This invention relates to control of energy. In particular, it relates to using a flywheel for supply, storage and recovery of energy.
The conservation and optimal use of energy is a key consideration in the manufacture and running of modern vehicles and machinery. There is an increasing user demand for efficiency and for obtaining the best possible output at the lowest possible cost to the user. Considerations in this cost/output balance include both financial and environmental factors. In addition, there is a demand for improved power and speed from vehicles and machinery, whilst at the same time a desire to provide a comfortable and user friendly feel. Furthermore, there is a trend for engines, motors and other equipment to become ever more compact and streamlined.
There are many known approaches for dealing with the above discussed balance. For example, as user demand for environmentally friendly vehicles grows and the regulations on carbon emissions become ever stricter, hybrid vehicles are becoming more popular. As will be known to the skilled reader, hybrid vehicles use a combination of two or more different power sources to move a vehicle or otherwise power machinery. In the field of motor vehicles, the most common hybrid is a hybrid electric vehicle (HEV) which combines an internal combustion engine (ICE) with one or more electric motors. Depending on the power demand at any given time, one or both of the ICE and the electric motor will be deployed to provide power to the vehicle's outputs. A chemical energy storage system is provided in conjunction with the electric motor so that, during periods when the electric motor is not being used to power vehicle output, it can instead operate as a generator to create and store charge in the chemical energy storage system for later use. Known chemical energy storage systems can be made up of a single type of chemical cell or can comprise any combination of cells having differing chemical formulations. All such chemical energy storage systems are designated herein as being a chemical “battery”.
Problems exist with known hybrid systems since the high cycling frequency of the hybrid battery system charge level caused by, for example, regenerative braking and recovery during a typical vehicle usage scenario and the high power flows associated with these operations accelerate the deterioration of battery health, thereby limiting the system life. Warranty is thus often limited on batteries in conventional hybrid systems. Typically, the chemical battery may have to be changed twice during the lifetime of known hybrid electric vehicles. Furthermore, battery cycling may be limited by protective control systems which control distribution of power supply and/or charging in a hybrid system. An effect of this protective limiting is to impair the CO2 reduction efficacy of the corresponding hybrid system.
Another known approach for optimising energy supply and its conversion from the stored chemical energy to torque, particularly in ICE powered motor vehicles is the use of turbochargers and superchargers. As will be known to the skilled person, turbochargers recover exhaust energy to drive a compressor and increase inlet charge pressure to an engine. Supercharger devices use engine delivered torque to drive compressors to also boost the inlet charge pressure. However, both these devices have associated disadvantages in practice. Turbochargers, as passive devices, are only operable when there is sufficient exhaust mass flow to drive the boosting system. Superchargers, by contrast, are active devices since they are generally crank driven and consequently do not suffer from such operational limitations as turbochargers do. However superchargers do introduce parasitic losses of engine power, thereby reducing their overall efficacy in terms of reducing fuel consumption.
One aspect of user comfort and feel which known motor vehicle applications target is the “torque-interrupt” sensation caused by a gearshift event on an automated manual transmission vehicle. Whilst this transmission type is very efficient, this feeling of torque-interrupt during gearshifts compromises shift comfort and driveability for the user. According to known approaches, electric motors can be used to fill in torque during a shift interrupt of an automated manual transmission, to improve smoothness of the drive for the user. However, additional energy supply is required within the vehicle in order to power such electric motors and, furthermore, there is inevitable energy loss during the energy conversion stage between electric and kinetic energy. Dual clutch and automatic transmissions limit the torque-interrupt during a gearshift, however these transmission types are more expensive than, and/or inherently less efficient than, the automated manual transmission due to associated losses when supplying the drive system with energy.
As discussed above, in order to optimally balance cost and output in a vehicle or machine it is desirable to harness as much of the available energy as possible and to prevent energy merely being dissipated as, for example, heat energy.
