Embodiments described herein relate to the field of disk drives, and, in particularly, to perpendicular magnetic recording disks used in energy-assisted magnetic recording drives.
In energy-assisted magnetic recording (EAMR), the recording medium is locally heated to decrease the coercivity of the magnetic material during write operations. The local area is then rapidly cooled to retain the written information. This allows for magnetic write heads to be used with high coercivity magnetic materials. The heating of a local area may be accomplished by, for example, a heat or thermal source such as a laser. As such, one type of energy-assisted magnetic recording is heat assisted magnetic recording (HAMR). HAMR may also sometimes be referred to as thermally assisted magnetic recording (TAMR) or optically assisted magnetic recording (OAMR).
Conventional HAMR media is typically composed of a substrate, a heat sink layer, seed and nucleation layers, and a magnetic recording layer. Desirable properties of the magnetic recording layer in HAMR media include a moderate Curie temperature and a uniform, well-segregated, high magnetic anisotropy grain structure with highly developed crystallographic texture. Even with a magnetic recording layer that exhibits these properties, HAMR media may still suffer from high DC read back noise level during the read back process. The high DC read back noise level is an intrinsic characteristic of signal-layer HAMR media, and this noise level is expected to increase as the size of the reader element shrinks.
Multi-layer HAMR media structures have been explored and discussed, for example, in U.S. Pat. No. 7,678,476 B2 to Weller et al. (hereinafter “Weller”). In Weller, an HAMR media structure with a capping layer on top of the magnetic recording layer is proposed. The capping layer in Weller has a Curie temperature lower than that of the magnetic recording layer. The purpose of this capping layer in Weller is to provide magnetic stabilization to the lower magnetic recording layer at storage temperatures. This capping layer in Weller, however, does not address the high DC read back noise level during read back of the media.
The present invention is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:
In the following description, numerous specific details are set forth, such as examples of specific layer compositions and properties, to provide a thorough understanding of various embodiment of the present invention. It will be apparent, however, to one skilled in the art that these specific details need not be employed to practice various embodiments of the present invention. In other instances, well known components or methods have not been described in detail to avoid unnecessarily obscuring various embodiments of the present invention.
Embodiments of a perpendicular magnetic recording (PMR) disk for energy-assisted magnetic recording (EAMR) are described. The PMR disk structure includes a capping layer disposed above a magnetic recording layer to reduce the DC read back noise during the read back process, and an exchange coupling layer between the capping layer and the magnetic recording layer to partially exchange decouple these two layers. The addition of the capping layer also improves transition jitter on the trailing edge of the thermal spot in write operations during the refreezing process.
The magnetic recording layer 102 of PMR disk 100 is made of a high Ku material that has a lower Curie temperature than that of the material used in the capping layer 104. In one embodiment, the high Ku material selected for the magnetic recording layer 102 has the physical properties of highly segregated grain boundaries and a granular packing fraction of 60% or less. This results in a low inter-granular lateral exchange coupling between grains in the high Ku material of the magnetic recording layer 102.
The PMR disk 100 further includes an exchange coupling layer 103 disposed between the magnetic recording layer 102 and the capping layer 104. One purpose of the exchange coupling layer 103 is to partially decouple the grains of the high Ku material in the magnetic recording layer 102 from the grains of the low Ku material in the capping layer 104 such that the higher Curie temperature of the material in the capping layer 104 does not significantly affect the Curie point of the material in the magnetic recording layer 102. Additional information and embodiments of PMR disk 100 are discussed in further detail below.
The presence of a capping layer 104 made of a low Ku material with a high granular packing fraction disposed above the magnetic recording layer 102 reduces this DC read back noise during the read back process. In
In addition to reducing the DC read back noise, the low Ku material used in capping layer 104 may also serve to reduce the magnetic dispersion inherent in the magnetic recording layer 102 by acting as an orientation reference to align the magnetic orientation in the grains of the magnetic recording layer 102.
