The present application relates generally to the field of bumpers and bumper assemblies for vehicles such as automobiles and the like. More specifically, the present application relates to energy absorbers used in bumper assemblies.
Vehicle bumper assemblies may include a bumper beam, an energy absorber, and a fascia. Such bumper assemblies may be shipped to a vehicle manufacturer as a preassembled unit or the individual components may be shipped separately and assembled by the vehicle manufacturer during the vehicle assembly process.
The bumper beam is configured to couple to the frame of a vehicle, and is generally made of a metal such as steel or other suitable metals. The bumper beam is typically an elongated metal beam that is positioned such that it extends laterally across the front or rear of the vehicle (the bumper beam may have a relatively linear shape or may have a curvature in which the center of the beam is bowed outward toward the front and rear of the vehicle, for example). The bumper beam may be formed using any suitable method (e.g., casting, extruding, etc.). One possible bumper beam forming method involves roll-forming a sheet of metal into a beam having a predefined cross-section. One particular embodiment of a bumper beam includes a “B-shaped” cross-section, although any suitable configuration may be used for the bumper beam.
The fascia may be made of any suitable material (e.g., a polymeric material such as polypropylene, a reinforced polymeric material such as fiberglass, or other suitable materials), and acts to conceal the other components of the bumper system (i.e., the fascia is the part of the bumper system that is visible to an observer of the exterior of the vehicle). Any of a variety of configurations may be possible for the fascia, and may be selected to match the exterior styling of a particular vehicle.
The energy absorber is provided between the fascia and the bumper beam, and provides a cushion in the event of a collision. As the name implies, the energy absorber is configured to absorb the collision energy to reduce the amount of energy transmitted to the bumper beam and to the rest of the vehicle (e.g., to the vehicle frame).
It would be advantageous to provide an energy absorber for a vehicle bumper assembly or system that is relatively efficient to produce and that includes features intended to optimize performance of the bumper system in the event of a collision. It would also be advantageous to provide an energy absorber that utilizes less material to provide both cost and weight savings for the bumper assembly. It would further be advantageous to provide an energy absorber that includes features intended to improve the performance of the bumper assembly in the event of a collision.
An exemplary embodiment relates to an energy absorber for a vehicle bumper system includes a plurality of crush boxes that are configured to absorb impact energy. Each of the plurality of crush boxes are generally hollow and have a front wall and a plurality of side walls integrally formed with and extending from the front wall to a rear of the energy absorber. A first crush box is separated from a second crush box by a distance such that an open space is defined between a side wall of the first crush box and a side wall of the second crush box. At least one rib extends between the side wall of the first crush box and the side wall of the second crush box in the open space to couple the first crush box to the second crush box. The at least one rib is integrally formed with the first crush box and the second crush box, and extends at least partially between the rear of the energy absorber and the front walls of the first and second crush boxes.
Another exemplary embodiment relates to an energy absorber that is configured for use with a vehicle bumper beam. A first generally hollow crush box and a second generally hollow crush box each extend from a rear of the energy absorber to a location forward of the rear of the energy absorber, wherein the first crush box is separated from the second crush box by an open space extending through the energy absorber. A plurality of generally planar connection members extend across the open space to couple the first crush box to the second crush box. The plurality of connection members extend along sidewalls of the first crush box and the second crush box forward from a location near the rear of the energy absorber. The plurality of connection members are spaced apart from each other so that at least one open space is defined between the plurality of connection members.
Another exemplary embodiment relates to an energy absorber configured to contact a bumper beam. The energy absorber includes a first crush box comprising a first row and a second row of linearly aligned interconnected polygonal protrusions extending substantially forward from a rear of the energy absorber. The energy absorber also includes a second crush box spaced a distance from the first crush box comprising a first row and a second row of linearly aligned interconnected polygonal protrusions extending substantially forward from the rear of the energy absorber. The energy absorber further includes a first rib arrangement coupling the first row of the first crush box and the first row of the second crush box at a first pair of walls that are substantially parallel to each other and spaced a distance apart, wherein a first rib of the rib arrangement is substantially perpendicular to the first pair of walls and extends a length forward from near the rear of the energy absorber.
Referring to
According to an exemplary embodiment, the energy absorber 100 having a front or front side 102 and a rear or rear side 104 is intended for use in a bumper system that includes a bumper beam 106 and a fascia 108 (see, e.g.,
The energy absorber 100 includes a support beam 110, one or more side crush supports 112, a plurality of crush boxes 114, at least one member 118 configured to act as an air flow regulator, a plurality of rib arrangements 120, at least one extension 124 for aligning the energy absorber with a bumper beam, at least one tow hook access hole 126, a plurality of wire harness clips 128, and a lower flange support 134.
An exemplary energy absorber may be made from a polymeric material such as polyethylene, thermoplastic olefin, or a combination of polycarbonate and polybutylene terephthalate but is not limited thereto. According to an exemplary embodiment, the energy absorber is manufactured using an injection molding process.
Referring to
An exemplary crush box 114 may be constructed of multiple polygon shaped protrusions, i.e., polygonal protrusions, linearly aligned and interconnected with one another, which may protrude or extend longitudinally towards the front, i.e., forward, at varying lengths from the rear of the energy absorber (see, e.g.,
According to an exemplary embodiment, each crush box 114 is generally a hollow member including a front side 140, a rear side or edge 142, a top 144, a bottom 146, a first side 148, and a second side 150 (see, e.g.,
The tops 144, the bottoms 146, the first sides 148, and the second sides 150 of the crush boxes comprise a plurality of longitudinally extending walls 151 extending between the front sides and the rear sides of the crush boxes. In an exemplary embodiment, the walls 151 are generally planar members (see, e.g.,
Referring to
The crush box 114b includes two linearly aligned interconnected octagonal protrusions on top, extending forward from the rear of the energy absorber 100. The top protrusions are integrally formed with two linearly aligned interconnected octagonal protrusions on the bottom, extending forward from the rear of the energy absorber 100. The top two protrusions define a first or top row 154, extending horizontally along the width of the energy absorber 100. The bottom two protrusions form a second or bottom row 156, extending horizontally along the width of the energy absorber 100. The top row 154 extends a greater length forward from the rear of the energy absorber 100 than the bottom row 156 (see, e.g.,
The crush box 114c includes four interconnected octagonal protrusions that extend forward from the rear of the energy absorber. The protrusions form a first or top row 154 and a second or bottom row 156, the top row 154 extending substantially the same length forward from the rear of the energy absorber 100 as the bottom row 156 (see, e.g.,
The crush boxes 114d, 114e and 114f include multiple interconnected polygonal protrusions, aligned in varying patterns, which extend longitudinally forward from the rear of the energy absorber (see, e.g.,
In an exemplary arrangement of the crush boxes 114 along the width of the energy absorber 100, the crush boxes 114 are shown adjacent to one another, spaced apart along the width of the energy absorber 100 between a first or left side to a second or right side. A plurality of spaces 158 (e.g., voids, openings, apertures, passages, etc.) separate adjacent crush boxes. The spaces 158 are open spaces substantially defined by the first sides 148 and the second sides 150 of the adjacent crush boxes. The spaces may extend longitudinally through the energy absorber, or between the front and the rear of the energy absorber. In another exemplary embodiment, the spaces may separate groupings of crush boxes, e.g., crush boxes that are integrally formed or coupled one on top of the other.