Flywheels are known for the storage of energy in the form of kinetic energy, for example for use in vehicles. It is known to use a flywheel to store the energy which would otherwise be converted to heat in a vehicle's braking system when the vehicle decelerates, this stored energy then being available for use to accelerate the vehicle when desired. However, a problem with known flywheel implementation remains that of how to charge the flywheel initially and at points of low energy therein. It is possible to use an electrical motor flywheel charge system. However, it will be appreciated that this is not ideal since it introduces an additional energy demand on the electrical energy storage system within a vehicle, whilst at the same time not providing a reduction in waste energy dissipation from the vehicle.
Hence there is an ongoing requirement for apparatus and methods that optimise use of energy in vehicles and other machinery whilst at the same time not compromising on user-important factors such as comfort, cost effectiveness and environmental friendliness.
The invention is set out in the claims.
Because according to one aspect, an energy storage apparatus is provided that comprises a flywheel, wherein said flywheel is arranged to have energy which has been recovered from engine exhaust gas input thereto, an efficient and self-contained means of storing and recovering energy is achieved. That is, the energy storage apparatus makes use of energy that already exists in a conventional engine, vehicle or machine, rather than requiring an additional energy source to be provided.
By providing an exhaust gas recovery, exhaust gas can be channelled quickly and effectively from an engine output to a flywheel for storage. Advantageously, a Tesla turbine or turbocharger may be used for exhaust gas recovery. Many conventional vehicles already include turbochargers, such that the energy storage apparatus according to this aspect requires minimal rearrangement of an engine configuration in order to be effected.
By providing a clutch in the exhaust gas pathway between the exhaust gas recovery and flywheel, means of controlling the exhaust gas input to the flywheel is provided. Furthermore, by providing a flywheel in a vacuum the flywheel can operate without being impeded by the friction otherwise caused by air resistance, further optimising the apparatus.
Because the flywheel can be mechanically linked to a variable ratio system and/or coupled to the energy output of an engine, the flywheel can be used as an energy source in conjunction with that engine, for example to provide hybrid vehicle drive. Furthermore, by arranging the flywheel such that it can operate as a mechanical battery for other devices in an engine, vehicle, machine or apparatus, the energy efficiency benefits of the flywheel can be optimised. That is, the flywheel is then not limited to a single function that would require it to be used periodically, but instead the flywheel would be used more regularly over an operating period to recover and/or supply energy at times when it is readily available and/or required in an engine, vehicle or machine
Because, according to another aspect, an apparatus is provided which includes both a charge boosting device and a flywheel for supplying energy to drive operation of that charge boosting device, a means for increasing the inlet gas pressure in an engine in an energy-effective, efficient and straightforward manner is provided. The apparatus is flexible and has several different applications, including operation with a known supercharger and/or with a known turbocharger device.
By providing an input supplying energy to the flywheel, the flywheel can initially charge and top up its charge, thus providing a reliable and sustainable mechanical battery for driving charge boosting in an engine. Because the flywheel can be driven by an existing energy source within an engine, vehicle or machine, such as driveline power, engine exhaust gas energy, an auxiliary mechanical device, a chemical battery or an electric motor, enhanced energy efficiency is provided, since no additional energy sources are required to run the apparatus. This feature has further advantages, in that the apparatus only requires fairly straightforward modifications to be made to known engine systems in order for them to realise intelligent reuse and storage of energy therein.
Because the flywheel according to this aspect can be placed in a turbocharger wastegate loop, a self-renewing and self contained energy recovery and storage means is provided. Furthermore, because the flywheel can either be used as the sole energy source for a charge boosting device or as a complementary energy source in combination with an engine, flexibility is provided regarding the size of flywheel used for particular applications. Furthermore, additional options regarding the flywheel control scheme are provided. The flywheel can operate either in isolation or in combination with the engine to drive the charge boosting device in order to optimise the boost pressure in an engine and thus enhance the engine output and overall efficiency.
