Claims
- 1. A circuit breaker cassette comprising:a housing with an inner surface; at least two fixed contacts within said housing; a movable contact assembly disposed within said housing, said movable contact assembly comprising at least two movable contacts on a contact arm, said contact arm being positionable in a closed position and a blown open position wherein said contact arm is closed when said at least two movable contacts are in contact with said at least two fixed contacts and said contact arm is blown open when said at least two movable contacts are repelled away from said at least two fixed contacts in response to a short circuit condition; said movable contact assembly further comprising at least one contact spring, said at least one contact spring having an orientation that exerts a closing bias torque on said contact arm relative to said at least two fixed contacts when said contact arm is closed, said closing bias torque not increasing from a closed position to a blown open position of said movable contact arm; and at least one kinetic energy-absorbing stop disposed proximate to said inner surface, wherein a surface of said contact arm, said inner surface, and a surface of said at least one kinetic energy-absorbing stop are generally parallel to each other when said contact arm is in said blown open position, wherein said at least one kinetic energy-absorbing stop comprising a material that absorbs and dissipates the kinetic energy resulting from magnetic repulsive forces forcing said at least two movable contacts and said at least two fixed contacts apart during a short circuit condition so that said contact arm does not rebound to the closed position.
- 2. The circuit breaker cassette of claim 1 wherein:said at least one kinetic energy-absorbing stop is formed from closed-cell polyurethane foam.
- 3. The circuit breaker cassette of claim 1 wherein:said movable contact assembly further comprises a rotor rotably mounted within said housing; said rotor and said contact arm pivot on a common axis.
- 4. The circuit breaker cassette of claim 1 wherein:said contact arm comprises a first distal end and a second distal end; said at least two movable contacts being disposed one on said first distal end and another on said second distal end; said at least one kinetic energy absorbing stop comprising two kinetic energy absorbing stops each being positioned to absorb kinetic energy of said first and second distal ends of said contact arm, respectively.
- 5. A circuit breaker comprising:a housing; a cassette disposed within said housing, said cassette includes an inner surface; at least two fixed contacts disposed within said cassette; a rotar movable contact assembly disposed within said cassette, said movable contact assembly comprising at least two movable contacts on a contact arm, said contact arm being positionable in a closed position and a blown open position, wherein said contact arm is closed when said at least two movable contacts are in contact with said at least two fixed contacts and said contact arm is blown open when said at least two movable contacts are repelled away from said at least two fixed contacts in response to a short circuit condition; said movable contact assembly further comprising at least one contact spring, said at least one contact spring having an orientation that exerts a closing bias torque on said contact arm relative to said at least two fixed contacts when said contact arm is closed, said closing bias torque not increasing from a closed position to a blown open position of said movable contact arm; and at least one kinetic energy-absorbing stop disposed proximate to said inner surface, wherein a surface of said contact arm, said inner surface, and a surface of said at least one kinetic energy-absorbing stop are generally parallel to each other when said contact arm is in said blown open position, wherein said at least one kinetic energy-absorbing stop absorbs and dissipates the kinetic energy resulting from magnetic repulsive forces forcing said at least two movable contacts and said at least two fixed contacts apart during a short circuit condition so that said contact arm does not rebound to the closed position.
- 6. The circuit breaker of claim 5 wherein:said at least one kinetic energy-absorbing stop is formed from closed-cell polyurethane foam.
- 7. The circuit breaker of claim 5 wherein:said movable contact assembly further comprises a rotor rotably mounted within said housing; said rotor and said contact arm pivot on a common axis.
- 8. The circuit breaker of claim 5 wherein:said contact arm comprises a first distal end and a second distal end; said at least one two movable contacts being disposed one on said first distal end and another on said second distal end.
- 9. The circuit breaker of claim 8 further comprising:said at least one kinetic energy-absorbing stop comprising two and said second kinetic energy-absorbing stops each being positioned to absorb a kinetic energy of said first and second distal ends of said contact arm, respectively.
