Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Enterprises may store and maintain customer data that includes information about all of their customers. In some cases, the customer data may be spread across multiple different data storage systems. In such cases, if the system receives a request to search the customer data for some information, the system would have to look in all of the different data storage systems holding the customer data for the requested information. The multiple data storage systems may include duplicative information, so before returning the requested customer data, the system may need to perform additional processing on the collection of customer data retrieved from multiple data storage systems (e.g., deduplicate, unify, etc.). The different data storage systems may have different protocols so each of those storage systems may involve generating a data request that is customized for the storage system. Further, the number of such data storage systems may vary depending on the size of the data being stored, and the system may need to access tens, hundreds, or even thousands of these data storage systems depending on the nature of the data request.
To address some of these problems, the enterprise may hire outside consultants to develop implementations that would satisfy the needs of the enterprise. However, such an approach may take weeks or months and also cost the enterprise a great deal of monetary expense.
Thus, an improved method of allowing users to perform a diversity of tasks in a relatively simple manner is desired.
According to aspects of the present disclosure, by integrating an endpoint management system and a virtual compute system configured to provide low-latency computational capacity and handle code execution requests, delay (sometimes referred to as latency) associated with handling user requests to the endpoint management system can be significantly reduced.
Generally described, aspects of the present disclosure relate to the integration between (i) an endpoint management system by which users, such as application developers, can manage and enable exposure of application programming interfaces (“APIs”) usable to cause execution of program code on a remote or third party system, and (ii) a system for providing general compute capacity. Specifically, systems and methods are disclosed which facilitate integration between a virtual compute system that provides low-latency computational capacity and an endpoint management system that facilitates the handling of user requests to perform certain tasks by utilizing the services provided by the virtual compute system. The endpoint management system sends requests to execute program codes to the virtual compute system based on requests received from one or more user computing systems. Further, the endpoint management system generates responses back to the user computing systems based on the responses received from the virtual compute system.
Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.
Overview of the Computing Environment
With reference to
In the example of
The user computing devices 102 access other components (e.g., endpoint management system 106, virtual compute system 110, and auxiliary services 112) of the computing environment 100 over the network 104A. The endpoint management system 106 may comprise one or more servers or system (e.g., a proxy fleet) which may be configured to manage execution of endpoint or backend APIs (e.g., as executed on the virtual compute system 110 or the backend system(s) 114). The endpoint management system 106 may access other components of the computing environment 100, such as the virtual compute system 110 or the backend system(s) 114 over the network 104B. The networks 104A and/or 104B may be any wired network, wireless network, or combination thereof. In addition, the networks 104A and/or 104B may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104A and/or 104B may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104A and/or 104B may be a private or semi-private network, such as a corporate or university intranet, or a publicly accessible network such as the Internet. In one embodiment, the network 104B may be co-located or located in close proximity to the endpoint management system 106, such that communication over the network 104B between the endpoint management system 106 and backend system(s) 114 may benefit from increased performance (e.g., faster and/or more efficient communication). The network 104A and/or 104B may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104A and/or 104B can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104A and/or 104B may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The endpoint management system 106 and the virtual compute system 110 are depicted in
Further, the various components of the computing environment 100 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
In the example of
In the example of
The virtual compute system 110 maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. Maintaining the pool of virtual machine instances may involve creating a new instance, acquiring a new instance from an external instance provisioning service, destroying an instance, assigning/reassigning an instance to a user, modifying an instance (e.g., containers or resources therein), etc. The virtual machine instances in the pool can be designated to service user requests to execute program codes. In the present disclosure, the phrases “program code,” “user code,” and “cloud function” may sometimes be interchangeably used. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
Although not illustrated in the example environment of
In the example of
The virtual compute system 110 may be configured to handle requests to execute one or more program codes on the virtual compute system 110. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send a code execution request to the virtual compute system 110. Similarly, the endpoint management system 106 may send a request to the virtual compute system 110 to execute some program codes associated with a request received from a user of the user computing device 102. The virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying). Additional details of the virtual compute system 110 can be found in application Ser. No. 14/502,992, filed Sep. 30, 2014, titled “THREADING AS A SERVICE,” which is incorporated by reference in its entirety.
The auxiliary services 112 may include a monitoring service for managing monitoring information received from the virtual compute system 110, such as statuses of containers and instances on the virtual compute system 110; a logging service for managing logging information received from the virtual compute system 110, such as activities performed by containers and instances on the virtual compute system 110; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service).
The backend system(s) 114 may include legacy systems that have protocols that are not compatible with those of the user computing devices 102 or otherwise not easily accessible by the user computing devices 102. The backend system(s) 114 may also include devices that have device-specific protocols (e.g., IoT devices).
Integration Between Endpoint Management System and Virtual Compute System
In some embodiments, the endpoint management system 106 receives a request to access one or more resources maintained by the endpoint management system 106 from a user of the user computing devices 102. Upon receiving such a request, the endpoint management system 106 may communicate with other components of the computing environment 100 in order to provide what was requested by the user. In some embodiments, the request may include an HTTP request that specifies the method and resource combination and one or more other parameters that may be used by the endpoint management system 106 in performing the requested task. For example, if the requested task is resizing an image that is provided along with the HTTP request, the endpoint management system 106 may relay that request to one of the other components (e.g., the virtual compute system 110) of the computing environment 100 that is suited to perform such a task. The endpoint management system 106 may provide to the virtual compute system 110 all the information necessary to perform the given task. For example, the endpoint management system 106 may provide to the virtual compute system 110 the image to be resized and specify the program code to be used to performing the resizing. In some embodiments, the endpoint management system 106 maintains a database containing a list of program codes that are associated with different combinations of user parameters, requested resources, methods, or any combinations thereof. For example, when a particular resource is accessed by the user (e.g., by using a resource identifier), the endpoint management system 106 may determine the program code to be used to perform the requested task based on the information stored in the database. In some embodiments, the endpoint management system 106 provides the location of the program code associated with the given task to the virtual compute system 110, and the virtual compute system 110 downloads the program code at the provided location and executes the program code to perform the given task (e.g., image resizing). Once the endpoint management system 106 hears back from the virtual compute system 110 and is provided with the resized image, the endpoint management system 106 may further provide the resized image to the user who initiated the original request.
In some embodiments, the request made to the virtual compute system 110 by the endpoint management system 106 results in an error. The error may be caused by the way the requested is made (e.g., from the user computing devices 102 to the endpoint management system 106 or from the endpoint management system 106 to the virtual compute system 110). In another example, the error may be caused by the way the program code is written (e.g., the program code may contain bugs). In yet another example, the error may be caused by a mishandling of the request by the virtual compute system 110 (e.g., computing resource automatically allocated to handle the request turned out to be too low). In any of these circumstances, the response handler 108 may determine whether or not there is an error, and further determine how to complete the original request by the user in view of the identified error.
The per-request scaling that the virtual compute system 110 provides may be lined up with the per-request API endpoints of the endpoint management system 106 to provide users the ability to change the code at any moment. For example, the virtual compute system 110 includes pre-warmed instances that can provide low-latency compute capacity, which allows the endpoint management system 106 to acquire new compute capacity without having to wait for an extended period of time (e.g., warmup time needed to get new capacity online, which could take minutes, during which API requests may be rejected or delayed). Further, the integration of the endpoint management system 106 with the virtual compute system 110 allows users to run arbitrary, Turing-complete code, and self-service change at any moment.