During a write operation, the laser beam 410 produces a thermal spot 412 on PMR disk 100 to heat a localized region of the magnetic recording layer 102. One of the key limiters to linear density performance of EAMR drive systems is the refreezing process on the trailing edge of the thermal spot 412. The refreezing process refers to the fixing of the magnetic orientation in the grains of the magnetic recording layer 102. During a write operation, when the magnetic recording layer 102 passes back down through its Curie point as the thermal spot 412 moves away, the randomized state of the magnetic orientation in the grains of the magnetic recording layer 102 has the potential to add to media jitter. By providing a capping layer 104 made of a material selected to have a greater Curie temperature than that of the material in the magnetic recording layer 102, the randomization of magnetic orientation in the grains of the magnetic recording layer 102 can be reduced during the refreezing process, and the linear density performance of EAMR drive systems can be improved.
In accordance with one embodiment, the thermal spot 412 may have a temperature between the Curie temperature of the material used in the magnetic recording layer 102 and the Curie temperature of the material used in the capping layer 104. In a particular embodiment, the thermal spot 412 may have a peak temperature in a range of 500 K to 900 K. The effect of the thermal spot 412 having a temperature that is between the Curie temperatures of the material used in the magnetic recording layer 102 and the material used in the capping layer 104 is shown in
As the thermal spot 412 moves away from the heated localized region, the material in the magnetic recording layer 102 is cooled back down to below its Curie point on the trailing edge of the thermal spot 412. During this refreezing process as shown in
Simulation results of the effects of a capping layer 104 made of a material with a higher Curie temperature than that of the material in the magnetic recording layer 102 during the refreezing process in a PMR medium using an (sing spin model are shown in
As shown in
Referring back to
By selecting different segregants or different combinations of segregants in the composition of the capping layer 104, the Curie temperature of the capping layer 104 may be specifically tailored because Curie temperatures are material dependent. The capping layer 104 may be made of a material that has a Curie temperature that is 20 K to 600 K greater than the Curie temperature of the material used in the magnetic recording layer 102. In one embodiment, the capping layer 104 is made of a material that has a Curie temperature that is 100 K greater than the Curie temperature of the material used in the magnetic recording layer 102. In a particular embodiment, the material used in the capping layer 104 has a Curie temperature of approximately 745 K.
In one embodiment, the magnetic recording layer 102 may have a thickness in a range of 4 to 15 nm. In a particular embodiment, the magnetic recording layer 102 has a thickness of approximately 10 nm. The magnetic recording layer 102 may be made of, for example, FePt, FePd, FePtPd, CoPt, or other ordered inter-metallic L10 alloy with a Curie temperature in the range of 500 to 800 degrees Kelvin (K). In an exemplary embodiment, the magnetic recording layer is made of FePt and has a Curie temperature of approximately 645 K. Other materials that may be used for the magnetic recording layer include ferromagnetic alloys such as FePdX, FePtPdX, or FePtX alloys, where ‘X’ may include one of the segregants of C, SiO2, TiO2, Cu, B, MgO, Ni, NiO, Cr, Cr2O3, CrO, Al2O3, Co, or CoO. In an alternative embodiment, ‘X’ may also include a combination of these segregants. As noted above, Curie temperatures are material dependent. Hence, the Curie temperature of the magnetic recording layer 102 may also be tailored to be less than the Curie temperature of the capping layer 104 by a specific amount, for example, 100 K, by selecting different segregants or different combinations of the segregants listed above to be used in the magnetic recording layer 102.
The exchange coupling layer 103 of PMR disk 100 may have a thickness in a range of 0.3 nm to 2 nm. In one exemplary embodiment, the exchange coupling layer 103 has a thickness of 1 nm. The exchange coupling layer 103 may be made of a variant of a ruthenium (Ru) or a ruthenium-cobalt (RuCo) alloy. The exchange coupling layer 103 may also be made of Cr, CoCr, CoCrB, MgO, TiN, TiC, Cu, Re, Pt, Pd, Ir, Ag, Ta, Nb, or V.
In another embodiment, the PMR disk 100 may also include additional or intervening layers that are not shown. The substrate 101 may be made of, for example, a metal, metal alloys such as nickel phosphorous (NiP), glass, or other substrate materials known in the art including polymers and ceramics. The intermediate layers 150 disposed above the substrate 101 may include a heat sink layer. The heat sink layer may be made of copper (Cu). Other metals or heat conductive materials may be also used for the heat sink layer. In addition, the intermediate layers 150 may also include an underlayer, a seed layer made of, for example, tantalum (Ta), and nucleation layers made from one of, for example, Ta, chromium ruthenium (CrRu), or magnesium oxide (MgO). In an alternative embodiment, the intermediate layers 150 may have other compositions and additional intervening layers.
