Energized medical device with reusable handle

Information

  • Patent Grant
  • 10959806
  • Patent Number
    10,959,806
  • Date Filed
    Wednesday, December 30, 2015
    9 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
Abstract
An electrosurgical device may include a front portion releasably attached to a reusable handle. The reusable handle may include a single motor configured to actuate a tissue knife mechanism and an articulation mechanism in the front portion. The reusable handle may include a controller configured to sense a position of a knife advancement control in the front portion and actuate the tissue knife via the motor when the knife advancement control is at a predetermined position. The controller may receive data from the front portion indicating that the front portion includes an articulation joint. If the front portion includes an articulation joint, the controller may actuate, via the motor, an articulation mechanism to adjust an angle of the articulation joint when an articulation control in the front portion is at a predetermined position. The reusable handle may be used with a front portion having or lacking an articulation joint.
Description
BACKGROUND

Electrosurgical devices are used in many surgical operations. Electrosurgical devices apply electrical energy to tissue in order to treat tissue. An electrosurgical device may comprise an instrument having a distally-mounted end effector comprising one or more electrodes. The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active (or source) electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flow through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device sometimes also comprises a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.


Electrical energy applied by an electrosurgical device can be transmitted to the instrument by a generator. The electrical energy may be in the form of radio frequency (“RF”) energy that may be in a frequency range described in EN 60601-2-2:2009+A11:2011, Definition 201.3.218—HIGH FREQUENCY. For example, the frequency in monopolar RF applications are typically restricted to less than 5 MHz. However, in bipolar RF applications, the frequency can be almost anything. Frequencies above 200 kHz can be typically used for MONOPOLAR applications in order to avoid the unwanted stimulation of nerves and muscles which would result from the use of low frequency current. Lower frequencies may be used for BIPOLAR techniques if the RISK ANALYSIS shows the possibility of neuromuscular stimulation has been mitigated to an acceptable level. Normally, frequencies above 5 MHz are not used in order to minimize the problems associated with HIGH FREQUENCY LEAKAGE CURRENTS. However, higher frequencies may be used in the case of BIPOLAR techniques. It is generally recognized that 10 mA is the lower threshold of thermal effects on tissue. During its operation, an electrosurgical device can transmit RF energy through tissue, which can cause ionic agitation, or friction, in effect resistive heating or Joule heating, thereby increasing the temperature of the tissue. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.


Electrosurgical devices may incorporate additional features in addition to the end effector and electrodes. In some non-limiting examples, such electrosurgical devices may include mechanisms to clamp tissue together, such as a stapling device, and/or mechanisms to sever tissue, such as a tissue knife. An electrosurgical device may include a shaft for placing the end effector proximate to tissue undergoing treatment. The shaft may be straight or curved, bendable or non-bendable. In an example of an electrosurgical device including a straight and bendable shaft, the shaft may include one or more articulation joints to permit controlled bending of the shaft. Such joints may permit a user of the electrosurgical device to place the end effector in contact with tissue at an angle to the shaft when the tissue being treated is not readily accessible using an electrosurgical device having a straight, non-bending shaft.


SUMMARY

In one aspect, an electrosurgical device may include a reusable handle. The reusable handle may include a housing, a motor disposed within the housing, a controller configured to actuate the motor, an electrical interface portion configured to interface with a front portion of the electrosurgical device, and a mechanical interface portion configured to interface with the front portion of the electrosurgical device. The electrical interface portion may include a plurality of sensors including at least a knife actuation sensor, a cauterization actuation sensor, and an articulation actuation sensor, as well as and at least one tissue cauterization current terminal. Each of the plurality of sensors may be in data communication with the controller. The mechanical interface portion may include a first mechanical coupling configured to couple one or more motions of the motor to a tissue cutting mechanism, a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism, and a latching mechanism configured to releasably latch the front portion of the electrosurgical device to the housing.


In one aspect of a reusable handle, the plurality of sensors incorporates one or more of a Hall sensor, an RF sensor, an optical sensor, and an electronic sensor.


In one aspect of a reusable handle, the first mechanical coupling and the second mechanical coupling independently comprise one or more of a spur gear, a worm gear, a planetary gear set, a helical gear, a bevel gear, a miter gear, and a rack and pinion gear set.


In one aspect of a reusable handle, the reusable handle further incorporates one or more power sources configured to supply power to the motor and the controller.


In one aspect of a reusable handle, the one or more power sources incorporate one or more batteries disposed within the housing.


In one aspect of a reusable handle, the reusable handle further incorporates a source of tissue cauterization power in electrical communication with the at least one tissue cauterization power terminal.


In one aspect of a reusable handle, the source of tissue cauterization power incorporates one or more batteries disposed within the housing.


In one aspect of a reusable handle, the controller is configured to activate the one or more motions of the motor at least in response to receiving data from one or more of the a plurality of sensors.


In one aspect of a reusable handle, the reusable handle further incorporates an identification sensor configured to receive identification information from the front portion of the electrosurgical device.


In one aspect of a reusable handle, the second mechanical coupling is configured to couple the one or more motions of the motor to the articulation mechanism independent of a coupling of the one or more motions of the motor to the tissue cutting mechanism.


In one aspect, an electrosurgical system may include a front portion assembly, a reusable handle assembly, and a latching mechanism in which the front portion assembly is releasably attached to the reusable handle assembly. The front portion assembly may include a front portion housing, an end effector comprising a first jaw movably disposed to contact a second jaw, a first electrode configured to be in electrical communication with a first RF current terminal, and a second electrode configured to be in electrical communication with a second RF current terminal, a tissue knife movably disposed within the end effector, a tissue knife advancement component configured to move the tissue knife within the end effector, a jaw closure trigger, a knife advancement control, an energy activation control, and an elongated shaft having a distal end in mechanical communication with the end effector. The reusable handle assembly may include a reusable handle housing, a motor disposed within the reusable handle housing, a controller configured to actuate the motor, an electrical interface portion configured to interface with the front portion assembly, a mechanical interface portion configured to interface with the front portion of the electrosurgical device, and a latching mechanism configured to releasably latch the front portion housing to the reusable handle housing. The electrical interface portion may include a knife actuation sensor configured to sense a position of the knife advancement control, a cauterization actuation sensor configured to sense a position of the energy activation control, an articulation actuation sensor, the first RF current terminal, and the second RF current terminal. The knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor may be in data communication with the controller. The mechanical interface portion may include a first mechanical coupling configured to couple one or more motions of the motor to the tissue knife advancement component, and a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism. In one example of the electrosurgical system, the front portion assembly may further include an articulation joint in the elongated shaft, in which the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw, an articulation mechanism configured to move the articulation joint, and an articulation control in which the articulation actuation sensor is configured to sense the position of the articulation control.


In one aspect of an electrosurgical system, the front portion assembly further incorporates: an articulation joint in the elongated shaft, in which the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw; an articulation mechanism, configured to move the articulation joint; and an articulation control, in which the articulation actuation sensor is configured to sense the position of the articulation control.


In one aspect of an electrosurgical system, the knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor independently comprise one or more of a Hall sensor, an RF sensor, an optical sensor, and an electronic sensor.


In one aspect of an electrosurgical system, the front portion assembly releasably attached to the reusable handle assembly incorporates an electrosurgical system configured for single-handed operation.


In one aspect of an electrosurgical system, the electrosurgical system further incorporates an RF current source in electrical communication with the first RF current terminal and the second RF current terminal.


In one aspect of an electrosurgical system, the electrosurgical system further incorporates: an information storage device disposed within the front portion assembly; and an identification sensor disposed within the reusable handle assembly, in which the identification sensor is in data communication with the controller, and in which the identification sensor is configured to receive information from the information storage device.


In one aspect of an electrosurgical system, the information storage device comprises one or more of a non-volatile device, a read/write device, and a WORM device.


In one aspect of an electrosurgical system, the information storage device comprises one or more of an RFID tag, a PROM device, an EPROM device, and an EEPROM device.


In one aspect of an electrosurgical system, the information comprises one or more of an identifier of a front portion assembly type, a front portion assembly model number, a front portion assembly serial number, a value of the number of uses of the front portion assembly, and a configuration of one or more components of the front portion assembly.


In one aspect, a method of using an electrosurgical system may include providing a front portion assembly having a front portion housing, providing a reusable handle assembly having a reusable handle housing, contacting the front portion assembly with the reusable handle assembly and releasably latching the front portion housing to the reusable handle housing. The front portion assembly may further include an end effector comprising a first jaw movably disposed to contact a second jaw, a first electrode configured to be in electrical communication with a first RF current terminal, and a second electrode configured to be in electrical communication with a second RF current terminal, a tissue knife movably disposed within the end effector, a tissue knife advancement component configured to move the tissue knife within the end effector, a jaw closure trigger, a knife advancement control, an energy activation control, and an elongated shaft having a distal end in mechanical communication with the end effector. The reusable handle assembly may further include a motor disposed within the reusable handle housing; a controller configured to actuate the motor; an electrical interface portion configured to interface with the front portion assembly, a mechanical interface portion configured to interface with the front portion assembly, and a latching mechanism configured to releasably latch the front portion housing to the reusable handle housing.


The electrical interface portion may include a knife actuation sensor configured to sense a position of the knife advancement control, a cauterization actuation sensor configured to sense a position of the energy activation control, an articulation actuation sensor, the first RF current terminal, and the second RF current terminal. The knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor may be in data communication with the controller.


The mechanical interface portion may include a first mechanical coupling configured to couple one or more motions of the motor to the tissue knife advancement component and a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism.


The method may further include using the jaw closure trigger to move the first jaw relative to the second jaw thereby capturing a material therebetween, moving the energy activation control, sensing, by the cauterization activation sensor, the position of the energy activation control, causing an RF current to flow between the first RF current terminal and the second RF current terminal when the position of the energy activation control sensed by the cauterization activation sensor is at least at a predetermined position, sensing, by the knife actuation sensor, the position of the knife advancement control, and causing, by the controller, the motor to move the tissue knife advancement component via the first mechanical coupling when the position of the knife advancement control sensed by the knife actuation sensor is at least at a predetermined position. In one example of the method, the front portion assembly may further include an articulation joint in the elongated shaft, in which the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw, an articulation mechanism configured to move the articulation joint, and an articulation control.


The example of the method may further include having the articulation actuation sensor configured to sense the position of the articulation control, sensing, by the articulation actuation sensor, the position of the articulation control, and causing, by the controller, the motor to move the articulation mechanism via the second mechanical coupling when the position of the articulation control sensed by the articulation actuation sensor is at least at a predetermined position.


In one aspect of the method of using an electrosurgical system, providing a front portion assembly further incorporates providing a front portion assembly comprising: an articulation joint in the elongated shaft, in which the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw; the articulation mechanism, configured to move the articulation joint; and an articulation control; in which providing a reusable handle assembly further comprises providing a reusable handle assembly wherein the articulation actuation sensor is configured to sense the position of the articulation control; sensing, by the articulation actuation sensor, the position of the articulation control; and causing, by the controller, the motor to move the articulation mechanism via the second mechanical coupling when the position of the articulation control sensed by the articulation actuation sensor is at least at a predetermined position.