According to one exemplary embodiment, the crush boxes 114 at the at the center of the energy absorber 100 are spaced apart smaller distances, i.e., are closer together, than the crush boxes at the ends of the energy absorber 100. According to another exemplary embodiments, the crush boxes are substantially equidistant from one another. According to another exemplary embodiment, the crush boxes are spaced apart greater distances at the center, i.e., are father apart, than the crush boxes at the lateral ends of the energy absorber.
Referring to
Although
According to other exemplary embodiments, different crush box designs may be provided and/or an energy absorber may include a different number and/or alignment of crush boxes. For example, other energy absorbers may be constructed to include a different number and/or configuration for the crush boxes such that the design may be customized for a particular customer specification (e.g., as to the width, height, thickness, strength and/or mass of the energy absorber).
As illustrated in
The crush boxes (e.g., crush box 114) may include one or more apertures or holes 130 to provide for increased stability during molding. For example, where the mold for the energy absorber includes fingers, the energy absorber may be configured to allow the fingers to pass through the apertures during manufacture (see, e.g.,
Referring to
In the exemplary embodiment shown, each rib is substantially rectangular and extends forward a length greater than height the rib extends vertically, i.e., substantially between the top and the bottom of the energy absorber. Generally, the ribs do not extend the entire length from the rear side of the crush box to the front side of the crush box. The ribs may be spaced a length forward from the rear sides of the adjacent crush boxes coupled by the rib. Alternatively, the ribs may be aligned with (e.g., planar with, even with, etc.) or extend in part beyond the rear sides of the adjacent crush boxes coupled by the ribs. When multiple support ribs are provided in a space between the top and bottom of the energy absorber, they are constructed without a front or rear face extending perpendicular to the longitudinally extending ribs.
As shown in
Rows of adjacent crush boxes may be coupled by individual ribs or rib structures extending across spaces 158 separating the crush boxes. According to the exemplary energy absorber shown in
In one exemplary embodiment, the tops rows of adjacent crush boxes are coupled at a pair of parallel walls and the bottom rows are coupled at a pair of parallel walls. The ribs may be oriented perpendicularly to the parallel walls. Some of the ribs may be parallel to each other, forming a ladder-like structure in the open space between the adjacent crush boxes. In the exemplary embodiment shown, the parallel walls are coupled by the exemplary rib arrangements 120 spaced a distance apart in the spaces 158 between the top and the bottom of the energy absorber 100.
In another exemplary embodiment, adjacent crush boxes may be coupled at corners by ribs extending forward from near the rear of the crush boxes along the coupled corners at each side (see, e.g.,
According to one exemplary embodiment, a single crush box may be coupled at one side to two or more adjacent crush boxes that are vertically aligned one above the other (see, e.g.,
One advantageous feature of using ribs to connect adjacent crush boxes is that less material may be used than if the crush boxes were connected by a single wall extending between the crush boxes. The orientation of the ribs is such that they provide enhanced rigidity for the energy absorber by extending longitudinally between the front and rear of the energy absorber between adjacent walls as compared to a simple wall extending between the top and bottom of the energy absorber between adjacent walls. That is, a wall having a major surface that is oriented such that the plane of the major surface is generally parallel to the rear of the energy absorber may have a tendency to flex when a load is applied to the energy absorber. In contrast, by orienting the ribs or connection members between the crush boxes such that they are perpendicular to the typical impact direction (i.e., from front to rear with respect to the energy absorber), the ribs provide better resistance to flexure or bending of the energy absorber and enhanced structural rigidity for the energy absorber.
Referring back to
Further referring to
Referring to
According to other exemplary embodiments, the extensions 124 may be replaced or supplemented with clips (not shown) that utilize the elastic nature of the molded polymer to allow for elastic deflection of the snap past an interference of a slot or hook feature of the bumper beam or other structure. Once the snap moves past the interference it will return to or near its original shape and the snap configuration which incorporates a catch will secure the joined components in place. According to another exemplary embodiment, the extensions 124 may be replaced or supplemented with other mechanisms sufficient to couple the energy absorber to the bumper beam or other structures.
According to an exemplary embodiment, a tow hook access hole 126 is formed at one or more locations to provide the vehicle user with access to the tow hooks. In one embodiment, the tow access hole is in part provided by including a cut-out portion in one or more of the polygon shaped protrusions forming the crush box or crush boxes through which the access hole extends, i.e., the access hole is formed simultaneously with the crush boxes. The tow hook access hole geometry may differ according to other exemplary embodiments and is designed to satisfy the customer-desired geometry.
According to an exemplary embodiment, a plurality of clips 128 are molded into the energy absorber to provide for attachment of the vehicle wiring harness, which is typically routed through the energy absorber. The number and size of the clips may be varied according to specific customer requirements. One or more clips 125 may also be provided for securing the energy absorber to the fascia or another structure. In other exemplary embodiments, any mechanism configured to provide for attachment of the vehicle wiring harness or securing the energy absorber to the fascia or another structure may be used. These mechanisms may be molded into the energy absorber or coupled thereto.
As shown in
As shown in
As shown in
Referring to
According to an exemplary embodiment, the energy absorber 200 having a front or front side 202 and a rear or rear side 204 is intended for use in a bumper system that includes a bumper beam and a fascia (not shown). For example, the energy absorber 200 may be provided in contact with a bumper beam having a B-shaped or other cross-sectional configuration. In one exemplary embodiment, the rear of energy absorber 200 is in contact with the bumper beam and the energy absorber extends horizontally along the entire width of the bumper beam or along only a portion thereof. The energy absorber may be coupled to the fascia using fasteners, hooks, clips, adhesives, or other suitable means, or may instead by sandwiched between the bumper beam and the fascia without the use of any fastening mechanisms.
The energy absorber 200 includes a support beam 210, one or more side crush supports 212, a plurality of crush boxes 214, a plurality of rib arrangements 220, a plurality of wire harness clips 228, and a lower flange support 234.
An exemplary energy absorber may be made from a polymeric material such as polyethylene, thermoplastic olefin, or a combination of polycarbonate and polybutylene terephthalate but is not limited thereto. According to an exemplary embodiment, the energy absorber is manufactured using an injection molding process.
