al. | Nov 1976 | A |
4544523 | McCollough et al. | Oct 1985 | A |
4935198 | Tornberg | Jun 1990 | A |
5989487 | Yoo et al. | Nov 1999 | A |
6309591 | Yoo et al. | Oct 2001 | B1 |
6623690 | Rizzo et al. | Sep 2003 | B1 |
6773824 | Rizzo et al. | Aug 2004 | B2 |
6890370 | Merrick et al. | May 2005 | B2 |
7208116 | Manning et al. | Apr 2007 | B2 |
7927085 | Hall et al. | Apr 2011 | B2 |
8303289 | Goller et al. | Nov 2012 | B2 |
8376726 | Goller et al. | Feb 2013 | B2 |
9120150 | Lipetzky et al. | Sep 2015 | B2 |
20040105774 | Del Corso et al. | Jun 2004 | A1 |
20050044800 | Hall et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
101407907 | Apr 2009 | CN |
102126023 | Jul 2011 | CN |
102189261 | Sep 2011 | CN |
2286942 | Feb 2011 | EP |
Entry |
---|
Crucible Compaction Metals P/M Low Carbon Astroloy, Supersolvus, printed from http://www/matweb.com/search/datasheet—print.aspx?matguid=e1bac255c1964e19a43b29 . . . on Aug. 17, 2011, 2 pages. |
Gayda, John, “NASA/TM-2001-210814 High Temperature Fatigue Crack Growth Behavior of Alloy 10”, Glenn Research Center, Cleveland, Ohio, National Aeronautics and Space Administration, Apr. 2001, 7 pages. |
Advanced Solutions for Higher Performance and Longer Life, ATI Powder Metals Applications, printed from http://www.alleghenytechnologies.com/atipowder/applications/default.asp on Sep. 22, 2011, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150360290 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13309865 | Dec 2011 | US |
Child | 14836187 | US |