BRIEF DESCRIPTION OF THE FIGURES

The features of the various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1A illustrates a perspective view of one aspect of an electrosurgical device separated into a front portion assembly and a reusable handle assembly, according to one aspect of the present disclosure.



FIG. 1B illustrates a perspective view of one aspect of an electrosurgical device, according to one aspect of the present disclosure.



FIG. 10 illustrates a perspective view of a portion of one aspect of an electrosurgical device, according to one aspect of the present disclosure.



FIG. 2 illustrates a sectional view of one aspect of the electrosurgical device illustrated in FIG. 1B, according to one aspect of the present disclosure.



FIG. 3 illustrates a partial cut-away view of one aspect of a reusable handle assembly for an electrosurgical device, according to one aspect of the present disclosure.



FIG. 4 illustrates a perspective view of one aspect of an electrosurgical device having an articulated shaft, according to one aspect of the present disclosure.



FIG. 5 depicts a perspective view of one aspect of components of the shaft assembly and end effector of the electrosurgical device illustrated in FIG. 4, according to one aspect of the present disclosure.



FIGS. 6A and 6B illustrate partial perspective views of one aspect of articulation control components of the electrosurgical device of FIG. 5, along a first side and along a second side of the support member, respectively, according to one aspect of the present disclosure.



FIG. 7 illustrates a perspective view of one aspect of an articulation control assembly of the front portion assembly of FIG. 4, coupled with the articulation control components of FIGS. 5, 6A and 6B, according to one aspect of the present disclosure.



FIG. 8 illustrates depicts a side cross-sectional view of one aspect of the articulation control assembly components of FIG. 7, taken along line 8-8 of FIG. 15, according to one aspect of the present disclosure.



FIG. 9 illustrates a partial sectional view of one aspect of the front portion housing of the electrosurgical device illustrated in FIG. 4, according to one aspect of the present disclosure.



FIG. 10A illustrates a perspective view of a proximal end of the front portion housing of one aspect of the electrosurgical device illustrated in FIG. 4, according to one aspect of the present disclosure.



FIG. 10B illustrates a top sectional view of a proximal end of the front portion housing of one aspect of the electrosurgical device illustrated in FIG. 4, according to one aspect of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to several aspects, including example implementations of electrosurgical medical instruments for cutting and coagulating tissue. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict examples of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative examples of the structures and methods illustrated herein may be employed without departing from the principles described herein.


Various aspects of surgical instruments use therapeutic and/or sub-therapeutic electrical energy to treat tissue. One aspects are adapted for use in a hand operated manner, although electrosurgical instruments may be utilized in robotic applications as well. In one non-limiting example, an electrosurgical system may include a proximal handle, a distal working end or end effector, and an introducer or elongated shaft disposed in-between.


The electrosurgical system can be configured to source energy, such as electrical energy, RF energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously. In one example, the electrosurgical system may include a power source in electrical communication with the electrosurgical instrument. The power source may be connected to the electrosurgical instrument via a suitable transmission medium such as a cable. The power source may be separate from the electrosurgical instrument or may be formed integrally with the electrosurgical instrument to form a unitary electrosurgical system. In one non-limiting example, the power source may include one or more batteries located within a portion of the electrosurgical instrument. It may be understood that the power source may source energy for use on the tissue of the patient as well as for any other electrical use by the electrosurgical system, including, without limitation, lights, sensors, communication systems, indicators, and displays.


As disclosed above, an electrosurgical system may incorporate components to grasp a tissue via an end effector, deliver energy to the tissue via one or more electrodes, and cut the tissue via a dissecting device such as a tissue knife. The structural capabilities of any aspect of an electrosurgical system may be designed for use in one or more of a variety of surgical procedures. In some surgical procedures, the treated tissue may be readily accessible to an end effector affixed to a relatively straight and unbendable shaft. In some alternative surgical procedures, the tissue may not be readily accessible to the end effector on such a shaft. In such procedures, the electrosurgical system may incorporate a shaft designed to bend so that the end effector may contact the tissue requiring treatment. However, despite such differences between electrosurgical systems, many electrosurgical systems incorporate common features of use, such as tissue grasping, cauterizing, and cutting. Consequently, it may be recognized that a modular design for electrosurgical systems may be useful to reduce the number and types of devices required for such surgeries. Thus, a front portion assembly may be designed for a specific surgical procedure, while a reusable handle assembly, configured to releasably attach to a front portion assembly, may be designed to provide control of surgical functions common to each front portion assembly.


It may be recognized that the reusable handle assembly may also be designed to automate common functions of the electrosurgical device. Device intelligence may be provided by a controller located in the reusable handle assembly that is configured to receive information from a front portion assembly. Such information may include data regarding the type and use of the front portion assembly. Alternatively, information may include data indicative of the position and/or activation of control components (such as buttons or slides which can be manipulated) that may indicate what system functions should be activated and in what manner.



FIGS. 1A, 1B, and 1C are perspective views of one example of an electrosurgical instrument 100. FIG. 1A illustrates the electrosurgical instrument 100 disassembled into a front portion assembly 110 and a reusable handle assembly 130. The front portion assembly 110 may include a shaft 115 affixed to a front portion housing at a proximal end, and an end effector 120 at a distal end. The end effector 120 may include a pair of opposable jaws 123a, 123b. In a non-limiting example, the shaft 115 may be rotatable through the rotary motion of a shaft rotation knob 117. The shaft 115 may have a cylindrical or rectangular cross-section, for example, and can comprise a thin-wall tubular sleeve that extends from the front portion assembly housing. The shaft 115 may include a bore extending therethrough for carrying actuator mechanisms, for example, an axially moveable member for actuating the jaws 123a, 123b and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 120. The front portion assembly may include a jaw closure trigger 127 configured to adjust the position of the jaws 123a, 123b with respect to each other. In one non-limiting example, the jaw closure trigger 127 may be coupled to an axially moveable member disposed within the shaft 115 by a shuttle operably engaged to an extension of the jaw closure trigger 127. The front portion assembly 110 may also include a proximal interface end 125 designed to contact an equivalent distal interface end of the reusable handle assembly 130. The reusable handle assembly 130 may include a reusable handle housing including a handle 133 that may operate in conjunction with the jaw closure trigger 127 to permit control of the motion of the jaws 123a, 123b. The front portion assembly 110 may be configured to carry actuator levers, triggers or sliders for controlling the functions of the components of the front portion assembly.


The end effector 120 may be adapted for capturing and transecting tissue and for contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). The first jaw 123a and the second jaw 123b may be closed thereby capturing or engaging tissue. The first jaw 123a and second jaw 123b may also apply compression to the tissue. In some aspects, the shaft 115, along with the first jaw 123a and second jaw 123b, can be rotated a full 360° degrees relative to the jaw closure trigger 127. For example, a rotation knob 117 may be rotatable about the longitudinal axis of the shaft 115 and may be coupled to the shaft 115 such that rotation of the knob 117 causes corresponding rotation of the shaft 115. The first jaw 123a and the second jaw 123b can remain openable and/or closeable while rotated.


The reusable handle assembly 130 may include a reusable handle housing which may, in some non-limiting examples, be formed into a handle 133.



FIG. 1A illustrates an example in which the front portion assembly 110 may be brought into contact with the reusable handle assembly 130 by vertically sliding the front portion assembly against the reusable handle assembly (downward arrow). In another non-limiting example, the front portion assembly 110 may be brought into contact with the reusable handle assembly 130 by horizontally aligning the front portion assembly against the reusable handle assembly. In still another non-limiting example, the front portion assembly 110 may be brought into contact with the reusable handle assembly 130 by twisting the front portion assembly against the reusable handle assembly. It may be understood that alternative means of placing the front portion assembly 110 in contact with the reusable handle assembly 130 may be used. Once the front portion assembly 110 is placed in contact with the reusable handle assembly 130, the two assemblies may be releasably affixed to each other using any means known in the art, such as through the use of one or more latches. Such latches may be placed on the housing of the front portion assembly 110, the housing of the reusable handle assembly 130, or on the housing of each of the assemblies as may be required to form a secure contact.


In one non-limiting example, a secure contact between the front portion assembly 110 and the reusable handle assembly 130 may be made by assuring that the front portion assembly proximal interface end 125 is placed in proper mechanical and electrical contact with the distal interface end of the reusable handle assembly 130. Proper mechanical contact may be understood to mean that the mechanical components of the reusable handle assembly 130 may correctly actuate the mechanical components of the front portion assembly 110 according to the electrosurgical system 100 design. Similarly, proper electrical contact may be understood to mean that the electrical components of the reusable handle assembly 130 are in correct data and electrical communication with the electrical and signal components of the front portion assembly 110 according to the electrosurgical system 100 design. It may be appreciated that such an electrosurgical system 100 may be optimized for single-handed operation.



FIG. 1B illustrates a perspective view of one aspect of an electrosurgical system 100 comprising an assembled device composed of the front portion assembly 110 and the reusable handle assembly 130. FIG. 1B illustrates the relative position of the jaw closure trigger 127 with respect to the handle 133 in the assembled electrosurgical system 100. Particularly, jaw closure trigger 127 may be moved through an arc 135 to bring the jaw closure trigger proximate to the handle 133. Such a motion, for example, may result in the closure of the jaws 123a, 123b thereby securing a tissue placed therebetween.


Also illustrated in FIG. 1B are a knife advancement control 140 and an energy activation control 145 located on the front portion assembly housing. In some non-limiting examples, the knife advancement control 140 and the energy activation control 145 may be depressible buttons positioned to permit a user to control knife advancement or energy activation by the use of one or more fingers. In some non-limiting examples, the knife advancement control 140 and the energy activation control 145 may affect knife advancement or energy activation directly by means of one or more mechanical and/or electrical components disposed solely within the front portion assembly 110. In some non-limiting examples, the knife advancement control 140 and the energy activation control 145 may affect knife advancement or energy activation by means of one or more mechanical and/or electrical components disposed within the front portion assembly 110 in coordination with one or more mechanical and/or electrical components disposed within the disposable handle assembly 130. In one non-limiting example, motions of the knife advancement control 140 and the energy activation control 145 may be sensed by one or more sensors disposed within the reusable handle assembly 130. Such sensors may communicate data to a control device disposed within the reusable handle assembly 130. The control device may, in turn, actuate mechanical and/or electrical components within the reusable handle assembly 130 that couple mechanically and/or electrically with components disposed within the front portion assembly 110 to affect knife advancement and/or energy activation at the end effector 120.