Embodiments according to the present application will now be described with reference to the Figures of which:
a shows energy flow in the arrangement of
b shows energy flow in the arrangement of
c shows energy flow in the arrangement of
d shows energy flow in the arrangement of
e shows energy flow in the arrangement of
a shows the relationship between the vehicle speed and chemical battery state of charge for a chemical battery used in isolation in a hybrid vehicle;
b shows the relationship between the vehicle speed and chemical battery state of charge in the arrangement of
a shows a possible engine configuration for flywheel torque fill-in;
b shows another, similar arrangement for flywheel torque fill-in;
c shows a further, similar arrangement for flywheel torque fill-in;
d shows a possible control scheme for flywheel torque fill-in
a shows a possible arrangement of an auxiliary flywheel device coupled to an ICE;
b shows an alternative arrangement of an auxiliary flywheel device coupled to an ICE, using a split path IVT layout;
a shows an arrangement wherein a flywheel device is coupled to an ICE upstream of the main vehicle clutch and transmission;
b shows an arrangement wherein a flywheel device is coupled to an ICE at a transmission input;
c shows an arrangement wherein a flywheel is coupled to an ICE at its transmission output; and
d shows an arrangement wherein a flywheel is coupled to a rear axle system.
In overview, according to an aspect there is provided an apparatus for storing energy in kinetic form in a flywheel. The apparatus includes at least one input to the flywheel, wherein that input directs energy that has been recovered from engine exhaust gas to the flywheel. Therefore, the energy that is normally dissipated when exhaust gas is released into the atmosphere is instead recovered and stored in the flywheel for future use. Hence the flywheel is arranged to act as a mechanical battery, which can be charged both initially and during operation by engine exhaust gas.
Any suitable exhaust gas recovery means may be provided for channelling exhaust gas from the engine output point to the flywheel. For example, a Tesla turbine or turbocharger may be used. Preferably, a clutch is provided between the exhaust gas recovery and the flywheel in order to provide control over the energy input to the flywheel. The flywheel and/or clutch may be mechanically connected to a variable ratio system and, from there, mechanically coupled to the energy output of an engine. Since it acts as a mechanical battery, the flywheel can supply energy to the mechanical coupling point, thereby enabling hybrid control of a vehicle or other apparatus using the engine and/or the flywheel in any suitable combination in order to meet energy output requirements at any given time.
The flywheel is not restricted to acting as a mechanical battery for the engine which supplies the exhaust gas thereto, but can additionally or alternatively provide energy to other devices including but not limited to superchargers, turbochargers, chemical batteries and electric machines The flywheel and associated energy recovery and supply devices can be suitably controlled in order to ensure that the flywheel is optimally charged at all times and can supply energy in an efficient and immediate manner as and when such energy is required.
Thus an arrangement and associated methods and control schemes are provided that recognise the potential of using existing energy in an engine, vehicle or apparatus, storing that energy for future use and reusing it at the most suitable time thereafter. The devices involved are mechanically straightforward, readily available and can be arranged in any suitable configuration dependant on user requirements or other restrictions.
In overview, according to another aspect an apparatus, method and control scheme are provided for using a flywheel to supply energy and thus to drive operation of a charge boosting device. The charge boosting device driven by the flywheel energy may be a supercharger or turbocharger of any appropriate any known type. Since a flywheel acts as a mechanical battery that can store energy in kinetic form long term, the charge boosting device can be driven regardless of instantaneous engine speed or power. Furthermore, because the flywheel is its own self-contained energy store, using the flywheel to supply energy to the charge boosting device does not cause parasitic losses of power from the engine or elsewhere.
The flywheel can be charged up initially and at other times during operation using any suitable energy source. Preferably, the flywheel is driven using energy that is already available in the engine, vehicle or machine in which the flywheel is disposed, but which is conventionally dissipated without reuse in such systems. The flywheel may, for example, be driven by engine exhaust gas energy and/or using power from a vehicle driveline or power train. According to an embodiment, the flywheel can even be driven by exhaust gas energy which is wastegated from a turbocharger, thus creating a closed-loop self-propelling energy storage and recovery system.
The flywheel may be implemented for running a charge boosting device instead of the conventional means for running such a device, for example engine power or exhaust gas energy, or the flywheel may be used as an auxiliary energy source, creating a hybrid energy system.
The flywheel can be suitably controlled so that an appropriate amount of energy is supplied to the charge boosting device at any given time according to instantaneous conditions and the air mass flow and pressures requirements of the engine. Thus the flywheel acts to enhance and facilitate the operation of a charge boosting device in order to achieve optimised boost over a range of engine loads in a straightforward yet intelligent and effective manner.
