Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to latches and closing mechanisms, and more particularly to an improved magnetic coupling device such as can be used to slow down and quietly stop a door at a predetermined position relative to the doorframe.
Doors to rooms typically have a well known latching mechanism to keep the door closed. To open this latching mechanism, it is necessary to turn a door handle. However, often doors to cabinets or closets do not have a latching mechanism. Instead merely pulling on a door handle typically opens these doors. A different type of mechanism is used to prevent these doors from inadvertently opening. The common name for a device that holds a door closed or open is a a “door catch”. There are four common door catch designs. These are: spring-loaded hinges, ball detents, roller catches, and magnetic catches which have a magnet mounted to the doorframe and a piece of metal attached to the door.
It is not commonly recognized that it is very desirable for these door catches to also have some means to absorb energy from a closing door. Without an energy absorbing means, the doors slam against a stop and tend to bounce open unless they were closed carefully. Two magnets exhibiting either magnetic attraction or magnetic repulsion lack this energy absorbing property. Two attracting magnets tend to accelerate a closing door and decelerate an opening door. Two repelling magnets do the opposite. In either case there is no energy absorption mechanism. Non-latching doors with simple magnets would tend to bounce open unless they are closed with a narrow range of energy that can be absorbed by some other means.
Some known door-latching mechanisms include magnetic repulsion to slow a closing door. However, magnetic repulsion is elastic and the energy is returned to a door if there is any bounce.
For example, U.S. Pat. No. 5,782,512 discloses a magnetic field latch assembly for an apparatus having a first element and a second element with the second element having a disengaged position and an engaged position with respect to the first element. The magnetic field latch assembly employs permanent or electromagnets for shock absorption, positioning and latching the first element and the second element. The magnetic field latch assembly includes magnets associated with the first and second elements such that as the first and second elements approach each other, the magnets initially repel each other causing a braking force to slow the relative motion of the first and second elements. When the first and second elements are in the engaged position, the magnets hold the first and second elements in position and minimize vibration and chatter.
U.S. Pat. No. 6,588,811 describes a magnetic door stop/latch which contains a first magnet mounted on or within a door and a second magnet mounted on or within a structure opposing the door, such as a wall, door jamb, door frame or baseboard. When the door is moving towards the opposing structure, the magnetic doorstop may be used to prevent the door from slamming into the opposing structure by virtue of the repulsive forces of the magnets. The magnetic door stop/latch may be switched from repulsive configuration to an attractive configuration that holds the door in position.
The foregoing patents reflect the current state of the art of which the present inventor is aware. Reference to, and discussion of, these patents is intended to aid in discharging Applicant's acknowledged duty of candor in disclosing information that may be relevant to the examination of claims to the present invention. However, it is respectfully submitted that none of the above-indicated patents disclose, teach, suggest, show, or otherwise render obvious, either singly or when considered in combination, the invention described and claimed herein.
The invention described herein absorbs energy and changes the energy into heat. This is a non-contact device that can gently slow a closing door and quietly bring it to a stop at a predetermined point. Furthermore, the invention described herein can be used as a non-contact magnetic brake for other applications. Also, the invention provides a non-contact magnetic coupling device that tends to seek and hold a predetermined relative position of two component parts.
The energy absorbing magnetic coupling device of this invention provides a non-contact magnetic device that exhibits both magnetic braking (energy absorption) and magnetic positioning. One application of this device is a door catch. The device can slow down a closing door, bring the door to a gentle and quiet stop, and then hold the door at a predetermined position.
The physical principle behind this device is that a properly mounted magnet (a rotary magnet) will rotate when it is translated across the fringing magnetic field of another magnet (a reference magnet). If the rotation of the rotary magnet is impeded by a substantial amount of friction or viscous drag, then magnetic forces between the two magnets will resist the translational motion. For example, the rotary magnet assembly can be affixed to a doorframe and the reference magnet can be affixed to the upper edge of a door. The kinetic energy of the closing door is converted into frictional heating without any physical contact between the two magnets. Furthermore, the two magnets will seek to hold the door at the predetermined point of closest approach.
The preferred embodiment has a cylindrical rotary magnet mounted in a cylindrical cavity. The cylindrical magnet is diametrically magnetized. The cavity permits the cylindrical magnet to rotate, but this rotation is impeded by a viscous material that causes a substantial amount of drag on the rotation. The rotary magnet can translate along a predetermined path relative to the reference magnet. The two magnets do not make contact, but they have a point of closest approach. Translating along this path exerts a torque on the cylindrical magnet and causes it to rotate inside the cavity. The viscous drag on the cylindrical magnet extracts energy from this rotation and converts this energy to heat. When there is the proper amount of drag, the orientation of the cylindrical magnet results in a magnetic force that opposes relative motion and slows down the door. The magnets will also stop the relative motion at the point of closest approach and resist movement away from this position.
