Endpoint privacy preservation with cloud conferencing

Information

  • Patent Grant
  • 10523657
  • Patent Number
    10,523,657
  • Date Filed
    Monday, November 16, 2015
    9 years ago
  • Date Issued
    Tuesday, December 31, 2019
    5 years ago
Abstract
In one embodiment, a first request may be received from a first endpoint to access a cloud-based conference platform. The first request can include a first access token. Based at least on the first request, a first certificate may be provided to the first endpoint, wherein the first certificate may not include an identity of the first endpoint. A second request may be received from a second endpoint to access the cloud-based conference platform. The second request can include a second access token. Based at least on the second request, a second certificate can be provided to the second endpoint, wherein the second certificate may not include an identity of the second endpoint. Data can be routed within the cloud-based conference platform between the first endpoint and second endpoint based at least upon the first certificate and the second certificate.
Description
TECHNICAL FIELD

The present technology pertains to computer-based networking, and more specifically to privacy preservation in a cloud-based networking environment.


BACKGROUND

As more enterprises and private consumers shift toward cloud-based networking for communication and data manipulation, challenges arise due to an increasing amount of bad parties seeking to access, without authorization, information stored in cloud-based networks. Such information may include sensitive data being shared such as work-related documents or the names of the parties communicating with each other and the organizations/enterprises that the parties belong to. Parties communicating via a cloud-based network may not want unauthorized parties to know their identities due to privacy concerns. This may be due to the fact that inferences can be made if an unauthorized party is aware of the identities of parties in communication with each other via a cloud-based network. Such inferences may be reinforced when data regarding the amount and duration of communications between the parties is known in addition to the identities of the parties.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited features and other advantages of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates an example cloud architecture including nodes and devices interconnected by various methods of communication;



FIG. 2 illustrates an example cloud service management system;



FIG. 3 illustrates an example network environment 300 which may utilize decentralized key distribution;



FIG. 4 illustrates an example network environment 400 which may utilize centralized key distribution;



FIG. 5 illustrates an example embodiment of token generation;



FIG. 6 illustrates an example procedure utilizing a decentralized key distribution;



FIG. 7 illustrates an example procedure utilizing a centralized key distribution;



FIG. 8 illustrates an example architecture of some embodiments of the present technology;





A component or a feature that is common to more than one drawing is indicated with the same reference number in each of the drawings.


DESCRIPTION OF EXAMPLE EMBODIMENTS

Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the disclosure.


Overview

In some embodiments, a first request may be received from a first endpoint to access a cloud-based conference platform. The first request can include a first access token that does not include an identity of the first endpoint. A second request may be received from a second endpoint to access the cloud-based conference platform. The second request can include a second access token that does not include an identity of the second endpoint. Data can be routed within the cloud-based conference platform between the first endpoint and second endpoint based at least upon the first certificate and the second certificate. These and other features are disclosed in greater detail below.


Description

Some embodiments of the present technology can hide the identities of endpoints (for example, call participants) in a conference call using the cloud conference server while still allowing endpoints to exchange media (for example, voice/data/video) through the media distribution device (MDD) provided by the cloud conference service. The participating endpoints can also be made aware of the identities of the other participating endpoints on the conference call. This may be accomplished, in some embodiments, by utilizing an authorization server to act as an intermediary to determine whether endpoints/call participants of an intended conference call conducted via a cloud conference server are authorized to participate in the conference call. The authorization server may provide keys (for instance, encrypted keys) to the endpoints for verification that the endpoints may access the conference call. In some embodiments, the authorization server can be the Enterprise identity provider (IdP) to generate a certificate/token for an endpoint which is trying to establish its identity (may be referred to as an authenticating party or authenticating endpoint) to access to the cloud conference server, wherein the certificate may conceal the identity of the endpoint call participant. The authenticating party/authenticating endpoint may also inform the identity provider about the identities of other participants in the conference call authorized to receive the identity of the authenticating party.


Assertion verification can be a process by which a relying party can verify that an assertion of a user's ownership of a certain credential/certificate is valid. In some embodiments, an IdP can provide a short-term certificate (e.g., single use) such that an ownership assertion needs to be changed for each request (e.g., each call) to access a cloud conferencing server so that the cloud conferencing server cannot identify that the same endpoint is making multiple calls.


Endpoints may use a third party authorization service (for example, OAuth 2.0) to gain access to a cloud conferencing server. In some embodiments, an Enterprise identity provider can perform the role of authorization server and the cloud conferencing server can perform the role of resource server. Endpoints may authenticate with the authorization server/Enterprise identity provider in order to receive an access token from the authorization server/Enterprise identity provider. The endpoints can then utilize the access token to receive authorization to access the cloud conferencing server and MDD. Thus, some embodiments provide that the endpoints do not make their true identities known to the cloud conferencing server.


In some embodiments, an IdP proxy can mask the true identities of authenticating parties/endpoints during identity assertion generation, which may be exchanged using an offer/answer process. The IdP proxy can be implemented with a script (e.g., JavaScript®) that runs in an isolated security context within a network and communicates via a secure message passing channel. Identity assertion generation may be followed by identity assertion validation/verification, which can be performed by the IdP proxy. In some embodiments, the identity assertion generated by the IdP proxy may not include the true identity of the authenticating party. Participants of the conference call can receive the true identity of the authenticating party, but identity assertion validation/verification performed by the MDD may not receive the true identity of the authenticating party since the MDD may not be authorized by the authenticating party to receive the true identity.


In some embodiments, a web browser may instantiate an IdP proxy. This may allow the IdP to load any script necessary into the IdP proxy. The resulting code may run in the IdP's security context. The IdP can register an object with the browser that conforms to a corresponding application program interface (API). The web browser may invoke methods on the object registered by the IdP proxy to generate or verify/validate identity assertions.


Endpoint identities or true identities may refer to the identities of each individual participant and/or the identities of the organizations associated with the endpoints/call participants. Some embodiments of the present technology may hide the identities of the individual call participants/endpoints from the cloud conferencing server while some embodiments may hide both the identities of the individual call participants and the identities of the organizations associated with the call participants. This would, among other things, improve privacy among call participants because outside parties would not be able to make inferences based on tracked call sessions made in the cloud conference server.


For instance, a call session facilitated by a cloud conferencing server could be targeted to gain information which would be valuable to businesses competing with the participants of a call session. If the true identities of the call session participants are discovered by an unauthorized third party, the unauthorized third party could use the information to make inferences regarding the nature of the call session. For example, an unauthorized third party could infer that the endpoint parties of the call session are conducting business deals or negotiations. This information could be valuable to an unauthorized third party as it may allow the unauthorized third party to gain an unfair business advantage over its competitors by having information that was intended to be confidential. Thus, privacy concerns may dictate a need for concealment of endpoint identities in a cloud conferencing server environment.


In some embodiments, a decentralized key distribution method can include a first conference call participant (for example, a speaker in the conference call) who establishes a secure connection with other conference call participants. The conference call participants can authenticate individually with an authentication server in order to receive a certificate/token for access to the conference call hosted by a cloud conference server. The initiating participant may request from the authentication server an encrypted key/token/group identifier for distribution to the group of conference call participants in order to exchange media. In some embodiments, the cloud conference server cannot access the encrypted media exchanged between participants and does not know the identity of the participants, but can modify the Real-time Transport Protocol (RTP) header.


In some embodiments, a centralized key distribution method can include an on-premise Enterprise Key Management Server (KMS), which may act as an intermediary/proxy authorization server. Endpoint participants of a conference call can authenticate with the KMS, and the initiating endpoint participant may request a group identifier/encryption key from the KMS in order for the conference call participants to communicate with each other while utilizing the cloud conference server. The KMS may provide the identities of conference call participants to other conference call participants authorized to receive the information.


In some embodiments, the present technology can be utilized in a cloud computing environment. For example, an exemplary cloud or virtual computing environment is provided in FIG. 1. FIG. 1 illustrates an example cloud architecture 100 including nodes and devices interconnected by various methods of communication. Cloud 150 can be a public, private, and/or hybrid cloud system which may include one or more public and private cloud networks in communication with each other. Cloud 150 can include resources, such as a cloud conferencing server 152; MDD 154; one or more Firewalls 197; Load Balancers 193; WAN optimization platforms 195; devices 187, such as switches, routers, intrusion detection systems, Auto VPN systems, or any hardware or software network device; one or more servers 180, such as a primary use network server, a data backup server, dynamic host configuration protocol (DHCP), domain naming system (DNS), or storage servers; virtual machines (VMs) 190; controllers, such as a communications controller 200 or a management device.


MDD 154 can forward media flows transmitted by conference call participants to other conference call participants, and may sometimes forward only a subset of flows based on voice activity detection or other criteria. In some embodiments, a switching MDD 154 may make limited modifications to RTP [RFC3550] headers, for example, but the actual media content (e.g., voice or video data) can be unaltered. An advantage of switched conferencing is that MDD 154 can be deployed on general-purpose computing hardware. This, in turn, means that it is possible to deploy a switching MDD 154 in virtualized environments, including private and public clouds.


Cloud resources can be physical, software, virtual, or any combination thereof. For example, a cloud resource can include a server running one or more VMs or storing one or more databases. Moreover, cloud resources can be provisioned based on requests (e.g., client or tenant requests), schedules, triggers, events, signals, messages, alerts, agreements, necessity, or any other factor. For example, cloud 150 can provision network recovery services, application services, software development services, database services, storage services, management services, monitoring services, configuration services, administration services, backup services, disaster recovery services, bandwidth or performance services, intrusion detection services, VPN services, or any type of services to any device, server, network, client, or tenant.


In addition, cloud 150 can handle traffic and/or provision services. For example, cloud 150 can provide network routing/re-routing services, network data backup services, configuration services, such as auto VPN, automated deployments, automated wireless configurations, automated policy implementations, and the like. In some embodiments, the cloud 150 can collect data about a client or network and generate configuration settings for specific service, device, or networking deployments. For example, the cloud 150 can generate security policies, subnetting and routing schemes, forwarding schemes, NAT settings, VPN settings, and/or any other type of configurations. The cloud 150 can then push or transmit the necessary data and settings to specific devices or components to manage a specific implementation or deployment. For example, the cloud 150 can generate VPN settings, such as IP mappings, port number, and security information, and send the VPN settings to specific, relevant device(s) or component(s) identified by the cloud 150 or otherwise designated. The relevant device(s) or component(s) can then use the VPN settings to establish a VPN tunnel according to the settings. As another example, the cloud 150 can generate and manage network diagnostic tools or graphical user interfaces.


