Energizing seal for expandable connections

Information

  • Patent Grant
  • 7887103
  • Patent Number
    7,887,103
  • Date Filed
    Wednesday, February 7, 2007
    17 years ago
  • Date Issued
    Tuesday, February 15, 2011
    13 years ago
Abstract
A tubular configured to mate with a second tubular so that sealing integrity is maintained between the tubulars before, during, and after expansion of the tubulars is disclosed. In one embodiment, a connector for connecting tubulars is provided. The connector includes a pin portion; a box portion, wherein the pin and the box portions are configured to mate; a sealing surface formed in an inner surface of the box portion; a seal disposed in a groove formed in an outer surface of the pin portion, wherein the seal is configured to engage with a sealing surface of the box portion upon mating of the pin and the box portions; and a bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the groove and the bump is configured so that the seal remains engaged with the box portion during and after expansion of the pin and the box portions.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a connector for tubing. In particular, but not exclusively, the present invention relates to the sealing of a connector for expandable downhole tubing sections.


2. Description of the Related Art


In the oil and gas exploration and production industry, expandable tubing has been developed and has a variety of uses. These include expandable borehole casing and liner, and expandable sand exclusion based tubing assemblies or sandscreens, such as that sold under the ESS Trademark by Weatherford Int'l.


Expandable tubing offers a number of advantages over conventional borehole tubing, as the expandable tubing can be run into a borehole in an unexpanded state and subsequently expanded downhole. This allows the tubing to be run through existing tubing and then expanded to a larger diameter within the borehole.


There exists a need in the art for an expandable connection which maintains sealing integrity before, during, and after expansion.


SUMMARY OF THE INVENTION

The present invention generally provides a tubular configured to mate with a second tubular so that sealing integrity is maintained between the tubulars before, during, and after expansion of the tubulars. In one embodiment, a connector for connecting tubulars is provided. The connector includes a pin portion; a box portion, wherein the pin and the box portions are configured to mate; a sealing surface formed in an inner surface of the box portion; a seal disposed in a groove formed in an outer surface of the pin portion, wherein the seal is configured to engage with a sealing surface of the box portion upon mating of the pin and the box portions; and a bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the groove and the bump is configured so that the seal remains engaged with the box portion during and after expansion of the pin and the box portions.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1A is a sectional view of a prior art sealing portion of a connection between two expandable tubulars before expansion thereof. FIG. 1B is a view of the prior art connection of FIG. 1A after expansion.



FIG. 2 is a sectional view of the connection between two expandable tubulars, shown prior to expansion.



FIG. 2A is an enlargement of a seal portion of FIG. 2. FIG. 2B is a view of FIG. 2A after expansion.



FIG. 3A is a sectional view of an alternative pin having a bump welded thereto. FIG. 3B is a sectional view of an alternative pin having a bump bonded thereto. FIG. 3C is a sectional view of a tubular having a pin and box disposed at opposite ends thereof. FIG. 3D is a sectional view of an alternative connection having the seal disposed along an inner surface of the box.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1A is a sectional view of a sealing portion of a connection between two expandable tubulars before expansion thereof. FIG. 1B is a view of the connection of FIG. 1A after expansion. The expandable tubing sections typically include a male threaded portion (pin) 10 and a female threaded portion (box) 5 at opposite ends, for joining adjacent sections of tubing together end to end. The pin 10 and box 5 of adjacent tubing sections thus form connectors for coupling the tubing sections together. The seal 15 shown in FIG. 1A is engaged with the box 5, thereby providing a fluid-tight seal. However, upon expansion of the connection, plastic deformation of the seal-groove area may cause the area to sag as shown in FIG. 1B. The seal 15 then contracts into the sagged base, thereby disengaging from the box.


Disengagement of the seal compromises the sealing integrity of the connection during and after expansion.