Referring back to
It should be noted that the apparatus and methods discussed herein may be used with various types of drives. In one embodiment, for example, the apparatus and methods discussed herein may be used with a non-EAMR disk drive such as a PMR drive with inductive write heads.
The terms “above,” “under,” and “between” and “on” as used herein refer to a relative position of one media layer with respect to other layers. As such, for example, one layer disposed above or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer disposed between two layers may be directly in contact with the two layers or may have one or more intervening layers. In contrast, a first layer “on” a second layer is in direct contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations are performed relative to a substrate without consideration of the absolute orientation of the substrate.
In the foregoing specification, the present invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader scope of the embodiments of the invention as set for in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a divisional of U.S. patent application Ser. No. 13/042,840, filed on Mar. 8, 2011, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5481410 | Osato et al. | Jan 1996 | A |
5512366 | Nakaki et al. | Apr 1996 | A |
5663935 | Nishimura | Sep 1997 | A |
6013161 | Chen et al. | Jan 2000 | A |
6063248 | Bourez et al. | May 2000 | A |
6068891 | O'Dell et al. | May 2000 | A |
6086730 | Liu et al. | Jul 2000 | A |
6099981 | Nishimori | Aug 2000 | A |
6103404 | Ross et al. | Aug 2000 | A |
6117499 | Wong et al. | Sep 2000 | A |
6136403 | Prabhakara et al. | Oct 2000 | A |
6143375 | Ross et al. | Nov 2000 | A |
6145849 | Bae et al. | Nov 2000 | A |
6146737 | Malhotra et al. | Nov 2000 | A |
6149696 | Jia | Nov 2000 | A |
6150015 | Bertero et al. | Nov 2000 | A |
6156404 | Ross et al. | Dec 2000 | A |
6159076 | Sun et al. | Dec 2000 | A |
6164118 | Suzuki et al. | Dec 2000 | A |
6200441 | Gornicki et al. | Mar 2001 | B1 |
6200673 | Miyamoto et al. | Mar 2001 | B1 |
6204995 | Hokkyo et al. | Mar 2001 | B1 |
6206765 | Sanders et al. | Mar 2001 | B1 |
6210819 | Lal et al. | Apr 2001 | B1 |
6216709 | Fung et al. | Apr 2001 | B1 |
6221119 | Homola | Apr 2001 | B1 |
6248395 | Homola et al. | Jun 2001 | B1 |
6261681 | Suekane et al. | Jul 2001 | B1 |
6270885 | Hokkyo et al. | Aug 2001 | B1 |
6274063 | Li et al. | Aug 2001 | B1 |
6283838 | Blake et al. | Sep 2001 | B1 |
6287429 | Moroishi et al. | Sep 2001 | B1 |
6290573 | Suzuki | Sep 2001 | B1 |
6299947 | Suzuki et al. | Oct 2001 | B1 |
6303217 | Malhotra et al. | Oct 2001 | B1 |
6309765 | Suekane et al. | Oct 2001 | B1 |
6358636 | Yang et al. | Mar 2002 | B1 |
6362452 | Suzuki et al. | Mar 2002 | B1 |
6363599 | Bajorek | Apr 2002 | B1 |
6365012 | Sato et al. | Apr 2002 | B1 |