- 10. A circuit breaker comprising:a housing; a cassette disposed within said housing, said cassette includes an inner surface; a first fixed contact disposed within said cassette; a second fixed contact disposed within said cassette; a movable contact assembly disposed within said cassette, said movable contact assembly comprising; at least two movable contacts on a contact arm, at least one contact springs that positions at least one spring support member and exerts a closing bias torque on said contact arm when said contact arms is closed, said closing bias torque acting through said spring support member not increasing from a closed position to a blown open position of said contact arm; wherein said contact arms is positionable in a closed position and a blown open position, wherein said contact arms is closed when said at least two movable contacts are in contact with said first and second fixed contacts and said contact arm is blown open when said at least two movable contacts are repelled away from said first and second fixed contacts in response to a short circuit condition; a first kinetic energy-absorbing stop disposed proximate to a first recess of said inner surface of said cassette, wherein a first surface of said contact arm, said first recess of said inner surface, and a surface of said first kinetic energy-absorbing stop are generally parallel to each other when said contact arm is in said blown open position; and a second kinetic energy-absorbing stop disposed proximate to a second recess of said inner surface of said cassette, wherein a second surface of said contact arm, said second recess of said inner surface, and a surface of said second kinetic energy-absorbing stop are generally parallel to each other when said contact arm is in said blown open position; wherein said first and second kinetic energy-absorbing stops absorb and dissipate the kinetic energies resulting from magnetic repulsive forces forcing said at least two movable contacts and said first and second fixed contacts apart during a short circuit condition so that said contact arms does not rebound to the closed position.
- 11. The circuit breaker of claim 10, wherein:said movable contact assembly further comprises a rotor rotably mounted within said housing; said contact arm has a common pivot relative to said rotor.
- 12. The circuit breaker cassette of claim 1 wherein:said at least one contact spring has a second orientation in a blown open position that exerts a second bias torque on said contact arm relative to said at least two fixed contacts biasing said contact arm in an open position.
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims benefit of earlier-filed U.S. Provisional Application No. 60/190,179, filed Mar. 17, 2000, which is fully incorporated herein by reference.
US Referenced Citations (172)
Foreign Referenced Citations (61)
Number |
Date |
Country |
819 008 |
Dec 1974 |
BE |
38 02 184 |
Aug 1989 |
BE |
12 27 978 |
Nov 1966 |
DE |
30 47 360 |
Jun 1982 |
DE |
38 43 277 |
Jun 1990 |
DE |
44 19 240 |
Jan 1995 |
DE |
0 061 092 |
Sep 1982 |
EP |
0 064 906 |
Nov 1982 |
EP |
0 066 486 |
Dec 1982 |
EP |
0 076 719 |
Apr 1983 |
EP |
0 117 094 |
Aug 1984 |
EP |
0 140 761 |
May 1985 |
EP |
0 174 904 |
Mar 1986 |
EP |
0 196 241 |
Oct 1986 |
EP |
0 224 396 |
Jun 1987 |
EP |
0 235 479 |
Sep 1987 |
EP |
0 239 460 |
Sep 1987 |
EP |
0 258 090 |
Mar 1988 |
EP |
0 264 313 |
Apr 1988 |
EP |
0 264 314 |
Apr 1988 |
EP |
0 283 189 |
Sep 1988 |
EP |
0 283 358 |
Sep 1988 |
EP |
0 291 374 |
Nov 1988 |
EP |
0 295 155 |
Dec 1988 |
EP |
0 295 158 |
Dec 1988 |
EP |
0 309 923 |
Apr 1989 |
EP |
0 313 106 |
Apr 1989 |
EP |
0 313 422 |
Apr 1989 |
EP |
0 314 540 |
May 1989 |
EP |
0 331 586 |
Sep 1989 |
EP |
0 337 900 |
Oct 1989 |
EP |
0 342 133 |
Nov 1989 |
EP |
0 367 690 |
May 1990 |
EP |
0 371 887 |
Jun 1990 |
EP |
0 375 568 |
Jun 1990 |
EP |
0 394 144 |
Oct 1990 |
EP |
0 394 922 |
Oct 1990 |
EP |
0 399 282 |
Nov 1990 |
EP |
0 407 310 |
Jan 1991 |
EP |
0 452 230 |
Oct 1991 |
EP |
0 555 158 |
Aug 1993 |
EP |
0 560 697 |
Sep 1993 |
EP |
0 567 416 |
Oct 1993 |
EP |
0 595 730 |
May 1994 |
EP |
0 619 591 |
Oct 1994 |
EP |
0 665 569 |
Aug 1995 |
EP |
0 700 140 |
Mar 1996 |
EP |
0 889 498 |
Jan 1999 |
EP |
2 410 353 |
Jun 1979 |
FR |
2 512 582 |
Mar 1983 |
FR |
2 553 943 |
Apr 1985 |
FR |
2 592 998 |
Jul 1987 |
FR |
2 682 531 |
Apr 1993 |
FR |
2 697 670 |
May 1994 |
FR |
2 699 324 |
Jun 1994 |
FR |
2 714 771 |
Jul 1995 |
FR |
2033159 |
May 1980 |
GB |
2 233 155 |
Jan 1991 |
GB |
9200598 |
Jan 1992 |
WO |
9205649 |
Apr 1992 |
WO |
9600901 |
Jan 1994 |
WO |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/190179 |
Mar 2000 |
US |