FIG. 2 a sectional view of a connection 300 between a first expandable tubular 100 and a second expandable tubular 200 prior to expansion. FIG. 2A is an enlargement of a seal portion of FIG. 2. The tubulars 100,200 may be solid or continuous-walled expandable tubing such as casing or liner, as well as other types of expandable tubing, such as slotted tubing and sand exclusion assemblies. The tubulars 100,200 are made of a ductile material capable of sustaining plastic deformation. Preferably, the material is a metal, more preferably steel.


The expandable tubulars 100,200 are mated together at the surface of a wellbore according to normal stab-in and threading procedures to form an expandable tubular string. The stab-in procedures can be performed with tubulars arranged in a pin up and a box down configuration or a configuration with the pin down and the box up. The string of expandable tubulars 100,200 is then run-in into the wellbore to a desired location on a workstring. The workstring may be composed of drill pipe or coiled tubing.


The tubulars 100,200 may be expanded in the wellbore by any known method. When operated, an expansion tool will radially expand the tubulars 100,200 as well as the connector 300 to a larger diameter. The expansion tool may employ a simple cone-shaped body, which is typically run into a wellbore at the bottom of the tubular string that is to be expanded. The expansion tool is then forced upward in the wellbore by applying pressure below the cone and/or pulling on a workstring attached to the cone. A dart may be coupled to the cone to provide sealing engagement with an inner wall of the expandable tubulars. Alternatively, the cone may be forced through the expandable string solely by pulling on the workstring from the surface. Alternatively, the expansion tool may be a rotary expansion tool having pressure actuated rollers. When the expansion tool reaches the connection 300 between the first tubular 100 and the second tubular 200, an internal wall of a pin portion 105 of the first tubular 100 expands into an internal wall of a box portion 205 of the second tubular 200. The connection 300 between the tubulars 100,200 is capable of being expanded without losing its mechanical or sealing integrity.


The connection 300 comprises the pin portion 105 of the first tubular 100 mated or engaged with the box portion 205 of the second tubular. Each expandable tubular comprises a pin and box at opposite longitudinal ends thereof, for coupling a number of tubulars together end to end, to form a string of expandable tubulars. Alternatively, the tubulars 100,200 may have pins at both ends thereof and a coupling (not shown) may have two box ends for assembly of the tubulars 100,200. The pin 105 and the box 205 portions are also made of a ductile material capable of sustaining plastic deformation. Preferably, the material is a metal, more preferably steel. The pin portion 105 includes a shoulder 110, a tapered portion 115, first 120a and second 120bthreaded portions, a groove 125, a seal 130, a bump 135, and an end 140. The box portion 205 includes a shoulder 210, first 220a and second 220b threaded portions, a sealing surface 230, and an end 240.


A two-step thread is illustrated comprising thread pairs 120a,220a and 120b,220b, which are spaced apart to allow the placement of the seal 130. Upon makeup, the box end 240 abuts the shoulder 110 formed in the pin 105. A small gap may exist between the shoulder 210 and the pin end 140. Alternatively, the connection may be configured so that the shoulder 210 and the pin end 140 also abut. Alternatively, a single or multi-step thread or other ways to connect the pin 105 to the box 205 are within the scope of the invention. For example, the connection could be a bayonet type involving pushing the pin into the box and relatively rotating them into a made up position, prior to expansion downhole. A wide variety of thread forms can also be used in the connection of the present invention. Alternatively, the pin may include a recess in the form of a helical groove, and the box may include a corresponding helical groove. The grooves align on mating the pin and box at surface to define a continuous cavity, and a connector in the form of a wire is located in the cavity to lock the pin and box together.


The pin 105 and box 205 may be formed integrally with the respective tubulars 100,200. Alternatively, the pin 105 may be a cylindrical body or sub which is welded to the end of the tubular 100. In a similar fashion, the box 205 may be a short sub which is welded to the tubular 200.