Exhaust-Driven Flywheel
In order to provide energy to and initially drive the flywheel 12, and/or to top up charge in the flywheel battery system, an input 18 is provided to the flywheel 12 via the clutch 16. The input channels exhaust gas energy from the combustion engine of the vehicle in which the flywheel system 10 is provided to the flywheel 12, and enables that exhaust gas energy to be stored in the flywheel 12. The arrangement also includes a suitable output 20 for the exhaust gas, such that supply of exhaust gas energy to the flywheel 12 can be manipulated and controlled.
It will be appreciated that the majority of the exhaust gas created in a vehicle is conventionally released to the atmosphere. This wastes the energy within the exhaust gas by releasing it from the vehicle rather than reusing it. Therefore the vehicle must work to make more energy available therewithin, hence leading to further exhaust gas emissions from the vehicle, thereby creating potential environmental problems. In contrast, the present embodiments harness the energy with exhaust gas and enable it to be stored for future use.
Any suitable device for recovering the exhaust energy and directing it to the flywheel 12 may be provided. For example, a Tesla turbine device (not shown) may be employed to use the exhaust gas as a motive agent and recover exhaust energy therefrom.
As will be known to the skilled person, a Tesla turbine, or disc turbine, is comprised of two or more disc-shaped elements fastened onto a shaft and axially spaced from one another along the shaft by washers or other suitable means. In use, gas or fluid flow in a Tesla turbine is radial, travelling in a circular or spiral path. In the present embodiments, the flow of exhaust gas to the clutch 16 and flywheel 12 may be controlled by varying the axial separation of the discs of a Tesla turbine, in order to increase or decrease the volume of gas being transmitted therethrough and input to the clutch 16, per unit time.
In the arrangement shown in
As shown in
The clutch should be capable of engaging to synchronise the flywheel (12) input and the turbine element in the arrangement as shown in
A lightweight low-inertia dry-type single plate or cone type-clutch could be used as a straight-forward solution. More compact solutions include an electro-mechanical particle clutch which is used on a/c compressor and supercharger drives but typically has a fairly low speed range or a wrap spring clutch device which, being a one way device, will only provide torque to the flywheel preventing any drag losses from the turbine when the engine is not “on-boost”.
When synchronised by the variable ratio system (22), the turbine will spin at flywheel speed and therefore variable inlet geometry could be used to optimise the turbine efficiency based on operating conditions including flywheel speed, exhaust mass flow rate, and exhaust manifold pressure.
And so a mechanism is provided for recovering combustion engine exhaust gas energy and storing it for future use. The flywheel 12 according to the present embodiments does not require any additional energy source such as an electric motor in order to initiate charging or top it up, but instead continual auxiliary charging of the flywheel system is provided by making use of existing exhaust gas energy which would otherwise be wasted in a conventional vehicle system. Unlike turbochargers, the flywheel performance is not limited by turbo lag. Furthermore, the energy in the flywheel 12 does not need to be used immediately but can be stored for future use in a variety of applications within a vehicle, as will be understood further from the descriptions below. Moreover, because the mechanism as illustrated in
Flywheel-Assisted Turbocharging
According to an embodiment of the above-described aspect, the flywheel 12 can be placed in the wastegate loop of a turbocharger. As will be familiar to the skilled person, a turbocharger is a passive device placed in the exhaust gas stream in a vehicle or engine, the purpose of which is to direct exhaust gas energy to a compressor to increase this pressure therein. However if there is too much mass flow through the turbine itself this creates a back pressure which increases the engine's exhaust manifold pressure above its optimum level, thereby making the engine less efficient. In order to avoid this, the turbo charger has a wastegate in order to release excess gas therefrom, hence helping to optimise both the engine boost pressure and the exhaust manifold pressure at different system operating points.