Referring to
An exemplary crush box 214 may be constructed of multiple polygon shaped protrusions, i.e., polygonal protrusions, linearly aligned and interconnected with one another, which may protrude or extend longitudinally towards the front, i.e. forward, at varying lengths from the rear of the energy absorber (see, e.g.,
According to an exemplary embodiment, each crush box 214 is generally a hollow member including a front side 240, a rear side or edge 242, a top 244, a bottom 246, a first side 248, and a second side 250. The top 244, the bottom 246, the first side 248, and the second side 250 of each crush box 214 extend substantially longitudinally forward from the rear side 242 to the front side 240 of the crush box, wherein the front side 240 may include a front surface of the crush box (see, e.g.,
The tops 244, the bottoms 246, the first sides 248 and the second sides 250 of the crush boxes comprise a plurality of longitudinally extending walls 251 extending between the front sides and the rear sides of the crush boxes. In an exemplary embodiment, the walls 251 are generally planar members (see, e.g.,
The crush box 214a includes four linearly aligned interconnected octagonal protrusions, that extend longitudinally forward from the rear of the energy. The protrusions form a first or top row 254 and a second or bottom row 256, the top row 254 extending substantially the same length longitudinally forward from the rear of energy absorber 200 as the bottom row 256.
The crush box 214b includes a polygon shaped protrusion extending longitudinally forward from the rear of the energy absorber. In one exemplary embodiment, the crush box 214b may be positioned below, i.e., vertically aligned with, the crush box 214a and may extend a length forward smaller than the length the crush box 214a extends forward. The crush box 214b may further be integrally formed with the crush box 214a during injection molding of the energy absorber. In one exemplary embodiment, the polygon shaped protrusion is a single octagonal protrusion.
The crush box 214c includes two linearly aligned interconnected octagonal protrusions, extending longitudinally from the rear of the energy absorber. In one exemplary embodiment, the crush box 214c may be positioned below the crush box 214b and may extend a shorter length forward than the crush box 214b. In one exemplary embodiment, the crush box 214c may further be integrally formed with the crush box 214b. In another exemplary embodiment, the crush box 214a may be integrally formed with both the crush box 214b and the crush box 214c. In another exemplary embodiment, the crush boxes are integrally formed during an injection molding process.
The crush box 214d includes one octagonal protrusion, extending longitudinally forward from the rear of the energy absorber. In one exemplary embodiment, the crush box 214d may be positioned below the crush box 214b and may extend a length forward shorter than the length the crush box 214b extends forward. In one exemplary embodiment, the crush box 214d may further be integrally formed with the crush box 214b. In another exemplary embodiment, the crush box 214d may be integrally formed with both the crush box 214b and the crush box 214a. In another exemplary embodiment, the crush boxes are integrally formed during an injection molding process.
In other exemplary embodiments, crush boxes of various configurations may be vertically aligned above or below other crush boxes in any useful order. Generally, the crush boxes on top extend a greater length longitudinally forward from the rear of the energy absorber towards the front than crush boxes on the bottom. In one exemplary embodiment, crush boxes may be stepped such that each row of polygon shaped extrusions from the top to the bottom of the crush box extends a progressively smaller distance longitudinally forward from the rear of the energy absorber or crush box. In another exemplary embodiment, crush boxes may be stepped such that each row of polygon shaped extrusions from the top to the bottom of the crush box extends a progressively greater distance longitudinally forward from the rear of the energy absorber or crush box.
According to other exemplary embodiments, crush boxes of various configurations may be vertically aligned above or below other crush boxes in any useful order. Vertically aligned or vertically aligned crush boxes may have corresponding widths or non-corresponding widths.
In an exemplary arrangement of the crush boxes 214 along the width of energy absorber 200 shown in
According to one exemplary embodiment, the crush boxes 214 at the at the center of energy absorber 200 are spaced apart smaller distances, i.e., are closer together, than the crush boxes the right and left ends of the energy absorber. According to another exemplary embodiments, the crush boxes are substantially equidistant from one another. According to another exemplary embodiment, the crush boxes are spaced apart greater distances at the center, i.e., are father apart, than the crush boxes at the lateral ends of the energy absorber.
Referring to
Although
According to other exemplary embodiments, different crush box designs may be provided and/or an energy absorber may include a different number and/or alignment of crush boxes. For example, other energy absorbers may be constructed to include a different number and/or configuration for the crush boxes such that the design may be customized for a particular customer specification (e.g., as to the width, height, thickness, strength and/or mass of the energy absorber).
As illustrated in
The crush boxes (e.g. crush box 214) may include one or more apertures or holes 230 to provide for increased stability during molding. For example, where the mold for the energy absorber includes fingers, the energy absorber may be configured to allow the fingers to pass through the apertures during manufacture (see e.g.,
Referring to
In the exemplary embodiment shown, the ribs are substantially perpendicular to the front sides of the crush boxes, although, in other exemplary embodiment, the ribs may also be angled between the walls and angled relative to each other. Generally, the ribs do not extend the entire length from the rear side of the crush box to the front side of the crush box. The ribs may spaced forward a length forward from the rear sides of the adjacent crush boxes coupled by the rib. Alternatively, the ribs may be aligned with or extend in part beyond the rear sides of the adjacent crush boxes coupled by the ribs. When multiple support ribs are provided in a space between the top and bottom of the energy absorber, they are constructed without a front or rear face extending perpendicular to the longitudinally extending ribs.
As shown in
In one exemplary embodiment, the ribs 221, 222, 223 and 224 connect adjacent crush boxes having the same configuration, the front profiles of the ribs forming a plurality of substantially horizontal spaced apart lines. The ribs may be substantially rectangular and extend longitudinally toward the rear of the energy absorber from their front profiles. In other exemplary embodiment, the ribs may connect adjacent crush boxes having different configurations.
Rows of adjacent crush boxes may be coupled by individual ribs or rib structures. Referring to
In one exemplary embodiment, the top rows of adjacent crush boxes are coupled at a pair of parallel walls and the bottom rows are coupled at a pair of parallel walls. The ribs may be perpendicular to the parallel walls. Further the ribs may be parallel to each other, forming a ladder-like structure in the open space between the adjacent crush boxes. The parallel walls may also be coupled by rib structures spaced a distance apart in the spaces between the top and bottom of the energy absorber.
One advantageous feature of using ribs to connect adjacent crush boxes is that less material may be used than if the crush boxes were connected by a single wall extending between the crush boxes. The orientation of the ribs is such that they provide enhanced rigidity for the energy absorber by extending longitudinally between the front and rear of the energy absorber between adjacent walls as compared to a simple wall extending between the top and bottom of the energy absorber between adjacent walls.