Furthermore, cloud 150 can provide specific services for clients—namely, client A 110, client B 120, and client C 130. For example, cloud 150 can deploy a network or specific network components, configure links or devices, automate services or functions, or provide any other services for the clients. Other non-limiting example services performable by cloud 150 can include network administration services, network monitoring services, content filtering services, application control, WAN optimization, firewall services, gateway services, storage services, protocol configuration services, wireless deployment services, and so forth.


To this end, the clients can connect with cloud 150 through networks 160, 162, and 164, respectively. More specifically, client A 110, client B 120, and client C 130 can each connect with cloud 150 through networks 160, 162, and 164, respectively, in order to access resources from cloud 150, communicate with cloud 150, or receive any services from cloud 150. Networks 160, 162, and 164 can each refer to a public network, such as the Internet; a private network, such as a LAN; a combination of networks; or any other network, such as a VPN or an overlay network.


Moreover, the clients can each include one or more networks. For example, client A 110, client B 120, and client C 130 can each include one or more LANs and VLANs. In some cases, a client can represent one branch network, such as a LAN, or multiple branch networks, such as multiple remote networks. For example, client A 110 can represent a single LAN network or branch, or multiple branches or networks, such as a branch building or office network in Los Angeles and another branch building or office network in New York. If a client includes multiple branches or networks, the multiple branches or networks can each have a designated connection to the cloud 150. For example, each branch or network can maintain a tunnel to the cloud 150. Alternatively, all branches or networks for a specific client can connect to the cloud 150 via one or more specific branches or networks. For example, traffic for the different branches or networks of a client can be routed through one or more specific branches or networks. Further, client A 110, client B 120, and client C 130 can each include one or more routers, switches, appliances, client devices, VMs, or any other devices.


Each client can also maintain links between branches. For example, client A can have two branches, and the branches can maintain a link between each other. Thus, in some cases, branches can maintain a tunnel between each other, such as a VPN tunnel. Moreover, the link or tunnel between branches can be generated and/or maintained by the cloud 150. For example, the cloud 150 can collect network and address settings for each branch and use those settings to establish a tunnel between branches. In some cases, the branches can use a respective tunnel between the respective branch and the cloud 150 to establish the tunnel between branches. For example, branch 1 can communicate with cloud 150 through a tunnel between branch 1 and cloud 150 to obtain the settings for establishing a tunnel between branch 1 and branch 2. Branch 2 can similarly communicate with cloud 150 through a tunnel between branch 2 and cloud 150 to obtain the settings for the tunnel between branch 1 and branch 2.


In some cases, cloud 150 can maintain information about each client network, in order to provide or support specific services for each client, such as network traffic monitoring, network traffic routing/re-routing, security, or VPN services. Cloud 150 can also maintain one or more links or tunnels to the clients. For example, cloud 150 can maintain a VPN tunnel to one or more devices in client A's network. In some cases, cloud 150 can configure the VPN tunnel for a client, maintain the VPN tunnel, or automatically update or establish any link or tunnel to the client or any devices of the client.


The cloud 150 can also monitor device and network health and status information for client A 110, client B 120, and client C 130. To this end, client A 110, client B 120, and client C 130 can synchronize information with cloud 150. Cloud 150 can also manage and deploy services for the clients. For example, cloud 150 can collect network information about client A 110 and generate network and device settings to automatically deploy a service for client A 110. In addition, cloud 150 can update device, network, and service settings for the clients.


Those skilled in the art will understand that the cloud architecture 150 can include any number of nodes, devices, links, networks, or components. In fact, embodiments with different numbers and/or types of clients, networks, nodes, cloud components, servers, software components, devices, virtual or physical resources, configurations, topologies, services, appliances, deployments, or network devices are also contemplated herein. Further, cloud 150 can include any number or types of resources, which can be accessed and utilized by clients or tenants. The illustration and examples provided herein are intended for clarification of some embodiments of the present technology.


Moreover, as far as communications, packets (e.g., traffic and/or messages) can be exchanged among the various nodes and networks in the cloud architecture 100 using specific network protocols. In particular, packets can be exchanged using wired protocols, wireless protocols, security protocols, OSI-Layer specific protocols, or any other protocols. Some non-limiting examples of protocols can include Session Initiation Protocol (SIP), protocols from the Internet Protocol Suite, such as TCP/IP; OSI (Open Systems Interconnection) protocols, such as L1-L7 protocols; routing protocols, such as RIP, IGP, BGP, STP, ARP, OSPF, EIGRP, NAT; or any other protocols or standards, such as HTTP, SSH, SSL, RTP, FTP, SMTP, POP, PPP, NNTP, IMAP, Telnet, SSL, SFTP, WIFI, Bluetooth, VTP, ISL, IEEE 802 standards, L2TP, IPSec, etc. In addition, various hardware and software components or devices can be implemented to facilitate communications both within a network and between networks. The various hardware and software components or devices can also be referred to as nodes and some examples are switches, hubs, routers, access points (APs), antennas, network interface cards (NICs), modules, cables, firewalls, servers, repeaters, sensors, and the like.



FIG. 2 illustrates a schematic block diagram of an example communications controller 200. Communications controller 200 can serve as a cloud service management system for cloud 150. In particular, communications controller 200 can manage cloud operations, client communications, service provisioning, network configuration and monitoring, and the like. For example, communications controller 200 can manage cloud service provisioning, such as cloud storage, media, streaming, security, or administration services. In some embodiments, communications controller 200 can manage VMs; networks, such as client networks or software-defined networks (SDNs); service provisioning; and the like.


Communications controller 200 can include several subcomponents, including hardware and software components such as a scheduling function 204, a processor 205, a dashboard process 206, data 208, a networking function 210, a management layer 212, and a communication interface 202. The various subcomponents can be implemented as hardware and/or software components (e.g., processor 205, memory, data structures, etc.). Moreover, although FIG. 2 illustrates one example configuration of the various components of communications controller 200, those of skill in the art will understand that the components can be configured in a number of different ways and can include any other type and number of components. For example, networking function 210 and management layer 212 can belong to one software module or multiple separate modules. Other modules can be combined or further divided up into more subcomponents.


Scheduling function 204 can manage scheduling of procedures, events, or communications. For example, scheduling function 204 can schedule when resources should be allocated from cloud 150. As another example, scheduling function 204 can schedule when specific instructions or commands should be transmitted to the network (e.g., one or more client devices). In some cases, scheduling function 204 can provide scheduling for operations performed or executed by the various subcomponents of communications controller 200. Scheduling function 204 can also schedule resource slots, virtual machines, bandwidth, device activity, status changes, nodes, updates, and the like.


Dashboard process 206 can provide an interface or front end where clients can access, consume, and generally monitor cloud services. For example, dashboard process 206 can provide a web-based frontend where clients can configure client devices or networks that are cloud-managed, provide client preferences, specify policies, enter data, upload statistics, configure interactions or operations, etc. In some cases, dashboard process 206 can provide visibility information, such as views of client networks or devices, and even provide diagnostic information, discussed in greater detail below—e.g., dashboard process 206 can provide a view of the status or conditions of the client's network, the operations taking place, services, performance, a topology or layout, specific network devices, protocols implemented, running processes, errors, notifications, alerts, network structure, ongoing communications, data analysis, etc.


In some cases, dashboard process 206 can provide a graphical user interface (GUI) for the client to monitor the client network, the devices, statistics, errors, notifications, etc., and even make modifications or setting changes through the GUI. The GUI can depict charts, lists, tables, tiles, network trees, maps, topologies, symbols, structures, or any graphical object or element. In addition, the GUI can use color, font, shapes, or any other characteristics to depict scores, alerts, or conditions. In some cases, dashboard process 206 can also handle user or client requests. For example, the client can enter a service request through dashboard process 206.


Data 208 can include any data or information, such as management data, statistics, settings, preferences, profile data, logs, notifications, attributes, configuration parameters, client information, network information, and the like. For example, communications controller 200 can collect network statistics from the client and store the statistics as part of data 208. In some cases, data 208 can include performance and/or configuration information. This way, communications controller 200 can use data 208 to perform management or service operations for the client. Data 208 can be stored on a storage or memory device on communications controller 200, a separate storage device connected to communications controller 200, or a remote storage device in communication with communications controller 200.


Networking function 210 can perform networking calculations, such as network addressing, or networking service or operations, such as auto VPN configuration or traffic routing/re-routing. For example, networking function 210 can perform filtering functions, switching functions, failover functions, high availability functions, network or device deployment functions, resource allocation functions, messaging functions, traffic analysis functions, port configuration functions, mapping functions, packet manipulation functions, path calculation functions, loop detection, cost calculation, error detection, or otherwise manipulate data or networking devices. In some embodiments, networking function 210 can handle networking requests from other networks or devices and establish links between devices. In some embodiments, networking function 210 can perform queueing, messaging, or protocol operations.


Management layer 212 can include logic to perform management operations. For example, management layer 212 can include the logic to allow the various components of communications controller 200 to interface and work together. Management layer 212 can also include the logic, functions, software, and procedure to allow communications controller 200 to perform monitoring, management, control, and administration operations of other devices, cloud 150, the client, applications in cloud 150, services provided to the client, or any other component or procedure. Management layer 212 can include the logic to operate communications controller 200 and perform particular services configured on communications controller 200.


Moreover, management layer 212 can initiate, enable, or launch other instances in communications controller 200 and/or cloud 150. In some embodiments management layer 212 can also provide authentication and security services for cloud 150, the client, controller 200, and/or any other device or component. Further, management layer 212 can manage nodes, resources, VMs, settings, policies, protocols, communications, and the like. In some embodiments, management layer 212 and networking function 210 can be part of the same module. However, in some embodiments, management layer 212 and networking function 210 can be separate layers and/or modules.


Communications interface 202 allows communications controller 200 to communicate with the client, as well as any other device or network. Communications interface 202 can be a network interface card (NIC), and can include wired and/or wireless capabilities. Communications interface 202 allows communications controller 200 to send and receive data from other devices and networks. In some embodiments, communications controller 200 can include multiple communications interfaces for redundancy or failover. For example, communications controller 200 can include dual NICs for connection redundancy.