FIG. 10 illustrates a close-up perspective view of one aspect of an electrosurgical system 100 to further illustrate components of the end effector 120. It may be appreciated that the jaws 123a, 123b are configured to hold and compress tissue for an electrosurgical procedure. The tissue held by jaws 123a, 123b may be subjected to an electrical current that may heat the tissue sufficiently to cauterize the tissue. Such electrical current may include RF current. In one non-limiting example, the tissue may comprise a blood vessel that may be sealed by compressing and cauterizing the vessel wall. The electrical current may be delivered to the tissue via one or more energy delivery surfaces 127a, 127b located on an inner surface of each jaw 123a, 123b. Each energy delivery surface, in turn, may be in electrical communication with a current supplying terminal. In one non-limiting example, the first energy delivery surface 127a may receive current through an electrode in electrical communication with a source terminal of a current source. Similarly, the second energy delivery surface 127b may source current through an electrode in electrical communication to a drain or ground terminal of the current source. The electrical current used to cauterize the tissue may be supplied by a source of tissue cauterization power. The source of tissue cauterization power may be independent of the electrosurgical system 100 or may be incorporated in the electrosurgical system. In one non-limiting example, the source of tissue cauterization power may comprise one or more batteries disposed within the electrosurgical device 100, for example within a housing of the reusable handle assembly 130.



FIG. 2 illustrates a cross-sectional view of one aspect of an assembled electrosurgical device 100. It may be understood that the components illustrated in FIG. 2, as well as those illustrated in FIGS. 3-6 (following), represent non-limiting examples of mechanical and electromechanical components that may affect the functions of the electrosurgical device 100. Fewer, alternative, or additional components are similarly contemplated by this disclosure.


As disclosed above, the assembled electrosurgical device 100 may be composed of releasably attached portions including a front portion assembly 110 and a reusable handle assembly 130. The front portion assembly 110 may include a shaft 115 in mechanical communication with a front portion assembly housing at a proximal end, and an end effector 120 at a distal end.


The jaw closure trigger 127 may be adapted to actuate an axially moveable member which may function as a jaw-closing mechanism. For example, the axially moveable member may be urged distally as the jaw closure trigger 127 is pulled proximally along the path 135. Such a distal motion of the axially moveable member may be mechanically coupled to a jaw motion assembly to cause the jaws 123a, 1213b to close, thereby contacting and compressing a tissue placed therebetween. The axially moveable member may comprise one or several pieces, but in any event, may be movable or translatable with respect to the shaft 115 and/or the jaws 123a, 123b. The force applied to the axially movable member via the jaw closure trigger 127 may be controlled or limited by a force limiting spring 230. In addition, the force limiting spring 230 may also protect components from being overloaded when motion of jaws 123a, 123b is restricted due to large amount of tissue. When the jaw closure trigger 127 is returned to a distal position along path 135, the axially moveable member may return to a proximal position, thereby allowing the jaws 123a, 123b to resume an open position and release any tissue compressed therebetween. In some non-limiting examples, the axially moveable member may be returned to its proximal position by means of a return spring 220. The return spring 220 may also act as a force limiting spring that may be used to protect components from being overloaded when the jaw movement is restricted by a large amount of tissue.


In addition to the jaws 123a and 123b, the end effector 120 may also incorporate a tissue knife movably disposed therein. One or both of the jaws 123a, 123b may include a channel disposed on an inner surface. The channels within first jaw 123a and within the second jaw 123b may be sized and configured to accommodate the movement of the tissue knife, which may slidably move within the channels. In at least one example, the tissue knife may be made of 17-4 precipitation hardened stainless steel. The tissue knife may be moved in a distal manner to sever any tissue compressed between the jaws 123a, 123b. The tissue knife may be actuated by means of a knife advancement component 210. The knife advancement component 210 may be an axially moveable component disposed within shaft 115. In one non-limiting example, the knife advancement component 210 may be a rod disposed through shaft 115. In another non-limiting example, the knife advancement component 210 may comprise a tube disposed through shaft 115. A conductor may be disposed inside of a tubular knife advancement component 210 to conduct electrical current from a current supplying terminal to the one or more energy delivery surfaces 127a, 127b located on the inner surface of each jaw 123a, 123b. The knife advancement component 210 may be coupled within the front portion housing to a knife advancement coupling 270. As disclosed below, the knife advancement coupling 270 may form a mechanical interface between the knife advancement component 210 and a helical drive screw 265 disposed within the reusable handle assembly.


The reusable handle assembly 130 may include a reusable handle housing, a portion of which may form the handle 133. The reusable handle housing may enclose one or more mechanical, electromechanical, and electrical components. In aggregate, the mechanical components may be referred to as one or more mechanical couplings which may be designed to couple motions from electromechanical devices in the reusable handle assembly 130 to the mechanical devices disposed in the front portion assembly 110. Some non-limiting examples of such mechanical components may include one or more of a spur gear, a worm gear, a planetary gear set, a helical gear, a bevel gear, a miter gear, and a rack and pinion gear set. Additional non-limiting examples of such mechanical, electromechanical, and electrical components may include a motor 240, one or more gear-sets 245 (for example, a planetary gear set) in mechanical communication with an output shaft of the motor, and one or more additional gears, such as a spur gear 250, that may transfer mechanical motion from the one or more gear-sets to additional mechanical components. The motor 240 may be any type of motor that may provide sufficient torque and speed as may be required for actuation of the mechanical components. Non-limiting examples of such a motor 240 may include a DC motor, an AC motor, and a stepper motor. In one non-limiting example, the motor 240 may receive power from a power source external to the electrosurgical system 100. The handle 133 may also include a mobile power source (such as a battery) that may be used to provide electrical power for the motor 240 and other components of the electrosurgical device.


The handle 133 may also include a controller configured to control the motor 240, receive data from one or more sensors (disclosed below), and/or activate other electromechanical devices disposed within the reusable handle assembly 130. Such a controller may also receive electrical power from a power source such as an external power source or a mobile power source disposed within the reusable handle assembly 130.


In some non-limiting examples, the controller may comprise a processor subsystem, an input/output subsystem, a memory subsystem, a communications interface, and a system bus. In some non-limiting examples, the controller may comprise other components such as an independent power subsystem. In some non-limiting examples, the controller may comprise multiple memory subsystems.


The processor subsystem may comprise any processing circuitry operative to control the operations and performance of the controller. In various aspects, the processor subsystem may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, and/or a very long instruction word (VLIVV) microprocessor, or other processing device. The processor subsystem also may be implemented by a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.


In various non-limiting examples, the processor subsystem may be arranged to run an operating system (OS), preferably a real-time operating system (RTOS). Examples of an OS comprise, for example, operating systems generally known under the trade name of Apple Mac® OS, Microsoft Windows® OS, Android® OS, QNX4®, embedded Linux®, VxWorks®, and any other proprietary or open source OS.


The memory subsystem may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk), or card (e.g., magnetic card, optical card), or any other type of media suitable for storing information.


In some aspects, the controller may comprise a system bus that couples various system components including the processing subsystem, the input/output subsystem, and the memory subsystem. The system bus can be any of several types of bus structure(s) including a memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 9-bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect Card International Association Bus (PCMCIA), Small Computers Interface (SCSI) or other proprietary bus, or any custom bus suitable for mobile computing device applications.


In addition, the controller may include components to receive electrical data from one or more sensors, and/or components to source one or more control signals to one or more electromechanical devices. In one non-limiting example, the controller may include components to receive data from sensors configured to detect to motion or position of the knife advancement control 140 and the energy activation control 145. In another non-limiting example, the controller may include components to source control signals may be used to control the motion of the motor 240. Such motor control signals may include controls of the direction of shaft rotation and the speed of the shaft rotation.


The controller may include instructions resident within components of the memory subsystem that, when active, may cause the processor subsystem to calculate data values and/or control the sourcing of the one or more control signals. In one non-limiting example, the processor subsystem may receive data from a sensor associated with the activation of knife advancement control 140 and calculate if the knife advancement control has been moved to a predetermined position. When the controller determines that the knife advancement control 140 is at the predetermined position, the controller may then source a control signal to the motor 240 to activate a motor motion that may result in motion of the tissue knife. In one non-limiting example, the controller may include fixed instructions and data within the memory subsystem. In another non-limiting example, the controller may be programmable and may receive updated instructions and/or data for storage in the memory subsystem.


In addition to the mechanical, electrical, and/or electromechanical components disposed within the handle 133, the reusable handle assembly 130 may include additional mechanical, electrical, and/or electromechanical components disposed within other portions of the reusable handle housing. In one non-limiting example, additional components may include one or more bevel or miter gears 255 to transfer the rotary force generated by the spur gear 250 to one or more other mechanical devices. For example, the spur gear 250 may be mechanically coupled to a helical drive nut 260. The spur gear 250 may drive bevel gear 255 by means of a second spur gear that is directly coupled to the bevel gear 255 through a shaft attached to the bevel gear. It may be understood that, in another aspect, the bevel gear 255 may be driven directly by the shaft of the motor 240 or by an output shaft of one or more gear-sets 245 mechanically driven by the motor.


Bevel gear 255 may drive a second bevel gear that is part of helical drive nut 260. The bevel gear and helical drive nut 260 may be internally threaded. A helical drive screw 265 has an external threaded component that mates with the internal thread of the helical drive nut 260. Rotation of helical drive nut 260 may transfer motion to the interior helical drive screw 265. The helical drive screw 265, in turn, may advance or return based on the rotational direction of the helical drive nut 260. The helical drive screw 265 may form a contact with knife advancement coupling 270 and impart a motion to the tissue knife at the end effector 120.



FIG. 3 illustrates a partial cut-away view of one aspect of the reusable handle assembly 130. In addition to the spur gear 250, miter gear 255, and helical drive screw 265 depicted in FIG. 2, FIG. 3 illustrates additional components that may be included in the reusable handle assembly 130. One such additional component may be a latch 330 incorporated into the reusable handle housing. Such a latch 330 may be readily manipulated to secure the connection between the front portion assembly 110 and the reusable handle assembly 130.


Additional sensors and electrical contacts are also depicted in FIG. 3. For example, a cauterization actuation sensor 360 may detect the presence or motion of the energy activation control 145. Another sensor may include a knife actuation sensor (not shown) to detect the presence or motion of the knife advancement control 140. In addition, an articulation sensor 355 may detect the presence or motion of an articulation control for an electrosurgical device that has an articulating front end (see FIG. 4, below). It may be understood that sensors 355, and 360 may include, without limitation, one or more of any type of appropriate sensor include a Hall sensor, an RF sensor, a proximity sensor, an inductance sensor, a capacitance sensor, a mechanical sensor, a potentiometer, an optical sensor, and an electronic sensor. One or more tissue cauterization current terminals 340 may be used to conduct tissue cauterization current from a source of tissue cauterization power to the one or more energy deliver surfaces 127a, 127b incorporated in the inner surfaces of the jaws 123a, 123b. The front portion assembly 110 may include one or more tissue cauterization power contacts (730, see FIG. 7), wherein the tissue cauterization power contacts are configured to be in electrical communication with equivalent cauterization current terminals 340 from the reusable handle assembly 130.