Also referring to
According to an exemplary embodiment, a plurality of clips 228, which are molded into the energy absorber to provide for attachment of the vehicle wiring harness, which is typically routed through the energy absorber. The number and size of the clips may be varied according to specific customer requirements. In other exemplary embodiments, any mechanism configured to provide for attachment of the vehicle wiring harness or securing the energy absorber to the fascia or another structure may be used. These mechanisms may be molded into the energy absorber or coupled thereto.
As shown in
As shown in
As shown in
Those reviewing the present disclosure will appreciate that various configurations for the energy absorber may be used. According to an exemplary embodiment, an energy absorber for a vehicle bumper system includes a rear frame member configured for direct coupling to a vehicle bumper beam. The energy absorber also includes a plurality of crush boxes coupled to the rear frame member, with each of the crush boxes being generally hollow and comprising a rear end, a front end, and a plurality of side walls extending between the rear end and the front end. Each of the plurality of crush boxes are coupled to at least one adjacent crush box by at least one rib oriented in a direction generally along the longitudinal axis of the energy absorber.
Each of the crush boxes may include a plurality of crush box protrusions having a substantially octagon shaped cross-sections. At least one of the plurality of crush boxes may include an aperture in a front surface thereof. At least one baffle or fin may be provided for blocking the flow of air near a portion of the energy absorber. The energy absorber may further include a plurality of members configured to couple the energy absorber to a fascia of the vehicle bumper system.
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is also important to note that the construction and arrangement of the energy absorber as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter disclosed herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present inventions.
The present application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/043,331 filed Apr. 8, 2008, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3727870 | Bass | Apr 1973 | A |
3871636 | Boyle | Mar 1975 | A |
4072334 | Seegmiller et al. | Feb 1978 | A |
4105236 | Haar | Aug 1978 | A |
4366885 | Vrijburg | Jan 1983 | A |
4597601 | Manning | Jul 1986 | A |
4715645 | Lewis et al. | Dec 1987 | A |
4753467 | DeCaluwe et al. | Jun 1988 | A |
4770453 | Reynolds | Sep 1988 | A |
4778208 | Lehr et al. | Oct 1988 | A |
4826226 | Klie et al. | May 1989 | A |
4829979 | Moir | May 1989 | A |
4830417 | Bates et al. | May 1989 | A |
4856833 | Beekman | Aug 1989 | A |
4877279 | Logan | Oct 1989 | A |
4893857 | Bobinger et al. | Jan 1990 | A |
4925224 | Smiszek | May 1990 | A |
4929008 | Esfandiary | May 1990 | A |
4940270 | Yamazaki et al. | Jul 1990 | A |
4961603 | Carpenter | Oct 1990 | A |
4968076 | Kuroki | Nov 1990 | A |
4971376 | Eipper et al. | Nov 1990 | A |
4974891 | Furuta | Dec 1990 | A |
4976481 | Yoshihra | Dec 1990 | A |
4998761 | Bayer et al. | Mar 1991 | A |
5005887 | Kelman | Apr 1991 | A |
5011205 | Liu | Apr 1991 | A |
5029919 | Bauer | Jul 1991 | A |
5031947 | Chen | Jul 1991 | A |
5056840 | Eipper et al. | Oct 1991 | A |
5067759 | Fleming | Nov 1991 | A |
5078439 | Terada et al. | Jan 1992 | A |
5080410 | Stewart et al. | Jan 1992 | A |
5080411 | Stewart et al. | Jan 1992 | A |
5080412 | Stewart et al. | Jan 1992 | A |
5080427 | Sturrus et al. | Jan 1992 | A |
5090755 | Garnweidner | Feb 1992 | A |
5092512 | Sturrus et al. | Mar 1992 | A |
5096243 | Gembinski | Mar 1992 | A |
5100189 | Futamata et al. | Mar 1992 | A |
5104026 | Sturrus et al. | Apr 1992 | A |
5106137 | Curtis | Apr 1992 | A |
5116092 | Schonleber | May 1992 | A |
5150935 | Glance et al. | Sep 1992 | A |
5172948 | Garnweidner | Dec 1992 | A |
5219197 | Rich et al. | Jun 1993 | A |
5265925 | Cox et al. | Nov 1993 | A |
5273330 | Petry et al. | Dec 1993 | A |
5277462 | Verzelli et al. | Jan 1994 | A |
5290078 | Bayer et al. | Mar 1994 | A |
5305625 | Heinz | Apr 1994 | A |
5306058 | Sturrus et al. | Apr 1994 | A |
5339933 | Bauer et al. | Aug 1994 | A |
5340177 | Maxam et al. | Aug 1994 | A |
5340178 | Stewart et al. | Aug 1994 | A |
5358294 | Palmer | Oct 1994 | A |
5393111 | Eipper et al. | Feb 1995 | A |
5395036 | Sturrus | Mar 1995 | A |
5403049 | Ebbinghaus | Apr 1995 | A |
5407239 | Arai et al. | Apr 1995 | A |
5425561 | Morgan | Jun 1995 | A |
5427214 | Prottengeier et al. | Jun 1995 | A |
5431463 | Chou | Jul 1995 | A |