6381090 | Suzuki et al. | Apr 2002 | B1 |
6381092 | Suzuki | Apr 2002 | B1 |
6387483 | Hokkyo et al. | May 2002 | B1 |
6388956 | Mori et al. | May 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6395349 | Salamon | May 2002 | B1 |
6403919 | Salamon | Jun 2002 | B1 |
6408677 | Suzuki | Jun 2002 | B1 |
6426157 | Hokkyo et al. | Jul 2002 | B1 |
6429984 | Alex | Aug 2002 | B1 |
6468670 | Ikeda et al. | Oct 2002 | B1 |
6482330 | Bajorek | Nov 2002 | B1 |
6482505 | Bertero et al. | Nov 2002 | B1 |
6495252 | Richter et al. | Dec 2002 | B1 |
6500567 | Bertero et al. | Dec 2002 | B1 |
6528124 | Nguyen | Mar 2003 | B1 |
6548821 | Treves et al. | Apr 2003 | B1 |
6551728 | Acharya et al. | Apr 2003 | B1 |
6552871 | Suzuki et al. | Apr 2003 | B2 |
6565719 | Lairson et al. | May 2003 | B1 |
6566674 | Treves et al. | May 2003 | B1 |
6571806 | Rosano et al. | Jun 2003 | B2 |
6628466 | Alex | Sep 2003 | B2 |
6664503 | Hsieh et al. | Dec 2003 | B1 |
6670055 | Tomiyasu et al. | Dec 2003 | B2 |
6682807 | Lairson et al. | Jan 2004 | B2 |
6683754 | Suzuki et al. | Jan 2004 | B2 |
6707766 | Mori et al. | Mar 2004 | B2 |
6730420 | Bertero et al. | May 2004 | B1 |
6743528 | Suekane et al. | Jun 2004 | B2 |
6754020 | Hikosaka et al. | Jun 2004 | B1 |
6759138 | Tomiyasu et al. | Jul 2004 | B2 |
6778353 | Harper | Aug 2004 | B1 |
6795274 | Hsieh et al. | Sep 2004 | B1 |
6834026 | Fullerton et al. | Dec 2004 | B2 |
6855232 | Jairson et al. | Feb 2005 | B2 |
6857937 | Bajorek | Feb 2005 | B2 |
6881497 | Coffey et al. | Apr 2005 | B2 |
6893748 | Bertero et al. | May 2005 | B2 |
6899959 | Bertero et al. | May 2005 | B2 |
6916558 | Umezawa et al. | Jul 2005 | B2 |
6939120 | Harper | Sep 2005 | B1 |
6946191 | Morikawa et al. | Sep 2005 | B2 |
6967798 | Homola et al. | Nov 2005 | B2 |
6972135 | Homola | Dec 2005 | B2 |
7004827 | Suzuki et al. | Feb 2006 | B1 |
7006323 | Suzuki | Feb 2006 | B1 |
7016154 | Nishihira | Mar 2006 | B2 |
7019924 | McNeil et al. | Mar 2006 | B2 |
7045215 | Shimokawa | May 2006 | B2 |
7060375 | Lee et al. | Jun 2006 | B2 |
7070870 | Bertero et al. | Jul 2006 | B2 |
7090934 | Hokkyo et al. | Aug 2006 | B2 |
7099112 | Harper | Aug 2006 | B1 |
7105241 | Shimokawa et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7147790 | Wachenschwanz et al. | Dec 2006 | B2 |
7161753 | Wachenschwanz et al. | Jan 2007 | B2 |
7166319 | Ishiyama | Jan 2007 | B2 |
7166374 | Suekane et al. | Jan 2007 | B2 |
7169487 | Kawai et al. | Jan 2007 | B2 |
7174775 | Ishiyama | Feb 2007 | B2 |
7179549 | Malhotra et al. | Feb 2007 | B2 |
7184139 | Treves et al. | Feb 2007 | B2 |
7196860 | Alex | Mar 2007 | B2 |
7199977 | Suzuki et al. | Apr 2007 | B2 |
7208236 | Morikawa et al. | Apr 2007 | B2 |
7220500 | Tomiyasu et al. | May 2007 | B1 |
7229266 | Harper | Jun 2007 | B2 |
7239970 | Treves et al. | Jul 2007 | B2 |
7252897 | Shimokawa et al. | Aug 2007 | B2 |