Additional sensors may include one or more identification sensors configured to receive identification information from an information storage device disposed within the front portion assembly 110. Data information received by any of the sensors, including, without limitation, the cauterization actuation sensor 360, the knife actuation sensor (not shown), an articulation sensor 355, and the one or more identification sensors may be transmitted to the controller. The information storage device may include one or more non-volatile devices, read/write devices, and WORM devices. In some non-limiting examples, the information storage device may include one or more RFID tags, PROM devices, EPROM devices, and EEPROM devices. The information provided by the information storage device may include an identifier of a front portion assembly type (for example, a non-articulated shaft or an articulated shaft), a front portion assembly model number, a front portion assembly serial number, a value of the number of uses of the front portion assembly 110, and a configuration of one or more components of the front portion assembly. In some non-limiting examples, the information storage device may provide its information through a non-contact sensor, for example through an antenna to receive an RF signal from an RFID. In other non-limiting examples, the information storage device may provide its information directly via one or more electrical contacts disposed in the reusable handle assembly distal interface.


As disclosed above, a variety of electrosurgical devices have been developed for use in a variety of procedures. In some procedures, a straight and non-bendable shaft may be used to permit access to some tissues. Alternatively, some tissues may be located in places not readily accessible to a device having a straight and non-bendable shaft. Specific devices may be used that permit a health professional to treat tissue by using an electrosurgical device having a bendable shaft. In one example of such an instrument, the shaft may include one or more articulated joints that may permit the shaft to bend under control by the user. A reusable handle assembly 130, designed for use with both types of devices, may require components configured to active articulation mechanisms that may not exist in front portion assemblies lacking an articulated shaft. Thus, FIG. 3 further illustrates an articulation drive gear 320 that may couple one or more motions of the motor 240 to an articulation mechanism present in a front portion assembly having an articulated shaft.



FIG. 4 illustrates one aspect of an electrosurgical device 400 having an articulated shaft 415 as a component of a front portion assembly 410. It may be appreciated that many of the features depicted in FIG. 4 are equivalent to those depicted in FIG. 1B. Thus, the electrosurgical device 400 incorporates a reusable handle assembly 130 having a housing that forms, in part, a handle 133. A jaw closure trigger 127 is incorporated in the front portion assembly 410 as well as a knife advancement control 140 and an energy activation control 145. The end effector 120 additionally is composed of a pair of jaw 123a, 123b. The articulated shaft 415 extends in a distal direction from the front portion assembly housing and is in mechanical communication with the end effector 120. Although not shown, a tissue knife is disposed within the end effector 120 and is configured to cut tissue that may be compressed and cauterized by the jaws 123a, 123b.


The articulated shaft 415 incorporates an articulation joint 425. The articulation joint 425 is configured to permit a portion of the shaft 415 distal to the articulation joint to move in a plane orthogonal to a plane of a motion of the first jaw 123a with respect to the second jaw 123b. The articulation joint 425 may be moved by means of an articulation mechanism. The articulation mechanism may include one or more articulation bands 427. The articulation mechanism may be actuated by means of one or more articulation controls, 440a, 440b. In one non-limiting example, a single articulation control (for example 440a) may be included in the front portion assembly 410. In another non-limiting example, each articulation control 440a, 440b may act independently of the other, thereby permitting ambidextrous control of the articulated shaft 415. In yet another non-limiting example, activation of one of the articulation controls (for example 440a) may result in the articulation mechanism bending the articulated shaft 415 in a first direction, while activation of the second articulation control (for example 440b) may result in the articulation mechanism bending the articulated shaft 415 in a second direction.



FIG. 5 depicts one aspect of components of the articulating shaft 415. As shown in FIG. 5, these components include a separator 1150, a first articulation band 1170 (see FIG. 6B) on a first side of the separator and a second articulation band 1160 disposed on a second side and opposing side of the separator. Separator 1150 may include a first side recess along the first side of the separator along which the first articulation band 1170 may travel, and a second side recess along the second side of the separator along which the second articulation band 1160 may travel. Separator 1150 is disposed within the articulated shaft 415 at a fixed longitudinal position during operation of electrosurgical device. Thus, separator 1150 remains stationary relative to the articulated shaft 415. The distal end 1166 of second articulation band 1160 is secured to one side of the proximal portion 1148 of end effector 120 at an anchor point. Similarly, a distal end of a first articulation band 1170 may be secured to the other side of proximal portion 1148 of end effector 120 at an anchor point. As will be described in greater detail below, an articulation control assembly is operable to selectively advance one articulation band distally while simultaneously retracting the other articulation band proximally, and vice-versa. It should be understood that this opposing translation will cause articulation joint 425 to bend, thereby articulating end effector 120. In particular, end effector 120 will deflect toward whichever articulation band is being retracted proximally; and away from whichever articulation band is being advanced distally.


As depicted in FIGS. 6A and 6B, each articulation band has associated with it a drive member configured to move its associated articulation band in a proximal or distal direction relative to the articulation shaft 415. Thus, a first drive member 1172 having a first notch 1174 extending laterally inwardly may be unitarily secured to the first articulation band 1170. Similarly, a second drive member 1162 having a second notch 1164 extending laterally inwardly may be unitarily secured to the second articulation band 1160.


In some aspects, the drive members 1162, 1172 may comprise one or more tubes or half-shafts comprising a lengthwise portion of a tube. Thus, the first drive member 1172 may comprise a first half-shaft, and the second drive member 1162 may comprise a second half-shaft. Each half-shaft may be attached to an articulation band at a first end and an articulation mechanism bushing at a second end. The half-shafts may be configured to surround a tubular knife advancement component 210 thereby allowing the knife advancement component to move axially therebetween. In some aspects, the two half-shafts may be disposed within a second tube configured to actuate jaws 123a, 123b. It may be recognized that such one aspect may comprise nested tubular components configured to allow independent actuation of the jaws 123a, 123b, knife, and articulation joint 425. In another aspect, each drive member 1162,1172, the knife advancement component 210, and one or more members to actuate jaws 123a, 123b may comprise an individually actuated rod disposed axially and parallel to each other within the shaft 115. It may be understood that additional components within the shaft 115 may be disposed to maintain the axial and parallel orientation of such rods and to prevent the rods from interfering with each other upon actuation.



FIG. 7 depicts one aspect of an articulation control assembly that may be used to manipulate the drive members 1162 and 1172 to move the respective articulation bands 1160 and 1170 in either a proximal or distal direction. As depicted in FIG. 7, articulation control assembly may comprise a first lead screw 1183 and a second lead screw 1184 that are slidably disposed along a pair of pins 1123 within the articulation drive gear 610 (See FIG. 9). Thus, lead screws 1183, 1184 are operable to translate within the articulation drive gear 610 but are prevented from rotating within it. First lead screw 1183 includes exterior threading 1185 that is engaged with a first portion of the internal threading of articulation drive gear 610, and second lead screw 1184 includes exterior threading 1186 that is engaged with a second portion of the internal threading of articulation drive gear 610. It should therefore be understood that, due to the opposing pitch angles, rotation of articulation drive gear 610 in a first direction will drive lead screw 1183 distally while simultaneously driving lead screw 1184 proximally. Similarly, rotation of articulation drive gear 610 in a second direction will drive lead screw 1183 proximally while simultaneously driving lead screw 1184 distally.


The angles of threading 1185, 1186 are also configured such that articulation joint 425 will be effectively locked in any given articulated position, such that transverse loads on end effector 120 will generally not bend articulation joint 425 due to friction between threading 1185, 1186 and the internal threading of the articulation drive gear 610. In other words, articulation joint 425 will only change its configuration when articulation drive gear 610 is rotated. While the angles of threading may substantially prevent bending of articulation joint 425 in response to transverse loads on end effector 120, the angles may still provide ready rotation of articulation drive gear 610 to translate lead screws 1183, 1184. By way of example only, the angles of threading 1185, 1186 may be approximately +1-2 degrees or approximately +1-3 degrees. Other suitable angles will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that threading 1185, 1186 may have a square or rectangular cross-section or any other suitable configuration.


As best seen in FIGS. 7-8, a first tensioner gear 1191 is threadably engaged with first lead screw 1183, while a second tensioner gear 1192 is threadably engaged with second lead screw 1184. Thus, the longitudinal position of first tensioner gear 1191 relative to first lead screw 1183 may be adjusted by rotating first tensioner gear 1191 relative to first lead screw 1183, while the longitudinal position of second tensioner gear 1192 relative to second lead screw 1184 may be adjusted by rotating second tensioner gear 1192 relative to second lead screw 1184. Otherwise, first tensioner gear 1191 will translate unitarily with first lead screw 1183, while second tensioner gear 1192 will translate unitarily with second lead screw 1184.


First tensioner gear 1191 is also engaged with a first washer 1193, which is further engaged with notch 1174 of first drive member 1172. The engagement between first washer 1193 and first drive member 1172 is such that first washer 1193 and first drive member 1172 will translate together. In some versions, first washer 1193 is secured to first tensioner gear 1191 in such a manner that first tensioner gear 1191 both pulls first washer 1193 distally and pushes first washer 1193 proximally. Thus, in some such versions, first lead screw 1183 is operable to both push first articulation band 1170 distally and pull first articulation band 1170 proximally, depending on which direction articulation drive gear 610 is rotated. In the present example, however, first tensioner gear 1191 merely abuts first washer 1193, such that first tensioner gear 1191 is operable to push first washer 1193 proximally but cannot pull first washer 1193 distally. Thus, in the present example, first lead screw 1183 is operable to pull first articulation band 1170 proximally but cannot actively push first articulation band 1170 distally. Instead, first lead screw 1183 may simply pull first tensioner gear 1191 distally to enable first articulation band 1170, first drive member 1172, and first washer 1193 to be driven distally in response to proximal retraction of second articulation band 1160 as communicated through articulation joint 425. Other suitable relationships will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that first drive member 1172 and/or first washer 1193 may be rotatable relative to first tensioner gear 1191. As described in greater detail below, first tensioner gear 1191 may be used to take out any tolerance gaps between first drive member 1172 and first lead screw 1183.


Similarly, second tensioner gear 1192 is engaged with second washer 1194, which is further engaged with second notch 1164 of second drive member 1162. The engagement between second washer 1194 and second drive member 1162 is such that second washer 1194 and second drive member 1162 will translate together. In some versions, second washer 1194 is secured to second tensioner gear 1192 in such a manner that second tensioner gear 1192 both pulls second washer 1194 distally and pushes second washer 1194 proximally. Thus, in some such versions, second lead screw 1184 is operable to both push second articulation band 1160 distally and pull second articulation band 1160 proximally, depending on which direction articulation drive gear 610 is rotated. In the present example however, second tensioner gear 1192 merely abuts second washer 1194, such that second tensioner gear 1192 is operable to push second washer 1194 proximally but cannot pull second washer 1194 distally. Thus, in the present example, second lead screw 1184 is operable to pull second articulation band 1160 proximally but cannot actively push second articulation band 1160 distally. Instead, second lead screw 1184 may simply pull second tensioner gear 1192 distally to enable second articulation band 1160, second drive member 1162, and second washer 1194 to be driven distally in response to proximal retraction of first articulation band 1170 as communicated through articulation joint 425. Other suitable relationships will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that second drive member 1162 and/or second washer 1194 may be rotatable relative to second tensioner gear 1192. As described in greater detail below, second tensioner gear 1192 may be used to take out any tolerance gaps between second drive member 1162 and second lead screw 1184.