This invention also teaches the use of a bias means that can align the rotary magnet to the optimum orientation for maximum energy removal. The bias means can be either a gravitational bias or a magnetic bias.
It is therefore an object of the present invention to provide a new and improved non-contact device that can gently slow a closing door and quietly bring it to a stop at a predetermined point.
It is another object of the present invention to provide a new and improved a non-contact magnetic brake.
A further object or feature of the present invention is a new and improved non-contact magnetic coupling device that seeks and holds a predetermined relative position of two component parts.
An even further object of the present invention is to provide a novel energy absorbing magnetic coupling device.
Other novel features which are characteristic of the invention, as to organization and method of operation, together with further objects and advantages thereof will be better understood from the following description considered in connection with the accompanying drawing, in which preferred embodiments of the invention are illustrated by way of example. It is to be expressly understood, however, that the drawing is for illustration and description only and is not intended as a definition of the limits of the invention. The various features of novelty, which characterize the invention, are pointed out with particularity in the claims annexed to and forming part of this disclosure. The invention resides not in any one of these features taken alone, but rather in the particular combination of all of its structures for the functions specified.
There has thus been broadly outlined the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form additional subject matter of the claims appended hereto. Those skilled in the art will appreciate that the conception upon which this disclosure is based readily may be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the Abstract is to give a brief and non-technical description of the invention. The Abstract is neither intended to define the invention of this application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
Certain terminology and derivations thereof may be used in the following description for convenience in reference only, and will not be limiting. For example, words such as “upward,” “downward,” “left,” and “right” would refer to directions in the drawings to which reference is made unless otherwise stated. Similarly, words such as “inward” and “outward” would refer to directions toward and away from, respectively, the geometric center of a device or area and designated parts thereof. References in the singular tense include the plural, and vice versa, unless otherwise noted.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
Referring to
This invention perhaps has its widest application as a non-contact means to remove energy (i.e., slow down) a closing door and hold the door closed in a predetermined position. However, the principles taught here have wider application to other uses requiring non-contact braking and non-contact coupling. Therefore, the example using doors should not limit the broader uses.
Doors to rooms typically have a well known latching mechanism to keep the door closed. To open this latching mechanism, it is necessary to turn a door handle. However, often doors to cabinets or closets do not have a latching mechanism. Instead merely pulling on a door handle typically opens these doors. A mechanism is used to prevent these doors from inadvertently opening. This mechanism is often called a door catch.
It is not commonly recognized that it is very desirable for door catches to have some means to absorb energy from a closing door. Without an energy absorbing means, a door would tend to bounce open unless the door was closed very carefully. Two inflexible magnets lack this energy absorbing property, and therefore they are not usually used to hold doors closed. The magnetic closure mechanisms that are used typically have a rocker mounting which absorbs some energy. Still, these are contact devices that are abrupt, make noise and only absorb a small amount of energy. It is therefore desirable to have a silent, non-contact mechanism that removes the optimum amount of energy from a closing door and holds the door in a predetermined closed position.
The objective is to provide a non-contact device that both removes energy from a closing door and provides a non-contact coupling that aligns the two magnets in a predetermined position to hold the door closed. To explain the theory of operation of this invention, it is necessary to start with the pattern of the magnetic field lines produced by a permanent magnet.
Presume that a small bar magnet is mounted in such a way to permit rotation in any direction. If this bar magnet was initially placed at point 16A and then translated to point 16M, the bar magnet would align itself with the local magnetic field. This would result in the bar magnet rotating as it is translated across the fringing magnetic field. In fact, the bar magnet would rotate about 180 degrees as it is translated between 16A and 16M as indicated by the arrow orientations between these two locations. The amount of rotation depends on the start and stop locations. It should be noted that the path between points 16A and 16M is perpendicular to the magnetic axis 11.
There is another set of arrows between points 17A and 17M. The path between these two points is parallel to the magnetic axis 11 (hereafter parallel path). Even though this parallel path is the same length and distance from the magnet as the previous perpendicular path between points 16A and 16M, a bar magnet would rotate further (about 270 degrees) traveling from points 17A to 17M. If both paths had been extended infinitely far on either side of the magnet, then both the perpendicular and parallel paths would have produced a 360 degree rotation. However, the strength of the magnetic field decreases with distance and the parallel path always produces a greater rotation than the perpendicular path when the translation distance is limited to regions of relatively high magnetic field strength.