The seal 130 is disposed in the groove 125 formed in an outer surface of the pin 105 between the threaded portions 120a,b. Preferably, the seal is an elastomer o-ring. As used herein, the term elastomer includes natural and synthetic rubber. Alternatively, the seal may be made of a composite material, a fluoro-carbon, or metal. Alternatively, the cross-sectional shape of the seal may be rectangular, square, any other polygon shape, or elliptical.


Disposing the seal 130 between the threaded portions 120a,b protects the seal from damage during service and/or make-up. Alternatively, the seal may be disposed at any longitudinal location along the pin 105. During make-up, the seal is energized by contact with the sealing surface 230 of the box 205 so that sealing integrity is provided during run-in and expansion. Disposing the seal 130 onto the pin 105 instead of within the box 205 is advantageous in that the seal 130 is in tension upon insertion into the groove 125. Being in tension protects the seal 130 from being sheared, clipped, or even dislodged during make-up of the pin 105 and the box 205. Further, any issue of aligning the bump 135 and the seal 130 during makeup is eliminated. Alternatively and less preferably, the seal may be disposed within the box portion. The bump 135 would then be substantially radially aligned with the sealing surface, which would be instead located on the pin.


The bump 135 is formed on an inner surface of the pin 105 in substantial radial alignment with the groove 125. A length Lb of the bump 135 may correspond to a length Ls of the sealing surface 230. The bump serves to maintain integrity of the seal 130 during and after expansion, discussed in detail below. The bump 135 may either be formed on the inner surface of the pin 105 by machining or may be added to the inner surface by bonding a separate piece or welding. If the bump is added, it may be made from a material different than the pin 105. Preferably, the cross-sectional shape of the bump 135 is substantially a segment of a circle. Alternatively, the cross sectional shape of the bump 135 is substantially a sector of a circle, semi-circular, semi-elliptical, trapezoidal, semi-trapezoidal, triangular, any polygon, or any portions of these shapes.