In some embodiments, the virtual compute system 110 may call back into the endpoint management system 106 access two or more enterprise systems in order to compose the results. The virtual compute system 110 may provide the custom transforms and higher-order function capability in this scenario, but the endpoint management system 106 may also add value by handling the throttling, authentication, telemetry, protocol conversion, etc. into the backend (or even on the premises) third-party enterprise services. For example, the coupling of the access, authentication, and other endpoint controls provided by the endpoint management system 106 with a low latency, request-scaled cloud compute capacity provided by the virtual compute system 110. The endpoint management system 106 provides customer-owned and managed HTTP[S] endpoints for program codes available to be executed on the virtual compute system 110, including vanity URLs, customer-controlled authorization mechanisms, public (HTTP versus HTTPS) and other “web app” features.
Error Handling
For example, the response handler 108 may have knowledge of the protocols used by the virtual compute system 110, and how function errors are transmitted back to the endpoint management system 106. For example, the response handler 108 may be able to determine, based on the response received from the virtual compute system 110, that the response handler 108 is communicating with the virtual compute system 110. Based on the determination that the response handler 108 is communicating with the virtual compute system 110, the response handler 108 can determine what to look for in the response from the virtual compute system 110. The response received from the virtual compute system 110 may include a message (e.g., generic description of the result) and a detail (e.g., stack trace). In some embodiments, the response handler 108 may determine a list of error messages based on the identity of the system that the response handler 108 is communicating with, and determine whether the request to the system has resulted in an error based on whether the response from the system contains any of the error messages in the list. If the response handler 108 determines that the request to the system (e.g., virtual compute system 110) has resulted in an error, the response handler 108 generates an error response back to the user who initiated the original request.
In some implementations, the response handler 108 uses a set of selectors that can be used to determine, based on the information in the response received from the virtual compute system 110, which response type should be provided back to the user. In the example of HTTP requests, the response back to the user may include a particular HTTP status code and a particular body. For example, the response handler 108 may transform a success response, which indicates that the execution on the virtual compute system 110 was a success, into a failure, and conversely, transform a failure response, which indicates that the execution on the virtual compute system 110 was a failure, into a success, before providing the response back to the caller. In one example, if the response handler 108 finds the word, “throttle” in the response from the virtual compute system 110, the response handler 108 may return a 4xx HTTP status code instead of a 5xx. In another example, if a response from the virtual compute system indicated that the program code successfully executed but the body of the response from the virtual compute system includes the phrase, “could not located database,” the response handler 108 may transform the response into an error (e.g., 5xx status code instead of 2xx) before providing the response back to the caller. The response handler 108 may also pull information out from that response that was passed back from the virtual compute system 110. The response handler 108 can extract a portion (e.g., the payload) of the response received from the virtual compute system 110 and place the extracted portion into the response provided back to the user. In some embodiments, the extracted portion is transformed into a format that is suitable for the particular response back to the user.
Examples Errors in Virtual Compute System
As described above, the virtual compute system 110 may cause the error by the mishandling of the request or the program code that is otherwise error-free. For example, the program code (e.g., written in Java or Node.js) running inside the virtual compute system 110 (e.g., one of the containers created by the virtual compute system 110) may throw an uncaught top-level exception. In such a case, the response handler 108 may extract the exception and generate, based on the extracted exception, an error code that can be included in the response sent back to the user. For example, the response handler 108 may be configured to shape the response back to the user in one way for out of memory exceptions, but configured to shape the response in another way for stack overflow exceptions. In another example, the amount of computing resources specified by the virtual compute system 110 for executing the program code may turn out to be insufficient. For example, during execution, the program code may exceed the amount of allocated resources (e.g., disk, memory, processing power, etc.).
Response-Dependent API Calls
In some embodiments, the endpoint management system 106 may, based on the response received from the virtual compute system 110 or other systems in the computing environment 100 (e.g., backend system(s) 114), identify the characteristics of the received response, determine whether the destination where the result of the call is to be sent is adapted to handle results of this type. If the endpoint management system 106 determines that the destination (e.g., user computing device 102, or other components in the computing environment 100) is adapted to handle the results of this type (e.g., the result is in the format in which the destination system expects the results to be), the endpoint management system 106 may pass on the results without further processing the results. On the other hand, the endpoint management system 106 may process the results to transform the results into the format expected by the destination system. In some embodiments, the user (or system) who initiated the original request may specify (e.g., via a user interface provided by the endpoint management system 106) the details of the transform. For example, the user may have specified to the endpoint management system 106 how to transform the response from Format A to Format B.
In some embodiments, the endpoint management system 106 may have multiple ways of completing the received request, and all of those ways may be parallel and equivalent. In such embodiments, the endpoint management system 106 may try the different ways (e.g., by initiating a request corresponding to each of such ways) in parallel or in sequence, and return the first and/or fastest result to the sender of the request. For example, if the endpoint management system 106 has access to a storage service that includes many different repositories, the endpoint management system 106 may query multiple repositories in parallel for an answer, and the first repository that sends back a response to the endpoint management system 106 will be chosen and the endpoint management system 106 will forwarded the results of that repository back to the original caller.
In another example, the endpoint management system 106 may have access to an old customer system and a new customer system. The old customer system contains customer data associated with customers who became customers 5 years ago. Customer data associated with customers who became customers within the last 5 years is stored in the newer customer system. When the endpoint management system 106 receives a request, the endpoint management system 106 may not know whether the request is related to the old customer system or the new customer system. In such a case, the endpoint management system 106 can send a request to both places in parallel or in sequence (e.g., try the old system first, and then the new system if the old system fails or does not return a proper response).
Simple Pass-Through
In some embodiments, the endpoint management system 106 does not perform any transformation on the result returned by the virtual compute system 110. For example, the developer may be happy to have the data that comes back from the backend system, and leave it in its raw form. In one example, a picture that is uploaded on a storage system may trigger an event to be generated. The event may cause the virtual compute system to execute a program code associated with the event. The program code may, upon execution, cause the virtual compute system to go download the picture that was uploaded to the storage service and transform the picture into a different size and save it back to the storage service. Based on this functionality, the developer may wish to make this functionality available to external people. So the developer may create a new API (e.g., http://imageresizing123.com/api) and pass in some parameters (e.g., height and width) as part of the API. The information in the payload (e.g., body of the request) may be the binary data of the image. That information would just be passed through untouched. The endpoint management system 106 may determine which program code to have executed based on a mapping between the APIs and the program codes. This information would be sent off to the virtual compute system 110, and the virtual compute system 110 would perform its processing and respond back with different binary data (e.g., image of a different size). The endpoint management system 106 process the received response and determine that the API call was successful, and transfer the data back to the caller untouched.
As discussed herein, the identity of the user calling the API may be different from the identity of the user creating, managing, and otherwise associated with the API. In the example above, the former (e.g., first user) may be an end user who desires to resize pictures using an API and the latter (e.g., second user) may be a developer who configures such an API with the endpoint management system 106 and/or the virtual compute system 110 makes that API available to the end user. A relationship may be established between the first user and the second user before the first user is allowed to access the API associated with the second user. In some embodiments, the second user may create, manage, or otherwise be associated with a program code (e.g., a cloud function that can be executed on the virtual compute system 110), and make the program code available for use by the first user, either independently or in connection with one of APIs associated with the second user.
