The present specification details an energy absorbing apparatus. In particular the present invention relates to a guardrail.
The specification details an energy absorbing apparatus which includes one or more longitudinal members. The specification in one embodiment details a guardrail which comprises longitudinal members in the form of rails. For ease of reference, the present invention will now be discussed in relation to a guardrail. Although, it will be appreciated that the present invention may have utility in relation to different energy absorbing applications, utilising telescoping longitudinal members.
Guardrails are widely used throughout the world on the side(s) of highways, motorways and the like to act as a safety barrier to redirect errant vehicles back onto the road. However, the terminal ends of guardrails pose a significant risk to vehicles which have a head on impact therewith. It would therefore be an advantage, if there could be provided a way, in which more of the energy arising from a head on impact with the terminal end of a guardrail, could be absorbed, so as to minimise the damage caused to a vehicle, involved in such a collision.
Current guardrails, marketed as “X-tension” utilise a single set of frangible (shear) bolts to join the second and third rails, and a slider which fits around the first and second rails, at the terminal end of a guardrail, joins the first and second rails together. The slider is bolted to the downstream end of the first rail, and after a head on impact travels along the second rail. When the slider reaches the downstream end of the second rail the upstream end of the second rail impacts with an impact head on the upstream end of the first rail. The shock of this impact with the end of the second rail with the impact head, shears the heads off the shear bolts. As the shear bolts have now failed this disconnects the second and third rails, which can now telescope with respect to one another, as the slider to travels along and gathers the third rail therein, alongside, the first and second rails.
However, once the slider has travelled along the third rail further telescoping with the fourth rail is not possible as a second set of shear bolts cannot be utilised to join the third and fourth rails. As if a second set of shear bolts is used to join the third and fourth rails the applicant has found it is difficult to reliably control the order in which the shear bolts fail. Thus if the downstream second set of shear bolts connecting the third and fourth rails is to fail before the first set of shear bolts upstream this prematurely halts telescoping and energy absorption.
Ideally, it would be desirable if a terminal end of a guardrail could have at least one additional set of shear bolts, connecting downstream rails in a manner that enables more rails to reliably telescope, in sequential order, from upstream to downstream, so as to absorb more energy from a head on impact. However, as mentioned the key is to somehow control when the downstream bolts shear, which is difficult, as the shock of impact automatically transfers force along the rails, and can cause downstream bolts to shear prior to upstream bolts shearing. This, in turn, adversely reduces the capacity of the guardrail to absorb energy.
All references, including any patents or patent applications cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and the applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents form part of the common general knowledge in the art, in New Zealand or in any other country.
Throughout this specification, the word “comprise”, or variations thereof such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
It is an object of the present invention to address the foregoing problems or at least to provide the public with a useful choice.
Further aspects and advantages of the present invention will become apparent from the ensuing description which is given by way of example only.
The term ‘frangible bolt’ as used herein refers to a bolt or other like device which has a construction which is significantly weaker in terms of resisting a transverse force, with respect to the longitudinal axis of the bolt, than a standard bolt (such as is used to securely connect a rail to a post in a guardrail—herein a ‘standard post bolt’).
The present invention is concerned with providing a way of allowing more adjacent rails to telescope with respect to one another in a guardrail system to absorb more impact energy. Previously, as mentioned above, only the first three terminal rails can telescope with respect to one another.
According to one aspect of the present invention there is provided a guardrail or other energy absorbing apparatus which includes a plurality of terminal end rails which longitudinally extend between a plurality of support posts wherein the first four rails (herein rails 1-4), situated at a terminal end of a guardrail, or impact end of an energy absorbing apparatus; are connected to one another at respective downstream and upstream ends thereof via:
A guardrail or other energy absorbing apparatus which has a plurality of terminal end rails as substantially as described above which includes at least one standard post bolt connects a middle portion of each rail to a post.