5431464 | Jones et al. | Jul 1995 | A |
5441319 | Oyama et al. | Aug 1995 | A |
5454504 | Sturrus | Oct 1995 | A |
5462144 | Guardiola et al. | Oct 1995 | A |
5468033 | Dohrmann et al. | Nov 1995 | A |
5482336 | Rouse et al. | Jan 1996 | A |
5492207 | Clausen | Feb 1996 | A |
5498044 | Bovellan et al. | Mar 1996 | A |
5498045 | Morgan et al. | Mar 1996 | A |
5507540 | Pernot | Apr 1996 | A |
5545022 | Rosasco | Aug 1996 | A |
5545361 | Rosasco | Aug 1996 | A |
5566874 | Sturrus | Oct 1996 | A |
5577784 | Nelson | Nov 1996 | A |
5625991 | Sturrus | May 1997 | A |
5626376 | Parker | May 1997 | A |
5658027 | Eissinger et al. | Aug 1997 | A |
5688006 | Bladow et al. | Nov 1997 | A |
5711562 | Terada et al. | Jan 1998 | A |
5725266 | Anderson et al. | Mar 1998 | A |
5725267 | Grosser et al. | Mar 1998 | A |
5727826 | Frank et al. | Mar 1998 | A |
5732801 | Gertz | Mar 1998 | A |
5746419 | McFadden et al. | May 1998 | A |
5772267 | Heim et al. | Jun 1998 | A |
5785367 | Baumann et al. | Jul 1998 | A |
5785368 | Hartman et al. | Jul 1998 | A |
5788297 | Sugawara et al. | Aug 1998 | A |
5799991 | Glance | Sep 1998 | A |
5803514 | Shibuya et al. | Sep 1998 | A |
5803517 | Shibuya | Sep 1998 | A |
5813594 | Sturrus | Sep 1998 | A |
5829805 | Watson | Nov 1998 | A |
5845948 | Anderson et al. | Dec 1998 | A |
5876078 | Miskech et al. | Mar 1999 | A |
5927778 | Uytterhaeghe et al. | Jul 1999 | A |
5932165 | Corbett et al. | Aug 1999 | A |
5934743 | Nohr et al. | Aug 1999 | A |
5941582 | Tan | Aug 1999 | A |
5947538 | White | Sep 1999 | A |
5967573 | Wang | Oct 1999 | A |
5967592 | Freeman | Oct 1999 | A |
5971451 | Huang | Oct 1999 | A |
5984389 | Nuber et al. | Nov 1999 | A |
5984390 | Kemp et al. | Nov 1999 | A |
6000738 | Stewart et al. | Dec 1999 | A |
6003912 | Schonhoff et al. | Dec 1999 | A |
6003930 | Frank et al. | Dec 1999 | A |
6007123 | Schwartz et al. | Dec 1999 | A |
6010169 | Cox et al. | Jan 2000 | A |
6042163 | Reiffer | Mar 2000 | A |
6053664 | Crane et al. | Apr 2000 | A |
6059331 | Mori | May 2000 | A |
6062634 | Aloe et al. | May 2000 | A |
6065786 | Wheatley | May 2000 | A |
6082792 | Evans et al. | Jul 2000 | A |
6085878 | Araki et al. | Jul 2000 | A |
6089628 | Schuster | Jul 2000 | A |
6106039 | Maki | Aug 2000 | A |
6129384 | Fischer et al. | Oct 2000 | A |
6135251 | Hartlieb et al. | Oct 2000 | A |
6148970 | Akad | Nov 2000 | A |
6174008 | Kramer et al. | Jan 2001 | B1 |
6174009 | McKeon | Jan 2001 | B1 |
6179353 | Heatherington et al. | Jan 2001 | B1 |
6179355 | Chou et al. | Jan 2001 | B1 |
6179356 | Hartlieb et al. | Jan 2001 | B1 |
6199924 | Oguri et al. | Mar 2001 | B1 |
6199937 | Zetouna et al. | Mar 2001 | B1 |
6199942 | Carroll et al. | Mar 2001 | B1 |
6209934 | Sakuma et al. | Apr 2001 | B1 |
6217090 | Berzinji | Apr 2001 | B1 |
6227583 | Eipper et al. | May 2001 | B1 |
6231095 | Chou et al. | May 2001 | B1 |
6240820 | Sturrus et al. | Jun 2001 | B1 |
6244625 | Bayer et al. | Jun 2001 | B1 |
6247745 | Carroll et al. | Jun 2001 | B1 |
6250711 | Takahara | Jun 2001 | B1 |
6254161 | Wochaski | Jul 2001 | B1 |
6270131 | Martinez et al. | Aug 2001 | B1 |
6279973 | Albertini et al. | Aug 2001 | B1 |
6283677 | Slattery et al. | Sep 2001 | B1 |
6290272 | Braun | Sep 2001 | B1 |
6299226 | Kroning et al. | Oct 2001 | B1 |
6299227 | Kroning et al. | Oct 2001 | B1 |
6308999 | Tan et al. | Oct 2001 | B1 |
6312028 | Wilkosz | Nov 2001 | B1 |
6315339 | Devilliers et al. | Nov 2001 | B1 |
6318775 | Heatherington et al. | Nov 2001 | B1 |
6325431 | Ito | Dec 2001 | B1 |
6334518 | Garnweidner et al. | Jan 2002 | B1 |
6334638 | Yamamuro et al. | Jan 2002 | B1 |
6334639 | Vives et al. | Jan 2002 | B1 |
6338510 | Kanamori et al. | Jan 2002 | B1 |
6343820 | Pedersen | Feb 2002 | B1 |
6343821 | Breed | Feb 2002 | B2 |
6345425 | Rosasco et al. | Feb 2002 | B1 |
6349521 | McKeon et al. | Feb 2002 | B1 |
6357816 | Porter | Mar 2002 | B1 |
6361092 | Eagle et al. | Mar 2002 | B1 |
6371540 | Campanella et al. | Apr 2002 | B1 |
6371541 | Pedersen | Apr 2002 | B1 |
6394512 | Schuster et al. | May 2002 | B1 |
6398275 | Hartel et al. | Jun 2002 | B1 |
6406077 | Johnson | Jun 2002 | B2 |
6406081 | Mahfet et al. | Jun 2002 | B1 |
6409239 | Tjoelker et al. | Jun 2002 | B1 |
6412836 | Mansoor et al. | Jul 2002 | B1 |
6416094 | Cherry | Jul 2002 | B1 |
6428064 | Frederick | Aug 2002 | B1 |
6428086 | Takahara | Aug 2002 | B2 |
6435578 | Li | Aug 2002 | B1 |
6435601 | Takahara | Aug 2002 | B2 |
6439650 | Artner et al. | Aug 2002 | B2 |
6443511 | Braun | Sep 2002 | B2 |
6443512 | Van Ress et al. | Sep 2002 | B1 |
6443513 | Glance | Sep 2002 | B1 |
6460667 | Bruck et al. | Oct 2002 | B1 |
6460909 | Mansoor et al. | Oct 2002 | B2 |