In some embodiments, only the first user, but not the second user, may be authorized to directly access or otherwise associated with the endpoint management system 106 and/or the virtual compute system 110. For example, the first user may be a customer of the endpoint management system 106 and/or the virtual compute system 110, and the first user may be able to directly access the services (e.g., API management, API proxy service, provision of compute capacity, etc.) provided by the endpoint management system 106 and/or the virtual compute system 110. On the other hand, the second user may not be a customer of either systems. In such an example, APIs and program codes may be invoked on the endpoint management system 106 and/or the virtual compute system 110 on behalf of the first user, based on a request from the second user who may not be a customer of either the endpoint management system 106 or the virtual compute system 110.
Higher Ordered Functions
In some embodiments, the endpoint management system 106 may take computations, transformations, other functions as arguments. For example, a developer may use the endpoint management system 106 to define an API called “bucket-runner” API. The API would take a collection of names of storage buckets, and the name of a program code that may be executed in the virtual compute system 110. The endpoint management system 106 cause the virtual compute system 110 to in sequence go to each of those storage buckets and run the program code over all the items in the storage bucket. For example, if the specified program code is a picture resizing function, the developer can use the API to perform bulk resizing. Similarly, the developer may use the same API to perform bulk deletion, bulk listing, etc.
The integration of the endpoint management system 106 with the virtual compute system 110 may allow users to create a parallelizable way to search the files in a storage system. For example, different users may have different ideas of the different functions (e.g., searching for hits, collecting search results, sorting search results, etc.) that may be performed on the items in the file system. In such an example, the API defined in the endpoint management system 106 may take four parameters: (i) identity of the storage system, (ii) a search function, (iii) a collect function, and (iv) a sort function. The search function may indicate whether a given entry in the storage system is a match (e.g., based on a comparison to a searched item), the collect function may return a set of values based on a set of keys used for the storage system, and the sort function may return a sorted set of values based on a provided set of values.
In order to avoid unnecessary round trips between the client/device and the server/cloud, the virtual compute system 110 may provide higher-ordered functions through the endpoint management system 106 that compose or choreograph multiple customer functions. For example, the virtual compute system 110 may serialize two or more functions (e.g., perform f( ) and g( ) inside a single program code and return the results), parallelize two or more functions (e.g., perform f( ) and g( ) in parallel, possibly in two separate program codes, and return the results when both functions finish executing), compose two or more functions (e.g., perform g(f( ))), perform iteration (e.g., perform f( ) repeatedly over a set of data), and/or perform aspect-oriented programming (e.g., provide a function that is given the parameters and responses of every normal function to create an automatic but fully customizable logger). In the example of aspect-oriented programming, users may change the logger's behavior but may not able to change when/where the logger is applied or the set of permissions that the logger has.
In some cases, the endpoint management system 106 can retrieve a function (e.g., the logger) that was used in connection with an earlier request and then apply the function to later requests (e.g., to actually log a normal function invocation) without requiring either function to be predetermined or fixed by the endpoint management system 106.
IoT Devices
In some embodiments, the endpoint management system 106 provides to the user computing devices 102 a more convenient access to the backend system(s) 114 or other systems or devices. In some of such embodiments, the endpoint management system 106 may communicate with an IoT device with device-specific protocols. For example, the IoT device may have a temperature sensor, and the user can request temperature information from the IoT device. In another example, the IoT device may be a thermostat and the user may be able to cause it to set the temperature to a given temperature. Depending on what the device is, it can have different capabilities. All those capabilities may be managed by some type of API (e.g., backend API) that would exist for manipulating the capability. The endpoint management system 106 may perform the necessary protocol translation and/or data manipulation to allow users to seamlessly communicate with such IoT devices without having to worry about device-specific protocols or requirements. For example, the endpoint management system 106 may query the IoT devices for data or send commands to the IoT devices. The responses received from those IoT devices may be used to shape the response back to the caller based on the requirements of the caller.
Synchronous Invocation Mode
In some embodiments, where events might be generated from various sources, and that would cause some program code to run, there may not necessarily be anybody listening for an answer back from that code execution. In other embodiments, there may be somebody waiting on the other end, which in this case is the call being made through the endpoint management system 106. For example, a call may come in through an API, and the endpoint management system 106 may send a request to execute a program code based on the call to the virtual compute system 110.
For example, if the program code involves adding two numbers and the API call had two strings instead of two numbers, the endpoint management system 106 may, in some embodiments, generate and send to the virtual compute system 110 a request including the program code and the two strings. The virtual compute system 110 may return an error based on the discrepancy between what the program code is expecting as arguments and the provided arguments.
The error that the program code produces is information regarding how the execution of the program code failed. However, the response that the endpoint management system 106 receives from the virtual compute system 110 may indicate that the request to the virtual compute system 110 was successfully completed (because the virtual compute system 110 actually performed as promised). For example, the virtual compute system 110 processed the code execution request, started the program code running, the program code finished running, and the program code came back with some data (which happens to be error information in this example). The endpoint management system 106 may process this error information (e.g., via the error handler 108) and generate a response to be sent back to the caller. The endpoint management system 106 may use pattern matching to determine what kind of response should be generated.
Pattern Matching
The user may provide pattern matching definitions to the endpoint management system 106 that define what kind of information should be included in the response back to the caller under which circumstances. For example, one of the errors that the virtual compute system 110 may return is “invalid arguments.” The pattern matching definition defined by the user may provide that if the response from the virtual compute system 110 contains the string “invalid arguments” in the error message, and the endpoint management system 106 should return a HTTP status code 400, which specifies that the user made an error (e.g., passed on bad arguments). The pattern matching definition may further provide that the string “invalid parameters” should be included in the body of the response.
Virtual Compute System as a Validator
In some embodiments, the endpoint management system 106 uses the virtual compute system 110 as a validator. For example, a backend system 114 (e.g., a legacy system) may simply crash upon being supplied with incorrect arguments or upon encountering other errors, instead of returning a nicely formatted error message. In such an example, the endpoint management system 106, before causing the backend system 114 to execute a given program code, the endpoint management system 106 may first cause the virtual compute system 110 to execute the program code for any errors. In some embodiments, assuming the arguments are determined to be valid, instead of actually performing the operation, the endpoint management system 106 may forward a request to execute the program code to the legacy system knowing that the arguments are valid.
Example Configuration of Response Handler
The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the response handler 108. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. Although the example of
In addition to and/or in combination with the user interface unit 182, the memory 180 may include a request and response parsing unit 186 and a pattern matching unit 188 that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, request and response parsing unit 186, and pattern matching unit 188 individually or collectively implement various aspects of the present disclosure, e.g., parsing the response received from other systems of the computing environment 100, performing a pattern matching based on pattern matching definitions accessible by the endpoint management system 106, generating a response back to the original user initiating the request, etc. as described herein.
The request and response parsing unit 186 processes the response received from other systems in the computing environment 100 (e.g., virtual compute system 110), and extracts information embedded in the response. The pattern matching unit 188, based on the information extracted by the request and response parsing unit 186, performs a pattern matching using the definitions previously provided to the endpoint management system 106 by the user.
While the request and response parsing unit 186 and the pattern matching unit 188 are shown in
Example Response Handling Routine #1
Turning now to
At block 302 of the illustrative routine 300, the endpoint management system 106 receives a first request to execute a proxy API associated with a first resource of a plurality of resources maintained by endpoint management system 106. For example, the first request may include an HTTP request that specifies the method and resource combination and one or more other parameters that may be used by the endpoint management system 106 in performing the requested task.
Next, at block 304, the endpoint management system 106 determines, based at least in part on the first request and the proxy API, an API mapping definition associated with the proxy API. For example, the endpoint management system 106 may determine based on the API mapping definition any appropriate data transformations and mappings of the associated input parameters to input parameters for a backend API or other program codes.