A method of controlling the telescoping of longitudinal members forming part of a guardrail or other energy absorbing apparatus the method comprising the steps of:
A method substantially as described above wherein there is an additional step of connecting additional rails to the guardrail or other energy absorbing apparatus via sets of frangible bolts and additional post bolts in a similar manner to that employed for the second set of frangible bolts, except every successive downstream joint utilises more post bolts than preceding upstream joints.
A method of joining rails to facilitate absorbing energy and telescoping of rails in a guardrail or other energy absorbing apparatus comprising a step of progressively increasing the relative joint strength for respective downstream joints connecting adjacent rails to one another starting from a first joint downstream of an impact slider assembly in order to control the order in which the subsequently downstream joints fail, following an impact and during telescoping movement of the rails.
The advantage provided by this arrangement of frangible bolts and bolts is that it ensures upstream sets of frangible bolts always break before the subsequent sets of frangible bolts when there is an end collision with the terminal end of the guardrail. This ensures the slider assembly can gather and retain telescoping rails in a sequential order during a head on collision with guardrail.
Further aspects of the present invention will become apparent from the following description which is given by way of example only and with reference to the accompanying drawings in which:
With respect to
The rails 1 and 2 are connected to one another via a slider 5 which surrounds these rails and generally confirms to the cross section profile of the rails. As shown in
As noted in the above background art discussion the inventor had previously found it critical to only have one set of shear bolts (the first set—shown by the arrow marked 1st) connecting rails 2 and 3 as it was found if other sets of shear bolts were used to connect downstream rails such as rails 3 and 4 (the second set—shown by the arrow marked 2nd) it was impossible to control the order in which the sets of shear bolts would fail. In some instances the 1st and 2nd set could fail simultaneously, or the 2nd set could fail before the first set, typically both mis-events being triggered as the impact head 1000 on the downstream end of the first rail (rail 1) impacted with the upstream end of the second rail (rail 2). However, with the guardrail configured as shown in
Thus, given these difficulties with controlling with certainty the sequential order in which the sets of shear bolts need to fail resulted in prior art guardrails only having one set of shear bolts being employed.
The present invention as shown in
In
The frangible bolts can come in a variety of different forms.
In some embodiments the frangible bolts may be rivet bolts having a weaker construction than a standard metal post bolt used on a guardrail for attaching the rail to the post.
In some preferred embodiments the frangible bolt may be in the form of a shear bolt. For example a bolt which has been adapted to break at a reduced load in comparison to a standard metal splice bolt.
In some preferred embodiments the shear bolts may include a notch which radially circumscribe at least a portion of said bolt proximate a head thereon to create a region of weakness.
In other preferred embodiments the frangible bolt may be made of plastics or some other material which is structurally weaker than the material and/or construction of the slider.
Typically the frangible bolts may be around 32-35 mm in length.
The standard post bolts may be any bolt suitable for holding the rails of a guardrail or such like to a support post. In preferred embodiments the standard post bolt may be made of metal and around 240-250 mm in length.
The standard post bolts may have tapered shafts for screwing into wooden support blocks or may simply be threaded for connecting to a support post via a nut or threaded aperture in the post.
In some further embodiments the rails may be joined by spot welding or via other connecting methods, products, devices or mechanisms which may or may not also include bolt type devices. In one such embodiment where spot welding is employed less welds may be used for each upstream joints between rails, so the order in which the joints fail, and telescoping commences, can be controlled so as to occur in a sequential manner: each time the impact head strikes the upstream end of another rail, following telescoping along a preceding rail.
Aspects of the present invention as detailed herein have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
591857 | Mar 2011 | NZ | national |
Number | Name | Date | Kind |
---|---|---|---|
7686535 | Bergendahl et al. | Mar 2010 | B2 |
8517349 | Ross et al. | Aug 2013 | B1 |
20090206308 | Amengual Pericas | Aug 2009 | A1 |
20090302288 | James | Dec 2009 | A1 |
20100207087 | James | Aug 2010 | A1 |
20110084246 | Amengual Pericas | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2005028757 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20120241702 A1 | Sep 2012 | US |