FIG. 3 illustrates an example network environment 300 which may utilize decentralized key distribution to increase privacy of endpoints (e.g., callers) in a conference call. The network environment 300 can include one or more networks, such as networks 304A and 304B. In some embodiments, endpoint callers may originate their communications from either network 304A or network 304B, using cloud based network 302 with cloud server 360 to communicate in a cloud-based environment. Networks 304A and 304B can include one or more local area networks (LANs), virtual LANs, wireless networks, physical network segments, logical network segments, underlay networks, overlay networks, etc. Each of the networks 304A and 304B can also include one or more physical and/or logical network segments. For example, networks 304A and 304B can be segmented into VLANs in order to separate traffic within the networks 304A and 304B. Moreover, networks 304A and 304B can be interconnected by network 302. Network 302 can include a cloud-based computing network, server 360, private network, such as a LAN, and/or a public network such as the Internet.


Networks 304A and 304B can include various devices 314, 316, 320, 322, 326, 328, 330, 338, 342, 346, 348, 350, 352, such as servers and client devices, interconnected via network devices 306-310, 312, 332-336, and 344, such as routers, firewalls, switches, and so forth. In some embodiments, networks 304A and 304B can be cloud-based networks themselves and may include clusters of nodes. Further, networks 304A and 304B and/or one or more nodes in networks 304A and 304B can be configured to provision network or application services, such as firewall services, content filtering services, application security services, web security services, bandwidth services, VPN services, web services, database services, remote access services, Internet services, and so forth.


Network 370 can be a cloud-based network with server 372. In some embodiments, server 372 may serve the role of identity provider for endpoints/callers that desire an authorization token to communicate with other endpoints/callers in a communication between the parties such as for communication in a conference call facilitated in cloud network 302 by cloud server 360.


In some embodiments, client device (endpoint) 314 of network 304A may desire communication with client device (endpoint) 352 of network 304B via cloud network 302. It is noted that endpoints 314 and 352 are shown as laptops, but may be represented by smartphones, desktop computers, tablets, and the like. Endpoint 314 and endpoint 352 may desire that their communications via network 302 be private in that their identities are not detectable by third parties operating in cloud network 302. Endpoints 314 and 352 may gain access to cloud conferencing server 360 by utilizing, for example, OAuth 2.0. Prior to communicating with each other via the MDD in the cloud conferencing server 360, both endpoints 314 and 352 may be authenticated with authorization server 372. Authorization server 372 can provide endpoints 314 and 352 with authorization tokens/certificates to access cloud conferencing server and MDD 360.


The tokens/certificates utilized by endpoints 314 and 352 for access to cloud conferencing server 360 may not list the identities of endpoints 314 and 352 such that a third party gaining unauthorized access to the tokens would not be able to determine the identities of endpoints 314 and 352. In some embodiments, the individual identities associated with endpoints 314 and 352 can be concealed in the tokens. The tokens/certificates can be obtained by endpoints 314 and 352 by communicating with the identity provider 372. In some embodiments, identity provider 372 may provide endpoints 314 and 352 with a short-term token/certificate, or a one-time use token. An authenticating party, for instance endpoint 314 or endpoint 352, can request that identity provider 372 generate a token/certificate that does not include the identity of the authenticating party. In some embodiments, short-term certificates and identity assertions can be changed for an endpoint for each call of a plurality of conference calls so that the cloud conferencing server cannot determine that the same endpoint is making multiple calls.


After endpoints 314 and 352 receive their authenticated tokens/certificates, each endpoint may attempt to access cloud network 302 by providing their authenticated tokens/certificates. In some embodiments, cloud server 360 and identity provider 372 may be in communication such that identity provider 372 provides cloud server 360 with a listing of tokens assigned to endpoints/callers that are authorized to access cloud network 302. Thus, in some embodiments, when endpoints 314 and 352 receive their authenticated tokens and short-term certificates, they may communicate with each other in cloud network 302 without cloud server 360 having access to their respective identities because cloud server 360 may only have information regarding authorized tokens and not the identities behind the authorized tokens/certificates. This can increase privacy among the communicating endpoints by preventing unauthorized parties from learning identifying information about the communicating endpoints. Further, this may prevent unauthorized parties from making inferences regarding the nature of the communications between the endpoint callers 314 and 352.


In some embodiments, identity provider 372 may create an identity assertion/token/certificate that disguises or omits the identity of the authenticated endpoint/caller. Thus, upon requesting access to cloud network 302 by, for example, an offer/answer procedure with cloud conferencing server 360, the authenticated endpoint/caller can provide an authenticated token from identity provider 372 that does not contain identifying information of the authenticated endpoint/caller. In some embodiments, upon requesting a token/certificate to enter a conference call hosted by cloud conferencing server 360, an authenticating endpoint/caller may provide identity provider 372 with information regarding the identities of other endpoints/callers that plan to join the conference call in cloud 302. The authenticating endpoint/caller may also provide identity provider 372 with a listing of other endpoints/callers authorized to receive the identity of the authenticating party. This can allow callers in cloud network 302 to confirm that the parties they are communicating with in cloud network 302 are the intended parties. In some embodiments, this can be achieved while withholding the identities of the communicating parties.


This may be accomplished by utilizing a decentralized key distribution procedure. In a decentralized key distribution system, an endpoint/caller may convey IP addresses and port numbers in an offer/answer procedure for communicating, for example, group keys with other callers in cloud network 302. This may provide for group key management by providing to the conference call participants associated group identifiers/keys.


In a decentralized key distribution system, an initiating endpoint/caller may test connectivity with remote peers (e.g., other endpoints/callers) by using, for example, Interactive Connectivity Establishment (ICE). The initiating endpoint may establish a secure connection with the remote peers/remote endpoints/remote callers, and the remote callers can mutually authenticate using, for example, short-term certificates provided by identity provider 372. This can be done by a relying party (e.g., a remote peer/caller desiring to join a conference call) validating their remote peer's certificate and assertion. The relying party can request identity provider 372 to provide the identity of an authenticated party (i.e., a remote peer on the same conference call). If the relying party is authorized to receive the identity of the authenticated party, the identity provider 372 may provide the identity of the authenticated party to the relying party. Identity provider 372 may determine parties authorized to receive identifying endpoint information by utilizing a list of authorized parties provided to it from the authenticating party.


The initiating endpoint/caller can generate a group identifier/group symmetric key (e.g., a group end-to-end encryption key) for encrypting and decrypting media exchanged between endpoints in a conference call hosted by cloud server 360. The initiating endpoint (e.g., a speaker of the conference call) can distribute the group symmetric key and encryption algorithm (e.g., Authenticated Encryption with Associated Data (AEAD) to the other participants/callers/endpoints in the conference call using a secure communication channel. In some embodiments, participants in the conference call can also establish a Datagram Transport Layer Security-Real-time Transport Protocol (DTLS-SRTP) session with cloud conferencing server 360 to generate a hop-by-hop key. The participants in the conference call may use a group end-to-end key to encrypt media transmitted in cloud network 302 to other participants in the conference call. The conference call participants may use the hop-by-hop key to encrypt RTP Control Protocol (RTCP) communications and calculate message integrity for Real-time Transport Protocol (RTP) headers. Thus, in some embodiments, cloud conferencing server 360 may not have access to encrypted real-time media in cloud 302 that is communicated between endpoints 314 and 352, but cloud conferencing server 360 may modify the RTP header associated with an encrypted communication.


The devices, nodes, and networks described in network environment 300 are non-limiting examples of devices, nodes, and networks provided for clarification purposes. One of ordinary skill in the art will readily recognize that network environment 300 can include more or less devices, nodes, and networks than those depicted in FIG. 3. Moreover, one of ordinary skill in the art will readily recognize that network environment 300 can include other configurations, architectures, topologies, and so forth. Indeed, other configurations, architectures, topologies, systems, and implementations are contemplated herein.



FIG. 4 illustrates an example network environment 400 which may utilize centralized key distribution to increase privacy of endpoints (e.g., callers) in a conference call. The network environment 400 can include one or more networks, such as networks 304A and 304B. In some embodiments, endpoint callers may originate their communications from either network 304A or network 304B, using cloud based network 302 with cloud server 360 to communicate in a cloud-based environment. Networks 304A and 304B can include one or more local area networks (LANs), virtual LANs, wireless networks, physical network segments, logical network segments, underlay networks, overlay networks, etc. Each of the networks 304A and 304B can also include one or more physical and/or logical network segments. For example, networks 304A and 304B can be segmented into VLANs in order to separate traffic within the networks 304A and 304B. Moreover, networks 304A and 304B can be interconnected by network 302. Network 302 can include a cloud-based computing network, server 360, private network, such as a LAN, and/or a public network such as the Internet.


Networks 304A and 304B can include various devices 314, 316, 320, 326, 328, 330, 338, 342, 346, 348, 350, 352, such as servers and client devices, interconnected via network devices 306-310, 312, 332-336, and 344, such as routers, firewalls, switches, and so forth. In some embodiments, networks 304A and 304B can be cloud-based networks themselves and may include clusters of nodes. Further, networks 304A and 304B and/or one or more nodes in networks 304A and 304B can be configured to provision network or application services, such as firewall services, content filtering services, application security services, web security services, bandwidth services, VPN services, web services, database services, remote access services, Internet services, and so forth.


In some embodiments, server 320 may serve the role of identity provider and key management server (KMS) for endpoints/callers that desire an authorization token to communicate with other endpoints/callers in a communication between the parties such as for communication in a conference call facilitated in cloud network 302 by cloud conferencing server 360. KMS 320 can be an on-premise enterprise KMS that may securely create, share, rotate, and store group end-to-end encryption keys for securing media communicated between endpoints/callers in a conference call facilitated by cloud conferencing server 360 in cloud network 302. In some embodiments, endpoints in a conference call may communicate with KMS 320 directly or through cloud conference server 360. Thus, cloud conference server 360 may act as a transparent proxy that does not receive application layer (L7) data exchanged between endpoints/callers and KMS 320. Endpoints may authenticate with KMS 320 by using a token/certificate provided by the identity provider and identity assertion. The endpoint initiating a media request via cloud conference server 360 can request KMS 320 to generate a group encryption key and can negotiate an encryption algorithm. KMS 320 may also provide the identities of conference call participants that are authorized to receive the group keying material. Moreover, KMS 320 may use a push or pull model to provide the group keying material to the conference call participants.