At block 306, the endpoint management system 106 outputs a second request to execute a program code on the virtual compute system 110 based on the API mapping definition associated with the proxy API. The virtual compute system 110 may be configured to provide request-based computational capacity and execute program codes in one or more containers created thereon. The second request may contain information associated with the first resource (e.g., identified by a resource identifier), such as one or more parameters included in the first request and/or a program code (or an indication of where the program code is stored). For example, based on the particular resource accessed by the user (e.g., identified using a resource identifier included in the request), the endpoint management system 106 may determine the program code to be used to perform the requested task based on the information available to the endpoint management system 106 (e.g., a database containing a list of program codes that are associated with different combinations of user parameters, requested resources, methods, or any combinations thereof).
At block 308, the endpoint management system 106 receives a first response from the virtual compute system 110. The first response may contain information regarding the first resource and/or the result of executing the program code associated with the first resource. The response may contain information regarding an error that occurred during the execution of the program code associated with the first resource.
At block 310, the endpoint management system 106 outputs a second response based on the first response received from the virtual compute system 110. The endpoint management system 106 may output the second response back to the user who initiated the first request. The second response may include a portion that is identical to another portion of the first response received from the virtual compute system 110. In another example, the endpoint management system 106 processes a portion of the first response and includes the processed portion in the second response.
While the routine 300 of
Example Response Handling Routine #2
Turning now to
At block 402 of the illustrative routine 400, the endpoint management system 106 receives from a caller a request to access a first resource of a plurality of resources maintained by the endpoint management system 106. The request may contain one or more request parameters and a uniform resource identifier (URI) associated with the first resource. The URI may identify a program code to be executed in connection with completing the request, and the request parameters may identify the arguments with which the program code is to be executed.
Next, at block 404, the endpoint management system 106 generates a code execution request to execute the program code associated with the first resource. The code execution request may contain information identifying the program code and information that indicates the identity of the caller. In some embodiments, the code execution request may indicate, additionally or alternatively, that the request is being sent by the endpoint management system 106 and/or that the program code is associated with a particular user of the endpoint management system 106 different from the caller.
At block 406, the endpoint management system 106 sends the generated code execution request to the virtual compute system 110 to cause the virtual compute system 110 to execute the program code identified by the code execution request.
At block 408, the endpoint management system 106 receives a response from the virtual compute system, wherein the response is based on executing the program code associated with the first resource.
At block 410, the endpoint management system 106 processes the received response based on a pattern matching definition made available (e.g., by a user of the endpoint management system 106 who defined the API associated with the first resource) to the endpoint management system prior to the receipt of the request to access the first resource. The pattern matching definition may include a plurality of conditional checks configured to determine whether a corresponding plurality of strings are contained in the received response.
At block 412, the endpoint management system 106 sends a return response to the caller based on a result of the processing based on the pattern matching definition.
While the routine 400 of
Illustratively, the client 102 can be utilized by a customer of the service provider computer network 501. In an illustrative embodiment, the client 102 includes necessary hardware and software components for establishing communications with various components of the service provider computer network 501 over the communication networks 104A and/or 104B, such as a wide area network or local area network. For example, the client 102 may be equipped with networking equipment and browser software applications that facilitate communications via the Internet or an intranet. The client 102 may have varied local computing resources such as central processing units and architectures, memory, mass storage, graphics processing units, communication network availability and bandwidth, etc. In one embodiment, the client 102 may have access to or control over a virtual machine instance hosted by the service provider computer network 501. The client 102 may also have access to data storage resources provided by the service provider computer network 501.
With continued reference to
The endpoint proxy system 132 may also be implemented by one or more computing devices. In some embodiments, the endpoint proxy system 132 is implemented on one or more computing devices capable of communicating over a network. In other embodiments, the endpoint proxy system 132 is implemented by one or more virtual machines instances in a hosted computing environment. The endpoint proxy system 132 may receive and respond to electronic requests to execute proxy APIs and communicate with backend systems 114 as described herein.
Each host computing device 510 may be a physical computing device hosting one or more virtual machine instances 514. The host computing device 510 may host a virtual machine instance 114 by executing a software virtual machine manager 122, such as a hypervisor, that manages the virtual machine instance 114. The virtual machine instance 114 may execute an instance of an operating system and application software.
In some embodiments, host computing devices 510 may be associated with private network addresses, such as IP addresses, within the service provider computer network 501 such that they may not be directly accessible by clients 102. The virtual machine instances, as facilitated by the virtual machine manager 122 and endpoint management system 106, may be associated with public network addresses that may be made available by a gateway at the edge of the service provider computer network 501. Accordingly, the virtual machine instances 514 may be directly addressable by a client 102 via the public network addresses. One skilled in the relevant art will appreciate that each host computing device 510 would include other physical computing device resources and software to execute multiple virtual machine instances or to dynamically instantiate virtual machine instances. Such instantiations can be based on a specific request, such as a request from a client 102.
The storage management service 503 can be associated with one or more storage systems 507. The storage systems 507 may be servers used for storing data generated or utilized by virtual machine instances or otherwise provided by clients. Illustratively, the storage management service 503 can logically organize and maintain data in data storage volumes. For example, the storage management service 503 may perform or facilitate storage space allocation, input/output operations, metadata management, or other functionalities with respect to volumes.
In some embodiments, a volume may be distributed across multiple storage systems, may be replicated for performance purposes on storage systems in different network areas. The storage systems may be attached to different power sources or cooling systems, may be located in different rooms of a datacenter or in different datacenters, or may be attached to different routers or network switches.
In an illustrative embodiment, host computing devices 510 or storage systems 507 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. For example, a service provider computer network 501 may maintain separate locations for providing the host and storage components. Additionally, the host computing devices 510 can be geographically distributed in a manner to best serve various demographics of its users. One skilled in the relevant art will appreciate that the service provider computer network 501 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, and the like.