FIG. 2B is a view of FIG. 2A after expansion. During expansion, the bump 135 maintains sealing engagement with the box 205 as follows. When the expansion tool passes down through the connector 300, the bump 135, or at least a substantial portion thereof, is displaced radially outwardly. This movement actually deforms the groove area 125 radially outwardly as shown in FIG. 2B. This expansion not only maintains the engagement of the seal 130 with the sealing surface 230 of the box 205 but actually increases force exerted on the seal 130 by the base of the groove. This sealing engagement is maintained, and even improved, after removal of the expansion forces and thus prevents fluid ingress or egress through the connection 300 between the pin 105 and the box 205. Accordingly, no undesired fluid or solids can enter the string of expanded tubulars through the connectors 300, and no fluid or solids can escape from the expanded tubulars through the connectors 300. A small portion of the bump 135 may remain after expansion.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A connector for connecting tubulars, comprising: a first tubular having a pin and two threads formed on an outer surface of the pin;a coupling or second tubular having a box and two threads formed on an inner surface of the box, wherein the pin and the box are configured to mate;a sealing surface formed in an inner surface of the box between the two box threads;a seal disposed in a groove formed in an outer surface of the pin between the two pin threads, wherein the seal is configured to engage with the sealing surface upon mating of the pin and the box; anda bump formed on an inner surface of the pin, wherein the bump is substantially radially aligned with the groove and the bump is configured so that the seal remains engaged with the box during and after expansion of the pin and the box,wherein a length of the bump corresponds to a length of the sealing surface.
  • 2. The connector of claim 1, wherein a cross sectional shape of the bump is substantially a segment of a circle.
  • 3. The connector of claim 1, wherein a cross sectional shape of the bump is substantially semi-circular or semi-elliptical.
  • 4. The connector of claim 1, wherein the bump is formed integrally with the pin.
  • 5. The connector of claim 1, wherein the bump is bonded to the pin.
  • 6. The connector of claim 5, wherein the bump is made from a different material than the pin.
  • 7. The connector of claim 1, wherein the bump is a weld.
  • 8. The connector of claim 1, wherein the connector comprises the second tubular and each tubular has a pin and box located at respective longitudinal ends thereof.
  • 9. The connector of claim 1, further comprising a shoulder formed in the pin, wherein the pin and the box are configured so an end of the box abuts the shoulder of the pin upon mating of the pin and the box.
  • 10. The connector of claim 9, wherein an inner surface of the pin tapers proximate to a longitudinal location of the shoulder of the pin.
  • 11. The connector of claim 1, wherein the seal is made from an elastomer.
  • 12. The connector of claim 1, wherein the seal is an o-ring.
  • 13. The connector of claim 1, wherein the pin and the box are made from metal.
  • 14. A method for installing a tubular string in a wellbore, comprising: running a tubular string into the wellbore, the tubular string comprising the first tubular of claim 1 connected to the second tubular having the box or two first tubulars of claim 1 each connected to the coupling; andradially expanding the tubular string in the wellbore.
  • 15. A connector for connecting tubulars, comprising: a pin portion;a box portion, wherein the pin and the box portions are configured to mate;a sealing surface formed in an outer surface of the pin portion;a seal disposed in a groove formed in an inner surface of the box portion, wherein the seal is configured to engage with the sealing surface upon mating of the pin and the box portions; anda bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the sealing surface and the bump is configured so that the seal remains engaged with the pin portion during and after expansion of the tubulars,wherein a length of the bump corresponds to a length of the sealing surface.
  • 16. The connector of claim 15, wherein a cross sectional shape of the bump is substantially a segment of a circle.
  • 17. The connector of claim 15, wherein a cross sectional shape of the bump is substantially semi-elliptical or semi-circular.
  • 18. The connector of claim 15, wherein the bump is formed integrally with the pin.
  • 19. The connector of claim 15, wherein the bump is bonded to the pin.
  • 20. The connector of claim 19, wherein the bump is made from a different material than the pin.
  • 21. The connector of claim 15, wherein the bump is a weld.
  • 22. The connector of claim 15, further comprising a thread formed on an outer surface of the pin portion and a thread formed on an inner surface of the box portion.
  • 23. The connector of claim 15, further comprising two threads formed on an outer surface of the pin portion and two threads formed on an inner surface of the box portion, wherein the groove is disposed between the two threads of the box portion.