In some embodiments that utilize centralized key distribution, client device (endpoint) 314 of network 304A may desire communication with client device (endpoint) 352 of network 304B via cloud network 302. It is noted that endpoints 314 and 352 are shown as laptops, but may be represented by smartphones, desktop computers, tablets, and the like. Endpoint 314 and endpoint 352 may desire that their communications via network 302 be private in that their identities are not detectable by third parties operating in cloud network 302. Endpoints 314 and 352 may gain access to cloud conferencing server 360 by utilizing, for example, OAuth 2.0. Prior to communicating with each other in via cloud conferencing server 360, both endpoints 314 and 352 may be authenticated with identity provider/KMS 320. Identity provider/KMS 320 can provide endpoints 314 and 352 with authorization tokens/certificates to access cloud conferencing server 360.


The tokens/certificates utilized by endpoints 314 and 352 for access to cloud conferencing server 360 may not list the identities of endpoints 314 and 352 such that a third party gaining unauthorized access to the tokens would not be able to determine the identities of endpoints 314 and 352. In some embodiments, the organizations associated with endpoints 314 and 352 can be concealed in the tokens. The tokens/certificates can be obtained by endpoints 314 and 352 by communicating with identity provider/KMS 320. In some embodiments, identity provider/KMS 320 may provide endpoints 314 and 352 with a short-term token/certificate, or a one-time use token. An authenticating party, for instance endpoint 314 or endpoint 352, can request that KMS 320 generate a token/certificate that does not include the identity of the authenticating party.


After endpoints 314 and 352 receive their authenticated tokens/certificates, each endpoint may attempt to access cloud conferencing server 360 by providing their authenticated certificates. In some embodiments, cloud conferencing server 360 and identity provider/KMS 320 may be in communication such that identity provider/KMS 320 provides cloud server 360 with a listing of tokens assigned to endpoints/callers that are authorized to access cloud conferencing server 360. Thus, in some embodiments, when endpoints 314 and 352 receive their authenticated tokens, they may communicate with each other in cloud network 302 without cloud conferencing server 360 having access to their respective identities because cloud server 360 may only have information regarding authorized tokens and not the identities behind the authorized tokens/certificates. This can increase privacy among the communicating endpoints by preventing unauthorized parties from learning identifying information about the communicating endpoints. Further, this may prevent unauthorized parties from making inferences regarding the nature of the communications between the endpoint callers 314 and 352.


In some embodiments, identity provider/KMS 320 may create an identity assertion/token/certificate that disguises or omits the identity of the authenticated endpoint/caller. Thus, upon requesting access to cloud network 302 by, for example, an offer/answer procedure with cloud conferencing server 360, the authenticated endpoint/caller can provide an authenticated token from identity provider/KMS 320 that does not contain identifying information of the authenticated endpoint/caller. In some embodiments, upon requesting a token/certificate to enter a conference call hosted by cloud conferencing server 360, an authenticating endpoint/caller may provide identity provider/KMS 320 with information regarding the identities of other endpoints/callers that plan to join the conference call in cloud 302. The authenticating endpoint/caller may also provide identity provider/KMS 320 with a listing of other endpoints/callers authorized to receive the identity of the authenticating party. This can allow callers in cloud network 302 to confirm that the parties they are communicating with in cloud network 302 are the intended parties. In some embodiments, this can be achieved while withholding the identities of the communicating parties.


The devices, nodes, and networks described in network environment 400 are non-limiting examples of devices, nodes, and networks provided for clarification purposes. One of ordinary skill in the art will readily recognize that network environment 400 can include more or less devices, nodes, and networks than those depicted in FIG. 4. Moreover, one of ordinary skill in the art will readily recognize that network environment 400 can include other configurations, architectures, topologies, and so forth. Indeed, other configurations, architectures, topologies, systems, and implementations are contemplated herein.



FIG. 5 illustrates an example embodiment of token generation. A user 510 may utilize, for example, a laptop or other network computing device to receive an authenticated certificate/token that does not list the user's identification. This certificate/token may be used to access a cloud conference server (not shown) such that the user's identity is not known to the cloud conference server, but may be disclosed to other callers in the user's call conference by utilization of, for example, a group identifier. Server 512 may be an identity provider or key management server. Moreover, server 512 can function as an on-site enterprise key management server or as a remote server in a decentralized key distribution system. In FIG. 5, step 502 involves user 510 authenticating its identity with server 512. Authentication can occur through use of, for instance, a user name and password. Server 512 can generate key pairs at step 504 to send back to user 510. At step 506, a public key can be sent back to server 512. At step 508, server 512 may generate and sign the certificate/token and return the certificate/token to user 510. In some embodiments, the signed certificate/token may not include the identity of user 510 such that user 510 can utilize the signed certificate/token to access a cloud conference server without the cloud conference server knowing the identity of user 510 or the devices used by user 510 to access the cloud conference server.



FIG. 6 illustrates an example procedure 600 for endpoint privacy preservation with cloud conferencing according to one or more embodiments of the present disclosure. The steps outlined herein are exemplary and can be implemented in any combination thereof, including combinations that exclude, add, or modify steps shown in FIG. 6. At step 602, a first request can be received from a first endpoint to access a cloud-based conference platform, wherein the first request includes a first access token. Based at least on the first request, a first certificate can be provided to the first endpoint, wherein the first certificate does not include an identity of the first endpoint. If access to the cloud-based conference platform is authorized, procedure 600 may continue at step 604 wherein a second request may be received from a second endpoint to access the cloud-based conference platform, wherein the second request includes a second access token. Based at least on the second request, a second certificate can be provided to the second endpoint, wherein the second certificate does not include an identity of the second endpoint. If access to the cloud-based conference platform is authorized, procedure 600 may continue at step 606 wherein data can be routed within the cloud-based conference platform between the first endpoint and second endpoint using the MDD. Endpoints may authenticate with the MDD using, for example, a short-term certificate provided by the Enterprise IdP.


A listing of endpoints authorized to receive the identities of the other endpoints in the cloud-based conference platform that are communicating with each other may be provided to an identity provider. At step 608, a request may be received from the second endpoint for the identity of the first endpoint. If the second endpoint is authorized to receive the identity of the first endpoint (e.g., the second endpoint is one of the endpoints in the listing of endpoints authorized to receive the identity of the first endpoint), at step 610, the identity of the first endpoint can be provided to the second endpoint.


It should be noted that while certain steps within procedure 600 may be optional as described above, the steps shown in FIG. 6 are merely examples for illustration, and steps may be included or excluded as desired. Further, while a particular order of the steps is shown, this ordering is merely illustrative, and any suitable arrangement of the steps may be utilized without departing from the scope of the embodiments described herein.



FIG. 7 illustrates an example procedure 700 for endpoint privacy preservation with cloud conferencing according to one or more embodiments of the present disclosure. The steps outlined herein are exemplary and can be implemented in any combination thereof, including combinations that exclude, add, or modify steps shown in FIG. 7. At step 702, a first request can be received from a first endpoint to access a cloud-based conference platform. If the first endpoint is authorized access to the cloud-based conference platform, procedure 700 can continue to step 704. In step 704, in response to the first request, a first access token can be provided to the first endpoint. Based at least on the first request, a first certificate can be provided to the first endpoint, wherein the first certificate does not include an identity of the first endpoint. Procedure 700 continues at step 706 wherein a second request may be received from a second endpoint to access the cloud-based conference platform. If the second endpoint is authorized access to the cloud-based conference platform, procedure 700 can continue to step 708. In step 708, in response to the second request, a second access token can be provided to the second endpoint and based at least on the second request, a second certificate may be provided to the second endpoint, wherein the second certificate does not include an identity of the second endpoint. The first endpoint and the second endpoint may communicate with each other in the cloud-based conference platform using at least the MDD. Endpoints can authenticate to the MDD using short-term certificates provided by the Enterprise Identity provider.


Procedure 700 may continue to step 710 wherein a listing of endpoints authorized to access the cloud-based conference platform can be received. In step 712, a request for an identity of an endpoint of the listing of endpoints authorized to access the cloud-based conference platform can be received. If the requesting endpoint is authorized to receive the requested identity, procedure 700 may continue to step 714 wherein the identity of the requested endpoint is provided to the requesting endpoint.


It should be noted that while certain steps within procedure 700 may be optional as described above, the steps shown in FIG. 7 are merely examples for illustration, and steps may be included or excluded as desired. Further, while a particular order of the steps is shown, this ordering is merely illustrative, and any suitable arrangement of the steps may be utilized without departing from the scope of the embodiments described herein.



FIG. 8 illustrates an example system architecture of some embodiments of the present technology. Persons of ordinary skill in the art will also readily appreciate that other system embodiments are possible.



FIG. 8 illustrates a conventional bus computing system architecture 800 wherein the components of the system are in electrical communication with each other using a bus 805. Exemplary system 800 includes a processing unit (CPU or processor) 810 and a system bus 805 that couples various system components including the system memory 815, such as read only memory (ROM) 820 and random access memory (RAM) 825, to the processor 810. The system 800 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 810. The system 800 can copy data from the memory 815 and/or the storage device 830 to the cache 812 for quick access by the processor 810. In this way, the cache can provide a performance boost that avoids processor 810 delays while waiting for data. These and other modules can control or be configured to control the processor 810 to perform various actions. Other system memory 815 may be available for use as well. The memory 815 can include multiple different types of memory with different performance characteristics. The processor 810 can include any general purpose processor and a hardware module or software module, such as module 1832, module 2834, and module 3836 stored in storage device 830, configured to control the processor 810 as well as a special-purpose processor where software instructions are incorporated into the actual processor design. The processor 810 may essentially be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric.


To enable user interaction with the computing system architecture 800, an input device 845 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 835 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing device 800. The communications interface 840 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.


Storage device 830 can be a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 825, read only memory (ROM) 820, and hybrids thereof.


The storage device 830 can include software modules 832, 834, 836 for controlling the processor 810. Other hardware or software modules are contemplated. The storage device 830 can be connected to the system bus 805. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 810, bus 805, display 835, and so forth, to carry out the function.