Other Considerations
It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storage medium storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. application Ser. No. 14/682,046, filed Apr. 8, 2015 and titled “ENDPOINT MANAGEMENT SYSTEM AND VIRTUAL COMPUTE SYSTEM,” the disclosure of which is hereby incorporated by reference in its entirety. Further, the present application's Applicant previously filed the following U.S. patent applications: U.S. application Ser. No.Title14/502,992THREADING AS A SERVICE14/682,033ENDPOINT MANAGEMENT SYSTEMPROVIDING AN APPLICATIONPROGRAMMING INTERFACEPROXY SERVICE The disclosures of the above-referenced applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4949254 | Shorter | Aug 1990 | A |
5283888 | Dao et al. | Feb 1994 | A |
5970488 | Crowe et al. | Oct 1999 | A |
6385636 | Suzuki | May 2002 | B1 |
6463509 | Teoman et al. | Oct 2002 | B1 |
6501736 | Smolik et al. | Dec 2002 | B1 |
6523035 | Fleming et al. | Feb 2003 | B1 |
6708276 | Yarsa et al. | Mar 2004 | B1 |
7036121 | Casabona et al. | Apr 2006 | B1 |
7590806 | Harris et al. | Sep 2009 | B2 |
7665090 | Tormasov et al. | Feb 2010 | B1 |
7707579 | Rodriguez | Apr 2010 | B2 |
7730464 | Trowbridge | Jun 2010 | B2 |
7774191 | Berkowitz et al. | Aug 2010 | B2 |
7823186 | Pouliot | Oct 2010 | B2 |
7886021 | Scheifler et al. | Feb 2011 | B2 |
8010990 | Ferguson et al. | Aug 2011 | B2 |
8024564 | Bassani et al. | Sep 2011 | B2 |
8046765 | Cherkasova et al. | Oct 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8051266 | DeVal et al. | Nov 2011 | B2 |
8065676 | Sahai et al. | Nov 2011 | B1 |
8065682 | Baryshnikov et al. | Nov 2011 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8127284 | Meijer et al. | Feb 2012 | B2 |
8146073 | Sinha | Mar 2012 | B2 |
8166304 | Murase et al. | Apr 2012 | B2 |
8171473 | Lavin | May 2012 | B2 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8219987 | Vlaovic et al. | Jul 2012 | B1 |
8321554 | Dickinson | Nov 2012 | B2 |
8321558 | Sirota et al. | Nov 2012 | B1 |
8336079 | Budko et al. | Dec 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8387075 | McCann et al. | Feb 2013 | B1 |
8429282 | Ahuja | Apr 2013 | B1 |
8448165 | Conover | May 2013 | B1 |
8490088 | Tang | Jul 2013 | B2 |
8555281 | Van Dijk et al. | Oct 2013 | B1 |
8566835 | Wang et al. | Oct 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8631130 | Jackson | Jan 2014 | B2 |
8677359 | Cavage et al. | Mar 2014 | B1 |
8694996 | Cawlfield et al. | Apr 2014 | B2 |
8700768 | Benari | Apr 2014 | B2 |
8719415 | Sirota et al. | May 2014 | B1 |
8725702 | Raman et al. | May 2014 | B1 |
8756696 | Miller | Jun 2014 | B1 |
8769519 | Leitman et al. | Jul 2014 | B2 |
8799236 | Azari et al. | Aug 2014 | B1 |
8799879 | Wright et al. | Aug 2014 | B2 |
8806468 | Meijer et al. | Aug 2014 | B2 |
8819679 | Agarwal et al. | Aug 2014 | B2 |
8825863 | Hansson et al. | Sep 2014 | B2 |
8825964 | Sopka et al. | Sep 2014 | B1 |
8839035 | Dimitrovich et al. | Sep 2014 | B1 |
8850432 | McGrath et al. | Sep 2014 | B2 |
8874952 | Tameshige et al. | Oct 2014 | B2 |
8904008 | Calder et al. | Dec 2014 | B2 |
8997093 | Dimitrov | Mar 2015 | B2 |
9027087 | Ishaya et al. | May 2015 | B2 |
9038068 | Engle et al. | May 2015 | B2 |
9052935 | Rajaa | Jun 2015 | B1 |
9086897 | Oh et al. | Jul 2015 | B2 |
9092837 | Bala et al. | Jul 2015 | B2 |
9098528 | Wang | Aug 2015 | B2 |
9110732 | Forschmiedt et al. | Aug 2015 | B1 |
9110770 | Raju et al. | Aug 2015 | B1 |
9111037 | Nalis et al. | Aug 2015 | B1 |
9112813 | Jackson | Aug 2015 | B2 |
9141410 | Leafe et al. | Sep 2015 | B2 |
9146764 | Wagner | Sep 2015 | B1 |
9152406 | De et al. | Oct 2015 | B2 |
9164754 | Pohlack | Oct 2015 | B1 |
9183019 | Kruglick | Nov 2015 | B2 |
9208007 | Harper et al. | Dec 2015 | B2 |
9218190 | Anand et al. | Dec 2015 | B2 |
9223561 | Orveillon et al. | Dec 2015 | B2 |
9223966 | Satish et al. | Dec 2015 | B1 |
9250893 | Blahaerath et al. | Feb 2016 | B2 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9298633 | Zhao et al. | Mar 2016 | B1 |
9317689 | Aissi | Apr 2016 | B2 |
9323556 | Wagner | Apr 2016 | B2 |
9361145 | Wilson et al. | Jun 2016 | B1 |
9413626 | Reque et al. | Aug 2016 | B2 |
9436555 | Dornemann et al. | Sep 2016 | B2 |
9461996 | Hayton et al. | Oct 2016 | B2 |
9471775 | Wagner et al. | Oct 2016 | B1 |
9483335 | Wagner et al. | Nov 2016 | B1 |
9489227 | Oh et al. | Nov 2016 | B2 |
9497136 | Ramarao et al. | Nov 2016 | B1 |
9501345 | Lietz et al. | Nov 2016 | B1 |
9514037 | Dow et al. | Dec 2016 | B1 |
9537788 | Reque et al. | Jan 2017 | B2 |
9575798 | Terayama et al. | Feb 2017 | B2 |
9588790 | Wagner et al. | Mar 2017 | B1 |
9594590 | Hsu | Mar 2017 | B2 |
9596350 | Dymshyts et al. | Mar 2017 | B1 |
9600312 | Wagner et al. | Mar 2017 | B2 |
9628332 | Bruno, Jr. et al. | Apr 2017 | B2 |
9635132 | Lin et al. | Apr 2017 | B1 |
9652306 | Wagner et al. | May 2017 | B1 |
9652617 | Evans et al. | May 2017 | B1 |
9654508 | Barton et al. | May 2017 | B2 |
9661011 | Van Horenbeeck et al. | May 2017 | B1 |
9678773 | Wagner et al. | Jun 2017 | B1 |
9678778 | Youseff | Jun 2017 | B1 |
9703681 | Taylor et al. | Jul 2017 | B2 |
9715402 | Wagner et al. | Jul 2017 | B2 |
9727725 | Wagner et al. | Aug 2017 | B2 |
9733967 | Wagner et al. | Aug 2017 | B2 |
9760387 | Wagner et al. | Sep 2017 | B2 |
9767271 | Ghose | Sep 2017 | B2 |
9785476 | Wagner et al. | Oct 2017 | B2 |
9787779 | Frank et al. | Oct 2017 | B2 |
9811363 | Wagner | Nov 2017 | B1 |
9811434 | Wagner | Nov 2017 | B1 |
9830175 | Wagner | Nov 2017 | B1 |
9830193 | Wagner et al. | Nov 2017 | B1 |
9830449 | Wagner | Nov 2017 | B1 |
9864636 | Patel et al. | Jan 2018 | B1 |
9910713 | Wisniewski et al. | Mar 2018 | B2 |
9921864 | Singaravelu et al. | Mar 2018 | B2 |
9928108 | Wagner et al. | Mar 2018 | B1 |
9929916 | Subramanian et al. | Mar 2018 | B1 |
9930103 | Thompson | Mar 2018 | B2 |
9930133 | Susarla et al. | Mar 2018 | B2 |
9952896 | Wagner et al. | Apr 2018 | B2 |
9977691 | Marriner et al. | May 2018 | B2 |
9979817 | Huang et al. | May 2018 | B2 |
10002026 | Wagner | Jun 2018 | B1 |