FIG. 9 depicts a close-up view of a section of the front portion assembly 410 including the articulating shaft 415 and an articulation drive assembly. As shown in FIG. 9, articulation drive gear 610 may be coaxially positioned about the proximal portion of knife advancement coupling 270 and may encompass drive members 1162, 1172. Articulation drive gear 610 may be rotatable about the longitudinal axis defined by shaft 415. As will be described in greater detail below, such rotation of articulation drive gear 610 may cause opposing translation of drive members 1162, 1172, with the directions of such opposing translations depending on the direction in which articulation drive gear 610 rotates. In such a manner, rotation of articulation drive gear 610 may articulate end effector 120 about articulation joint 425. Articulation drive gear 610 may include a first internal threading 615 and a second internal threading 620. Threadings 615, 620 may have opposing pitch angles or orientations and may be configured to mate with the exterior threadings 1185 and 1186 of lead screws 1183 and 1184, respectively. Thus, a rotation of articulation drive gear 610 in a first direction may cause first lead screw 1183 to move distally and second lead screw 1184 to move proximally. The distal motion of first lead screw 1183 may cause first drive member 1172 to move distally, while the proximal motion of second lead screw 1184 may cause second drive member 1162 to move in a proximal direction. The resulting push-pull motion of drive members 1172 and 1162, respectively, may result in the bending of the articulation joint 425 to bend in a first direction. Similarly, a rotation of articulation drive gear 610 in a second direction may cause first lead screw 1183 to move proximally and second lead screw 1184 to move distally. The proximal motion of first lead screw 1183 may cause first drive member 1172 to move proximally, while the distal motion of second lead screw 1184 may cause second drive member 1162 to move in a distal direction. The resulting pull-push motion of drive members 1172 and 1162, respectively, may result in the bending of the articulation joint 425 to bend in a second direction. Rotation of the articulation drive gear 610 may be driven by rotation of an articulation coupling gear 630.



FIG. 10A depicts an example of a proximal interface of a front portion assembly of an electrosurgical device that incorporates an articulated shaft. Many of the components illustrated in FIG. 10A are common to electrosurgical devices that incorporate a fixed shaft. For example, FIG. 10A illustrates the proximal end of the knife advancement coupling 270. Additionally, FIG. 10A illustrates common controls such as the knife advancement control 140 and the energy activation control 145. As noted above, the reusable handle assembly 130 may include sensors to detect motions of knife advancement control 140 and the energy activation control 145. In a non-limiting example, a cauterization actuation sensor 360 may detect the presence or motion of the energy activation control 145, and a knife actuation sensor (not shown) may detect the presence or motion of the knife advancement control 140. In some non-limiting examples, the cauterization actuation sensor 360 and the knife actuation sensor (not shown) may comprise Hall sensors that may sense the proximity of a magnet 745 associated with the energy activation control 145, and a magnet 740 associated with the knife advancement control 140, respectively. The proximal interface illustrated in FIG. 10A also depicts one or more tissue cauterization power contacts 730 which may be configured to be in electrical communication with equivalent cauterization current terminals 340 (see FIG. 3) in the reusable handle assembly 130.



FIGS. 10A and 10B together disclose one aspect of a mechanism for adjusting an articulation angle in an articulation shaft. Articulation drive gear 610 may be mechanically coupled to articulation coupling gear 630. Articulation coupling gear 630 may be reversibly coupled to an articulation engagement gear 720 using mechanical components attached to the articulation controls 440a, 440b as depicted in FIG. 10B. Manipulation or position of the articulation controls, 440a, 440b, may be sensed by one or more articulation actuation sensors (FIG. 10B, 355a, 355b). In one non-limiting example, the articulation actuation sensors 355a, 355b may comprise Hall sensors that can sense the proximity of articulation magnets 750a, 750b, respectively. Articulation magnets 750a, 750b may be affixed to the mechanical components of the articulation controls 440a, 440b, respectively. Motion of the articulation controls 440a, 440b in direction A, A′ (FIG. 10B) may simultaneously cause articulation magnets 750a, 750b to move proximate to the articulation actuation sensors 355a, 355b as well as cause the articulation engagement gear 720 to mechanically couple with articulation drive gear 320. Bias spring 760, co-axial with a shaft of the articulation engagement gear 720, may provide a restoring force that can disengage the articulation engagement gear 720 from the articulation drive gear 320 when pressure to articulation controls 440a or 440b is released. The bias spring 760 may also cause the articulation magnets 750a, 750b to move away from the articulation actuation sensors 355a, 355b when pressure is released from the articulation controls 440a, 440b.


In practice, an electrosurgical system comprising separable front portion assemblies and reusable handle assemblies as disclosed above may be used as follows. The front portion assembly having a front portion housing may be contacted with the reusable handle assembly having a reusable handle housing, and the front portion housing may be releasably latched to the reusable handle housing. Upon contacting the front portion housing with the reusable handle housing, mechanical, electrical, and data components of the front portion assembly may be contacted with mating mechanical, electrical, and data components of the reusable handle housing. The mechanical components of the front portion assembly may include, without limitation, mechanical components to actuate a tissue cutting knife and mechanical components to cause a portion of the front portion assembly shaft to bend about an articulation joint. Electrical components of the front portion assembly may include, without limitation, contacts to transfer an electrical current from a current source in the reusable handle housing to one or more energy delivery surfaces associated with one or more jaws at the distal end of the front portion assembly shaft. In one non-limiting example, a data component may include one or more information storage devices to provide data to or receive data from the controller in the reusable handle assembly. Such information storage devices may be active or passive, and may be read-only or read/write devices.


Upon securing the front portion assembly to the reusable handle assembly, a data storage device in the front portion assembly may provide data to the reusable handle assembly. Such data may include, without limitation, data identifying a type of front portion assembly, data indicating types of mechanical functions available to the front portion assembly, data indicating prior use of the front portion assembly, data indicating the number of times the front portion assembly may be used, data giving an expiration date for use of the front portion assembly, and data indicating limitations of electrical current that may be sourced to the front portion assembly. Identification data may include, without limitation, a part number identifier and a serial number identifier. Mechanical functionality data may include, without limitation, indications that the front portion assembly includes an articulation joint and control interfaces therefor, indications regarding limitations on the angle and distance that the jaws may move, and indications on the length that a tissue cutting knife may move. The information in the data storage device may be altered by the reusable handle assembly upon use of the front portion assembly to track the number of uses of the front portion assembly during one or more surgical procedures. In some non-limiting examples, the reusable handle assembly may receive use data from the data storage device and determine that the front portion assembly may not be useable for additional procedures due to prior use. In another non-limiting example, the reusable handle assembly may receive expiration date data from the data storage device and determine that the front portion assembly may not be useable because the front portion assembly is beyond its expiration date.


Once the front portion assembly and the reusable handle assembly are releasably secured together, the controller in the reusable handle assembly may determine if the two assemblies are properly secured together to allow use. In one non-limiting example, the controller may prevent any subsequent action of the assembled electrosurgical device if it determines that the front portion assembly and the reusable handle assembly are not properly secured together.


The jaw closure trigger of the assembled electrosurgical device may be moved thereby causing the first jaw to move relative to the second jaw thereby capturing a tissue therebetween. The energy activation control may be manipulated, and its motion may be sensed by the cauterization activation sensor. The cauterization activation sensor may transmit a signal to the controller in response to an activation of the energy activation control. In one non-limiting example, the cauterization activation sensor may be a Hall sensor which may detect a magnetic field of a magnet incorporated in the energy activation control when the energy activation control is manipulated. Upon receiving an appropriate signal from the cauterization activation sensor, the controller may cause an RF current to flow between a first RF current terminal and a second RF current terminal when the controller determines that the energy activation control is at least at a predetermined position. The RF current may be sourced to one or more tissue cauterization power contacts in the reusable handle assembly which may conduct the RF current through mating tissue cauterization current terminals in the front portion assembly. The RF current may then be conducted through one or more conductors to the energy delivery surfaces on the jaws of the front portion assembly. In some non-limiting examples, the controller may supply the RF current only while the energy activation control is placed in an activating position by the user. In some alternative non-limiting examples, the controller may supply the RF current for a predetermined period of time once the energy activation control is placed in an activing position. In yet another non-limiting example, the controller may receive data related to the position of the jaws and prevent the RF current from being supplied to the to the one or more tissue cauterization power contacts if the jaws are not in a closed position.


The knife advancement control may be manipulated, and its motion may be sensed by the knife actuation sensor. The knife actuation sensor may transmit a signal to the controller in response to an activation of the knife advancement control. In one non-limiting example, the knife actuation sensor may be a Hall sensor which may detect a magnetic field of a magnet incorporated in the knife advancement control when the knife advancement control is manipulated. Upon receiving an appropriate signal from the knife actuation sensor, the controller may transmit a signal to cause a rotation of the motor to be coupled to the tissue knife advancement component when the position of the knife advancement control is at least at a predetermined position. In one non-limiting example, the knife advancement control may comprise a toggle switch. A single activation of such a toggle switch may signal the controller to activate instructions that may cause the tissue knife to extend and retract in one continuous motion. In an alternative example, the knife advancement control may comprise a push-button. Activation of such a push-button switch may signal the controller to activate instructions that may cause the tissue knife to extend and retract only while the button is pressed.


In another non-limiting example, the helical drive screw, knife advancement coupling, and/or knife advancement component may be sized to provide overtravel of the tissue cutting knife. In such one aspect, activation of the knife advancement control may result in a linear motion of the tissue cutting knife that may not, at least in part, engage the tissue. Thus, for a knife retracted to its full proximal position, the overtravel may result in the tissue cutting knife not engaging any tissue at least during an initial motion of the knife in the distal direction. Tissue engagement, leading to subsequent severing of the tissue, may occur as the tissue cutting knife advances after this initial motion of the tissue cutting knife. In some non-limiting examples, the pitch of the helical drive nut may be non-uniform. As a result, a length of travel of the tissue cutting knife may be less per rotation of the helical drive nut while the knife advancement coupling is at a proximal location than when the knife advancement coupling is at a more distal location.


The controller may determine that the front portion assembly has a shaft incorporating an articulation joint based on data received from the one or more information storage devices in the front portion assembly. Upon such a determination, the controller may accept data from the one or more articulation sensors. The one or more articulation sensors may transmit one or more signals to the controller in response to an activation of the one or more articulation controls. In one non-limiting example, the one or more articulation sensors may be Hall sensors that may detect a magnetic field of a magnet incorporated into the articulation controls when the articulation controls are manipulated. If the controller determines that a position of the one or more articulation controls is at least at a predetermined position, the controller may activate one or more mechanical and/or electromechanical components to cause the articulation mechanism to move, thereby bending the shaft at the articulation joint.