It can be appreciated that example system 800 can have more than one processor 810 or be part of a group or cluster of computing devices networked together to provide greater processing capability.


For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.


In some embodiments the computer-readable storage devices, media, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.


Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.


Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rack mount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.


The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.


Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims. Moreover, claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim. Further, features described with reference to an embodiment disclosed herein can be combined with, or implemented in, any other embodiments disclosed herein.


The techniques disclosed herein can provide increased privacy among endpoints communicating via a cloud-based network which may result in more efficient network packet processing as fewer data may be required for network packet transmissions, which may result in fewer processor cycles required to route signals and thus improved efficiency of the network processors used to implement some embodiments of the present technology.


While there have been shown and described illustrative embodiments of the present technology, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, the embodiments have been shown and described herein with relation to a particular communication system. However, the embodiments in their broader sense are not as limited, and may, in fact, be used with any number of communication systems.


Further, although the foregoing description has been directed to specific embodiments, it will be apparent that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software being stored on a tangible (non-transitory) computer-readable medium, devices, and memories (e.g., disks/CDs/RAM/EEPROM/ etc.) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Further, methods describing the various functions and techniques described herein can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code.


Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include cloud-based media, magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and the like. In addition, devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, tablets, wearable devices, small form factor personal computers, personal digital assistants, and the like. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example. Instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures. Accordingly this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.