10013267 | Wagner et al. | Jul 2018 | B1 |
10042660 | Wagner et al. | Aug 2018 | B2 |
10048974 | Wagner et al. | Aug 2018 | B1 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10067801 | Wagner | Sep 2018 | B1 |
10102040 | Marriner et al. | Oct 2018 | B2 |
10108443 | Wagner et al. | Oct 2018 | B2 |
10139876 | Lu et al. | Nov 2018 | B2 |
10140137 | Wagner | Nov 2018 | B2 |
10162672 | Wagner et al. | Dec 2018 | B2 |
10162688 | Wagner | Dec 2018 | B2 |
10203990 | Wagner et al. | Feb 2019 | B2 |
10248467 | Wisniewski et al. | Apr 2019 | B2 |
10277708 | Wagner et al. | Apr 2019 | B2 |
10303492 | Wagner et al. | May 2019 | B1 |
10353678 | Wagner | Jul 2019 | B1 |
10353746 | Reque et al. | Jul 2019 | B2 |
10365985 | Wagner | Jul 2019 | B2 |
10387177 | Wagner et al. | Aug 2019 | B2 |
10402231 | Marriner et al. | Sep 2019 | B2 |
10437629 | Wagner et al. | Oct 2019 | B2 |
10528390 | Brooker et al. | Jan 2020 | B2 |
10552193 | Wagner et al. | Feb 2020 | B2 |
10564946 | Wagner et al. | Feb 2020 | B1 |
10572375 | Wagner | Feb 2020 | B1 |
10592269 | Wagner et al. | Mar 2020 | B2 |
20010044817 | Asano et al. | Nov 2001 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020172273 | Baker et al. | Nov 2002 | A1 |
20030071842 | King et al. | Apr 2003 | A1 |
20030084434 | Ren | May 2003 | A1 |
20030149801 | Kushnirskiy | Aug 2003 | A1 |
20030229794 | James, II et al. | Dec 2003 | A1 |
20040003087 | Chambliss et al. | Jan 2004 | A1 |
20040049768 | Matsuyama et al. | Mar 2004 | A1 |
20040098154 | McCarthy | May 2004 | A1 |
20040158551 | Santosuosso | Aug 2004 | A1 |
20040205493 | Simpson | Oct 2004 | A1 |
20040249947 | Novaes et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050027611 | Wharton | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050132167 | Longobardi | Jun 2005 | A1 |
20050132368 | Sexton et al. | Jun 2005 | A1 |
20050149535 | Frey et al. | Jul 2005 | A1 |
20050193113 | Kokusho et al. | Sep 2005 | A1 |
20050193283 | Reinhardt et al. | Sep 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257051 | Richard | Nov 2005 | A1 |
20060123066 | Jacobs et al. | Jun 2006 | A1 |
20060129684 | Datta | Jun 2006 | A1 |
20060184669 | Vaidyanathan et al. | Aug 2006 | A1 |
20060200668 | Hybre et al. | Sep 2006 | A1 |
20060212332 | Jackson | Sep 2006 | A1 |
20060242647 | Kimbrel et al. | Oct 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070130341 | Ma | Jun 2007 | A1 |
20070174419 | O'Connell | Jul 2007 | A1 |
20070192082 | Gaos et al. | Aug 2007 | A1 |
20070199000 | Shekhel et al. | Aug 2007 | A1 |
20070220009 | Morris et al. | Sep 2007 | A1 |
20070240160 | Paterson-Jones | Oct 2007 | A1 |
20070255604 | Seelig | Nov 2007 | A1 |
20080028409 | Cherkasova et al. | Jan 2008 | A1 |
20080052401 | Bugenhagen et al. | Feb 2008 | A1 |
20080052725 | Stoodley et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080104247 | Venkatakrishnan et al. | May 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080126110 | Haeberle et al. | May 2008 | A1 |
20080126486 | Heist | May 2008 | A1 |
20080127125 | Anckaert et al. | May 2008 | A1 |
20080147893 | Marripudi et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080195369 | Duyanovich et al. | Aug 2008 | A1 |
20080201568 | Quinn et al. | Aug 2008 | A1 |
20080201711 | Amir Husain | Aug 2008 | A1 |
20080209423 | Hirai | Aug 2008 | A1 |
20090006897 | Sarsfield | Jan 2009 | A1 |
20090013153 | Hilton | Jan 2009 | A1 |
20090025009 | Brunswig et al. | Jan 2009 | A1 |
20090055810 | Kondur | Feb 2009 | A1 |
20090055829 | Gibson | Feb 2009 | A1 |
20090070355 | Cadarette et al. | Mar 2009 | A1 |
20090077569 | Appleton et al. | Mar 2009 | A1 |
20090125902 | Ghosh et al. | May 2009 | A1 |
20090158275 | Wang et al. | Jun 2009 | A1 |
20090177860 | Zhu et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090198769 | Keller et al. | Aug 2009 | A1 |
20090204960 | Ben-Yehuda et al. | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20100023940 | Iwamatsu et al. | Jan 2010 | A1 |
20100031274 | Sim-Tang | Feb 2010 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100036925 | Haffner | Feb 2010 | A1 |
20100058342 | Machida | Mar 2010 | A1 |
20100058351 | Yahagi | Mar 2010 | A1 |
20100064299 | Kacin et al. | Mar 2010 | A1 |
20100070678 | Zhang et al. | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100106926 | Kandasamy et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100115098 | De Baer et al. | May 2010 | A1 |
20100122343 | Ghosh | May 2010 | A1 |
20100131936 | Cheriton | May 2010 | A1 |
20100131959 | Spiers et al. | May 2010 | A1 |
20100186011 | Magenheimer | Jul 2010 | A1 |
20100198972 | Umbehocker | Aug 2010 | A1 |
20100199285 | Medovich | Aug 2010 | A1 |
20100257116 | Mehta et al. | Oct 2010 | A1 |
20100269109 | Cartales | Oct 2010 | A1 |
20100312871 | Desantis et al. | Dec 2010 | A1 |
20100325727 | Neystadt et al. | Dec 2010 | A1 |
20110010722 | Matsuyama | Jan 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110040812 | Phillips | Feb 2011 | A1 |
20110055378 | Ferris et al. | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055683 | Jiang | Mar 2011 | A1 |
20110078679 | Bozek et al. | Mar 2011 | A1 |
20110099204 | Thaler | Apr 2011 | A1 |
20110099551 | Fahrig et al. | Apr 2011 | A1 |
20110131572 | Elyashev et al. | Jun 2011 | A1 |
20110134761 | Smith | Jun 2011 | A1 |
20110141124 | Halls et al. | Jun 2011 | A1 |
20110153727 | Li | Jun 2011 | A1 |
20110153838 | Belkine et al. | Jun 2011 | A1 |
20110154353 | Theroux et al. | Jun 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225277 | Freimuth et al. | Sep 2011 | A1 |
20110231680 | Padmanabhan et al. | Sep 2011 | A1 |
20110247005 | Benedetti et al. | Oct 2011 | A1 |
20110265164 | Lucovsky | Oct 2011 | A1 |
20110271276 | Ashok et al. | Nov 2011 | A1 |
20110276945 | Chasman et al. | Nov 2011 | A1 |
20110314465 | Smith et al. | Dec 2011 | A1 |
20110321033 | Kelkar et al. | Dec 2011 | A1 |
20120011496 | Shimamura | Jan 2012 | A1 |
20120016721 | Weinman | Jan 2012 | A1 |
20120041970 | Ghosh et al. | Feb 2012 | A1 |
20120054744 | Singh et al. | Mar 2012 | A1 |