It is presumed that the motion of magnet 14 is constrained to only be along the path represented by arrow 44. In this case, magnet 14 would stop at position 14F because the magnetic force is perpendicular to path 44 at this point. In fact, location 14F is the point of closest approach to magnet 10A. This is the point where the strongest magnetic coupling occurs and movement of rotary magnet 14 away from location 14F is resisted.
Now, suppose that the cylindrical magnet 14 at location 14A was forced to a magnetic alignment that was not aligned with the magnetic field from magnet 10A. For example, suppose that the cylindrical magnet at location 14A was rotated 90 degrees so that the magnetic direction is shown by the small arrow 15A. There would be a torque on the cylindrical magnet 14 attempting to rotate the cylindrical magnet back into alignment with the magnetic field from magnet 10A. Also, there would now be magnetic repulsion between magnets 10A and 14A.
If magnet 14 is translated between positions 14A and 14F and allowed to rotate, but if this rotation is restrained by an optimum amount of friction, then: the magnetic orientation of magnet 14 will always lag behind the frictionless orientation; translational motion between positions 14A and 14F will be opposed by magnetic repulsion; and translational energy will be converted to frictional heating of the rotating magnet.
The translational motion will want to stop at the point of closest approach at position 14F. It will be explained later that viscous drag is the preferred source of friction because viscous drag does not stick and the amount of drag depends on the rotation rate. In
The principles taught here have application to doors because energy can be removed from a closing door without any physical contact if a stationary magnet, such as 10A, is attached to the doorframe and a rotary magnet, such as 14 is attached to the door (or vice versa). The door can be held in the closed position because the rotary magnet resists movement away from position 14F in
In
The amount of energy that can be removed by friction depends on the amount of rotation of the rotary magnet. Therefore, it is desirable to increase the amount of rotation.
The amount of rotation between magnetic direction 13AA and 13FF is about 210 degrees rather than approximately 90 degrees between 13A and 13F in
Magnet 10AA in
The two magnets are prevented from contacting each other because both the reference magnet 30A and the rotary magnet assembly 40A are attached to external components that permit motion only along the vector defined by arrow 44. For example, in
The inventive device works best when strong, compact magnets are used. Therefore rare earth magnets are preferred, especially neodymium iron boron magnets also known as NdFeB magnets.
In
In
Translating the rotary assembly 40C along the path designated by arrow 44 causes the cylindrical magnet 20C to rotate as indicated by the rotation arrows.
In
There is another way of orienting the rotary magnet when the reference magnet is removed. This is through a design that can be referred to as Agravitational bias@. The key of any bias means is to apply a small force that can rotate the rotary magnet over time. If the rotary magnet was weighted unevenly, then gravity could slowly rotate the rotary magnet into the optimum orientation. The rotary magnet has a rotary axis 46 (
It was previously mentioned that the housing should be made of non-magnetic material. The requirement is that the housing does not block transmission of magnetic fields. The easiest way of achieving this is to use non-magnetic materials, but a small amount of ferromagnetic material can be tolerated in the housing.
A successful experiment was performed of a design similar to the preferred embodiment except that a spherical magnet was used rather than a cylindrical magnet. The rotary magnet, reference magnet and bias magnet were all made of the rare earth magnetic material NdFeB. The rotary magnet was a 9.5 mm diameter sphere, the reference magnet was a 9.5 mm cube and the bias magnet was a disk 9.5 mm diameter and 3 mm thick. The bias magnet was removed from the rotary magnet surface by about 7 mm so that the bias magnet produced a much weaker magnetic field than the reference magnet when the reference magnet is at the point of closest approach (about 2 mm from the rotary magnet).
Mating two hemispherical cavities formed a spherical cavity. Each hemisphere was slightly larger than the 9.5 mm diameter of the spherical magnet. The hemispherical cavities were drilled into 6.3 mm thick aluminum. A first test was performed using axle grease as the viscous material filling a spherical space similar to space 24 in
The apparatus was then tested on a door. The reference magnet was attached to a full size door and the rotary magnet housing was held stationary. The reference magnet was oriented perpendicular to the translation direction similar to that illustrated in
The bias magnet was observed to take about two seconds to reorient the spherical magnet when the door was opened (i.e., when the reference magnet was removed). If the door was closed before about two seconds, there was a noticeable reduction in the energy absorbing characteristics. Eliminating the bias magnet still usually resulted in the door stopping at the correct point, but the door was much more likely to hit the door stop before the door came to rest at the correct point. The tests showed that the bias magnet was not essential, but it was desirable.