6467821 | Hirota | Oct 2002 | B2 |
6467822 | Leng | Oct 2002 | B1 |
6467831 | Mori et al. | Oct 2002 | B1 |
6474709 | Artner | Nov 2002 | B2 |
6481690 | Kariatsummari et al. | Nov 2002 | B2 |
6484386 | Tuin et al. | Nov 2002 | B2 |
6485072 | Werner et al. | Nov 2002 | B1 |
6494510 | Okamura et al. | Dec 2002 | B2 |
6502874 | Kajiwara et al. | Jan 2003 | B2 |
6510771 | Sturrus et al. | Jan 2003 | B2 |
6520552 | Schroter et al. | Feb 2003 | B2 |
6536818 | Moss | Mar 2003 | B1 |
6540275 | Iwamoto et al. | Apr 2003 | B1 |
6540276 | Azuchi et al. | Apr 2003 | B2 |
6547295 | Vismara | Apr 2003 | B2 |
6547316 | Chung | Apr 2003 | B2 |
6554333 | Shimotsu et al. | Apr 2003 | B2 |
6554341 | Lee | Apr 2003 | B2 |
6568891 | DeLong | May 2003 | B2 |
6575510 | Weissenborn | Jun 2003 | B2 |
6588830 | Schmidt et al. | Jul 2003 | B1 |
6595502 | Koch et al. | Jul 2003 | B2 |
6609740 | Evans | Aug 2003 | B2 |
6622450 | Nees et al. | Sep 2003 | B2 |
6623054 | Palmquist | Sep 2003 | B1 |
6623055 | Knaup et al. | Sep 2003 | B2 |
6634702 | Pleschke et al. | Oct 2003 | B1 |
6637786 | Yamagiwa | Oct 2003 | B2 |
6637788 | Zollner et al. | Oct 2003 | B1 |
6637790 | Bio | Oct 2003 | B2 |
6643931 | Nees | Nov 2003 | B2 |
6644699 | Anderson et al. | Nov 2003 | B2 |
6644701 | Weissenborn et al. | Nov 2003 | B2 |
6648383 | Vismara et al. | Nov 2003 | B2 |
6648384 | Nees et al. | Nov 2003 | B2 |
6648385 | Frank | Nov 2003 | B2 |
6655509 | Dohrmann et al. | Dec 2003 | B2 |
6655721 | Hagen | Dec 2003 | B2 |
6659518 | Ponsonnaille et al. | Dec 2003 | B2 |
6659520 | Bastien et al. | Dec 2003 | B2 |
6659535 | Dohrmann | Dec 2003 | B2 |
6663150 | Evans | Dec 2003 | B1 |
6663151 | Mansoor et al. | Dec 2003 | B2 |
6669179 | Dohrmann | Dec 2003 | B2 |
6669251 | Trappe | Dec 2003 | B2 |
6672635 | Weisenborn et al. | Jan 2004 | B2 |
6679967 | Carroll et al. | Jan 2004 | B1 |
6682804 | Orndorff | Jan 2004 | B2 |
6684505 | Sundgren et al. | Feb 2004 | B2 |
6685243 | Evans | Feb 2004 | B1 |
6695366 | Cherry | Feb 2004 | B2 |
6695368 | Weykamp | Feb 2004 | B1 |
6698808 | Burkhardt et al. | Mar 2004 | B2 |
6698809 | Stol et al. | Mar 2004 | B2 |
6698820 | Nakata | Mar 2004 | B2 |
6702345 | Yoshida | Mar 2004 | B1 |
6702346 | Wikstrom | Mar 2004 | B2 |
6705653 | Gotanda et al. | Mar 2004 | B2 |
6709036 | Evans | Mar 2004 | B1 |
6709044 | Frank | Mar 2004 | B2 |
6712410 | Kudelko et al. | Mar 2004 | B2 |
6712411 | Gotanda et al. | Mar 2004 | B2 |
6722037 | Nees et al. | Apr 2004 | B2 |
6726258 | Sundgren et al. | Apr 2004 | B1 |
6726261 | Goto et al. | Apr 2004 | B2 |
6726262 | Marijnissen et al. | Apr 2004 | B2 |
6730386 | Stahlke et al. | May 2004 | B1 |
6733055 | Iino | May 2004 | B2 |
6736434 | Anderson et al. | May 2004 | B2 |
6736449 | Takahashi et al. | May 2004 | B2 |
6742234 | Rosasco et al. | Jun 2004 | B2 |
6746061 | Evans | Jun 2004 | B1 |
6755452 | Cate et al. | Jun 2004 | B2 |
6755459 | Thelen et al. | Jun 2004 | B2 |
6758506 | Malteste et al. | Jul 2004 | B2 |
6758507 | Tarahomi et al. | Jul 2004 | B2 |
6764099 | Akiyama et al. | Jul 2004 | B2 |
6764117 | Jonsson | Jul 2004 | B2 |
6764118 | DePottey et al. | Jul 2004 | B2 |
6764119 | Bladow et al. | Jul 2004 | B2 |
6767039 | Bird | Jul 2004 | B2 |
6767502 | Porter | Jul 2004 | B2 |
6773044 | Schambre et al. | Aug 2004 | B2 |
6779821 | Hallergren | Aug 2004 | B2 |
6786520 | Burkhardt et al. | Sep 2004 | B2 |
6793256 | Carley et al. | Sep 2004 | B2 |
6808215 | Sakuma et al. | Oct 2004 | B2 |
6814379 | Evans | Nov 2004 | B2 |
6814380 | Yoshida et al. | Nov 2004 | B2 |
6814381 | Frank | Nov 2004 | B1 |
6830286 | Bechtold et al. | Dec 2004 | B2 |
6832795 | Bastien et al. | Dec 2004 | B2 |
6836717 | Bucchele et al. | Dec 2004 | B2 |
6846026 | Detwiler et al. | Jan 2005 | B2 |
6848730 | Evans | Feb 2005 | B2 |
6851731 | Janssen | Feb 2005 | B2 |
6857690 | Vismara et al. | Feb 2005 | B2 |
6863322 | Hunter et al. | Mar 2005 | B2 |
6866313 | Mooijman et al. | Mar 2005 | B2 |
6871889 | Ericsson | Mar 2005 | B2 |
6874831 | Pouget et al. | Apr 2005 | B1 |
6874832 | Evans et al. | Apr 2005 | B2 |
6877785 | Evans et al. | Apr 2005 | B2 |
6866333 | Saitou | May 2005 | B2 |
6886872 | Matsumoto et al. | May 2005 | B2 |
6886873 | Weykamp et al. | May 2005 | B2 |
6890011 | Arvelo et al. | May 2005 | B2 |
6893062 | Amano et al. | May 2005 | B2 |
6893063 | Harrison et al. | May 2005 | B2 |
6893064 | Satou | May 2005 | B2 |
6899195 | Miyasaka | May 2005 | B2 |
6902215 | Condeelis | Jun 2005 | B1 |
6908127 | Evans | Jun 2005 | B2 |
6908129 | Shimotsu | Jun 2005 | B2 |
6908130 | Reutlinger et al. | Jun 2005 | B2 |
6918621 | Seksaria | Jul 2005 | B2 |
6923483 | Curry et al. | Aug 2005 | B2 |
6923494 | Shuler et al. | Aug 2005 | B2 |