20120072762 | Atchison et al. | Mar 2012 | A1 |
20120072914 | Ota | Mar 2012 | A1 |
20120079004 | Herman | Mar 2012 | A1 |
20120096271 | Ramarathinam et al. | Apr 2012 | A1 |
20120096468 | Chakravorty et al. | Apr 2012 | A1 |
20120102307 | Wong | Apr 2012 | A1 |
20120102333 | Wong | Apr 2012 | A1 |
20120102481 | Mani et al. | Apr 2012 | A1 |
20120110155 | Adlung et al. | May 2012 | A1 |
20120110164 | Frey et al. | May 2012 | A1 |
20120110570 | Jacobson et al. | May 2012 | A1 |
20120110588 | Bieswanger et al. | May 2012 | A1 |
20120131379 | Tameshige et al. | May 2012 | A1 |
20120144290 | Goldman et al. | Jun 2012 | A1 |
20120192184 | Burckart et al. | Jul 2012 | A1 |
20120197795 | Campbell et al. | Aug 2012 | A1 |
20120197958 | Nightingale et al. | Aug 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120222038 | Katragadda et al. | Aug 2012 | A1 |
20120233464 | Miller et al. | Sep 2012 | A1 |
20120331113 | Jain et al. | Dec 2012 | A1 |
20130014101 | Ballani et al. | Jan 2013 | A1 |
20130042234 | DeLuca et al. | Feb 2013 | A1 |
20130054804 | Jana et al. | Feb 2013 | A1 |
20130054927 | Raj et al. | Feb 2013 | A1 |
20130055262 | Lubsey et al. | Feb 2013 | A1 |
20130061208 | Tsao et al. | Mar 2013 | A1 |
20130067494 | Srour et al. | Mar 2013 | A1 |
20130080641 | Lui et al. | Mar 2013 | A1 |
20130097601 | Podvratnik et al. | Apr 2013 | A1 |
20130111032 | Alapati et al. | May 2013 | A1 |
20130111469 | B et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130132942 | Wang | May 2013 | A1 |
20130139152 | Chang et al. | May 2013 | A1 |
20130139166 | Zhang et al. | May 2013 | A1 |
20130151648 | Luna | Jun 2013 | A1 |
20130152047 | Moorthi et al. | Jun 2013 | A1 |
20130179574 | Calder et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130179894 | Calder et al. | Jul 2013 | A1 |
20130179895 | Calder et al. | Jul 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191924 | Tedesco | Jul 2013 | A1 |
20130198319 | Shen et al. | Aug 2013 | A1 |
20130198743 | Kruglick | Aug 2013 | A1 |
20130198748 | Sharp et al. | Aug 2013 | A1 |
20130198763 | Kunze et al. | Aug 2013 | A1 |
20130205092 | Roy et al. | Aug 2013 | A1 |
20130219390 | Lee et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227534 | Ike et al. | Aug 2013 | A1 |
20130227563 | McGrath | Aug 2013 | A1 |
20130227641 | White et al. | Aug 2013 | A1 |
20130227710 | Barak et al. | Aug 2013 | A1 |
20130232480 | Winterfeldt et al. | Sep 2013 | A1 |
20130239125 | Iorio | Sep 2013 | A1 |
20130262556 | Xu et al. | Oct 2013 | A1 |
20130263117 | Konik et al. | Oct 2013 | A1 |
20130275376 | Hudlow et al. | Oct 2013 | A1 |
20130275958 | Ivanov et al. | Oct 2013 | A1 |
20130275969 | Dimitrov | Oct 2013 | A1 |
20130275975 | Masuda et al. | Oct 2013 | A1 |
20130283176 | Hoole et al. | Oct 2013 | A1 |
20130290538 | Gmach et al. | Oct 2013 | A1 |
20130291087 | Kailash et al. | Oct 2013 | A1 |
20130297964 | Hegdal et al. | Nov 2013 | A1 |
20130311650 | Brandwine et al. | Nov 2013 | A1 |
20130339950 | Ramarathinam et al. | Dec 2013 | A1 |
20130346946 | Pinnix | Dec 2013 | A1 |
20130346964 | Nobuoka et al. | Dec 2013 | A1 |
20130346987 | Raney et al. | Dec 2013 | A1 |
20130346994 | Chen et al. | Dec 2013 | A1 |
20130347095 | Barjatiya et al. | Dec 2013 | A1 |
20140007097 | Chin et al. | Jan 2014 | A1 |
20140019523 | Heymann et al. | Jan 2014 | A1 |
20140019735 | Menon et al. | Jan 2014 | A1 |
20140019965 | Neuse et al. | Jan 2014 | A1 |
20140019966 | Neuse et al. | Jan 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140040857 | Trinchini et al. | Feb 2014 | A1 |
20140040880 | Brownlow et al. | Feb 2014 | A1 |
20140059209 | Alnoor | Feb 2014 | A1 |
20140059226 | Messerli et al. | Feb 2014 | A1 |
20140059552 | Cunningham et al. | Feb 2014 | A1 |
20140068568 | Wisnovsky | Mar 2014 | A1 |
20140068611 | McGrath et al. | Mar 2014 | A1 |
20140081984 | Sitsky et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140101649 | Kamble et al. | Apr 2014 | A1 |
20140108722 | Lipchuk et al. | Apr 2014 | A1 |
20140109087 | Jujare et al. | Apr 2014 | A1 |
20140109088 | Dournov et al. | Apr 2014 | A1 |
20140129667 | Ozawa | May 2014 | A1 |
20140130040 | Lemanski | May 2014 | A1 |
20140137110 | Engle et al. | May 2014 | A1 |
20140173614 | Konik et al. | Jun 2014 | A1 |
20140173616 | Bird et al. | Jun 2014 | A1 |
20140180862 | Certain et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140201735 | Kannan et al. | Jul 2014 | A1 |
20140207912 | Thibeault et al. | Jul 2014 | A1 |
20140215073 | Dow et al. | Jul 2014 | A1 |
20140245297 | Hackett | Aug 2014 | A1 |
20140279581 | Devereaux | Sep 2014 | A1 |
20140280325 | Krishnamurthy et al. | Sep 2014 | A1 |
20140282615 | Cavage et al. | Sep 2014 | A1 |
20140282629 | Gupta et al. | Sep 2014 | A1 |
20140283045 | Brandwine et al. | Sep 2014 | A1 |
20140289286 | Gusak | Sep 2014 | A1 |
20140298295 | Overbeck | Oct 2014 | A1 |
20140304698 | Chigurapati et al. | Oct 2014 | A1 |
20140304815 | Maeda | Oct 2014 | A1 |
20140317617 | O'Donnell | Oct 2014 | A1 |
20140344457 | Bruno, Jr. et al. | Nov 2014 | A1 |
20140344736 | Ryman et al. | Nov 2014 | A1 |
20140380085 | Rash et al. | Dec 2014 | A1 |
20150033241 | Jackson et al. | Jan 2015 | A1 |
20150039891 | Ignatchenko et al. | Feb 2015 | A1 |
20150040229 | Chan et al. | Feb 2015 | A1 |
20150046926 | Kenchammana-Hosekote et al. | Feb 2015 | A1 |
20150052258 | Johnson et al. | Feb 2015 | A1 |
20150058914 | Yadav | Feb 2015 | A1 |
20150067830 | Johansson et al. | Mar 2015 | A1 |
20150074659 | Madsen | Mar 2015 | A1 |
20150081885 | Thomas et al. | Mar 2015 | A1 |
20150106805 | Melander et al. | Apr 2015 | A1 |
20150120928 | Gummaraju et al. | Apr 2015 | A1 |
20150134626 | Theimer et al. | May 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150142952 | Bragstad et al. | May 2015 | A1 |
20150143381 | Chin et al. | May 2015 | A1 |
20150178110 | Li et al. | Jun 2015 | A1 |
20150186129 | Apte et al. | Jul 2015 | A1 |
20150188775 | Van Der Walt et al. | Jul 2015 | A1 |
20150199218 | Wilson et al. | Jul 2015 | A1 |