7277254 | Shimokawa et al. | Oct 2007 | B2 |
7281920 | Homola et al. | Oct 2007 | B2 |
7292329 | Treves et al. | Nov 2007 | B2 |
7301726 | Suzuki | Nov 2007 | B1 |
7302148 | Treves et al. | Nov 2007 | B2 |
7305119 | Treves et al. | Dec 2007 | B2 |
7314404 | Singh et al. | Jan 2008 | B2 |
7320584 | Harper et al. | Jan 2008 | B1 |
7329114 | Harper et al. | Feb 2008 | B2 |
7375362 | Treves et al. | May 2008 | B2 |
7420886 | Tomiyasu et al. | Sep 2008 | B2 |
7425719 | Treves et al. | Sep 2008 | B2 |
7471484 | Wachenschwanz et al. | Dec 2008 | B2 |
7498062 | Calcaterra et al. | Mar 2009 | B2 |
7531485 | Hara et al. | May 2009 | B2 |
7537846 | Ishiyama et al. | May 2009 | B2 |
7549209 | Wachenschwanz et al. | Jun 2009 | B2 |
7569490 | Staud | Aug 2009 | B2 |
7582368 | Berger et al. | Sep 2009 | B2 |
7588841 | Berger et al. | Sep 2009 | B2 |
7597792 | Homola et al. | Oct 2009 | B2 |
7597973 | Ishiyama | Oct 2009 | B2 |
7608193 | Wachenschwanz et al. | Oct 2009 | B2 |
7632087 | Homola | Dec 2009 | B2 |
7656615 | Wachenschwanz et al. | Feb 2010 | B2 |
7678476 | Weller et al. | Mar 2010 | B2 |
7682546 | Harper | Mar 2010 | B2 |
7684152 | Suzuki et al. | Mar 2010 | B2 |
7686606 | Harper et al. | Mar 2010 | B2 |
7686991 | Harper | Mar 2010 | B2 |
7695833 | Ishiyama | Apr 2010 | B2 |
7722968 | Ishiyama | May 2010 | B2 |
7733605 | Suzuki et al. | Jun 2010 | B2 |
7736768 | Ishiyama | Jun 2010 | B2 |
7755861 | Li et al. | Jul 2010 | B1 |
7758732 | Calcaterra et al. | Jul 2010 | B1 |
7764454 | Roshchin et al. | Jul 2010 | B2 |
7833639 | Sonobe et al. | Nov 2010 | B2 |
7833641 | Tomiyasu et al. | Nov 2010 | B2 |
7910159 | Jung | Mar 2011 | B2 |
7911736 | Bajorek | Mar 2011 | B2 |
7924519 | Lambert | Apr 2011 | B2 |
7944165 | O'Dell | May 2011 | B1 |
7944643 | Jiang et al. | May 2011 | B1 |
7955723 | Umezawa et al. | Jun 2011 | B2 |
7983003 | Sonobe et al. | Jul 2011 | B2 |
7993497 | Moroishi et al. | Aug 2011 | B2 |
7993765 | Kim et al. | Aug 2011 | B2 |
7998912 | Chen et al. | Aug 2011 | B2 |
8002901 | Chen et al. | Aug 2011 | B1 |
8003237 | Sonobe et al. | Aug 2011 | B2 |
8012920 | Shimokawa | Sep 2011 | B2 |
8038863 | Homola | Oct 2011 | B2 |
8057926 | Ayama et al. | Nov 2011 | B2 |
8062778 | Suzuki et al. | Nov 2011 | B2 |
8064156 | Suzuki et al. | Nov 2011 | B1 |
8076013 | Sonobe et al. | Dec 2011 | B2 |
8092931 | Ishiyama et al. | Jan 2012 | B2 |
8100685 | Harper et al. | Jan 2012 | B1 |
8101054 | Chen et al. | Jan 2012 | B2 |
8110298 | Choe et al. | Feb 2012 | B1 |
8125723 | Nichols et al. | Feb 2012 | B1 |
8125724 | Nichols et al. | Feb 2012 | B1 |
8137517 | Bourez | Mar 2012 | B1 |
8142916 | Umezawa et al. | Mar 2012 | B2 |
8163093 | Chen et al. | Apr 2012 | B1 |
8171949 | Lund et al. | May 2012 | B1 |
8173282 | Sun et al. | May 2012 | B1 |
8178480 | Hamakubo et al. | May 2012 | B2 |
8206789 | Suzuki | Jun 2012 | B2 |