In one non-limiting example, when an articulation control is positioned forward by an operator, an articulation engagement gear may be translated proximally thereby engaging it with an articulation drive gear. Upon receiving a signal from the one or more articulation sensors, the controller may provide instructions to the motor to rotate. Rotation of the motor may be coupled through one or more miter gears or spur gears to the articulation drive gear. The mechanical coupling of the articulation drive gear with the articulation engagement gear, via the articulation control, may result in the rotation of the motor shaft being coupled to the articulation drive gear. Rotation of the articulation drive gear may result in translation motions of the first and second lead screws which may result in relative translation of the first and second drive members thereby causing the shaft to bend at the articulation joint.


In one non-limiting example, the articulation control may act as a push-button switch. Activation of such a push-button switch may signal the controller to activate instructions that may result in the articulation joint moving first in one direction and then in the opposite direction in one continuous motion only while the button is pressed. In an alternative example, the articulation control may comprise a double-pole switch. Activation of such a double-pole switch may signal the controller to activate instructions that may result in the articulation joint bending in a first direction while the switch contacts a first pole, and may result in the articulation joint bending in a second direction while the switch contacts a second pole. In yet another example, the activation of a first articulation control may signal the controller to move the articulation joint in a first direction, while the activation of a second articulation control may signal the controller to move the articulation joint in a second direction. In some non-limiting examples, the controller may also retain information related to the angle formed by the articulation joint.


In one non-limiting example, a single motor may be used to advance the tissue cutting knife and bend the articulation joint. In a non-limiting example, the tissue cutting knife and the articulation joint may both move when the one or more articulation controls is actuated. In such an example, overtravel may be provided for the motion of the tissue cutting knife so that the knife may advance in a distal direction but not engage tissue while the articulation joint moves. Alternatively, the pitch of the helical drive screw may be non-uniform, so that the tissue cutting knife initially advances to a smaller extent while the shaft articulates than when the articulation control is not actuated and the knife has advanced past a predetermined distal position.


It may be recognized that an alternative aspect of the electrosurgical device may include separate motors to move the tissue cutting knife and articulate the shaft at the articulation joint. In yet another alternative aspect, a single motor may actuate the tissue cutting knife and the articulation joint, but the motions of the knife and the joint may be independent. In such an alternative aspect, actuation of the one or more articulation controls may couple only the articulation mechanisms to the motor while preventing the knife advancement mechanisms from engaging the motor. Similarly, actuation of the knife advancement control may couple only the knife advancement mechanisms to the motor while preventing the articulation mechanisms from engaging the motor.


Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,112; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein by reference in their entirety and made part of this specification.


It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated aspects. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.


Various aspects of surgical instruments and robotic surgical systems are described herein. It will be understood by those skilled in the art that the various aspects described herein may be used with the described surgical instruments and robotic surgical systems. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed aspects are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.


Reference throughout the specification to “various aspects,” “some aspects,” “one example,” or “one aspect” means that a particular feature, structure, or characteristic described in connection with one aspect is included in at least one example. Thus, appearances of the phrases “in various aspects,” “in some aspects,” “in one example,” or “in one aspect” in places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example may be combined, in whole or in part, with features, structures, or characteristics of one or more other aspects without limitation.


While various aspects herein have been illustrated by description of several aspects and while the illustrative aspects have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. As disclosed herein, the present disclosure has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present disclosure to an instrument for use only in conjunction with an endoscopic tube (e.g., trocar). On the contrary, it is believed that the present disclosure may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures and natural orifice procedures, such as a transvaginal hysterectomy.


It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.


While several aspects have been described, it should be apparent, however, that various modifications, alterations and adaptations to those aspects may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various aspects, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope of the disclosure as defined by the appended claims.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


Clause 1. A reusable handle for an electrosurgical device, the reusable handle comprising:


a housing;


a motor disposed within the housing;


a controller configured to actuate the motor;


an electrical interface portion configured to interface with a front portion of the electrosurgical device comprising:

    • a plurality of sensors comprising at least a knife actuation sensor, a cauterization actuation sensor, and an articulation actuation sensor, wherein each of the plurality of sensors is in data communication with the controller, and
    • at least one tissue cauterization current terminal;


a mechanical interface portion configured to interface with the front portion of the electrosurgical device comprising:

    • a first mechanical coupling configured to couple one or more motions of the motor to a tissue cutting mechanism,
    • a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism, and
    • a latching mechanism configured to releasably latch the front portion of the electrosurgical device to the housing.


Clause 2. The reusable handle of Clause 1, wherein the plurality of sensors comprises one or more of a Hall sensor, an RF sensor, an optical sensor, and an electronic sensor.


Clause 3. The reusable handle of any one of Clauses 1-2, wherein the first mechanical coupling and the second mechanical coupling independently comprise one or more of a spur gear, a worm gear, a planetary gear set, a helical gear, a bevel gear, a miter gear, and a rack and pinion gear set.


Clause 4. The reusable handle of any one of Clauses 1-3, further comprising one or more power sources configured to supply power to the motor and the controller.


Clause 5. The reusable handle of Clause 4, wherein the one or more power sources comprise one or more batteries disposed within the housing.


Clause 6. The reusable handle of any one of Clauses 1-5, further comprising a source of tissue cauterization power in electrical communication with the at least one tissue cauterization power terminal.


Clause 7. The reusable handle of Clause 6, wherein the source of tissue cauterization power comprises one or more batteries disposed within the housing.


Clause 8. The reusable handle of any one of Clauses 1-6, wherein the controller is configured to activate the one or more motions of the motor at least in response to receiving data from one or more of the a plurality of sensors.


Clause 9. The reusable handle of any one of Clauses 1-8, further comprising an identification sensor configured to receive identification information from the front portion of the electrosurgical device.


Clause 10. The reusable handle of any one of Clauses 1-9, wherein the second mechanical coupling is configured to couple the one or more motions of the motor to the articulation mechanism independent of a coupling of the one or more motions of the motor to the tissue cutting mechanism.


Clause 11. An electrosurgical system comprising:


a front portion assembly comprising:

    • a front portion housing,
    • an end effector comprising a first jaw movably disposed to contact a second jaw, a first electrode configured to be in electrical communication with a first RF current terminal, and a second electrode configured to be in electrical communication with a second RF current terminal,
    • a tissue knife movably disposed within the end effector,
    • a tissue knife advancement component configured to move the tissue knife within the end effector,
    • a jaw closure trigger,
    • a knife advancement control,
    • an energy activation control, and
    • an elongated shaft having a distal end in mechanical communication with the end effector; and


a reusable handle assembly comprising:

    • a reusable handle housing;
    • a motor disposed within the reusable handle housing;
    • a controller configured to actuate the motor;
    • an electrical interface portion configured to interface with the front portion assembly comprising:
      • a knife actuation sensor configured to sense a position of the knife advancement control,
      • a cauterization actuation sensor configured to sense a position of the energy activation control,
      • an articulation actuation sensor,
      • wherein the knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor are in data communication with the controller,
      • the first RF current terminal, and
      • the second RF current terminal;
    • a mechanical interface portion configured to interface with the front portion of the electrosurgical device, the mechanical interface portion comprising:
      • a first mechanical coupling configured to couple one or more motions of the motor to the tissue knife advancement component,
      • a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism, and
      • a latching mechanism configured to releasably latch the front portion housing to the reusable handle housing;


wherein the front portion assembly is releasably attached to the reusable handle assembly.


Clause 12. The electrosurgical system of Clause 11, wherein the knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor independently comprise one or more of a Hall sensor, an RF sensor, an optical sensor, and an electronic sensor.


Clause 13. The electrosurgical system of any one of Clauses 11-12, wherein the front portion assembly releasably attached to the reusable handle assembly comprises an electrosurgical system configured for single-handed operation.


Clause 14. The electrosurgical system of any one of Clauses 11-13, further comprising an RF current source in electrical communication with the first RF current terminal and the second RF current terminal.


Clause 15. The electrosurgical system of any one of Clauses 11-14, further comprising:


an information storage device disposed within the front portion assembly; and


an identification sensor disposed within the reusable handle assembly,


wherein the identification sensor is in data communication with the controller, and


wherein the identification sensor is configured to receive information from the information storage device.


Clause 16. The electrosurgical system of Clauses 15, wherein the information storage device comprises one or more of a non-volatile device, a read/write device, and a WORM device.


Clause 17. The electrosurgical system of Clause 15, wherein the information storage device comprises one or more of an RFID tag, a PROM device, an EPROM device, and an EEPROM device.


Clause 18. The electrosurgical system of Clause 15, wherein the information comprises one or more of an identifier of a front portion assembly type, a front portion assembly model number, a front portion assembly serial number, a value of the number of uses of the front portion assembly, and a configuration of one or more components of the front portion assembly.


Clause 19. The electrosurgical system of any one of Clauses 11-18, wherein the front portion assembly further comprises:


an articulation joint in the elongated shaft, wherein the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw;


the articulation mechanism, configured to move the articulation joint; and


an articulation control,


wherein the articulation actuation sensor is configured to sense the position of the articulation control.


Clause 20. A method of using an electrosurgical system, the method comprising:


providing a front portion assembly comprising:

    • a front portion housing,
    • an end effector comprising a first jaw movably disposed to contact a second jaw, a first electrode configured to be in electrical communication with a first RF current terminal, and a second electrode configured to be in electrical communication with a second RF current terminal,
    • a tissue knife movably disposed within the end effector,
    • a tissue knife advancement component configured to move the tissue knife within the end effector,
    • a jaw closure trigger,
    • a knife advancement control,
    • an energy activation control, and
    • an elongated shaft having a distal end in mechanical communication with the end effector;


providing a reusable handle assembly comprising:

    • a reusable handle housing;
    • a motor disposed within the reusable handle housing;
    • a controller configured to actuate the motor;
    • an electrical interface portion configured to interface with the front portion assembly comprising:
      • a knife actuation sensor configured to sense a position of the knife advancement control,
      • a cauterization actuation sensor configured to sense a position of the energy activation control,
      • an articulation actuation sensor,
      • wherein the knife actuation sensor, the cauterization actuation sensor, and the articulation actuation sensor are in data communication with the controller,
      • the first RF current terminal, and
      • the second RF current terminal;
    • a mechanical interface portion configured to interface with the front portion of the electrosurgical device, the mechanical interface portion comprising:
      • a first mechanical coupling configured to couple one or more motions of the motor to the tissue knife advancement component,
      • a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism, and
      • a latching mechanism configured to releasably latch the front portion housing to the reusable handle housing;


contacting the front portion assembly with the reusable handle assembly and releasably latching the front portion housing to the reusable handle housing;


using the jaw closure trigger to move the first jaw relative to the second jaw thereby capturing a material therebetween;


moving the energy activation control;


sensing, by the cauterization activation sensor, the position of the energy activation control;


causing an RF current to flow between the first RF current terminal and the second RF current terminal when the position of the energy activation control sensed by the cauterization activation sensor is at least at a predetermined position;


sensing, by the knife actuation sensor, the position of the knife advancement control; and


causing, by the controller, the motor to move the tissue knife advancement component via the first mechanical coupling when the position of the knife advancement control sensed by the knife actuation sensor is at least at a predetermined position.