6926321 | Zipfel | Aug 2005 | B2 |
6926323 | Evans | Aug 2005 | B2 |
6926325 | Frank | Aug 2005 | B2 |
6929296 | Yang | Aug 2005 | B2 |
6932201 | Akiyama et al. | Aug 2005 | B2 |
6932398 | Frank | Aug 2005 | B2 |
6938936 | Mooijman et al. | Sep 2005 | B2 |
6938948 | Cornell et al. | Sep 2005 | B1 |
6942262 | Glasgow et al. | Sep 2005 | B2 |
6945576 | Arentzen | Sep 2005 | B1 |
6949209 | Zander et al. | Sep 2005 | B2 |
6957846 | Saeki | Oct 2005 | B2 |
6959950 | Bladow et al. | Nov 2005 | B2 |
6962245 | Ray et al. | Nov 2005 | B2 |
6962379 | Minami et al. | Nov 2005 | B2 |
6971690 | Evans et al. | Dec 2005 | B2 |
6971691 | Heatherington et al. | Dec 2005 | B1 |
6971692 | Gioia et al. | Dec 2005 | B2 |
6971694 | Sakuma et al. | Dec 2005 | B2 |
6974166 | Ledford et al. | Dec 2005 | B2 |
6976718 | Nakanishi | Dec 2005 | B2 |
6983832 | Namuduri et al. | Jan 2006 | B2 |
6983964 | Murata et al. | Jan 2006 | B2 |
6986536 | Heatherington et al. | Jan 2006 | B1 |
6988753 | Omura et al. | Jan 2006 | B1 |
6988754 | Watts | Jan 2006 | B1 |
6994384 | Shuler et al. | Feb 2006 | B2 |
6997490 | Evans et al. | Feb 2006 | B2 |
7000975 | Haneda et al. | Feb 2006 | B2 |
7004519 | Roussel et al. | Feb 2006 | B2 |
7011350 | Stol et al. | Mar 2006 | B2 |
7011360 | Lanard et al. | Mar 2006 | B2 |
7017960 | Reierson et al. | Mar 2006 | B2 |
7021686 | Glasgow et al. | Apr 2006 | B2 |
7025396 | Omura et al. | Apr 2006 | B2 |
7029044 | Browne et al. | Apr 2006 | B2 |
7036844 | Hammer et al. | May 2006 | B2 |
7044514 | Mustafa et al. | May 2006 | B2 |
7044515 | Mooijman et al. | May 2006 | B2 |
7052056 | Weissenborn et al. | May 2006 | B2 |
7059590 | Bronstad | Jun 2006 | B2 |
7059642 | Ohno et al. | Jun 2006 | B2 |
7066509 | Kolaritsch et al. | Jun 2006 | B2 |
7070217 | Longo | Jul 2006 | B2 |
7073831 | Evans | Jul 2006 | B2 |
7077438 | Albers et al. | Jul 2006 | B2 |
7077439 | White et al. | Jul 2006 | B2 |
7077441 | Lee | Jul 2006 | B2 |
7077442 | Arns | Jul 2006 | B2 |
7086690 | Shuler et al. | Aug 2006 | B2 |
7093866 | Toneatti et al. | Aug 2006 | B2 |
7097221 | Andrasic et al. | Aug 2006 | B2 |
7097234 | Schonebeck | Aug 2006 | B2 |
7100952 | Reierson et al. | Sep 2006 | B2 |
7108092 | Suwa et al. | Sep 2006 | B2 |
7108303 | Bladow et al. | Sep 2006 | B2 |
7131674 | Evans et al. | Nov 2006 | B2 |
7134700 | Evans | Nov 2006 | B2 |
7143856 | Takahashi et al. | Dec 2006 | B2 |
7144054 | Evans | Dec 2006 | B2 |
7144055 | Kimura et al. | Dec 2006 | B2 |
7147258 | Evans et al. | Dec 2006 | B2 |
7156433 | Evans | Jan 2007 | B2 |
7159911 | Nguyen et al. | Jan 2007 | B2 |
7160621 | Chaudhari et al. | Jan 2007 | B2 |
7163241 | Liu et al. | Jan 2007 | B2 |
7163242 | Shuler et al. | Jan 2007 | B2 |
7163243 | Evans | Jan 2007 | B2 |
7165794 | Banry et al. | Jan 2007 | B2 |
7172227 | Weissenborn et al. | Feb 2007 | B2 |
7188876 | Jaarda et al. | Mar 2007 | B2 |
7188890 | Baccouche et al. | Mar 2007 | B1 |
7189040 | Sharp et al. | Mar 2007 | B2 |
7192068 | Kim | Mar 2007 | B1 |
7198309 | Reynolds | Apr 2007 | B2 |
7201412 | Kashiwagi et al. | Apr 2007 | B2 |
7201413 | Hillekes et al. | Apr 2007 | B2 |
7201414 | Iketo et al. | Apr 2007 | B2 |
7204531 | Kim | Apr 2007 | B2 |
7210717 | Baccouche et al. | May 2007 | B1 |
7210719 | Honda et al. | May 2007 | B2 |
7213436 | Sturrus et al. | May 2007 | B2 |
7213867 | Haneda et al. | May 2007 | B2 |
7222896 | Evans | May 2007 | B2 |
7222897 | Evans et al. | May 2007 | B2 |
7226097 | Adachi et al. | Jun 2007 | B2 |
7228723 | Evans et al. | Jun 2007 | B2 |
7234741 | Reynolds et al. | Jun 2007 | B1 |
7240932 | Guinehut | Jul 2007 | B2 |
7240933 | Glasgow et al. | Jul 2007 | B2 |
7255378 | Baccouche et al. | Aug 2007 | B1 |
D549993 | Guiles et al. | Sep 2007 | S |
7273247 | Grueneklee et al. | Sep 2007 | B2 |
7275781 | Wakefield | Oct 2007 | B2 |
7278667 | Mohapatra et al. | Oct 2007 | B2 |
7290783 | Dornbos | Nov 2007 | B2 |
7290810 | Stenbach et al. | Nov 2007 | B2 |
7290811 | Arns | Nov 2007 | B1 |
7290812 | Smith et al. | Nov 2007 | B2 |
7296833 | Mohapatra et al. | Nov 2007 | B2 |
7300080 | Rebuffet et al. | Nov 2007 | B2 |
7316432 | Muskos | Jan 2008 | B2 |
7325861 | Zacheiss et al. | Feb 2008 | B2 |
7337642 | Lyons et al. | Mar 2008 | B2 |
7338038 | Maurer et al. | Mar 2008 | B2 |
7340833 | Weissenborn et al. | Mar 2008 | B2 |
7341299 | Baccouche et al. | Mar 2008 | B1 |
7344008 | Jonsson et al. | Mar 2008 | B1 |
7347465 | Jayasuriya et al. | Mar 2008 | B2 |
7357430 | Kariander | Apr 2008 | B2 |
7357432 | Roll et al. | Apr 2008 | B2 |
7360811 | Roll et al. | Apr 2008 | B2 |
7370893 | Tamada et al. | May 2008 | B2 |
7628444 | Cormier et al. | Dec 2009 | B2 |
20020060462 | Glance | May 2002 | A1 |
20020060463 | Gotanda et al. | May 2002 | A1 |
