The present invention generally relates to energetic material initiation devices and more particularly to an energetic material initiation device that converts a detonation shockwave to a deflagration output having a high pressure, high temperature impulse.
Currently, exploding foil initiators (EFI's) represent the “state of the art” with regard to devices for initiating detonation in an explosive charge through a relatively high-energy pulse or shockwave as exploding foil initiators are insensitive to induced or radiated electrical energy, such as electromagnetic interference (EMI) or low energy pulses, and utilize a secondary explosive, which are relatively impervious to impacts and high temperatures, for producing the high-energy pulse. The ability to withstand impacts as well as electrical, electromagnetic and thermal energy renders exploding foil initiators relatively safe and thus very desirable for a significant number of detonation applications. Consequently, exploding foil initiators are widely used in military applications, such as warhead fuzes as detailed in Military Standard Mil-Std-1316: Safety Criteria for Fuze Design. This standard provides guidance for initiation technologies that can be used in-line with a warhead main charge explosive train. The unique characteristics of an EFI allow it to meet the requirements for in-line useage without any interrupter or alignment mechanism. The safety of the design is shifted in large part to the electronic circuits that arm the firing circuit that initiates the EFI. This unique capability enables the EFI to be remotely located from the safety circuit, which further enables designs that can fire sequentially or with a high degree of simultaneity. These distributed designs require only one set of safe and arming circuits, minimizing the weight, volume and cost of the design.
Despite their success and relative safety in applications where detonation is desired, exploding foil initiators have not been widely used in pyrotechnic applications where deflagration rather than detonation is desired. One drawback with the use of exploding foil initiators in pyrotechnic applications concerns the strength of the shockwave that is typically produced; the shockwave produced is ordinarily so strong as to actually damage or detonate the pyrotechnic material, rather than to initiate its burning as desired for proper operation. Consequently, a bulkhead between the EFI and the pyrotechnic device is commonly employed to attenuate the shockwave and limit the amount of energy that is transmitted to the pyrotechnic material.
The use of the bulkhead of the pyrotechnic ignition system, however, is undesirable because of the added weight and volume. A further concern includes the need for expensive machining of the bulkhead to ensure accurate attenuation of the shockwave since the pyrotechnic material would fail to ignite if the shockwave were to be too severely attenuated. Conversely, if the shockwave is not sufficiently attenuated, there is a risk of damaging the pyrotechnic system and having a safety or reliability failure. The variation in the output of the initiator and effects of temperature on the materials further compound this problem and require costly quality controls to ensure the safety and reliability of the system. This requires qualification and acceptance testing of the assembly with system hardware and critical inspections of the bulkhead interface.
In view of the above noted drawbacks, low energy initiation systems are most commonly employed to initiate a deflagration event in a pyrotechnic material. Such low energy initiation systems typically include a bridge or hot wire that must be in very close proximity to a pyrotechnic initiation material. The close proximity of the bridge or hot wire to the pyrotechnic ignition material, however, increases the potential, relative to initiation systems that utilize exploding foil initiators, for inadvertent or accidental initiation as a result of EMI or lightning, for example. These hot wire devices are therefore required to be kept out of alignment with the pyrotechnic train and need to be moved into alignment prior to firing. This is accomplished by the use of electromechanical devices to translate or rotate the initiator and the pyrotechnic acceptor into alignment. These devices are inherently expensive, bulky and add significant weight. Further the device must be located next to the pyrotechnic compound being ignited provide adequate safety, reducing the design options and increasing design complexity.
In view of the aforementioned drawbacks associated with exploding foil initiators and low energy initiation systems, there remains a need in the art for an improved initiation device for initiating a deflagration event in a pyrotechnic material in a very reliable and safe manner.
In one preferred form, the present invention provides an energetic material initiation device that includes an initiation charge, an exploding foil initiator, an ignition charge and a barrier structure. The exploding foil initiator is selectively actuatable for detonating the initiation charge. The barrier structure is disposed between the initiation charge and the ignition charge and combusts in response to energy released during detonation of the initiation charge to initiate combustion in the ignition charge and thereby produce a pyrotechnic output.
In another preferred form, the present invention provides a method for forming a pyrotechnic output. The method includes the steps of: impacting a first charge to detonate the first charge; attenuating a shockwave produced by the detonating first charge with a barrier, the barrier also serving as a fuel that is oxidized by byproducts of the detonating first charge; and igniting a second charge with the oxidizing fuel.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Additional advantages and features of the present invention will become apparent from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings, wherein:
With reference to
The exploding foil initiator 20 is conventional in its construction and operation and as such, will not be described in exhaustive detail herein. Briefly, the exploding foil initiator 20 includes a bridge 30, a flyer (not specifically shown) and a barrel 32. When the energetic material initiation device 10 is to be actuated, a high current pulse, typically in excess of 1000 amps, is passed through the bridge 30, causing the bridge 30 to vaporize and form conductive plasma. The hot, high pressure plasma propels the flyer through a hole 34 in the barrel 32 toward the initiation charge 22 at a very high velocity. Additional details and background on exploding foil initiators, as well as the use of an integrated planar switches in exploding foil initiators are detailed in co-pending U.S. patent application Ser. No. 10/137,063 filed Apr. 30, 2002 entitled “Integrated Planar Switch for a Munition”, the disclosure of which is hereby incorporated by reference as if fully set forth herein.