8218260 | Iamratanakul et al. | Jul 2012 | B2 |
8247095 | Champion et al. | Aug 2012 | B2 |
8257783 | Suzuki et al. | Sep 2012 | B2 |
8298609 | Liew et al. | Oct 2012 | B1 |
8298689 | Sonobe et al. | Oct 2012 | B2 |
8309239 | Umezawa et al. | Nov 2012 | B2 |
8316668 | Chan et al. | Nov 2012 | B1 |
8331056 | O'Dell | Dec 2012 | B2 |
8354618 | Chen et al. | Jan 2013 | B1 |
8367228 | Sonobe et al. | Feb 2013 | B2 |
8383209 | Ayama | Feb 2013 | B2 |
8394243 | Jung et al. | Mar 2013 | B1 |
8397751 | Chan et al. | Mar 2013 | B1 |
8399809 | Bourez | Mar 2013 | B1 |
8402638 | Treves et al. | Mar 2013 | B1 |
8404056 | Chen et al. | Mar 2013 | B1 |
8404369 | Ruffini et al. | Mar 2013 | B2 |
8404370 | Sato et al. | Mar 2013 | B2 |
8406918 | Tan et al. | Mar 2013 | B2 |
8414966 | Yasumori et al. | Apr 2013 | B2 |
8425975 | Ishiyama | Apr 2013 | B2 |
8431257 | Kim et al. | Apr 2013 | B2 |
8431258 | Onoue et al. | Apr 2013 | B2 |
8453315 | Kajiwara et al. | Jun 2013 | B2 |
8488276 | Jung et al. | Jul 2013 | B1 |
8491800 | Dorsey | Jul 2013 | B1 |
8492009 | Homola et al. | Jul 2013 | B1 |
8492011 | Itoh et al. | Jul 2013 | B2 |
8496466 | Treves et al. | Jul 2013 | B1 |
8517364 | Crumley et al. | Aug 2013 | B1 |
8517657 | Chen et al. | Aug 2013 | B2 |
8524052 | Tan et al. | Sep 2013 | B1 |
8530065 | Chernyshov et al. | Sep 2013 | B1 |
8546000 | Umezawa | Oct 2013 | B2 |
8551253 | Na'im et al. | Oct 2013 | B2 |
8551627 | Shimada et al. | Oct 2013 | B2 |
8556566 | Suzuki et al. | Oct 2013 | B1 |
8559131 | Masuda et al. | Oct 2013 | B2 |
8562748 | Chen et al. | Oct 2013 | B1 |
8565050 | Bertero et al. | Oct 2013 | B1 |
8570844 | Yuan et al. | Oct 2013 | B1 |
8580410 | Onoue | Nov 2013 | B2 |
8584687 | Chen et al. | Nov 2013 | B1 |
8591709 | Lim et al. | Nov 2013 | B1 |
8592061 | Onoue et al. | Nov 2013 | B2 |
8596287 | Chen et al. | Dec 2013 | B1 |
8597723 | Jung et al. | Dec 2013 | B1 |
8603649 | Onoue | Dec 2013 | B2 |
8603650 | Sonobe et al. | Dec 2013 | B2 |
8605388 | Yasumori et al. | Dec 2013 | B2 |
8605555 | Chernyshov et al. | Dec 2013 | B1 |
8608147 | Yap et al. | Dec 2013 | B1 |
8609263 | Chernyshov et al. | Dec 2013 | B1 |
8619381 | Moser et al. | Dec 2013 | B2 |
8623528 | Umezawa et al. | Jan 2014 | B2 |
8623529 | Suzuki | Jan 2014 | B2 |
8634155 | Yasumori et al. | Jan 2014 | B2 |
8658003 | Bourez | Feb 2014 | B1 |
8658292 | Mallary et al. | Feb 2014 | B1 |
8665541 | Saito | Mar 2014 | B2 |
8668953 | Buechel-Rimmel | Mar 2014 | B1 |
8674327 | Poon et al. | Mar 2014 | B1 |
8685214 | Moh et al. | Apr 2014 | B1 |
8696404 | Sun et al. | Apr 2014 | B2 |
8711499 | Desai et al. | Apr 2014 | B1 |
8743666 | Bertero et al. | Jun 2014 | B1 |
8758912 | Srinivasan et al. | Jun 2014 | B2 |
8787124 | Chernyshov et al. | Jul 2014 | B1 |
8787130 | Yuan et al. | Jul 2014 | B1 |
8791391 | Bourez | Jul 2014 | B2 |
8795765 | Koike et al. | Aug 2014 | B2 |
