1. Field of the Invention
The present invention is generally in the field of protective wall structures for buildings, and, more particularly, is in the field of blast resistant walls.
2. Description of the Related Art
Current existing blast resistant wall assemblies attempt to resist the extreme forces generated by explosives with massively heavy and very costly components. The wall components endeavor to remain in place when impacted by a blast wave. If the wall components fail, the components are propelled into the interior space of the structure to damage equipment and harm people that the wall components are intended to protect.
A blast wall assembly and the components described herein form an integrated system that effectively absorbs blast energy. Unlike conventional systems, the components of the blast wall assembly function in a manner similar to highway “crumple zones” by absorbing the energy generated by the sudden impact of a blast wave on the exterior surface of the blast wall. The components of the blast wall assembly flex, move, compress, crush and bend before the full magnitude of the blast load is transmitted via the components to the fasteners used to secure the assembly to the structure. By absorbing the sudden impact of energy, the system greatly reduces the likelihood of component failure and fastener failure. Although the blast wall assembly may incur repairable damage, the blast wall assembly absorbs a substantial portion of the blast energy rather than imploding into the interior space of the structure. Thus, the blast wall assembly greatly enhances the safety of the building structure and the occupants of the building structure.
When a blast pressure wave first impacts an exterior blast board, the exterior blast board resists penetration by objects, such as rocks and shrapnel, which may be hurled against the wall by the blast force. A portion of the energy of the blast wave is absorbed by flexural bending of the exterior blast board. The load applied to the exterior blast board by the blast pressure wave is transferred to vertical wall studs. The exterior blast board also provides lateral bracing for the vertical studs, which helps prevent torsional failure of the light gauge vertical studs. The exterior blast board also serves as a substrate for a variety of exterior finish systems that may be applied to the cementitious wall board forming the outer face of the exterior blast board. Thus, from the outside, the blast wall assembly may be configured to have the cosmetic appearance of a conventional wall.
The light gauge (e.g., 16 gauge) vertical wall studs are flexible. Thus, when the load from the blast pressure wave is applied to the wall studs via the outer blast pane, the wall studs bend and deform and eventually stretch. The magnitude of deformation of the wall studs may exceed the yield strength of the wall studs and cause a portion of the deformation to be permanent. The bending, deformation and stretching of the studs absorbs additional blast energy.
As each vertical wall stud deforms inward away from the blast force, the stud has a tendency to pull out of an upper mounting channel and a lower mounting channel that constrain the upper end and the lower end, respectively, of each stud. An angle clip at the top of each vertical stud and an angle clip at the bottom of each stud resist this pull-out force while simultaneously absorbing blast energy. As the vertical stud deflects inwardly, the chord distance between the top end and the bottom end of the stud shortens. The angle clips have horizontal legs that deform by bending in response to the tensile force that attempts to straighten the angle clips. The deformations of the angle clips absorb additional blast energy.
When the bottom angle clip deforms, the tendency of the bottom angle clip to straighten is resisted by a bottom energy absorbing pad. The bottom energy absorbing pad is compressed vertically as the horizontal leg attempts to pull away from the lower mounting channel. The compression of the bottom energy absorbing pad absorbs additional blast energy. A metal plate laminated to the top of the bottom energy absorbing pad helps prevent the pad from pulling over an anchor bolt at the bottom of the wall and prevents the pad from being crushed by a hexagonal nut that secures the pad to the bottom attachment anchor bolt.
The bottom energy absorbing pads at the bottoms of the wall studs also absorb energy while allowing the entire base of the wall to move inward away from the blast. As described herein, the bottom mounting channel (or track) and the bottom clips include respective slots (or oversized holes) that permit the entire lower portion of the blast wall assembly to move inward away from the blast force until reaching the end of the slot or the boundary of the oversized hole. The bottom energy absorbing pads prevent the wall from moving too quickly and applying a shock load to the lower anchor bolts. When the bottom energy absorbing pads compress under load, the pads create a more gradual (cushioned) increase in the load to the wall anchors. Thus, the bottom energy absorbing pads help preserve the integrity of the critical attachment of the wall to the building structure.
An upper mounting system and an upper energy absorbing assembly at the top of the blast wall assembly absorb blast energy and resist destructive movement caused by the blast energy. The upper mounting system and the upper energy absorbing assembly also permit the floor above the blast wall assembly to deflect vertically in response to changing live loads to the floor above the wall, the floor below the wall or both. The floating configuration of the upper mounting allows deflections to occur without transferring axial loads (e.g., bearing loads) to the wall. The blast wall assembly disclosed herein can be used as either a non-bearing partition wall or as a curtain wall.
