The embodiments of the present invention relate to energy collection devices, and more particularly to an energy collection device that can harness solar energy as heat or electricity.
Solar power involves methods of harnessing energy from sun light. It has become of increasing interest as environmental costs and limited supplies of other power sources, such as fossil fuels, are realized. Traditional methods of harnessing solar power involve great expensive and complicated solar cells such as photovoltaic semiconductor cells for producing electricity from solar energy. For most people, the solar cells are cost prohibitive and, therefore, impractical. Thus, there exists a need for a simple, efficient, and easy-to-use energy collection device that can be readily constructed and installed in residential or commercial settings.
Accordingly, one embodiment of the present invention is an energy collection device capable of absorbing thermal energy, the energy collection device comprising a housing; a passage within the housing having a first and a second end; said passage adapted to contain a fluid, having a first heat energy, wherein the passage accepts the fluid through a first end thereof such that the fluid may absorb thermal energy within the passage and directs the fluid, having a second heat energy, through the second end of the passage. In one embodiment the energy collection device may be elevated (e.g., over a roof) or in a second embodiment the energy collection device may act as the surface (e.g., the roof).
The types of fluid that can be used include water and viscous fluids like oil, or antifreeze. As set forth in more detail below, the energy collection device can also be incorporated within an energy collection system.
Other variations, embodiments and features of the present invention will become evident from the following detailed description, drawings and claims.
It will be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive.
Initial reference is made to
As illustrated, the energy collection device 100 is elevated and maintained in position by support posts 112. The support posts 112 allow the device 100 to be positioned on a structure without having to remove roofing shingles or other composite roofing materials. The support posts 112 are metal or plastic with one end coupled to the housing 110 and the other end coupled to the roof 102. Screws and other fasteners can be used to connect the support posts 112 to the roof 102 and the housing 110. The gap or spacing created between the energy collection device 100 and the roof 102 allows the energy collection device 100 to first function as a shade or an awning for the roof 102. In other words, the energy collection device 100 not only reduces the amount of heat or sunlight exposure 101 at the rooftop surface 102, the spacing created by the support posts 112 also allows convection airflow over the roof 102 thereby dissipating heat near the rooftop surface 102.
Alternatively, the energy collection device 100 or multiple such devices can be used as roofing materials in place of shingles and other composite roofing materials. In order to do so, the housing 110 of the energy collection device 100 must be constructed of a sturdy material, such as aluminum, copper, or other metallic alloy that is strong enough to support a person's weight such that people are able to walk on the housing(s) without damaging or collapsing the same.
The basic operation of the energy collection device 100 is as follows. While elevated over the roof 102, the energy collection device 100 is exposed to the sun's energy in the form of visible and ultraviolet light. The energy collection device 100 also collects other forms of energy including but not limited to rising heat from inside the house, energy emanating from the earth's surface (not shown), and energy waves and radiant energy from celestial bodies and gravitational forces exerted thereon (not shown). The collective energy sources provide thermal energy to heat the fluid within the pipe 104. The heated fluid is circulated through the pipe 104 within the energy collection device 100. The heated fluid can then be distributed for domestic hot water use, for heating a building, or can be transferred or stored for other uses. The efficiency of the energy collection and absorption depends on various factors including the material used to fabricate the pipe 104 and housing 110, as well as any insulation that may surround the pipe 104.
Reference is now made to
Reference is now made to
As previously described, the energy collection device 100 can be elevated over a roof 102 or a wall 114 of a building 128. Likewise, the energy collection device 100 can serve as a walkway cover or in other scenarios as previously described. After the water from the inlet 106 enters the pipe 104 of the energy collection device 100 and becomes heated by the sun 101 and other sources of heat in the ambient atmosphere, the heated water exits the energy collection device 100 through the outlet 108 and travels into a hot water heater (not shown) inside the building 128. Alternatively, the heated water can be converted for heating the house or commercial structure 128 using known materials and methods. Likewise, the heated water can exit the outlet 108 and be transferred to a depository 130 for future use. For example, the hot water leaving the outlet 108 can be carried to a steam boiler or hot water boiler 130 within a shed 132. The shed 132 can be constructed of cinder blocks or energy collection devices 100. As the heated water within the hot water boiler 130 continues to rise in temperature due to its confinement within the shed 132, the water may eventually reach boiling temperature and generate steam. A secondary energy source (e.g., a flame) may also be in communication with the boiler 130 to ensure the water reaches a boiling temperature. However, the energy required of the secondary energy source will be small given the high water temperature it will be working on. The generated steam can be recovered within the shed 132 and converted into electricity using known electric generators (not shown). In other words, the steam generated can be used to charge an electric generator. The converted electricity can subsequently be delivered and used in the building 128 using known methods 134.
Although the previously described energy collection devices 100 are usually external to a building, the devices can also be located within the building's interior. Likewise, although the energy collection devices 100 are situated over or above a structure, they can also be embedded within or underneath the structure. For example, in a two-story house, the energy collection device 100 can be embedded within the floorboard of the second floor thereby collecting heat circulating within the house. Likewise, the energy collection device 100 can be embedded in between the floorboards of multi-story buildings. In addition, the energy collection device 100 can be mounted in an attic underneath the roof 102, which can collect a tremendous amount of heat especially during summer. The energy collection device 100 as described can be embedded within styrofoam, sheetrock, brick, as well as any economically feasible material.
In another embodiment, the energy collection device 100 is used without the pipe 104 or fluid. That is, the shade created by the housing 110 reduces the heat temperature of the roof or wall thereby maintaining a cooler temperature within the subject structure. Indeed, a simple canvas or similar material elevated over a roof or wall with supports will reduce the roof or wall temperature thereby maintaining a cooler temperature within the structure.
Although the invention has been described in detail with reference to several embodiments, additional variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.