8795790 | Sonobe et al. | Aug 2014 | B2 |
8795857 | Ayama et al. | Aug 2014 | B2 |
20010051287 | Kikitsu et al. | Dec 2001 | A1 |
20020060883 | Suzuki | May 2002 | A1 |
20020191320 | Coffey et al. | Dec 2002 | A1 |
20030022024 | Wachenschwanz | Jan 2003 | A1 |
20030202430 | Nishikawa | Oct 2003 | A1 |
20040022387 | Weikle | Feb 2004 | A1 |
20040132301 | Harper et al. | Jul 2004 | A1 |
20040202793 | Harper et al. | Oct 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040209123 | Bajorek et al. | Oct 2004 | A1 |
20040209470 | Bajorek | Oct 2004 | A1 |
20050036223 | Wachenschwanz et al. | Feb 2005 | A1 |
20050142990 | Homola | Jun 2005 | A1 |
20050150862 | Harper et al. | Jul 2005 | A1 |
20050151282 | Harper et al. | Jul 2005 | A1 |
20050151283 | Bajorek et al. | Jul 2005 | A1 |
20050151300 | Harper et al. | Jul 2005 | A1 |
20050155554 | Saito | Jul 2005 | A1 |
20050167867 | Bajorek et al. | Aug 2005 | A1 |
20050263401 | Olsen et al. | Dec 2005 | A1 |
20060147758 | Jung et al. | Jul 2006 | A1 |
20060181697 | Treves et al. | Aug 2006 | A1 |
20060207890 | Staud | Sep 2006 | A1 |
20060269797 | Lu et al. | Nov 2006 | A1 |
20070070549 | Suzuki et al. | Mar 2007 | A1 |
20070172705 | Weller et al. | Jul 2007 | A1 |
20070245909 | Homola | Oct 2007 | A1 |
20080075845 | Sonobe et al. | Mar 2008 | A1 |
20080084627 | Roshchin et al. | Apr 2008 | A1 |
20080093760 | Harper et al. | Apr 2008 | A1 |
20090040644 | Lu et al. | Feb 2009 | A1 |
20090117408 | Umezawa et al. | May 2009 | A1 |
20090136784 | Suzuki et al. | May 2009 | A1 |
20090169922 | Ishiyama | Jul 2009 | A1 |
20090191331 | Umezawa et al. | Jul 2009 | A1 |
20090202866 | Kim et al. | Aug 2009 | A1 |
20090311557 | Onoue et al. | Dec 2009 | A1 |
20100110576 | Akagi et al. | May 2010 | A1 |
20100143752 | Ishibashi et al. | Jun 2010 | A1 |
20100190035 | Sonobe et al. | Jul 2010 | A1 |
20100196619 | Ishiyama | Aug 2010 | A1 |
20100196740 | Ayama et al. | Aug 2010 | A1 |
20100209601 | Shimokawa et al. | Aug 2010 | A1 |
20100215992 | Horikawa et al. | Aug 2010 | A1 |
20100232065 | Suzuki et al. | Sep 2010 | A1 |
20100247965 | Onoue | Sep 2010 | A1 |
20100261039 | Itoh et al. | Oct 2010 | A1 |
20100279151 | Sakamoto et al. | Nov 2010 | A1 |
20100300884 | Homola et al. | Dec 2010 | A1 |
20100304186 | Shimokawa | Dec 2010 | A1 |
20110097603 | Onoue | Apr 2011 | A1 |
20110097604 | Onoue | Apr 2011 | A1 |
20110171495 | Tachibana et al. | Jul 2011 | A1 |
20110206947 | Tachibana et al. | Aug 2011 | A1 |
20110211271 | Ng et al. | Sep 2011 | A1 |
20110212346 | Onoue et al. | Sep 2011 | A1 |
20110223446 | Onoue et al. | Sep 2011 | A1 |
20110235205 | Lu et al. | Sep 2011 | A9 |
20110244119 | Umezawa et al. | Oct 2011 | A1 |
20110299194 | Aniya et al. | Dec 2011 | A1 |
20110311841 | Saito et al. | Dec 2011 | A1 |
20120069466 | Okamoto et al. | Mar 2012 | A1 |