When a top angle clip deforms, the tendency of the clip to straighten is reduced by the bending of a horizontal flange stud that spans the distance between adjacent upper mounting systems. The tensile force caused by a blast causes the angle clip to bend (e.g., straighten) and induces weak axis bending in the horizontal flange stud. The horizontal flange stud also provides an engagement between the vertical wall studs and an upper blast track. In particular, the outer surfaces of the vertical walls of the horizontal flange stud ride may float up or down within the cavity formed by the upper blast track. The floating engagement between the horizontal stud and the upper blast track is configured to reduce the effect of the blast forces. As described herein, the top angle clip and the horizontal flange stud are nested so that the side walls of the horizontal flange stud are unobstructed within the upper blast track to thereby accommodate vertical movement between the floor above and the wall below. Additional blast energy is absorbed by bending of the horizontal stud flange and bending of the flange of the upper blast track on the side of the wall opposite the blast. Both components bend in a direction normal to the plane of the wall.
Lateral movement of the blast wall assembly in a direction normal to the wall plane is primarily resisted by bending of a down-turned flange of the upper blast track. As each vertical stud bends, the chord distance between the upper and lower ends of the vertical stud shortens as discussed above. A spring or other elastic member in the upper energy absorption assembly compresses to absorb blast energy. Once the spring in the energy absorbing assembly is fully compressed, a threaded steel rod in the assembly transmits tensile loads to the upper blast track through the anchor wedge washer. As the wall deforms inward, the threaded rod pivots to transfer tensile load and shear load to the upper blast track, which causes the upper blast track to deform in the vicinity of the wedge washer. The deformation of the upper blast track absorbs more blast energy.
Once the blast load is transferred to the upper blast track by bending the outer wall (flange of the upper blast track) and by the upper energy absorption assembly, the transferred load is transferred to the building structure by way of an upper anchor bolt embedded in a header. The force transferred to the upper anchor bolt is cushioned by the deformation of a trapezoidal channel in the upper blast track and by the vertical flange and weak axis bending of a U-shaped blast track anchor channel. The shape of the blast track in combination with the blast track anchor channel results in a more gradual transfer of forces to the top connection, which helps preserve the integrity of the top connection and of the blast wall assembly.
The blast wall assembly further comprises an interior blast board. Each panel of the interior blast board comprises a layer of metal and an interior finish wall board to form a generally rectangular sheet. The interior blast board is fabricated with a metal flange extending along one of the long edges. The long edges are oriented horizontally in the preferred embodiments. The metal flange allows the interior sheathing to be spliced to the adjacent sheathing (the inner blast panel immediately above). The splice effectively connects the upper and lower sheathing boards to form a continuous protective curtain reaching from the top to the bottom of the wall. If one or more sheets become dislodged, the dislodged sheets remain in place on the wall and pose no hazard to the building occupants. Preferably, the sheets are positioned on the wall with the locations of the splices staggered so that the splices do not coincide with the utility punch outs in the vertical studs of the wall. Thus, the interior blast board reinforces the wall and helps prevent stud failure at the utility punch-outs. Furthermore, the metal lined interior blast boards provide torsional restraint for the vertical studs to effectively prevent torsional failure of the vertical studs.
The foregoing aspects and other aspects of this disclosure are described in detail below in connection with the accompanying drawing figures in which:
As further shown in
As further shown in
Unlike an upper channel in a conventional metal-framed wall structure, the upper mounting channel 140 in
As further described in more detail below, the horizontal stud 142 fits within a downwardly facing opening in a generally M-shaped upper blast track 144, which is shown in more detail in
In the illustrated embodiment, the upper blast track 144 has an inside width of approximately 4 inches to accommodate the outside width of the upper horizontal stud 142. The inside width is increased to accommodate a wider horizontal stud if the thickness of the blast wall assembly 110 is increased. The generally trapezoidal depression 146 maintains the same size and shape even if the overall width of the upper blast track is increased for a thicker blast wall assembly. In particular, the depression causes the base of the upper blast track to protrude approximately 0.676 into the inner cavity of the upper blast track. The protrusion has a width within the cavity of approximately of approximately 2.434 inches.