Claims
  • 1. A non-transitory computer-readable medium including instructions stored thereon, the instructions, when executed by a processor, cause the processor to: receive a first request from a first endpoint to access a cloud-based conference platform, wherein the first request includes a first access token;based at least on the first request, provide a first certificate to the first endpoint, wherein the first certificate does not include an identity of the first endpoint;receive a second request from a second endpoint to access the cloud-based conference platform, wherein the second request includes a second access token;based at least on the second request, provide a second certificate to the second endpoint, wherein the second certificate does not include an identity of the second endpoint;route data within the cloud-based conference platform between the first endpoint and the second endpoint based at least on the first certificate and the second certificate;receive, via an identity provider, a third request for an identity of one of the first endpoint or the second endpoint, the third request sent from another one of the first endpoint or the second endpoint; andprovide, via the identity provider, the identity of the one of the first endpoint or the second endpoint unless the one of the first endpoint or the second endpoint has not authorized the identity provider to provide the identity of the one of the first endpoint or the second endpoint.
  • 2. The non-transitory computer-readable medium of claim 1, wherein access tokens provide at least one of temporary access or one-time access to the cloud-based conference platform.
  • 3. The non-transitory computer-readable medium of claim 1, wherein access tokens are provided by the identity provider hosted by an enterprise network associated with the first endpoint.
  • 4. The non-transitory computer-readable medium of claim 1, wherein the identity provider provides access tokens and is hosted by a separate network from the first endpoint and the second endpoint.
  • 5. The non-transitory computer-readable medium of claim 1, wherein, the instructions further cause the processor to receive, via the identity provider, a listing of endpoints,the listing of endpoints is sent from the first endpoint,the listing of endpoints includes all endpoints authorized to receive the identity of the first endpoint, andthe listing of endpoints includes at least the second endpoint.
  • 6. The non-transitory computer-readable medium of claim 1, wherein, the third request is for the identity of the first endpoint,the third request is sent from the second endpoint, andthe second endpoint is included in a listing of endpoints authorized to receive the identity of the first endpoint.
  • 7. A non-transitory computer-readable medium including instructions stored thereon, the instructions, when executed by a processor, cause the processor to: receive a first request from a first endpoint to access a cloud-based conference platform;in response to the first request, provide a first access token to the first endpoint;based at least on the first request, provide a first certificate to the first endpoint, wherein the first certificate does not include an identity of the first endpoint;receive a second request from a second endpoint to access the cloud-based conference platform;in response to the second request, provide a second access token to the second endpoint;based at least on the second request, provide a second certificate to the second endpoint;receive a third request from the second endpoint for the identity of the first endpoint; andin response to the third request, provide the identity of the first endpoint based at least upon a listing of endpoints authorized to access the cloud-based conference platform and to receive identifying information,wherein, the second certificate does not include an identity of the second endpoint, andthe first endpoint and the second endpoint communicate with each other in the cloud-based conference platform using at least the first certificate and the second certificate.
  • 8. The non-transitory computer-readable medium of claim 7, wherein the instructions further cause the processor to receive the listing of endpoints,the listing of endpoints is sent from the first endpoint,the listing of endpoints includes all endpoints authorized to receive the identity of the first endpoint, andthe listing of endpoints includes the second endpoint.
  • 9. The non-transitory computer-readable medium of claim 7, wherein, the third request is for the identity of the first endpoint,the third request is sent from the second endpoint, andthe second endpoint is included in the listing of endpoints.
  • 10. The non-transitory computer-readable medium of claim 7, wherein access tokens provide at least one of temporary access or one-time access to the cloud-based conference platform.
  • 11. The non-transitory computer-readable medium of claim 7, wherein access tokens are provided by an identity provider hosted by an enterprise network associated with the first endpoint.
  • 12. The non-transitory computer-readable medium of claim 7, wherein access tokens are provided by an identity provider hosted by a separate network from the first endpoint and the second endpoint.
  • 13. A system comprising: one or more processors;an identity provider; anda memory configured to store a process, the process, when executed by the one or more processors, causes the one or more processors to: receive a first request from a first endpoint of a first network to access a cloud-based conference platform in a cloud network, wherein the first request includes a first access token;based at least on the first request, provide a first certificate to the first endpoint, wherein the first certificate does not include an identity of the first endpoint;receive a second request from a second endpoint of a second network to access the cloud-based conference platform in the cloud network, wherein the second request includes a second access token;based at least on the second request, provide a second certificate to the second endpoint, wherein the second certificate does not include an identity of the second endpoint;route data within the cloud-based conference platform of the cloud network between the first endpoint and the second endpoint based at least on the first certificate and the second certificate;receive, via the identity provider proxy, a third request for an identity of one of the first endpoint or the second endpoint, the third request sent from another one of the first endpoint or the second endpoint; andprovide, via the identity provider, the identity of the one of the first endpoint or the second endpoint unless the one of the first endpoint or the second endpoint has not authorized the identity provider to provide the identity of the one of the first endpoint or the second endpoint.
  • 14. The system of claim 13, wherein access tokens provide at least one of temporary access or one-time access to the cloud-based conference platform of the cloud network.
  • 15. The system of claim 13, wherein the identity provider provides access tokens and is hosted by a third network.
  • 16. The system of claim 13, wherein, the process further causes the one or more processors to receive, via the identity provider, a listing of endpoints,the listing of endpoints is sent from the first endpoint,the listing of endpoints includes all endpoints authorized to receive the identity of the first endpoint, andthe listing of endpoints includes at least the second endpoint.
  • 17. The system of claim 13, wherein, the third request is for the identity of the first endpoint,the third request is sent from the second endpoint, andthe second endpoint is included in a listing of endpoints authorized to receive the identity of the first endpoint.
  • 18. A method comprising: receiving a first request from a first endpoint to access a cloud-based conference platform, wherein the first request includes a first access token;based at least on the first request, providing a first certificate to the first endpoint, wherein the first certificate does not include an identity of the first endpoint;receiving a second request from a second endpoint to access the cloud-based conference platform, wherein the second request includes a second access token;based at least on the second request, providing a second certificate to the second endpoint, wherein the second certificate does not include an identity of the second endpoint;routing data within the cloud-based conference platform between the first endpoint and the second endpoint based at least on the first certificate and the second certificate,receiving, via an identity provider, a third request for an identity of one of the first endpoint or the second endpoint, the third request sent from another one of the first endpoint or the second endpoint; andproviding, via the identity provider, the identity of the one of the first endpoint or the second endpoint unless the one of the first endpoint or the second endpoint has not authorized the identity provider to provide the identity of the one of the first endpoint or the second endpoint.
  • 19. The method of claim 18, wherein access tokens are provided by the identity provider hosted by an enterprise network associated with the first endpoint.
  • 20. The method of claim 18, wherein the identity provider provides access tokens and is hosted by a separate network from the first endpoint and the second endpoint.
US Referenced Citations (431)
Number Name Date Kind
5812773 Norin Sep 1998 A
5889896 Meshinsky et al. Mar 1999 A
6108782 Fletcher et al. Aug 2000 A
6178453 Mattaway et al. Jan 2001 B1
6298153 Oishi Oct 2001 B1
6343290 Cossins et al. Jan 2002 B1
6643260 Kloth et al. Nov 2003 B1
6683873 Kwok et al. Jan 2004 B1
6721804 Rubin et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6735631 Oehrke et al. May 2004 B1
6885670 Regula Apr 2005 B1
6996615 McGuire Feb 2006 B1
7054930 Cheriton May 2006 B1
7058706 Lyer et al. Jun 2006 B1
7062571 Dale et al. Jun 2006 B1
7076397 Ding et al. Jul 2006 B2
7111177 Chauvel et al. Sep 2006 B1
7212490 Kao et al. May 2007 B1
7277948 Igarashi et al. Oct 2007 B2
7313667 Pullela et al. Dec 2007 B1
7379846 Williams et al. May 2008 B1
7480672 Hahn et al. Jan 2009 B2
7496043 Leong et al. Feb 2009 B1
7536476 Alleyne May 2009 B1
7567504 Darling et al. Jul 2009 B2
7606147 Luft et al. Oct 2009 B2
7647594 Togawa Jan 2010 B2
7684322 Sand et al. Mar 2010 B2
7773510 Back et al. Aug 2010 B2
7808897 Mehta et al. Oct 2010 B1
7881957 Cohen et al. Feb 2011 B1
7917647 Cooper et al. Mar 2011 B2
8010598 Tanimoto Aug 2011 B2
8028071 Mahalingam et al. Sep 2011 B1
8041714 Aymeloglu et al. Oct 2011 B2
8121117 Amdahl et al. Feb 2012 B1
8171415 Appleyard et al. May 2012 B2
8234377 Cohn Jul 2012 B2
8244559 Horvitz et al. Aug 2012 B2
8250215 Stienhans et al. Aug 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8284664 Aybay et al. Oct 2012 B1
8284776 Petersen Oct 2012 B2
8301746 Head et al. Oct 2012 B2
8345692 Smith Jan 2013 B2
8406141 Couturier et al. Mar 2013 B1
8407413 Yucel et al. Mar 2013 B1
8448171 Donnellan et al. May 2013 B2
8477610 Zuo et al. Jul 2013 B2
8495252 Lais et al. Jul 2013 B2
8495356 Ashok et al. Jul 2013 B2
8510469 Portolani Aug 2013 B2
8514868 Hill Aug 2013 B2
8532108 Li et al. Sep 2013 B2