  • 24. The connector of claim 15, further comprising a shoulder formed in the pin portion, wherein the pin and the box portions are configured so an end of the box portion abuts the shoulder of the pin portion upon mating of the pin and the box portions.
  • 25. The connector of claim 24, wherein an inner surface of the pin portion tapers proximate to a longitudinal location of the shoulder of the pin portion.
  • 26. The connector of claim 15, wherein the seal is made from an elastomer.
  • 27. The connector of claim 15, wherein the seal is an o-ring.
  • 28. The connector of claim 15, wherein the pin and the box portions are made from metal.
  • 29. A method for installing a tubular string in a wellbore, comprising: running a tubular string into the wellbore, the tubular string comprising a plurality of tubulars, each tubular connected using the connector of claim 15; andradially expanding the tubular string in the wellbore.
  • 30. A tubular for use in a wellbore, comprising: a tubular body having a wall, a longitudinal bore, a pin located at a first longitudinal end thereof, and a box located at a second longitudinal end thereof;two threads formed on an outer surface of the pin;two threads formed on an inner surface of the box;a sealing surface formed in an inner surface of the box between the two box threads;a seal disposed in a groove formed in an outer surface of the pin between the two pin threads; anda bump formed on an inner surface of the pin,wherein: the bump is substantially radially aligned with the groove, anda length of the bump corresponds to a length of the sealing surface.
  • 31. A method for installing a tubular string in a wellbore, comprising: running a tubular string into the wellbore, the tubular string comprising a plurality of tubulars of claim 30, the pin of a first one of the tubulars connected to the box of an adjacent second one of the tubulars; andradially expanding the tubular string in the wellbore, wherein expansion of the bump maintains engagement of the seal with the sealing surface.
  • 32. The tubular of claim 30, wherein the body is made from a ductile material capable of sustaining plastic deformation.
  • 33. A connector for connecting tubulars, comprising: a pin portion;a box portion, wherein the pin and the box portions are configured to mate;a sealing surface formed in an inner surface of the box portion;a seal disposed in a groove formed in an outer surface of the pin portion, wherein the seal is configured to engage with the sealing surface upon mating of the pin and the box portions; anda bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the groove and the bump is configured so that the seal remains engaged with the box portion during and after expansion of the pin and the box portions,wherein the bump is a weld.
  • 34. The connector of claim 33, wherein a length of the bump corresponds to a length of the sealing surface.
  • 35. A connector for connecting tubulars, comprising: a pin portion;a box portion, wherein the pin and the box portions are configured to mate;a sealing surface formed in an outer surface of the pin portion;a seal disposed in a groove formed in an inner surface of the box portion, wherein the seal is configured to engage with the sealing surface upon mating of the pin and the box portions; anda bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the sealing surface and the bump is configured so that the seal remains engaged with the pin portion during and after expansion of the tubulars,wherein the bump is a weld.
  • 36. A connector for connecting tubulars, comprising: a pin portion;a box portion, wherein the pin and the box portions are configured to mate;a sealing surface formed in an outer surface of the pin portion;a seal disposed in a groove formed in an inner surface of the box portion, wherein the seal is configured to engage with the sealing surface upon mating of the pin and the box portions;a bump formed on an inner surface of the pin portion, wherein the bump is substantially radially aligned with the sealing surface and the bump is configured so that the seal remains engaged with the pin portion during and after expansion of the tubulars; andtwo threads formed on an outer surface of the pin portion and two threads formed on an inner surface of the box portion, wherein the groove is disposed between the two threads of the box portion.
Priority Claims (1)
Number Date Country Kind
0311721.5 May 2003 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Pat. App. No. 60/772,364, filed Feb. 10, 2006, which is hereby incorporated by reference in its entirety. This application is a continuation in part of co-pending U.S. patent application Ser. No. 10/848,544, filed May 18, 2004, which claims benefit of British Patent application GB 0311721.5, filed May 22, 2003, both of which are herein incorporated by reference in their entireties. U.S. Pat. Nos. 5,348,095, 5,924,745, and 6,981,547 are herein incorporated by reference in their entireties. U.S. Pat. App. Pub. No. 2002/0175474 is herein incorporated by reference in its entirety. International patent publication No. WO00/37766 is incorporated herein in its entirety.