Clause 21. The method of Clause 20, wherein providing a front portion assembly further comprises providing a front portion assembly comprising:


an articulation joint in the elongated shaft, wherein the articulation joint is configured to permit the shaft to move in a plane orthogonal to a plane of a motion of the first jaw with respect to the second jaw;


the articulation mechanism, configured to move the articulation joint; and


an articulation control;


wherein providing a reusable handle assembly further comprises providing a reusable handle assembly wherein the articulation actuation sensor is configured to sense the position of the articulation control;


sensing, by the articulation actuation sensor, the position of the articulation control; and


causing, by the controller, the motor to move the articulation mechanism via the second mechanical coupling when the position of the articulation control sensed by the articulation actuation sensor is at least at a predetermined position.

Claims
  • 1. A reusable handle for an electrosurgical device, the reusable handle comprising: a housing comprising a handle;a motor disposed within the housing;a controller configured to actuate the motor;an electrical interface portion configured to interface with a front portion of the electrosurgical device comprising: a plurality of electronic sensors comprising at least an electronic knife actuation sensor, an electronic cauterization actuation sensor, and an electronic articulation actuation sensor, wherein each of the plurality of electronic sensors is in data communication with the controller, andat least one tissue cauterization current terminal;a mechanical interface portion configured to interface with the front portion of the electrosurgical device comprising: a first mechanical coupling configured to couple one or more motions of the motor to a tissue cutting mechanism,a second mechanical coupling configured to couple the one or more motions of the motor to an articulation mechanism, anda latching mechanism configured to releasably latch the front portion of the electrosurgical device to the housing,
  • 2. The reusable handle of claim 1, wherein the plurality of electronic sensors comprises one or more of a Hall sensor, an RF sensor, an optical sensor, and an electronic sensor.
  • 3. The reusable handle of claim 1, wherein the first mechanical coupling and the second mechanical coupling independently comprise one or more of a spur gear, a worm gear, a planetary gear set, a helical gear, a bevel gear, a miter gear, and a rack and pinion gear set.
  • 4. The reusable handle of claim 1, further comprising one or more power sources configured to supply power to the motor and the controller.
  • 5. The reusable handle of claim 4, wherein the one or more power sources comprise one or more batteries disposed within the housing.
  • 6. The reusable handle of claim 1, further comprising a source of tissue cauterization power in electrical communication with the at least one tissue cauterization current terminal.
  • 7. The reusable handle of claim 6, wherein the source of tissue cauterization power comprises one or more batteries disposed within the housing.
  • 8. The reusable handle of claim 1, wherein the controller is configured to activate the one or more motions of the motor at least in response to receiving data from one or more of the plurality of electronic sensors.
  • 9. The reusable handle of claim 1, further comprising an identification sensor configured to receive identification information from the front portion of the electrosurgical device.
  • 10. The reusable handle of claim 1, wherein the second mechanical coupling is configured to couple the one or more motions of the motor to the articulation mechanism independent of a coupling of the one or more motions of the motor to the tissue cutting mechanism.
US Referenced Citations (1655)
Number Name Date Kind
2366274 Luth et al. Jan 1945 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2736960 Armstrong Mar 1956 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
3015961 Roney Jan 1962 A
3043309 McCarthy Jul 1962 A
3166971 Stoecker Jan 1965 A
3358676 Frei et al. Dec 1967 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3580841 Cadotte et al. May 1971 A
3614484 Shoh Oct 1971 A
3636943 Balamuth Jan 1972 A
3703651 Blowers Nov 1972 A
3710399 Hurst Jan 1973 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3862630 Balamuth Jan 1975 A
3900823 Sokal et al. Aug 1975 A
3906217 Lackore Sep 1975 A
3918442 Nikolaev et al. Nov 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3988535 Hickman et al. Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4034762 Cosens et al. Jul 1977 A
4047136 Satto Sep 1977 A
4058126 Leveen Nov 1977 A
4063561 McKenna Dec 1977 A
4099192 Aizawa et al. Jul 1978 A
4156187 Murry et al. May 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4278077 Mizumoto Jul 1981 A
4281785 Brooks Aug 1981 A
4304987 van Konynenburg Dec 1981 A
4314559 Allen Feb 1982 A
4384584 Chen May 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4535773 Yoon Aug 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4582236 Hirose Apr 1986 A
4585282 Bosley Apr 1986 A
4597390 Mulhollan et al. Jul 1986 A
4617927 Manes Oct 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4655746 Daniels et al. Apr 1987 A
4671287 Fiddian-Green Jun 1987 A
4708127 Abdelghani Nov 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4797803 Carroll Jan 1989 A
4798588 Aillon Jan 1989 A
4802461 Cho Feb 1989 A
4803506 Diehl et al. Feb 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4838853 Parisi Jun 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4865159 Jamison Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4896009 Pawlowski Jan 1990 A
4910389 Sherman et al. Mar 1990 A
4910633 Quinn Mar 1990 A
4911148 Sosnowski et al. Mar 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4961738 Mackin Oct 1990 A
4967670 Morishita et al. Nov 1990 A
4981756 Rhandhawa Jan 1991 A
5007919 Silva et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5020514 Heckele Jun 1991 A
5026387 Thomas Jun 1991 A
5061269 Muller Oct 1991 A
5093754 Kawashima Mar 1992 A
5099216 Pelrine Mar 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5150102 Takashima Sep 1992 A
5150272 Danley et al. Sep 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167725 Clark et al. Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5217460 Knoepfler Jun 1993 A
5221282 Wuchinich Jun 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5253647 Takahashi et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5267091 Chen Nov 1993 A
5282800 Foshee et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5313306 Kuban et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5333624 Tovey Aug 1994 A
5339723 Huitema Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5352219 Reddy Oct 1994 A
5359992 Hori et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5370640 Kolff Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395331 O'Neill et al. Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5413575 Haenggi May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5431640 Gabriel Jul 1995 A
5443463 Stern et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5477788 Morishita Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542938 Avellanet et al. Aug 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562657 Griffin Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573534 Stone Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
D381077 Hunt Jul 1997 S
5643175 Adair Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653713 Michelson Aug 1997 A
5657697 Murai Aug 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5700243 Narciso, Jr. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704900 Dobrovolny et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722326 Post Mar 1998 A
5722426 Kolff Mar 1998 A
5732636 Wang et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738652 Boyd et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5741305 Vincent et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810718 Akiba et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5836867 Speier et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883454 Hones et al. Mar 1999 A
5887018 Bayazitoglu et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5902239 Buurman May 1999 A
5904147 Conlan et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906625 Bito et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944298 Koike Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957849 Munro Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
D416089 Barton et al. Nov 1999 S
5984938 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007484 Thompson Dec 1999 A
6013052 Durman et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080152 Nardella et al. Jun 2000 A
6083151 Renner et al. Jul 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6099483 Palmer et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6123466 Persson et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6127757 Swinbanks Oct 2000 A
6132368 Cooper Oct 2000 A
6139320 Hahn Oct 2000 A
6144402 Norsworthy et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6190386 Rydell Feb 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6219572 Young Apr 2001 B1
6221007 Green Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6309400 Beaupre Oct 2001 B2
6315789 Cragg Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6340878 Oglesbee Jan 2002 B1
6352532 Kramer et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464703 Bartel Oct 2002 B2
6471172 Lemke et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475216 Mulier et al. Nov 2002 B2
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6520960 Blocher et al. Feb 2003 B2
6522909 Garibaldi et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6540693 Burbank et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6594517 Nevo Jul 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6616450 Mossle et al. Sep 2003 B2
6616600 Pauker Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620129 Stecker et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623501 Heller et al. Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6648817 Schara et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6695840 Schulze Feb 2004 B2
6716215 David et al. Apr 2004 B1
6719684 Kim et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776165 Jin Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6806317 Morishita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6860880 Treat et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6893435 Goble May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
D509589 Wells Sep 2005 S
6939347 Thompson Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6959852 Shelton, IV et al. Nov 2005 B2
6974462 Sater Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984220 Wuchinich Jan 2006 B2
6986738 Glukhovsky et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7029435 Nakao Apr 2006 B2
7039453 Mullick et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044937 Kirwan et al. May 2006 B1
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083579 Yokoi et al. Aug 2006 B2
7083617 Kortenbach et al. Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7096560 Oddsen, Jr. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7120498 Imran et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7153315 Miller Dec 2006 B2
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169104 Ueda et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7170823 Fabricius et al. Jan 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199545 Oleynikov et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7241294 Reschke Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7276065 Morley et al. Oct 2007 B2
7282773 Li et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297145 Woloszko et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367973 Manzo et al. May 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7422139 Shelton, IV et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7422592 Morley et al. Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7439732 LaPlaca Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7448993 Yokoi et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7450998 Zilberman et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520877 Lee, Jr. et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7611512 Ein-Gal Nov 2009 B2
7617961 Viola Nov 2009 B2
7621910 Sugi Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7640447 Qiu Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7678105 McGreevy et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7725214 Diolaiti May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789283 Shah Sep 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7850688 Hafner Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7896878 Johnson et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7942303 Shah May 2011 B2
7942868 Cooper May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988567 Kim et al. Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038612 Paz Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8062211 Duval et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070748 Hixson et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8092475 Cotter et al. Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128657 Shiono et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8177794 Cabrera et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8187166 Kuth et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8192433 Johnson et al. Jun 2012 B2
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197494 Jaggi et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8206212 Iddings et al. Jun 2012 B2
8221415 Francischelli Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8244368 Sherman Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257377 Wiener et al. Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267854 Asada et al. Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273085 Park et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298228 Buysse et al. Oct 2012 B2
8298232 Unger Oct 2012 B2