8533687 Greifeneder et al. Sep 2013 B1
8547974 Guruswamy et al. Oct 2013 B1
8560639 Murphy et al. Oct 2013 B2
8560663 Baucke et al. Oct 2013 B2
8589543 Dutta et al. Nov 2013 B2
8590050 Nagpal et al. Nov 2013 B2
8611356 Yu et al. Dec 2013 B2
8612625 Andreis et al. Dec 2013 B2
8630291 Shaffer et al. Jan 2014 B2
8639787 Lagergren et al. Jan 2014 B2
8656024 Krishnan et al. Feb 2014 B2
8660129 Brendel et al. Feb 2014 B1
8719804 Jain May 2014 B2
8775576 Hebert et al. Jul 2014 B2
8797867 Chen et al. Aug 2014 B1
8805951 Faibish et al. Aug 2014 B1
8850182 Fritz et al. Sep 2014 B1
8856339 Mestery et al. Oct 2014 B2
8909780 Dickinson et al. Dec 2014 B1
8909928 Ahmad et al. Dec 2014 B2
8918510 Gmach et al. Dec 2014 B2
8924720 Raghuram et al. Dec 2014 B2
8930747 Levijarvi et al. Jan 2015 B2
8938775 Roth et al. Jan 2015 B1
8959526 Kansal et al. Feb 2015 B2
8977754 Curry, Jr. et al. Mar 2015 B2
9009697 Breiter et al. Apr 2015 B2
9015324 Jackson Apr 2015 B2
9043439 Bicket et al. May 2015 B2
9049115 Rajendran et al. Jun 2015 B2
9063789 Beaty et al. Jun 2015 B2
9065727 Liu et al. Jun 2015 B1
9075649 Bushman et al. Jul 2015 B1
9104334 Madhusudana et al. Aug 2015 B2
9164795 Vincent Oct 2015 B1
9167050 Durazzo et al. Oct 2015 B2
9201701 Boldyrev et al. Dec 2015 B2
9201704 Chang et al. Dec 2015 B2
9203784 Chang et al. Dec 2015 B2
9223634 Chang et al. Dec 2015 B2
9244776 Koza et al. Jan 2016 B2
9251114 Ancin et al. Feb 2016 B1
9264478 Hon et al. Feb 2016 B2
9313048 Chang et al. Apr 2016 B2
9361192 Smith et al. Jun 2016 B2
9380075 He et al. Jun 2016 B2
9432294 Sharma et al. Aug 2016 B1
9444744 Sharma et al. Sep 2016 B1
9473365 Melander et al. Oct 2016 B2
9503530 Niedzielski Nov 2016 B1
9558078 Farlee et al. Jan 2017 B2
9613078 Vermeulen et al. Apr 2017 B2
9628471 Sundaram Apr 2017 B1
9632858 Sasturkar et al. Apr 2017 B2
9658876 Chang et al. May 2017 B2
9692802 Bicket et al. Jun 2017 B2
9727359 Tsirkin Aug 2017 B2
9736063 Wan et al. Aug 2017 B2
9755858 Bagepalli et al. Sep 2017 B2
9792245 Raghavan et al. Oct 2017 B2
9804988 Ayoub et al. Oct 2017 B1
9954783 Thirumurthi et al. Apr 2018 B1
20020004900 Patel Jan 2002 A1
20020073337 Ioele et al. Jun 2002 A1
20020143928 Maltz et al. Oct 2002 A1
20020166117 Abrams et al. Nov 2002 A1
20020174216 Shorey et al. Nov 2002 A1
20030018591 Komisky Jan 2003 A1
20030056001 Mate et al. Mar 2003 A1
20030228585 Inoko et al. Dec 2003 A1
20040004941 Malan et al. Jan 2004 A1
20040095237 Chen et al. May 2004 A1
20040131059 Ayyakad et al. Jul 2004 A1
20040264481 Darling et al. Dec 2004 A1
20050060418 Sorokopud Mar 2005 A1
20050125424 Herriott et al. Jun 2005 A1
20060059558 Selep et al. Mar 2006 A1
20060104286 Cheriton May 2006 A1
20060120575 Ahn et al. Jun 2006 A1
20060126665 Ward et al. Jun 2006 A1
20060146825 Hofstaedter et al. Jul 2006 A1
20060155875 Cheriton Jul 2006 A1
20060168338 Bruegl et al. Jul 2006 A1
20060294207 Barsness et al. Dec 2006 A1
20070011330 Dinker et al. Jan 2007 A1
20070174663 Crawford et al. Jul 2007 A1
20070223487 Kajekar et al. Sep 2007 A1
20070242830 Conrado Oct 2007 A1
20080005293 Bhargava et al. Jan 2008 A1
20080084880 Dharwadkar Apr 2008 A1
20080165778 Ertemalp Jul 2008 A1
20080198752 Fan et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080235755 Blaisdell et al. Sep 2008 A1
20090006527 Gingell, Jr. et al. Jan 2009 A1
20090010277 Halbraich et al. Jan 2009 A1
20090019367 Cavagnari et al. Jan 2009 A1
20090031312 Mausolf et al. Jan 2009 A1
20090083183 Rao Mar 2009 A1
20090138763 Arnold May 2009 A1
20090177775 Radia et al. Jul 2009 A1
20090178058 Stillwell, III et al. Jul 2009 A1
20090182874 Morford et al. Jul 2009 A1
20090265468 Annambhotla et al. Oct 2009 A1
20090265753 Anderson Oct 2009 A1
20090293056 Ferris Nov 2009 A1
20090300608 Ferris et al. Dec 2009 A1
20090313562 Appleyard et al. Dec 2009 A1
20090323706 Germain et al. Dec 2009 A1
20090328031 Pouyadou et al. Dec 2009 A1
20100031025 Zhang Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100061250 Nugent Mar 2010 A1
20100115341 Baker et al. May 2010 A1
20100131765 Bromley May 2010 A1
20100191783 Mason et al. Jul 2010 A1
20100192157 Jackson et al. Jul 2010 A1
20100205601 Abbas et al. Aug 2010 A1
20100211782 Auradkar et al. Aug 2010 A1
20100217886 Seren et al. Aug 2010 A1
20100229241 Liu Sep 2010 A1
20100293270 Augenstein et al. Nov 2010 A1
20100318609 Lahiri et al. Dec 2010 A1
20100325199 Park et al. Dec 2010 A1
20100325257 Goel et al. Dec 2010 A1
20100325441 Laurie Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110016214 Jackson Jan 2011 A1
20110035754 Srinivasan Feb 2011 A1
20110055396 Dehaan Mar 2011 A1
20110055398 Dehaan et al. Mar 2011 A1
20110055470 Portolani Mar 2011 A1
20110072489 Parann-Nissany Mar 2011 A1
20110075667 Li et al. Mar 2011 A1
20110110382 Jabr et al. May 2011 A1
20110116443 Yu et al. May 2011 A1
20110126099 Anderson et al. May 2011 A1
20110138055 Daly et al. Jun 2011 A1
20110145413 Dawson et al. Jun 2011 A1
20110145657 Bishop et al. Jun 2011 A1
20110173303 Rider Jul 2011 A1
20110185063 Head et al. Jul 2011 A1
20110199902 Leavy et al. Aug 2011 A1
20110213687 Ferris et al. Sep 2011 A1
20110213966 Fu Sep 2011 A1
20110219434 Betz et al. Sep 2011 A1
20110231715 Kunii et al. Sep 2011 A1
20110231899 Pulier et al. Sep 2011 A1
20110239039 Dieffenbach et al. Sep 2011 A1
20110252327 Awasthi et al. Oct 2011 A1
20110261811 Battestilli et al. Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276675 Singh et al. Nov 2011 A1
20110276951 Jain Nov 2011 A1
20110295998 Ferris et al. Dec 2011 A1
20110305149 Scott et al. Dec 2011 A1
20110307531 Gaponenko et al. Dec 2011 A1
20110320870 Kenigsberg et al. Dec 2011 A1
20120005724 Lee Jan 2012 A1
20120023418 Frields et al. Jan 2012 A1
20120054367 Ramakrishnan et al. Mar 2012 A1
20120072318 Akiyama et al. Mar 2012 A1
20120072578 Alam Mar 2012 A1
20120072581 Tung et al. Mar 2012 A1
20120072985 Davne et al. Mar 2012 A1
20120072992 Arasaratnam et al. Mar 2012 A1
20120084445 Brock et al. Apr 2012 A1
20120084782 Chou et al. Apr 2012 A1
20120096134 Suit Apr 2012 A1
20120102193 Rathore et al. Apr 2012 A1
20120102199 Hopmann et al. Apr 2012 A1
20120131174 Ferris et al. May 2012 A1
20120137215 Kawara May 2012 A1
20120158967 Sedayao et al. Jun 2012 A1
20120159097 Jennas, II et al. Jun 2012 A1
20120166649 Watanabe et al. Jun 2012 A1
20120167094 Suit Jun 2012 A1
20120173541 Venkatarannani Jul 2012 A1
20120173710 Rodriguez Jul 2012 A1
20120179909 Sagi et al. Jul 2012 A1
20120180044 Donnellan et al. Jul 2012 A1
20120182891 Lee et al. Jul 2012 A1
20120185632 Lais et al. Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192016 Gotesdyner et al. Jul 2012 A1
20120192075 Ebtekar et al. Jul 2012 A1
20120201135 Ding et al. Aug 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204169 Breiter et al. Aug 2012 A1
20120204187 Breiter et al. Aug 2012 A1
20120214506 Skaaksrud et al. Aug 2012 A1
20120222106 Kuehl Aug 2012 A1
20120236716 Anbazhagan et al. Sep 2012 A1
20120240113 Hur Sep 2012 A1
20120265976 Spiers et al. Oct 2012 A1
20120272025 Park et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120281708 Chauhan et al. Nov 2012 A1
20120290647 Ellison et al. Nov 2012 A1
20120297238 Watson et al. Nov 2012 A1
20120311106 Morgan Dec 2012 A1
20120311568 Jansen Dec 2012 A1
20120324092 Brown et al. Dec 2012 A1
20120324114 Dutta et al. Dec 2012 A1
20130003567 Gallant et al. Jan 2013 A1
20130013248 Brugler et al. Jan 2013 A1
20130036213 Hasan et al. Feb 2013 A1
20130044636 Koponen et al. Feb 2013 A1
20130066940 Shao Mar 2013 A1
20130069950 Adam et al. Mar 2013 A1
20130080509 Wang Mar 2013 A1
20130080624 Nagai et al. Mar 2013 A1
20130091557 Gurrapu Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130104140 Meng et al. Apr 2013 A1
20130111540 Sabin May 2013 A1
20130117337 Dunham May 2013 A1
20130124628 Weerasinghe May 2013 A1
20130124712 Parker May 2013 A1
20130125124 Kempf et al. May 2013 A1
20130138816 Kuo et al. May 2013 A1
20130144978 Jain et al. Jun 2013 A1
20130152076 Patel Jun 2013 A1
20130152175 Hromoko et al. Jun 2013 A1
20130159097 Schory et al. Jun 2013 A1
20130159496 Hamilton et al. Jun 2013 A1
20130160008 Cawlfield et al. Jun 2013 A1
20130162753 Hendrickson Jun 2013 A1
20130169666 Pacheco et al. Jul 2013 A1
20130179941 McGloin et al. Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130185413 Beaty et al. Jul 2013 A1
20130185433 Zhu et al. Jul 2013 A1
20130191106 Kephart et al. Jul 2013 A1
20130198050 Shroff et al. Aug 2013 A1
20130198374 Zalmanovitch et al. Aug 2013 A1
20130204849 Chacko Aug 2013 A1
20130232491 Radhakrishnan et al. Sep 2013 A1
20130232492 Wang Sep 2013 A1
20130246588 Borowicz et al. Sep 2013 A1
20130250770 Zou et al. Sep 2013 A1
20130254415 Fullen et al. Sep 2013 A1
20130262347 Dodson Oct 2013 A1
20130283364 Chang et al. Oct 2013 A1
20130297769 Chang et al. Nov 2013 A1
20130318240 Hebert et al. Nov 2013 A1
20130318546 Kothuri et al. Nov 2013 A1
20130339949 Spiers et al. Dec 2013 A1
20140006481 Frey et al. Jan 2014 A1
20140006535 Reddy Jan 2014 A1
20140006585 Dunbar et al. Jan 2014 A1
20140019639 Ueno Jan 2014 A1
20140040473 Ho et al. Feb 2014 A1
20140040883 Tompkins Feb 2014 A1
20140052877 Mao Feb 2014 A1
20140059310 Du et al. Feb 2014 A1
20140074850 Noel et al. Mar 2014 A1
20140075048 Yuksel et al. Mar 2014 A1
20140075108 Dong et al. Mar 2014 A1
20140075357 Flores et al. Mar 2014 A1
20140075501 Srinivasan et al. Mar 2014 A1
20140089727 Cherkasova et al. Mar 2014 A1
20140098762 Ghai et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140122560 Ramey et al. May 2014 A1
20140136779 Guha et al. May 2014 A1
20140140211 Chandrasekaran et al. May 2014 A1
20140141720 Princen May 2014 A1
20140156557 Zeng et al. Jun 2014 A1
20140160924 Pfautz et al. Jun 2014 A1
20140164486 Ravichandran et al. Jun 2014 A1
20140188825 Muthukkaruppan et al. Jul 2014 A1
20140189095 Lindberg et al. Jul 2014 A1
20140189125 Amies et al. Jul 2014 A1
20140215471 Cherkasova Jul 2014 A1
20140222953 Karve et al. Aug 2014 A1
20140244851 Lee Aug 2014 A1
20140245298 Zhou et al. Aug 2014 A1
20140269266 Filsfils et al. Sep 2014 A1
20140280805 Sawalha Sep 2014 A1
20140282536 Dave et al. Sep 2014 A1
20140282611 Campbell et al. Sep 2014 A1
20140282669 McMillan Sep 2014 A1
20140282889 Ishaya et al. Sep 2014 A1
20140289200 Kato Sep 2014 A1
20140297569 Clark et al. Oct 2014 A1
20140297835 Buys Oct 2014 A1
20140314078 Jilani Oct 2014 A1
20140317261 Shatzkamer et al. Oct 2014 A1
20140366155 Chang et al. Dec 2014 A1
20140372567 Ganesh et al. Dec 2014 A1
20150006470 Mohan Jan 2015 A1
20150033086 Sasturkar et al. Jan 2015 A1
20150043335 Testicioglu et al. Feb 2015 A1
20150043576 Dixon et al. Feb 2015 A1
20150052247 Threefoot et al. Feb 2015 A1
20150052517 Raghu et al. Feb 2015 A1
20150058382 St. Laurent et al. Feb 2015 A1
20150058459 Amendjian et al. Feb 2015 A1
20150058557 Madhusudana et al. Feb 2015 A1
20150070516 Shoemake et al. Mar 2015 A1
20150071285 Kumar et al. Mar 2015 A1
20150089478 Cheluvaraju et al. Mar 2015 A1
20150100471 Curry, Jr. et al. Apr 2015 A1
20150106802 Ivanov et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150109923 Hwang Apr 2015 A1
20150117199 Chinnaiah Sankaran et al. Apr 2015 A1
20150117458 Gurkan et al. Apr 2015 A1
20150120914 Wada et al. Apr 2015 A1
20150149828 Mukerji et al. May 2015 A1
20150178133 Phelan et al. Jun 2015 A1
20150215819 Bosch et al. Jul 2015 A1
20150227405 Jan et al. Aug 2015 A1
20150242204 Hassine et al. Aug 2015 A1
20150249709 Teng et al. Sep 2015 A1