Thus far, all of the examples had the rotary magnet 20 translate only along a path 44 which does not intersect the reference magnet 30. Another test proved that energy removal could occur even when the reference magnet 30A approached rotary magnet 20A from the direction 47 in
It has previously been stated that any shape magnet will exhibit a rotation if it is properly mounted and translated through the fringing magnetic field of a reference magnet. The term A properly mounted@ will be explained now. The ideal mounting for a rotary magnet to obtain maximum torque meets the following four goals: 1) the rotary magnet should be able to rotate about a rotational axis that is perpendicular to the magnet=s magnetic axis; 2) the rotational axis should pass through the center of the rotary magnet; 3) the rotational axis should be perpendicular to the translation direction; and 4) the rotational axis should be perpendicular to the magnetic axis of the reference magnet.
Meeting these four goals achieves maximum torque for a specific magnet size and a specific magnet separation. However, energy can be removed with a wide range of reference magnet orientations and a wide range of translation directions. In fact, if there is the proper drag on the rotary magnet, the only condition that does not remove energy from the rotary magnet is when either the translation direction 44, the magnetic axis 21 or the magnetic axis 31 is parallel to the rotation axis 46 (
A magnet in any shape (for example a cube) could be used as a rotary magnet if it is properly mounted, for example mounted on axle. The axle then becomes the rotational axis. If the above four points were roughly met, then any magnet shape could rotate and become a rotary magnet.
The above four points are automatically and accurately fulfilled with a spherical magnet when it is mounted so that it can rotate in any direction. The spherical magnet will naturally choose an orientation and axis of rotation that fulfills the above goals. A diametrically magnetized cylindrical magnet automatically fulfills points number 1 and 2 above if the cylinder is mounted so that it can rotate around its cylindrical axis. However, the housing for a cylindrical rotary magnet should be oriented properly to fulfill points number 3 and 4 above in order to obtain the maximum torque and maximum energy absorption when drag is added.
Finally, all the examples given thus far had the reference magnet not able to rotate. However, the reference magnet could also be another rotary magnet assembly.
Accordingly, the invention may be characterized as an energy absorbing magnetic coupling device comprising a rotary magnet assembly including a first magnet rotatably retained in a housing, such that there is a substantial drag on rotation of said first magnet within said housing; a reference magnet having a magnetic axis; the rotary magnet and the reference magnet can be translated relative to each other along a predetermined translation path which has a point of closest approach; the magnetic axis of the reference magnet is oriented such that the relative translation exerts a torque on the first magnet and causes it to rotate inside the housing, and drag on the first magnet extracts energy from this rotation and converts this energy to heat, and acting to stop the relative motion at the point of closest approach.
Alternatively, the invention may be characterized as a rotary magnet apparatus comprising a first magnet with a magnetic axis; a housing which holds the first magnet such that the first magnet can rotate about a rotational axis generally perpendicular to the magnetic axis, the housing including means for exerting a predetermined substantial drag on the first magnet such that rotation of said the magnet results in a predetermined energy loss.
The above disclosure is sufficient to enable one of ordinary skill in the art to practice the invention, and provides the best mode of practicing the invention presently contemplated by the inventor. While there is provided herein a full and complete disclosure of the preferred embodiments of this invention, it is not desired to limit the invention to the exact construction, dimensional relationships, and operation shown and described. Various modifications, alternative constructions, changes and equivalents will readily occur to those skilled in the art and may be employed, as suitable, without departing from the true spirit and scope of the invention. Such changes might involve alternative materials, components, structural arrangements, sizes, shapes, forms, functions, operational features or the like.
Therefore, the above description and illustrations should not be construed as limiting the scope of the invention, which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3184654 | Ahmet | May 1965 | A |
4250478 | Cardone et al. | Feb 1981 | A |
4251791 | Yanagisawa et al. | Feb 1981 | A |
4459500 | Miyamoto | Jul 1984 | A |
4686841 | Prunbauer et al. | Aug 1987 | A |
5072204 | Leupold | Dec 1991 | A |
5188405 | Maccaferri | Feb 1993 | A |
5216401 | Leupold | Jun 1993 | A |
5485733 | Hoffman | Jan 1996 | A |
6066088 | Davis | May 2000 | A |
6707360 | Underwood et al. | Mar 2004 | B2 |
6765330 | Baur | Jul 2004 | B2 |
6919787 | Macken | Jul 2005 | B1 |
20050062296 | Lyon | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060170225 A1 | Aug 2006 | US |