As further shown in
In the illustrated embodiment, each of the inner blast panels 130 and the outer blast panels 132 is generally rectangular and has a length greater than the width. The blast panels are mounted on the respective insides and outsides of the vertical studs with the longer dimension mounted horizontally as shown to reduce the number of vertical seams in the finished panels. Thus, each of the inner wall and the outer wall has at least two courses (rows) of panels. For example, the blast wall assembly 110 illustrated in
As shown in more detail in
In the illustrated embodiment, the interior wall board 162 has a conventional rectangular configuration with a width of approximately 4 feet and has a length of approximately 8 feet; however, the interior wall board may have other dimensions. For example, in other embodiments, the interior wall board may have a length of approximately 12 feet to reduce the number of seams between inner blast panels. In particular embodiments, the wall board comprises a highly mold-resistant interior gypsum board, such as, for example, ⅝ inch DensArmor Plus® paperless interior drywall, which is commercially available from Georgia-Pacific Building Products of Atlanta, Ga. Other suitable interior wall board materials may be advantageously used.
In the preferred embodiment shown in
As shown in
In the illustrated embodiment, the exterior wall board 172 has a conventional rectangular configuration with a width of approximately 4 feet and has a length of approximately 8 feet; however, the exterior wall board may have other dimensions. For example, in other embodiments, the exterior wall board may have a length of approximately 12 feet to reduce the number of seams between outer blast panels. In particular embodiments, the exterior wall board comprises a highly mold-resistant exterior cement board, such as, for example, ⅝ inch Durock® brand cement board, which is commercially available from USG Corporation of Chicago, Ill. Other suitable exterior wall board materials may be advantageously used.
In the illustrated embodiment, the metal sheet 170 of the outer blast panel 132 advantageously has dimensions generally corresponding to the dimensions of the exterior wall board 172; however, the metal sheet may be wider to provide a tab (not shown) similar to the tab 164 described above for the inner blast panel 130.
As shown in
As shown in
As shown in
The upper mounting system 200 further includes a standard washer 208 and a hex nut 210. The hex nut engages the threaded end of the upper anchor bolt 120 and secures the blast track anchor channel 202 to the upper anchor bolt. The legs of the blast track anchor channel are substantially perpendicular to the base of the blast track anchor channel. The blast track anchor channel resists compression when the nut is tightened onto the upper anchor bolt. In the absence of the blast track anchor channel, the trapezoidal shape of the upper blast track 144 would tend to flatten out as the nut is tightened. Thus, the blast track anchor channel reinforces the upper blast track and also prevents the upper blast track from deforming.
The upper energy absorption assembly 220 comprises a threaded rod 222 having a length of approximately 8 inches. The threaded rod may be threaded for the entire length, or, as illustrated in
As shown in
As further illustrated in
When the upper energy absorption assembly 220 is positioned on the upper blast track 144, the bearing washer 234 is mounted below the base of the upper mounting track 140. The bearing washer applies pressure to the upper mounting track. The pressure is provided by a compression spring 238 that is positioned around the threaded rod between the bearing washer and a spring cap washer 240. The spring cap washer has a central clearance hole 242 that accommodates the lower end of the threaded rod 222. The spring cap washer comprises a 2-inch diameter steel plate having a thickness of approximately 1/16 inch. The spring cap washer is secured to the lower end of the threaded rod by a standard washer 244 and a hexagonal nut 246.
In the illustrated embodiment, the compression spring 238 advantageously comprises a ⅜ inch diameter steel wire formed as a helical spring having a diameter to the center of the wire of approximately 1⅝ inches and having approximately 7 turns. The hexagonal nut 246 is threaded onto the threaded rod 222 to adjust the length of the spring between the bearing washer 244 and the spring cap washer 240. For example, in the illustrated embodiment, the initial length is adjusted to approximately 4 inches. The hexagonal nut may be loosened to increase the length and thereby reduce the force provided by the compression spring or tightened to decrease the length and thereby increase the force provided by the compression spring. The compression spring does not determine the static position of the upper end of the vertical stud 134. As described in detail below, the compression spring and the other elements of the upper energy absorption assembly 220 absorb blast energy and reduce the likelihood of a catastrophic failure of the blast wall assembly 110.
In alternative embodiments (not shown), the compression spring 236 may be replaced by a suitable thickness of an elastic rubber flange to provide the compression force for absorbing blast energy.
In conventional wall structures, the upper end of each vertical stud is secured to the upper mounting track via screws through the side walls of the mounting track that engage the side walls of the vertical stud. As shown in
As shown in
As shown in
As shown in
The lower mounting channel 150 and the lower attachment blast clip 270 are secured to the lower anchor bolt by placing a lower blast absorption pad 300 on the lower anchor bolt above the lower leg 274 of the lower attachment blast clip as shown in
The elastomer block 302 has a bore 304 that is centrally located through the rectangular upper surface and that extends vertically through the block. In the illustrated embodiment, the vertical bore has a diameter of approximately 9/16 inches to accommodate the diameter of the lower anchor bolt 122.