20150271199 Bradley et al. Sep 2015 A1
20150280980 Bitar Oct 2015 A1
20150281067 Wu Oct 2015 A1
20150281113 Siciliano et al. Oct 2015 A1
20150309908 Pearson et al. Oct 2015 A1
20150319063 Zourzouvillys et al. Nov 2015 A1
20150326524 Tankala et al. Nov 2015 A1
20150339210 Kopp et al. Nov 2015 A1
20150373108 Fleming et al. Dec 2015 A1
20150379062 Vermeulen et al. Dec 2015 A1
20160011925 Kulkarni et al. Jan 2016 A1
20160013990 Kulkarni et al. Jan 2016 A1
20160062786 Meng et al. Mar 2016 A1
20160065417 Sapuram et al. Mar 2016 A1
20160094398 Choudhury et al. Mar 2016 A1
20160094480 Kulkarni et al. Mar 2016 A1
20160094643 Jain et al. Mar 2016 A1
20160094894 Inayatullah et al. Mar 2016 A1
20160099847 Melander et al. Apr 2016 A1
20160099873 Gerö et al. Apr 2016 A1
20160103838 Sainani et al. Apr 2016 A1
20160105393 Thakkar et al. Apr 2016 A1
20160127184 Bursell May 2016 A1
20160134557 Steinder et al. May 2016 A1
20160147676 Cha et al. May 2016 A1
20160162436 Raghavan et al. Jun 2016 A1
20160164914 Madhav et al. Jun 2016 A1
20160188527 Cherian et al. Jun 2016 A1
20160234071 Nambiar et al. Aug 2016 A1
20160239399 Babu et al. Aug 2016 A1
20160253078 Ebtekar et al. Sep 2016 A1
20160254968 Ebtekar et al. Sep 2016 A1
20160261564 Foxhoven et al. Sep 2016 A1
20160277368 Narayanaswamy et al. Sep 2016 A1
20160292611 Boe et al. Oct 2016 A1
20160352682 Chang Dec 2016 A1
20160378389 Hrischuk et al. Dec 2016 A1
20170005948 Melander et al. Jan 2017 A1
20170024260 Chandrasekaran et al. Jan 2017 A1
20170026470 Bhargava et al. Jan 2017 A1
20170034199 Zaw Feb 2017 A1
20170041342 Efremov et al. Feb 2017 A1
20170054659 Ergin et al. Feb 2017 A1
20170063674 Maskalik et al. Mar 2017 A1
20170097841 Chang et al. Apr 2017 A1
20170099188 Chang et al. Apr 2017 A1
20170104755 Arregoces et al. Apr 2017 A1
20170126583 Xia May 2017 A1
20170147297 Krishnamurthy et al. May 2017 A1
20170163569 Koganti Jun 2017 A1
20170171158 Hoy et al. Jun 2017 A1
20170192823 Karaje et al. Jul 2017 A1
20170264663 Bicket et al. Sep 2017 A1
20170302521 Lui et al. Oct 2017 A1
20170310556 Knowles et al. Oct 2017 A1
20170317932 Paramasivam Nov 2017 A1
20170339070 Chang et al. Nov 2017 A1
20180069885 Patterson et al. Mar 2018 A1
20180173372 Greenspan et al. Jun 2018 A1
20180174060 Velez-Rojas et al. Jun 2018 A1
Foreign Referenced Citations (14)
Number Date Country
101719930 Jun 2010 CN
101394360 Jul 2011 CN
102164091 Aug 2011 CN
102918499 Feb 2013 CN
104320342 Jan 2015 CN
105740084 Jul 2016 CN
2228719 Sep 2010 EP
2439637 Apr 2012 EP
2645253 Nov 2014 EP
10-2015-0070676 May 2015 KR
M394537 Dec 2010 TW
WO 2009155574 Dec 2009 WO
WO 2010030915 Mar 2010 WO
WO 2013158707 Oct 2013 WO
Non-Patent Literature Citations (62)
Entry
Author Unknown, “5 Benefits of a Storage Gateway in the Cloud,” Blog, TwinStrata, Inc., Jul. 25, 2012, XP055141645, 4 pages, https://web.archive.org/web/20120725092619/http://blog.twinstrata.com/2012/07/10//5-benefits-of-a-storage-gateway-in-the-cloud.
Author Unknown, “Joint Cisco and VMWare Solution for Optimizing Virtual Desktop Delivery: Data Center 3.0: Solutions to Accelerate Data Center Virtualization,” Cisco Systems, Inc. and VMware, Inc., Sep. 2008, 10 pages.
Author Unknown, “Open Data Center Alliance Usage: Virtual Machine (VM) Interoperability in a Hybrid Cloud Environment Rev. 1.2,” Open Data Center Alliance, Inc., 2013, 18 pages.
Author Unknown, “Real-Time Performance Monitoring on Juniper Networks Devices, Tips and Tools for Assessing and Analyzing Network Efficiency,” Juniper Networks, Inc., May 2010, 35 pages.
Beyer, Steffen, “Module “Data::Locations?!”,” YAPC::Europe, London, UK,ICA, Sep. 22-24, 2000, XP002742700, 15 pages.
Borovick, Lucinda, et al., “Architecting the Network for the Cloud,” IDC White Paper, Jan. 2011, 8 pages.
Bosch, Greg, “Virtualization,” last modified Apr. 2012 by B. Davison, 33 pages.
Broadcasters Audience Research Board, “What's Next,” http://lwww.barb.co.uk/whats-next, accessed Jul. 22, 2015, 2 pages.
Cisco Systems, Inc. “Best Practices in Deploying Cisco Nexus 1000V Series Switches on Cisco UCS B and C Series Cisco UCS Manager Servers,” Cisco White Paper, Apr. 2011, 36 pages, http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/white_paper_c11-558242.pdf.
Cisco Systems, Inc., “Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments,” Cisco White Paper, Jan. 2011, 6 pages.
Cisco Systems, Inc., “Cisco Intercloud Fabric: Hybrid Cloud with Choice, Consistency, Control and Compliance,” Dec. 10, 2014, 22 pages.
Cisco Technology, Inc., “Cisco Expands Videoscape TV Platform Into the Cloud,” Jan. 6, 2014, Las Vegas, Nevada, Press Release, 3 pages.
CSS Corp, “Enterprise Cloud Gateway (ECG)—Policy driven framework for managing multi-cloud environments,” original published on or about Feb. 11, 2012; 1 page; http://www.css-cloud.com/platform/enterprise-cloud-pateway.php.
Fang K., “LISP MAC-EID-TO-RLOC Mapping (LISP based L2VPN),” Network Working Group, Internet Draft, CISCO Systems, Jan. 2012, 12 pages.
Herry, William, “Keep It Simple, Stupid: OpenStack nova-scheduler and its algorithm”, May 12, 2012, IBM, 12 pages.
Hewlett-Packard Company, “Virtual context management on network devices”, Research Disclosure, vol. 564, No. 60, Apr. 1, 2011, Mason Publications, Hampshire, GB, Apr. 1, 2011, 524.
Juniper Networks, Inc., “Recreating Real Application Traffic in Junosphere Lab,” Solution Brief, Dec. 2011, 3 pages.
Kenhui, “Musings on Cloud Computing and IT-as-a-Service: [Updated for Havana] Openstack Computer for VSphere Admins, Part 2: Nova-Scheduler and DRS”, Jun. 26, 2013, Cloud Architect Musings, 12 pages.
Kolyshkin, Kirill, “Virtualization in Linux,” Sep. 1, 2006, XP055141648, 5 pages, https://web.archive.org/web/20070120205111/http://download.openvz.org/doc/openvz-intro.pdf.
Lerach, S.R.O., “Golem,” http://www.lerach.cz/en/products/golem, accessed Jul. 22, 2015, 2 pages.
Linthicum, David, “VM Import could be a game changer for hybrid clouds”, InfoWorld, Dec. 23, 2010, 4 pages.
Naik, Vijay K., et al., “Harmony: A Desktop Grid for Delivering Enterprise Computations,” Grid Computing, 2003, Fourth International Workshop on Proceedings, Nov. 17, 2003, pp. 1-11.
Nair, Srijith K. et al., “Towards Secure Cloud Bursting, Brokerage and Aggregation,” 2012, 8 pages, www.flexiant.com.
Nielsen, “SimMetry Audience Measurement—Technology,” http://www.nielsen-admosphere.eu/products-and-services/simmetrv-audience-measurement-technology/, accessed Jul. 22, 2015, 6 pages.
Nielsen, “Television ” http://www.nielsen.com/us/en/solutions/measurement/television.html, accessed Jul. 22, 2015, 4 pages.
Open Stack, “Filter Scheduler,” updated Dec. 17, 2017, 5 pages, accessed on Dec. 18, 2017, https://docs.openstack.org/nova/latest/user/filter-scheduler.html.
Rabadan, J., et al., “Operational Aspects of Proxy-ARP/ND in EVPN Networks,” BESS Worksgroup Internet Draft, draft-snr-bess-evpn-proxy-arp-nd-02, Oct. 6, 2015, 22 pages.
Saidi, Ali, et al., “Performance Validation of Network-Intensive Workloads on a Full-System Simulator,” Interaction between Operating System and Computer Architecture Workshop, (IOSCA 2005), Austin, Texas, Oct. 2005, 10 pages.
Shunra, “Shunra for HP Software; Enabling Confidence in Application Performance Before Deployment,” 2010, 2 pages.
Son, Jungmin, “Automatic decision system for efficient resource selection and allocation in inter-clouds,” Jun. 2013, 35 pages.
Wikipedia, “Filter (software)”, Wikipedia, Feb. 8, 2014, 2 pages, https://en.wikipedia.org/w/index.php?title=Filter %28software%29&oldid=594544359.
Wikipedia; “Pipeline (Unix)”, Wikipedia, May 4, 2014, 4 pages, https://en.wikipedia.org/w/index.php?title=Pipeline2/028Unix%29&oldid=606980114.
Al-Harbi, S.H., et al., “Adapting k-means for supervised clustering,” Jun. 2006, Applied Intelligence, vol. 24, Issue 3, pp. 219-226.
Amedro, Brian, et al., “An Efficient Framework for Running Applications on Clusters, Grids and Cloud,” 2010, 17 pages.
Author Unknown, “A Look at DeltaCloud: The Multi-Cloud API,” Feb. 17, 2012, 4 pages.
Author Unknown, “About Deltacloud,” Apache Software Foundation, Aug. 18, 2013, 1 page.
Author Unknown, “Architecture for Managing Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-IS0102, Jun. 18, 2010, 57 pages.
Author Unknown, “Cloud Infrastructure Management Interface—Common Information Model (CIMI-CIM),” Document No. DSP0264, Version 1.0.0, Dec. 14, 2012, 21 pages.
Author Unknown, “Cloud Infrastructure Management Interface (CIMI) Primer,” Document No. DSP2027, Version 1.0.1, Sep. 12, 2012, 30 pages.
Author Unknown, “cloudControl Documentation,” Aug. 25, 2013, 14 pages.
Author Unknown, “Interoperable Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-IS0101, Nov. 11, 2009, 21 pages.
Author Unknown, “Microsoft Cloud Edge Gateway (MCE) Series Appliance,” Iron Networks, Inc., 2014, 4 pages.
Author Unknown, “Use Cases and Interactions for Managing Clouds, A White Paper from the Open Cloud Standards Incubator,” Version 1.0.0, Document No. DSP-ISO0103, Jun. 16, 2010, 75 pages.
Author Unknown, “Apache Ambari Meetup What's New,” Hortonworks Inc., Sep. 2013, 28 pages.
Author Unknown, “Introduction,” Apache Ambari project, Apache Software Foundation, 2014, 1 page.
Bohner, Shawn A., “Extending Software Change Impact Analysis into COTS Components,” 2003, IEEE, 8 pages.
Citrix, “Citrix StoreFront 2.0” White Paper, Proof of Concept Implementation Guide, Citrix Systems, Inc., 2013, 48 pages.
Citrix, “Deployment Practices and Guidelines for NetScaler 10.5 on Amazon Web Services,” White Paper, citrix.com, 2014, 14 pages.
Gedymin, Adam, “Cloud Computing with an emphasis on Google App Engine,” Sep. 2011, 146 pages.
Good, Nathan A., “Use Apache Deltacloud to administer multiple instances with a single API,” Dec. 17, 2012, 7 pages.
Hood, C. S., et al., “Automated Proactive Anomaly Detection,” 1997, Springer Science and Business Media Dordrecht , pp. 688-699.
Kunz, Thomas, et al., “OmniCloud—The Secure and Flexible Use of Cloud Storage Services,” 2014, 30 pages.
Logan, Marcus, “Hybrid Cloud Application Architecture for Elastic Java-Based Web Applications,” F5 Deployment Guide Version 1.1, 2016, 65 pages.
Lynch, Sean, “Monitoring cache with Claspin” Facebook Engineering, Sep. 19, 2012, 5 pages.
Meireles, Fernando Miguel Dias, “Integrated Management of Cloud Computing Resources,” 2013-2014, 286 pages.
Mu, Shuai, et al., “uLibCloud: Providing High Available and Uniform Accessing to Multiple Cloud Storages,” 2012 IEEE, 8 pages.
Sun, Aobing, et al., “IaaS Public Cloud Computing Platform Scheduling Model and Optimization Analysis,” Int. J. Communications, Network and System Sciences, 2011, 4, 803-811, 9 pages.
Szymaniak, Michal, et al., “Latency-Driven Replica Placement”, vol. 47 No. 8, IPSJ Journal, Aug. 2006, 12 pages.
Toews, Everett, “Introduction to Apache jclouds,” Apr. 7, 2014, 23 pages.
Vilalta R., et al., “An efficient approach to external cluster assessment with an application to martian topography,” Feb. 2007, 23 pages, Data Mining and Knowledge Discovery 14.1: 1-23. New York: Springer Science & Business Media.
Von Laszewski, Gregor, et al., “Design of a Dynamic Provisioning System for a Federated Cloud and Bare-metal Environment,” 2012, 8 pages.
Ye, Xianglong, et al., “A Novel Blocks Placement Strategy for Hadoop,” 2012 IEEE/ACTS 11th International Conference on Computer and Information Science, 2012 IEEE, 5 pages.
Related Publications (1)
Number Date Country
20170142096 A1 May 2017 US