8303583 Hosier et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8377053 Orszulak Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382754 Odom et al. Feb 2013 B2
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394094 Edwards et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409076 Pang et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469956 McKenna et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8475361 Barlow et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
8512336 Couture Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8523889 Stulen et al. Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8542501 Kyono Sep 2013 B2
8553430 Melanson et al. Oct 2013 B2
8562516 Saadat et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8574187 Marion Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597182 Stein et al. Dec 2013 B2
8597297 Couture et al. Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8636648 Gazdzinski Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636761 Cunningham et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641712 Couture Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8685056 Evans et al. Apr 2014 B2
8696662 Eder et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8764747 Cummings et al. Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814865 Reschke Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8887373 Brandt et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8929888 Rao et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8939287 Markovitch Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8939975 Twomey et al. Jan 2015 B2
8944997 Fernandez et al. Feb 2015 B2
8945125 Schechter et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Homer et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8978845 Kim Mar 2015 B2
8979838 Woloszko et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033983 Takashino et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078664 Palmer et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9094006 Gravati et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107672 Tetzlaff et al. Aug 2015 B2
9113889 Reschke Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9119630 Townsend et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9138289 Conley et al. Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9155585 Bales, Jr. et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9187758 Cai et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198716 Masuda et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204919 Brandt et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265571 Twomey et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9271784 Evans et al. Mar 2016 B2
9274988 Hsu et al. Mar 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9308014 Fischer Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9344042 Mao May 2016 B2
9345481 Hall et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9381060 Artale et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9456876 Hagn Oct 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9549663 Larkin Jan 2017 B2
9554845 Arts Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9585709 Krapohl Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9622810 Hart et al. Apr 2017 B2
9627120 Scott et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9642669 Takashino et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649144 Aluru et al. May 2017 B2
9649151 Goodman et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9687295 Joseph Jun 2017 B2
9700339 Nield Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713491 Roy et al. Jul 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9757128 Baber et al. Sep 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9782220 Mark et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808308 Faller et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9833239 Yates et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9848939 Mayer et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9877782 Voegele et al. Jan 2018 B2
9888958 Evans et al. Feb 2018 B2
9901390 Allen, IV et al. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9931157 Strobl et al. Apr 2018 B2
9937001 Nakamura Apr 2018 B2
9943357 Cunningham et al. Apr 2018 B2
9949620 Duval et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9974539 Yates et al. May 2018 B2
9993289 Sobajima et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10041822 Zemlok Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10058376 Horner et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080606 Kappus et al. Sep 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105174 Krapohl Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130414 Weiler et al. Nov 2018 B2
10194911 Miller et al. Feb 2019 B2
10211586 Adams et al. Feb 2019 B2
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030066938 Zimmerman Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093039 Schumert May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040102804 Chin May 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050090817 Phan Apr 2005 A1
20050096502 Khalili May 2005 A1
20050119640 Sverduk et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050215858 Vail Sep 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050272972 Iddan Dec 2005 A1
20050273139 Krauss et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060211943 Beaupre Sep 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070008744 Heo et al. Jan 2007 A1
20070010709 Reinschke Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070020065 Kirby Jan 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070051766 Spencer Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070182842 Sonnenschein et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070270651 Gilad et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070276424 Mikkaichi et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080015413 Barlow et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080300588 Groth et al. Dec 2008 A1
20080312502 Swain et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090248021 McKenna Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20100036370 Mirel et al. Feb 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204802 Wilson et al. Aug 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20110009857 Subramaniam et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110060333 Mueller Mar 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110087224 Cadeddu et al. Apr 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120085358 Cadeddu et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130190759 Waaler Jul 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140194864 Martin et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140263538 Leimbach Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140330271 Dietz et al. Nov 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150209103 Artale et al. Jul 2015 A1
20150230853 Johnson et al. Aug 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150250531 Dycus et al. Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150305796 Wang Oct 2015 A1
20150327918 Sobajima et al. Nov 2015 A1
20160008023 Yates et al. Jan 2016 A1
20160038225 Couture et al. Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160051317 Boudreaux Feb 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160066911 Baber Mar 2016 A1
20160066980 Schall et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160143687 Hart et al. May 2016 A1
20160157923 Ding Jun 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175024 Yates et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160175032 Yang Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199124 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160228171 Boudreaux Aug 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20170056097 Monson et al. Mar 2017 A1
20170105787 Witt et al. Apr 2017 A1
20170105789 Boudreaux et al. Apr 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164972 Johnson et al. Jun 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325878 Messerly et al. Nov 2017 A1
20170367751 Ruddenklau et al. Dec 2017 A1
20180085156 Witt et al. Mar 2018 A1
20180125571 Witt et al. May 2018 A1
20180228530 Yates et al. Aug 2018 A1
20180263683 Renner et al. Sep 2018 A1
20180280075 Nott et al. Oct 2018 A1
20180368906 Yates et al. Dec 2018 A1
20190000468 Adams et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000555 Schings et al. Jan 2019 A1
20190099209 Witt et al. Apr 2019 A1
20190099212 Davison et al. Apr 2019 A1
20190099213 Witt et al. Apr 2019 A1
20190099217 Witt et al. Apr 2019 A1
Foreign Referenced Citations (171)
Number Date Country
1634601 Jul 2005 CN
1640365 Jul 2005 CN
1694649 Nov 2005 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
102834069 Dec 2012 CN
4300307 Jul 1994 DE
19608716 Apr 1997 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
10201569 Jul 2003 DE
102005032371 Jan 2007 DE
0171967 Feb 1986 EP
0443256 Aug 1991 EP
0456470 Nov 1991 EP
0340803 Aug 1993 EP
0630612 Dec 1994 EP
0482195 Jan 1996 EP
0705571 Apr 1996 EP
0612570 Jun 1997 EP
0557806 May 1998 EP
0640317 Sep 1999 EP
0908148 Jan 2002 EP
0722696 Dec 2002 EP
1199044 Dec 2005 EP
1293172 Apr 2006 EP
0875209 May 2006 EP
1704824 Sep 2006 EP
1738795 Jan 2007 EP
1749479 Feb 2007 EP
1767157 Mar 2007 EP
1254637 Aug 2007 EP
1813201 Aug 2007 EP
1844720 Oct 2007 EP
1862133 Dec 2007 EP
1878399 Jan 2008 EP
1915953 Apr 2008 EP
1532933 May 2008 EP
1707143 Jun 2008 EP
1943957 Jul 2008 EP
1974771 Oct 2008 EP
1435852 Dec 2008 EP
1849424 Apr 2009 EP
2042117 Apr 2009 EP
2060238 May 2009 EP
1832259 Jun 2009 EP
2074959 Jul 2009 EP
1810625 Aug 2009 EP
2090256 Aug 2009 EP
2092905 Aug 2009 EP
2105104 Sep 2009 EP
1747761 Oct 2009 EP
1769766 Feb 2010 EP
2151204 Feb 2010 EP
2153791 Feb 2010 EP
2243439 Oct 2010 EP
1510178 Jun 2011 EP
2090239 Jul 2011 EP
1728475 Aug 2011 EP
2353518 Aug 2011 EP
2436327 Apr 2012 EP
2529681 Dec 2012 EP
1767164 Jan 2013 EP
2316359 Mar 2013 EP
2090238 Apr 2013 EP
2578172 Apr 2013 EP
2508143 Feb 2014 EP
2419159 Aug 2013 ES
2032221 Apr 1980 GB
2472216 Feb 2011 GB
2447767 Aug 2011 GB
S537994 Jan 1978 JP
H08229050 Sep 1996 JP
2002186627 Jul 2002 JP
2008018226 Jan 2008 JP
2009213878 Sep 2009 JP
2010057926 Mar 2010 JP
5714508 May 2015 JP
WO-8103272 Nov 1981 WO
WO-9222259 Dec 1992 WO
WO-9307817 Apr 1993 WO
WO-9314708 Aug 1993 WO
WO-9322973 Nov 1993 WO
WO-9510978 Apr 1995 WO
WO-9635382 Nov 1996 WO
WO-9710764 Mar 1997 WO
WO-9800069 Jan 1998 WO
WO-9837815 Sep 1998 WO
WO-9840020 Sep 1998 WO
WO-9857588 Dec 1998 WO
WO-9923960 May 1999 WO
WO-9940857 Aug 1999 WO
WO-9940861 Aug 1999 WO
WO-9947058 Sep 1999 WO
WO-0024330 May 2000 WO
WO-0024331 May 2000 WO
WO-0025691 May 2000 WO
WO-0128444 Apr 2001 WO
WO-0154590 Aug 2001 WO
WO-0195817 Dec 2001 WO
WO-02062241 Aug 2002 WO
WO-02080794 Oct 2002 WO
WO-02080797 Oct 2002 WO
WO-03001986 Jan 2003 WO
WO-03013374 Feb 2003 WO
WO-03020339 Mar 2003 WO
WO-03028541 Apr 2003 WO
WO-03030708 Apr 2003 WO
WO-03068046 Aug 2003 WO
WO-2004011037 Feb 2004 WO
WO-2004032754 Apr 2004 WO
WO-2004032762 Apr 2004 WO
WO-2004032763 Apr 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004084709 Oct 2004 WO
WO-2004112618 Dec 2004 WO
WO-2005002415 Jan 2005 WO
WO-2005009211 Feb 2005 WO
WO-2005052959 Jun 2005 WO
WO-2005122917 Dec 2005 WO
WO-2006021269 Mar 2006 WO
WO-2006036706 Apr 2006 WO
WO-2006042210 Apr 2006 WO
WO-2006055166 May 2006 WO
WO-2006119139 Nov 2006 WO
WO-2006129465 Dec 2006 WO
WO-2007047531 Apr 2007 WO
WO-2007063550 Jun 2007 WO
WO-2007130382 Nov 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008020964 Feb 2008 WO
WO-2008031025 Mar 2008 WO
WO-2008035089 Mar 2008 WO
WO-2008045348 Apr 2008 WO
WO-2008099529 Aug 2008 WO
WO-2008101356 Aug 2008 WO
WO-2008130793 Oct 2008 WO
WO-2009018406 Feb 2009 WO
WO-2009022614 Feb 2009 WO
WO-2009027065 Mar 2009 WO
WO-2009036818 Mar 2009 WO
WO-2009039179 Mar 2009 WO
WO-2009059741 May 2009 WO
WO-2009067649 May 2009 WO
WO-2009082477 Jul 2009 WO
WO-2009149234 Dec 2009 WO
WO-2010017266 Feb 2010 WO
WO-2010056716 May 2010 WO
WO-2010083480 Jul 2010 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011044468 Apr 2011 WO
WO-2011044471 Apr 2011 WO
WO-2011084768 Jul 2011 WO
WO-2011089717 Jul 2011 WO
WO-2011144911 Nov 2011 WO
WO-2011146691 Nov 2011 WO
WO-2011146698 Nov 2011 WO
WO-2011146709 Nov 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2012166510 Dec 2012 WO
WO-2013034629 Mar 2013 WO
WO-2013062978 May 2013 WO
WO-2013102602 Jul 2013 WO
WO-2013131823 Sep 2013 WO
WO-2013154157 Oct 2013 WO
WO-2015017989 Feb 2015 WO
WO-2015017995 Feb 2015 WO
WO-2015197395 Dec 2015 WO
Non-Patent Literature Citations (72)
Entry
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335393, 453-496, 535-549.
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007.
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004.
Scott et al., “Transvaginal single access ‘pure’ NOTES sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007.
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004.
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006.
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1h Annual Video Forum, 2007.
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008.
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002.
Castellvi et al., “Completely transvaginal NOTES cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Castellvi et al., “Hybrid transvaginal NOTES sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Scott et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007.
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009.
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001.
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009.
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009.
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure‘ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDVV), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008.
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007.
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007.
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalet.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Related Publications (1)
Number Date Country
20170189102 A1 Jul 2017 US