US Referenced Citations (143)
Number Name Date Kind
268868 Collins Dec 1882 A
782349 Marshall Feb 1905 A
1678640 Hall Jul 1928 A
1820644 Bach Aug 1931 A
2155370 Hall et al. Apr 1939 A
2217370 Johnston Oct 1940 A
2226804 Carroll Dec 1940 A
2341670 Stinson Feb 1944 A
2407552 Hoesel Sep 1946 A
2751238 Vegren Jun 1956 A
2858894 Akeyson Nov 1958 A
2873985 Baldwin, Jr. Feb 1959 A
2898136 Hall, Sr. et al. Aug 1959 A
3062568 Andresen et al. Nov 1962 A
3105556 Raulins Oct 1963 A
3353599 Swift Nov 1967 A
3419079 Current Dec 1968 A
3759553 Carter Sep 1973 A
3766991 Brown Oct 1973 A
3851983 MacKenzie Dec 1974 A
3855126 Smith Dec 1974 A
3857450 Guier Dec 1974 A
3913687 Gyongyosi et al. Oct 1975 A
3989284 Blose Nov 1976 A
4076280 Young Feb 1978 A
4140337 Arcella et al. Feb 1979 A
4281858 Bowyer Aug 1981 A
4423889 Weise Jan 1984 A
4433862 Raulins et al. Feb 1984 A
4449596 Boyadjieff May 1984 A
4491351 Galle, Jr. et al. Jan 1985 A
4550937 Duret Nov 1985 A
4591195 Chelette et al. May 1986 A
4601492 George Jul 1986 A
4611838 Heilmann et al. Sep 1986 A
4619472 Kozono et al. Oct 1986 A
4625796 Boyadjieff Dec 1986 A
4659119 Reimert Apr 1987 A
4671544 Ortloff Jun 1987 A
4703954 Ortloff et al. Nov 1987 A
4703959 Reeves et al. Nov 1987 A
4711474 Patrick Dec 1987 A
4712955 Reece et al. Dec 1987 A
4753460 Tung Jun 1988 A
4754807 Lange Jul 1988 A
4771829 Sparlin Sep 1988 A
4778008 Gonzalez et al. Oct 1988 A
4786090 Mott Nov 1988 A
4793422 Krasnov Dec 1988 A
4813493 Shaw et al. Mar 1989 A
4822081 Blose Apr 1989 A
4878546 Shaw et al. Nov 1989 A
4892337 Gunderson et al. Jan 1990 A
4917409 Reeves Apr 1990 A
4985975 Austin et al. Jan 1991 A
5015017 Geary May 1991 A
5048871 Pfeiffer et al. Sep 1991 A
5066052 Read Nov 1991 A
5069761 Krings et al. Dec 1991 A
5098241 Aldridge et al. Mar 1992 A
5181570 Allwin et al. Jan 1993 A
5251709 Richardson Oct 1993 A
5339895 Arterbury et al. Aug 1994 A
5348095 Worrall et al. Sep 1994 A
5350202 Fritz et al. Sep 1994 A
5360240 Mott Nov 1994 A
5366012 Lohbeck Nov 1994 A
5388651 Berry Feb 1995 A
5415442 Klementich May 1995 A
5480196 Adams, Jr. Jan 1996 A
5518072 McTernaghan May 1996 A
5520422 Friedrich et al. May 1996 A
5667011 Gill et al. Sep 1997 A
5743333 Willauer et al. Apr 1998 A
5782503 Noel et al. Jul 1998 A
5787980 Sparlin et al. Aug 1998 A
5810401 Mosing et al. Sep 1998 A
5855242 Johnson Jan 1999 A
5901789 Donnelly et al. May 1999 A
5906398 Larsen et al. May 1999 A
5924745 Campbell Jul 1999 A
5971443 Noel et al. Oct 1999 A
5984568 Lohbeck Nov 1999 A
6012522 Donnelly et al. Jan 2000 A
6109349 Simone et al. Aug 2000 A
6142230 Smalley et al. Nov 2000 A
6158507 Rouse et al. Dec 2000 A
6158785 Beaulier et al. Dec 2000 A
6189619 Wyatt et al. Feb 2001 B1
6203766 Kawakami et al. Mar 2001 B1
6270127 Enderle Aug 2001 B1
6273634 Lohbeck Aug 2001 B1
6315040 Donnelly Nov 2001 B1
6322109 Campbell et al. Nov 2001 B1
6322110 Banker et al. Nov 2001 B1
6325424 Metcalfe et al. Dec 2001 B1
6343813 Olson et al. Feb 2002 B1