20020101086 | Koch et al. | Aug 2002 | A1 |
20030020219 | Konenberg | Jan 2003 | A1 |
20030141729 | Burkhardt et al. | Jul 2003 | A1 |
20030155782 | Iino | Aug 2003 | A1 |
20030164618 | Gentle | Sep 2003 | A1 |
20040003974 | Ashmead | Jan 2004 | A1 |
20040051321 | Hanai et al. | Mar 2004 | A1 |
20040124645 | Koch | Jul 2004 | A1 |
20040160071 | Suganuma et al. | Aug 2004 | A1 |
20040174025 | Converse et al. | Sep 2004 | A1 |
20040251716 | Choi et al. | Dec 2004 | A1 |
20050040660 | Evans | Feb 2005 | A1 |
20050077739 | Vismara et al. | Apr 2005 | A1 |
20050082853 | Wallman | Apr 2005 | A1 |
20050087999 | Campbell et al. | Apr 2005 | A1 |
20050104392 | Liebhard et al. | May 2005 | A1 |
20050196233 | Vijay et al. | Sep 2005 | A1 |
20050213478 | Glasgow et al. | Sep 2005 | A1 |
20050225102 | Wallman et al. | Oct 2005 | A1 |
20050269823 | DeVoursney et al. | Dec 2005 | A1 |
20050269824 | Steeg et al. | Dec 2005 | A1 |
20060001277 | Melis et al. | Jan 2006 | A1 |
20060001278 | Evans et al. | Jan 2006 | A1 |
20060028032 | Henseleit | Feb 2006 | A1 |
20060028035 | Bechtold et al. | Feb 2006 | A1 |
20060028038 | Glasgow et al. | Feb 2006 | A1 |
20060061111 | Ignafol | Mar 2006 | A1 |
20060066116 | Straughn | Mar 2006 | A1 |
20060071486 | Lamparter | Apr 2006 | A1 |
20060082169 | Kuhne | Apr 2006 | A1 |
20060125254 | Arns et al. | Jun 2006 | A1 |
20060131902 | Shimoda | Jun 2006 | A1 |
20060145490 | Yamaguchi et al. | Jul 2006 | A1 |
20060169906 | Bhatt | Aug 2006 | A1 |
20060181090 | Boivin et al. | Aug 2006 | A1 |
20060186569 | Olive et al. | Aug 2006 | A1 |
20060186702 | Kisanuki et al. | Aug 2006 | A1 |
20060196134 | Livernois | Sep 2006 | A1 |
20060226665 | Kwok | Oct 2006 | A1 |
20060237976 | Glasgow et al. | Oct 2006 | A1 |
20060244274 | Frank et al. | Nov 2006 | A1 |
20060255602 | Evans | Nov 2006 | A1 |
20060255604 | Condeelis | Nov 2006 | A1 |
20060261613 | Byers et al. | Nov 2006 | A1 |
20070007780 | Lagiewka et al. | Jan 2007 | A1 |
20070024069 | Takagi et al. | Feb 2007 | A1 |
20070029824 | Hodoya et al. | Feb 2007 | A1 |
20070040398 | Lutke-Bexten et al. | Feb 2007 | A1 |
20070046042 | Campbell et al. | Mar 2007 | A1 |
20070046043 | Ito | Mar 2007 | A1 |
20070046044 | Tanabe | Mar 2007 | A1 |
20070056819 | Kano et al. | Mar 2007 | A1 |
20070074556 | Heatherington | Apr 2007 | A1 |
20070095001 | Heatherington | May 2007 | A1 |
20070108778 | Evans et al. | May 2007 | A1 |
20070114772 | Evans | May 2007 | A1 |
20070132251 | Lee | Jun 2007 | A1 |
20070138815 | Fukukawa et al. | Jun 2007 | A1 |
20070145755 | Shioya et al. | Jun 2007 | A1 |
20070176440 | Henseleit | Aug 2007 | A1 |
20070176442 | Mori et al. | Aug 2007 | A1 |
20070180880 | Lyons et al. | Aug 2007 | A1 |
20070182172 | Hasegawa | Aug 2007 | A1 |
20070187958 | Bouchez et al. | Aug 2007 | A1 |
20070187959 | Adachi et al. | Aug 2007 | A1 |
20070200374 | Troton et al. | Aug 2007 | A1 |
20070200375 | Ito et al. | Aug 2007 | A1 |
20070200376 | Jaarda et al. | Aug 2007 | A1 |
20070216198 | Nakamae et al. | Sep 2007 | A1 |
20070222237 | Kemp et al. | Sep 2007 | A1 |
20070228706 | Nagae et al. | Oct 2007 | A1 |
20070228746 | Cormier et al. | Oct 2007 | A1 |
20070229747 | Chung | Oct 2007 | A1 |
20070246956 | Nagai et al. | Oct 2007 | A1 |
20070257497 | Heatherington et al. | Nov 2007 | A1 |
20070267877 | Arns | Nov 2007 | A1 |
20070278803 | Jaarda et al. | Dec 2007 | A1 |
20070284895 | Toneatti et al. | Dec 2007 | A1 |
20070284896 | Wakabayashi et al. | Dec 2007 | A1 |
20080001416 | Chaudhari et al. | Jan 2008 | A1 |
20080012364 | Boggess | Jan 2008 | A1 |
20080012365 | Harvey | Jan 2008 | A1 |
20080012386 | Kano et al. | Jan 2008 | A1 |
20080023972 | Ohno et al. | Jan 2008 | A1 |
20080029932 | Zietlow et al. | Feb 2008 | A1 |
20080030031 | Nilsson | Feb 2008 | A1 |
20080036225 | Ji et al. | Feb 2008 | A1 |
20080041455 | Hsiao | Feb 2008 | A1 |
20080042454 | Garnweidner | Feb 2008 | A1 |
20080042455 | Nees | Feb 2008 | A1 |
20080048462 | Zabik | Feb 2008 | A1 |
20080054654 | Dahyabhai | Mar 2008 | A1 |
20080054655 | Kizaki et al. | Mar 2008 | A1 |
20080054656 | Guiles et al. | Mar 2008 | A1 |
20080061567 | Mae et al. | Mar 2008 | A1 |
20080067838 | Nakamae et al. | Mar 2008 | A1 |
20080067905 | Guiles | Mar 2008 | A1 |
20080073926 | Azzouz et al. | Mar 2008 | A1 |
20080088141 | Adachi et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
4119640 | Feb 1995 | DE |
1103428 | May 2001 | EP |
1550100 | Aug 1979 | GB |
2033535 | May 1980 | GB |
9240393 | Sep 1997 | JP |
WO9703865 | Feb 1997 | WO |
WO0100478 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090250953 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61043331 | Apr 2008 | US |