The elastomer block 302 further includes a plurality of horizontal bores 306 that extend through the block orthogonal to the vertical bore 304. For example, in the illustrated embodiment, the block includes four horizontal bores with two bores located on either side of the vertical bore. The horizontal bores advantageously have diameters of approximately ½ inch. The absence of the EPDM material in the horizontal bores reduces the force required to compress the elastomer bock.
As further shown in
As shown in the assembled view of the lower blast absorption pad 300 in
As shown in
The blast wall assembly 110 and the components described above form an integrated system that effectively absorbs blast energy. Unlike conventional systems, the components of the blast wall assembly function in a manner similar to highway “crumple zones” by absorbing the energy generated by the sudden impact of a blast wave on the exterior surface of the blast wall. The components of the blast wall assembly flex, move, compress, crush and bend before the full magnitude of the blast load is transmitted via the components to the fasteners used to secure the assembly to the structure. By absorbing the sudden impact of energy, the system greatly reduces the likelihood of component failure and fastener failure. Although the blast wall assembly may incur repairable damage, the blast wall assembly absorbs a substantial portion of the blast energy rather than imploding into the interior space of the structure. Thus, the blast wall assembly greatly enhances the safety of the building structure and the occupants of the building structure.
When a blast pressure wave first impacts the exterior blast board, the exterior blast board (the outer blast panel 132) resists penetration by objects, such as rocks and shrapnel, which may be hurled against the wall by the blast force. A portion of the energy of the blast wave is absorbed by flexural bending of the exterior blast board. The load applied to the exterior blast board by the blast pressure wave is transferred to the vertical wall studs 134. The exterior blast board also provides lateral bracing for the vertical studs, which helps prevent torsional failure of the light gauge vertical studs. The exterior blast board also serves as a substrate for a variety of exterior finish systems that may be applied to the cementitious wall board forming the outer face of the exterior blast board. Thus, from the outside, the blast wall assembly 110 may be configured to have the cosmetic appearance of a conventional wall.
The light gauge (e.g., 16 gauge) vertical wall studs 134 are flexible. Thus, when the load from the blast pressure wave is applied to the wall studs via the outer blast panel 132, the wall studs bend and deform and eventually stretch. The magnitude of deformation of the wall studs may exceed the yield strength of the wall studs and cause a portion of the deformation to be permanent. The bending, deformation and stretching of the studs absorbs additional blast energy.
As each vertical wall stud 134 deforms inward away from the blast force, the stud has a tendency to pull out of the upper mounting channel 140 and the lower mounting channel 150 that constrain the upper end and the lower end, respectively, of each stud. The angle clip (the upper stud attachment blast clip 250) at the top of each vertical stud and the angle clip (the lower stud attachment blast clip 270) at the bottom of each stud resist this pull-out force. In particular, the top angle clip and the bottom angle clip for each stud resist disengagement of the stud from the upper mounting channel and the lower mounting channel while simultaneously absorbing blast energy. As the vertical stud deflects inwardly, the chord distance between the top end and the bottom end of the stud shortens. The horizontal legs 254, 274 of the angle clips deform by bending in response to the tensile force that attempts to straighten the angle clips. The deformations of the angle clips absorb additional blast energy.
When the bottom angle clip (the lower stud attachment blast clip 270) deforms, the tendency of the bottom angle clip to straighten is resisted by the bottom energy absorbing pad 300. The bottom energy absorbing pad is compressed vertically as the horizontal leg 274 attempts to pull away from the lower mounting channel 150. The compression of the bottom energy absorbing pad absorbs additional blast energy. The metal plate 310 laminated to the top of the bottom energy absorbing pad helps prevent the pad from pulling over an anchor bolt 120 at the bottom of the wall and prevents the pad from being crushed by the hexagonal nut 320 that secures the pad to the bottom attachment anchor bolt.
The bottom energy absorbing pads 300 at the bottoms of the wall studs also absorb energy while allowing the entire base of the wall to move inward away from the blast. As described above, the bottom mounting channel (or track) 150 and the bottom clips (the lower stud attachment blast clip 270) include respective slots (or oversized holes) 290, 280 that permit the entire lower portion of the blast wall assembly 110 to move inward away from the blast force until reaching the end of the slot or the boundary of the oversized hole. The bottom energy absorbing pads prevent the wall from moving too quickly and applying a shock load to the lower anchor bolts 120. When the bottom energy absorbing pads compress under load, the pads create a more gradual (cushioned) increase in the load to the wall anchors. Thus, the bottom energy absorbing pads help preserve the integrity of the critical attachment of the wall to the building structure.