6409175 Evans et al. Jun 2002 B1
6454013 Metcalfe Sep 2002 B1
6457532 Simpson Oct 2002 B1
6457537 Mercer et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6481760 Noel et al. Nov 2002 B1
6543816 Noel Apr 2003 B1
6554287 Sivley, IV et al. Apr 2003 B1
6581980 DeLange et al. Jun 2003 B1
6607220 Sivley, IV Aug 2003 B2
6619696 Baugh et al. Sep 2003 B2
6622797 Sivley, IV Sep 2003 B2
6623047 Olechnowicz et al. Sep 2003 B2
6648071 Hackworth et al. Nov 2003 B2
6682101 Watts Jan 2004 B2
6685236 Setterberg, Jr. Feb 2004 B2
6708767 Harrall et al. Mar 2004 B2
6712401 Coulon et al. Mar 2004 B2
6722443 Metcalfe Apr 2004 B1
6722706 Church Apr 2004 B2
6767035 Hashem Jul 2004 B2
6789822 Metcalfe Sep 2004 B1
6792665 Baugh et al. Sep 2004 B2
6820698 Haynes Nov 2004 B2
6896057 Metcalfe May 2005 B2
6920932 Zimmerman Jul 2005 B2
6971685 Hashem Dec 2005 B2
6981547 Maguire et al. Jan 2006 B2
7011161 Ring et al. Mar 2006 B2
7017950 Macaulay Mar 2006 B2
7025135 Ellington et al. Apr 2006 B2
7077197 Harrall Jul 2006 B2
7107663 Ellington et al. Sep 2006 B2
20020027363 Mallis et al. Mar 2002 A1
20020175474 Simpson et al. Nov 2002 A1
20040017081 Simpson et al. Jan 2004 A1
20040055759 Sivley, IV Mar 2004 A1
20040135370 Evans et al. Jul 2004 A1
20040145184 Setterberg, Jr. Jul 2004 A1
20040182569 Cook et al. Sep 2004 A1
20040262919 Dutilleul et al. Dec 2004 A1
20050023001 Hillis Feb 2005 A1
20050029812 Metcalfe Feb 2005 A1
20050093250 Santi et al. May 2005 A1
20050184521 Maguire Aug 2005 A1
20050212290 Durand et al. Sep 2005 A1
Foreign Referenced Citations (51)
Number Date Country
3413792 Nov 1985 DE
0 171 144 Feb 1986 EP
0 447 346 Sep 1991 EP
0 659 975 Jun 1995 EP
0 803 637 Oct 1997 EP
1 106 778 Jun 2001 EP
1 167 686 Jan 2002 EP
1 479 959 Nov 2004 EP
2 742 177 Jun 1997 FR
706 342 Mar 1954 GB
1 037 010 Jul 1966 GB
2 033 942 May 1980 GB
2 099 529 Dec 1982 GB
2 161 569 Jan 1986 GB
2 345 308 Jul 2000 GB
2 345 935 Jul 2000 GB
2 371 574 Jul 2002 GB
2404397 Feb 2005 GB
2 441 204 Feb 2008 GB
2002-286183 Oct 2002 JP
1367586 Nov 1996 SU
WO 9011455 Oct 1990 WO
WO 9312323 Jun 1993 WO
WO 9325800 Dec 1993 WO
WO 9637680 Nov 1996 WO
WO 9637681 Nov 1996 WO
WO 9637687 Nov 1996 WO
WO 9717524 May 1997 WO
WO 9721901 Jun 1997 WO
WO 9822690 May 1998 WO
WO 9832948 Jul 1998 WO
WO 9842947 Oct 1998 WO
WO 9847805 Oct 1998 WO
WO 0008301 Feb 2000 WO
WO 0037766 Jun 2000 WO
WO 0118355 Mar 2001 WO
WO 0160545 Aug 2001 WO
WO 0210551 Feb 2002 WO
WO 02059458 Aug 2002 WO
WO 02075107 Sep 2002 WO
WO 02075197 Sep 2002 WO
WO 03006788 Jan 2003 WO
WO 03032331 Apr 2003 WO
WO 03036012 May 2003 WO
WO 03036017 May 2003 WO
WO 03048503 Jun 2003 WO
WO 03048506 Jun 2003 WO
WO 03078882 Sep 2003 WO
WO 2005003511 Jan 2005 WO
WO 2005106309 Nov 2005 WO
WO 2005113190 Dec 2005 WO
Related Publications (1)
Number Date Country
20070164565 A1 Jul 2007 US
Provisional Applications (1)
Number Date Country
60772364 Feb 2006 US
Continuation in Parts (1)
Number Date Country
Parent 10848544 May 2004 US
Child 11672180 US