20120070692 | Sato et al. | Mar 2012 | A1 |
20120077060 | Ozawa | Mar 2012 | A1 |
20120127599 | Shimokawa et al. | May 2012 | A1 |
20120127601 | Suzuki et al. | May 2012 | A1 |
20120129009 | Sato et al. | May 2012 | A1 |
20120140359 | Tachibana | Jun 2012 | A1 |
20120141833 | Umezawa et al. | Jun 2012 | A1 |
20120141835 | Sakamoto | Jun 2012 | A1 |
20120148875 | Hamakubo et al. | Jun 2012 | A1 |
20120156523 | Seki et al. | Jun 2012 | A1 |
20120164488 | Shin et al. | Jun 2012 | A1 |
20120170152 | Sonobe et al. | Jul 2012 | A1 |
20120171369 | Koike et al. | Jul 2012 | A1 |
20120175243 | Fukuura et al. | Jul 2012 | A1 |
20120189872 | Umezawa et al. | Jul 2012 | A1 |
20120196049 | Azuma et al. | Aug 2012 | A1 |
20120207919 | Sakamoto et al. | Aug 2012 | A1 |
20120225217 | Itoh et al. | Sep 2012 | A1 |
20120251842 | Yuan et al. | Oct 2012 | A1 |
20120251846 | Desai et al. | Oct 2012 | A1 |
20120276417 | Shimokawa et al. | Nov 2012 | A1 |
20120308722 | Suzuki et al. | Dec 2012 | A1 |
20130040167 | Alagarsamy et al. | Feb 2013 | A1 |
20130071694 | Srinivasan et al. | Mar 2013 | A1 |
20130165029 | Sun et al. | Jun 2013 | A1 |
20130175252 | Bourez | Jul 2013 | A1 |
20130209835 | Qui et al. | Aug 2013 | A1 |
20130216865 | Yasumori et al. | Aug 2013 | A1 |
20130230647 | Onoue et al. | Sep 2013 | A1 |
20130286802 | Kiely | Oct 2013 | A1 |
20130314815 | Yuan et al. | Nov 2013 | A1 |
20140011054 | Suzuki | Jan 2014 | A1 |
20140044992 | Onoue | Feb 2014 | A1 |
20140050843 | Yi et al. | Feb 2014 | A1 |
20140151360 | Gregory et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2003085702 | Mar 2003 | JP |
Entry |
---|
Ferrenberg, Alan M. and D. P. Landau, Monte Carlo study of phase transitions in ferromagnetic bilayers, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, J. Appl. Phys., vol. 70, No. 10, Nov. 15, 1991, pp. 2615-2617. |
Sasaki, J. and F. Matsubara, Magnetic properties of mesoscopic ultrathin magnetic films with uniaxial anisotropy, J. Appl. Phys., vol. 87, No. 6, Mar. 15, 2000. pp. 3018-3022. |
Thiele, J.-U., K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, Temperature dependent magnetic properties of highly chemically ordered Fe55-xNixPt45L10 films, J. Appl. Phys., vol. 91, No. 10, May 15, 2002, pp. 6595-6600. |
Cuccoli, Allesandro, Tommaso Roscilde, Valerio Tognetti, Ruggero Vais and Paola Verrucchi, Anisotropy and Ising-type transition of the S=5/2 two-dimensional Heisenberg antiferromagnet Mn-formate di-Urea, American Institute of Physics, J. Appl. Phys., vol. 93, No. 10, Parts 2 & 3, May 15, 2003, pp. 7637-7639. |
Victora, R. H., Xi Chen and Tao Qu, Temporal Fluctuations of Magnetic Anisotropy and their Impact on HAMR Media Noise, The Center for Micromagnetics and Information Technologies, Aug. 18, 2010. |
Number | Date | Country | |
---|---|---|---|
Parent | 13042840 | Mar 2011 | US |
Child | 14260512 | US |