The upper mounting system 200 and the upper energy absorbing assembly 220 at the top of the blast wall assembly 110 absorb blast energy and resist destructive movement caused by the blast energy. The upper mounting system and the upper energy absorbing assembly also permit the floor above the blast wall assembly to deflect vertically in response to changing live loads to the floor above the wall, the floor below the wall or both. The floating configuration of the upper mounting allows deflections to occur without transferring axial loads (e.g., bearing loads) to the wall. The blast wall assembly disclosed herein can be used as either a non-bearing partition wall or as a curtain wall.
When a top angle clip (the lower stud attachment blast clip 250) deforms, the tendency of the clip to straighten is reduced by the bending of the horizontal flange stud 142 that spans the approximately 24-inch spacing between adjacent upper mounting systems 200. The tensile force caused by a blast causes the angle clip to bend (e.g., straighten) and induces weak axis bending in the horizontal flange stud. The horizontal flange stud also provides an engagement between the vertical wall studs and the upper blast track 144. In particular, the outer surfaces of the vertical walls of the horizontal flange stud ride may float up or down within the cavity formed by the upper blast track. The floating engagement between the horizontal stud and the upper blast track is configured to reduce the effect of the blast forces. As described above, the top angle clip and the horizontal flange stud are nested so that the side walls of the horizontal flange stud are unobstructed within the upper blast track to thereby accommodate vertical movement between the floor above and the wall below. Additional blast energy is absorbed by bending of the horizontal stud flange and bending of the flange of the upper blast track on the side of the wall opposite the blast. Both components bend in a direction normal to the plane of the wall.
Lateral movement of the blast wall assembly 110 in a direction normal to the wall plane is primarily resisted by bending of a down-turned flange of the upper blast track 144. As each vertical stud 134 bends, the chord distance between the upper and lower ends of the vertical stud shortens as discussed above. The spring 238 or other elastic member in the upper energy absorption assembly 220 compresses to absorb blast energy. Once the spring in the energy absorbing assembly is fully compressed, the threaded steel rod 222 in the assembly transmits tensile loads to the upper blast track through the anchor wedge washer 224 described above. As the wall deforms inward, the threaded rod pivots to transfer tensile load and shear load to the upper blast track, which causes the upper blast track to deform in the vicinity of the wedge washer. The deformation of the upper blast track absorbs more blast energy.
Once the blast load is transferred to the upper blast track 144 by bending the outer wall (the flange of the upper blast track) and by the upper energy absorption assembly 220, the transferred load is transferred to the building structure by way of the upper anchor bolt 120 embedded in the concrete header 112. The force transferred to the upper anchor bolt is cushioned by the deformation of the trapezoidal channel (the depressed portion 146) in the upper blast track and by the vertical flange and weak axis bending of the U-shaped blast track anchor channel 202. The shape of the blast track in combination with the blast track anchor channel results in a more gradual transfer of forces to the top connection, which helps preserve the integrity of the top connection and of the blast wall assembly 110.
The blast wall assembly further comprises an interior blast board (the inner blast panels 130). Each panel of the interior blast board comprises a layer of metal 160 and an interior finish wall board 162 to form a generally rectangular sheet. The interior blast board is fabricated with a metal flange 164 extending along one of the long edges. The long edges are oriented horizontally in the preferred embodiments. The metal flange allows the interior sheathing to be spliced to the adjacent sheathing (the inner blast panel immediately above). The splice effectively connects the upper and lower sheathing boards to form a continuous protective curtain reaching from the top to the bottom of the wall. If one or more sheets become dislodged, the dislodged sheets remain in place on the wall and pose no hazard to the building occupants. Preferably, the sheets are positioned on the wall with the locations of the splices staggered so that the splices do not coincide with the utility punch outs in the vertical studs of the wall. Thus, the interior blast board reinforces the wall and helps prevent stud failure at the utility punch-outs. Furthermore, the metal lined interior blast boards provide torsional restraint for the vertical studs 134 to effectively prevent torsional failure of the vertical studs.
One skilled in art will appreciate that the foregoing embodiments are illustrative of the present invention. The present invention can be advantageously incorporated into alternative embodiments while remaining within the spirit and scope of the present invention, as defined by the appended claims.
Number | Date | Country | |
---|---|---|---|
61015195 | Dec 2007 | US |