20150205596 | Hiltegen et al. | Jul 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150235144 | Gusev et al. | Aug 2015 | A1 |
20150242225 | Muller et al. | Aug 2015 | A1 |
20150254248 | Burns et al. | Sep 2015 | A1 |
20150256621 | Noda et al. | Sep 2015 | A1 |
20150261578 | Greden et al. | Sep 2015 | A1 |
20150289220 | Kim et al. | Oct 2015 | A1 |
20150309923 | Iwata et al. | Oct 2015 | A1 |
20150319160 | Ferguson et al. | Nov 2015 | A1 |
20150332048 | Mooring et al. | Nov 2015 | A1 |
20150350701 | Lemus et al. | Dec 2015 | A1 |
20150356294 | Tan et al. | Dec 2015 | A1 |
20150363181 | Alberti et al. | Dec 2015 | A1 |
20150370560 | Tan et al. | Dec 2015 | A1 |
20150371244 | Neuse et al. | Dec 2015 | A1 |
20150378762 | Saladi et al. | Dec 2015 | A1 |
20150378764 | Sivasubramanian et al. | Dec 2015 | A1 |
20150378765 | Singh et al. | Dec 2015 | A1 |
20150379167 | Griffith et al. | Dec 2015 | A1 |
20160012099 | Tuatini et al. | Jan 2016 | A1 |
20160019536 | Ortiz et al. | Jan 2016 | A1 |
20160026486 | Abdallah | Jan 2016 | A1 |
20160048606 | Rubinstein et al. | Feb 2016 | A1 |
20160072727 | Leafe et al. | Mar 2016 | A1 |
20160077901 | Roth et al. | Mar 2016 | A1 |
20160098285 | Davis et al. | Apr 2016 | A1 |
20160100036 | Lo et al. | Apr 2016 | A1 |
20160117254 | Susarla et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160140180 | Park et al. | May 2016 | A1 |
20160191420 | Nagarajan et al. | Jun 2016 | A1 |
20160285906 | Fine et al. | Sep 2016 | A1 |
20160292016 | Bussard et al. | Oct 2016 | A1 |
20160294614 | Searle et al. | Oct 2016 | A1 |
20160301739 | Thompson | Oct 2016 | A1 |
20160306613 | Busi et al. | Oct 2016 | A1 |
20160350099 | Suparna et al. | Dec 2016 | A1 |
20160357536 | Firlik et al. | Dec 2016 | A1 |
20160364265 | Cao et al. | Dec 2016 | A1 |
20160371127 | Antony et al. | Dec 2016 | A1 |
20160371156 | Merriman | Dec 2016 | A1 |
20160378449 | Khazanchi et al. | Dec 2016 | A1 |
20160378554 | Gummaraju et al. | Dec 2016 | A1 |
20170041309 | Ekambaram et al. | Feb 2017 | A1 |
20170060621 | Whipple et al. | Mar 2017 | A1 |
20170068574 | Cherkasova et al. | Mar 2017 | A1 |
20170075749 | Ambichl et al. | Mar 2017 | A1 |
20170083381 | Cong et al. | Mar 2017 | A1 |
20170085447 | Chen et al. | Mar 2017 | A1 |
20170085591 | Ganda et al. | Mar 2017 | A1 |
20170090961 | Wagner et al. | Mar 2017 | A1 |
20170093684 | Jayaraman et al. | Mar 2017 | A1 |
20170093920 | Ducatel et al. | Mar 2017 | A1 |
20170116051 | Wagner et al. | Apr 2017 | A1 |
20170177391 | Wagner et al. | Jun 2017 | A1 |
20170177413 | Wisniewski et al. | Jun 2017 | A1 |
20170192804 | Wagner | Jul 2017 | A1 |
20170199766 | Wagner et al. | Jul 2017 | A1 |
20170206116 | Reque et al. | Jul 2017 | A1 |
20170230499 | Mumick et al. | Aug 2017 | A1 |
20170272462 | Kraemer et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286156 | Wagner et al. | Oct 2017 | A1 |
20170371724 | Wagner et al. | Dec 2017 | A1 |
20180046453 | Nair et al. | Feb 2018 | A1 |
20180046482 | Karve et al. | Feb 2018 | A1 |
20180060221 | Yim et al. | Mar 2018 | A1 |
20180067841 | Mahimkar | Mar 2018 | A1 |
20180143865 | Wagner et al. | May 2018 | A1 |
20180157568 | Wagner | Jun 2018 | A1 |
20180203717 | Wagner et al. | Jul 2018 | A1 |
20180275987 | Vandeputte | Sep 2018 | A1 |
20180309819 | Thompson | Oct 2018 | A1 |
20190050271 | Marriner et al. | Feb 2019 | A1 |
20190072529 | Andrawes et al. | Mar 2019 | A1 |
20190073234 | Wagner et al. | Mar 2019 | A1 |
20190102231 | Wagner | Apr 2019 | A1 |
20190108058 | Wagner et al. | Apr 2019 | A1 |
20190155629 | Wagner et al. | May 2019 | A1 |
20190171470 | Wagner | Jun 2019 | A1 |
20190180036 | Shukla | Jun 2019 | A1 |
20190196884 | Wagner | Jun 2019 | A1 |
20190205171 | Brooker et al. | Jul 2019 | A1 |
20190227849 | Wisniewski et al. | Jul 2019 | A1 |
20190384647 | Reque et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2663052 | Nov 2013 | EP |
2002287974 | Oct 2002 | JP |
2006-107599 | Apr 2006 | JP |
2007-538323 | Dec 2007 | JP |
2010-026562 | Feb 2010 | JP |
2011-233146 | Nov 2011 | JP |
2011257847 | Dec 2011 | JP |
2013-156996 | Aug 2013 | JP |
2014-525624 | Sep 2014 | JP |
2017-534107 | Nov 2017 | JP |
2017-534967 | Nov 2017 | JP |
2018-503896 | Feb 2018 | JP |
2018-512087 | May 2018 | JP |
2018-536213 | Dec 2018 | JP |
WO 2008114454 | Sep 2008 | WO |
WO 2009137567 | Nov 2009 | WO |
WO 2012050772 | Apr 2012 | WO |
WO 2013106257 | Jul 2013 | WO |
WO 2015078394 | Jun 2015 | WO |
WO 2015108539 | Jul 2015 | WO |
WO 2016053950 | Apr 2016 | WO |
WO 2016053968 | Apr 2016 | WO |
WO 2016053973 | Apr 2016 | WO |
WO 2016090292 | Jun 2016 | WO |
WO 2016126731 | Aug 2016 | WO |
WO 2016164633 | Oct 2016 | WO |
WO 2016164638 | Oct 2016 | WO |
WO 2017059248 | Apr 2017 | WO |
WO 2017112526 | Jun 2017 | WO |
WO 2017172440 | Oct 2017 | WO |
Entry |
---|
Wikipedia “Dynamic HTML” page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML (Year: 2015). |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.conn/questions/2881/why-are-simple-java-programs-using-up-so-much-space (Year: 2012). |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123 (Year: 2014). |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide (Year: 2015). |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en.wikipedia.org/wiki/Recursion_(computer_ science) (Year: 2015). |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine (Year: 2019). |
Wikipedia List_of_HTTP_status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP_status_codes (Year: 2019). |
CodeChef IDE web page, retrieved from https://www.codechef.com/ide (Year: 2019). |
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159 (Year: 2019). |
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en.wikipedia.org/wiki/Application_programming_interface (Year: 2015). |
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title-Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf. |
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Number | Date | Country | |
---|---|---|---|
20180121245 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14682046 | Apr 2015 | US |
Child | 15728334 | US |