In the particular example provided, the base 14 includes a ceramic, leadless chip carrier 14a to which the exploding foil initiator 20 is fixedly coupled. The base 14 acts as a backing layer to all of the functioning elements of the energetic material initiation device 10 and serves as the recoil damper which directs all of the shock energy in a direction toward the cover 16. With brief additional reference to
Returning to
In the particular example provided, the material that forms the initiation charge 22 is RSI-007, which is available from Reynolds Systems, Inc. of Middletown, Calif. The RSI-007 material is described in detail in co-pending U.S. patent application Ser. No. 10/002,894 filed Dec. 5, 2001 entitled “Low Energy Initiated Explosive” (U.S. Patent Application Publication 20020079030), the disclosure of which is hereby incorporated by reference. Those skilled in the art will appreciate, however, that the initiation charge 22 may be made of any material that may be detonated by an exploding foil initiator, including explosives such as HNS-IV, HNS-I, PETN, NONA and CL-20 FPS.
In the example provided, the barrier structure 26 is abutted against the second end 46 of the sleeve 24 and operatively separates the initiation charge 22 and the ignition charge 28. The barrier structure 26 attenuates the shockwave that is generated by the detonation of the initiation charge 22 (via the flyer of the exploding foil initiator 20), provides a material which burns in response to the high heat and pressure of the detonating initiation charge 22 to thereby ignite the ignition charge 28 and preferably inhibits oxidizers, such as air, from entering in or exiting the gap 44. In the example illustrated, the barrier structure 26 is a composite that includes a reactable member 50, which may be formed from a metal such as titanium or another suitably reactive material that is inert under normal circumstances, and an oxidizer barrier member 52, which is formed from a material such as Teflon® (i.e., polytetrafluoroethylene). Alternatively, the barrier structure 26 may also include an appropriate filler material, such as Teflon® (i.e., polytetrafluoroethylene) powder, that is used to fill the gap 44.
The ignition charge 28 is formed from a suitable material that may be used for initiating ignition or deflagration in a pyrotechnic material. In the example provided, the ignition charge 28 is formed from boron potassium nitrate (BKNO3) which is loosely packed within the cavity 56 defined by the cover 16. As those skilled in the art will appreciate, the ignition charge 28 may alternatively be of a pellet or granule form, or any combination of powder, pellets and/or granules. The oxidizer barrier member 52 is employed to secure the ignition charge 28 to the cover 16 during the assembly of the energetic material initiation device 10. The cover 16 is preferably sealingly secured to the base 14 through an appropriate means, such as welding.
With reference to
As those skilled in the art will appreciate the stress riser(s) 60 may be formed in any appropriate manner and/or configuration and as such, the embodiment provided herein is merely exemplary. As those skilled in the art will appreciate, other features 62, such as perforations (i.e., spaced-apart grooves, rather than continuous grooves) or areas of reduced thickness may be employed to form the stress riser(s) 60. Furthermore, those skilled in the art will appreciate that the configuration of the stress riser(s) 60 need not provide folds, but rather could form any predefined shape. For example, the stress riser 60 could be configured with a single hinged tab 64 as illustrated in
In
When activation of the energetic material initiation device 10 is desired, the voltage on the capacitor 72 is increased to or beyond the breakdown voltage of the over-voltage switch 74 so that the energy stored in the capacitor 72 is released and discharged across the bridge 30 of the exploding foil initiator 20 as described above. As noted above, the plasma created by the vaporization of the bridge 30 generates heat and pressure which causes the flyer to be expelled through the barrel 32 (
With renewed reference to
Ignition of the ignition charge 28 generates heat and pressure within the confined space of the housing 12. As the heat and pressure increase, they cooperate to rupture the cover 16 in the area of the stress riser 60, producing an output kernel or pyrotechnic output 78 which is capable of igniting an adjacent pyrotechnic material (not shown), such as the fuel of a rocket motor (not shown).
Alternatively, the energetic material initiation device 10 may be activated to for the gaseous byproduct of the pyrotechnic output 78. In this regard, combustion of the ignition charge 28 releases a relatively large amount of gas. Accordingly, the energetic material initiation device 10 of the present invention may be employed as a gas generator to provide energy (in the form of a gas under pressure) that may be employed to move various actuators, valves, pin pullers, ejectors and piston driven devices.
With reference to
In
In
In
In
In
While the invention has been described in the specification and illustrated in the drawings with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the foregoing description and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1313801 | Doran | Aug 1919 | A |
4144814 | Day et al. | Mar 1979 | A |
4541342 | Routledge | Sep 1985 | A |
4735145 | Johnson et al. | Apr 1988 | A |
5030301 | Stout et al. | Jul 1991 | A |
5113764 | Mandigo et al. | May 1992 | A |
5411290 | Chan et al. | May 1995 | A |
5721392 | Chan et al. | Feb 1998 | A |
6568331 | Hofmann et al. | May 2003 | B2 |
20030200890 | Reynolds et al. | Oct 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040107856 A1 | Jun 2004 | US |