In conventional arrangements, the energy in the exhaust gas that is released from a turbocharger wastegate is not harnessed but instead is lost as the exhaust gas is released from the vehicle. According to the present aspect, this waste of exhaust gas energy is addressed. The energy within the excess exhaust gas emitted from the wastegate of the turbocharger is directed to the flywheel to provide an input thereto. Either immediately or at a later time, the flywheel 12 can then be used to assist in driving the compressor of the turbo charger. Therefore, by using the turbocharger and flywheel 12 in combination, exhaust gas energy is intelligently captured and harnessed in order to assist running of the turbocharger. This enables more efficient operation of the turbocharger, as can be understood from
Looking at
Flywheel-Assisted Supercharging
As well as being operable for use with a turbocharger, a flywheel according to the present embodiments may be used in order to drive a supercharger device for a vehicle. As discussed briefly above, known supercharger devices operate by using engine power in order to drive the compressor of the supercharger and boost charge pressure in a vehicle. This direct use of engine power causes parasitic losses, hence compromising the potential efficiency of the vehicle in operation.
According to the present aspect it has been recognised that a flywheel device can be used to drive a charge boosting device such as a supercharger in order to boost engine charge pressure without directly taking power from the engine, thus avoiding parasitic losses that are typically associated with superchargers. The flywheel can be charged using exhaust gas energy, as discussed above. Alternatively, energy may be recovered from the driveline of a vehicle, for example during regenerative braking or engine load levelling, and stored in an auxiliary flywheel device for use in driving a supercharger. Energy may be recovered from the power train through any suitable mechanical linkage such as a variator, also discussed above.
In operation, a supercharger is coupled to the driveline of the vehicle. The flywheel acts as a torque supply to the supercharger, therefore enabling energy stored in the flywheel to be supplied indirectly to the driveline via the ICE. The mechanical linkage used between the flywheel and the supercharger may include a clutch as discussed above in relation to the exhaust driven flywheel aspect. As an alternative, an overdrive clutch could be used, whereby turbine energy is used directly in the conventional sense to drive the compressor when it is up to speed and flywheel energy is only used when the turbine is idling (i.e. low engine speed). This requires an overrun clutch which only drives in one direction, for example a wrap spring clutch. This is particularly effective for electro-magnetic flywheel configurations in which speeds do not need to match—the flywheel is then charged from the turbine via an electrical path when the turbine is over-boosting at high engine speeds. The flywheel drives the compressor at low engine speeds also via an electrical path.
Because, according to the present aspect, the flywheel is charged using driveline energy and/or exhaust gas, energy that would otherwise be wasted in a conventional system is instead harnessed. By harnessing the otherwise-waste energy, the overall performance of the vehicle is improved. In particular, performance benefits are provided with respect to both fuel consumption and vehicle emissions.
The auxiliary flywheel device according to this aspect can be used as the sole energy source for the supercharger or can be used as an add-on to an existing supercharger energy source. For example, it can provide power boosting to a supercharger at low engine speeds, at which point it is not preferable to use direct engine power for supercharging purposes. Therefore, because the flywheel is operable to enhance power supply to a supercharger, the supercharger can provide an ideal inlet pressure and mass flow into an ICE regardless of the operating engine speed of the vehicle, and in sympathy with any mass flow being provided by a turbo system (if present) at that time. Put another way, the flywheel driven supercharger can provide optimal charge boost at any point of the engine operating map for a vehicle. This provides particular advantages for driving manoeuvres such as pull away, which benefit from an immediate short-term surge of energy when engine exhaust mass flow is low and power is otherwise low, especially in a highly boosted engine.
Another advantage of the flywheel driven supercharger is that it allows for downsizing of an engine since the engine power density during low exhaust mass flow events such as pull away, described above, is improved. The reduction in size reduces friction and pumping losses, thereby improving its efficiency. It is anticipated that, by actively controlling the mass flow into the cylinder of an engine to optimum in all conditions, the flywheel driven supercharger could result in up to a 30% reduction in fuel consumption for an engine even without downsizing. Downsizing the engine will therefore enhance this potential fuel consumption advantage and also satisfy the growing consumer trend for achieving maximum performance from as small, compact and low cost an ICE as possible.
The above described advantages of the flywheel driven supercharger are particularly pronounced for diesel engines for which there is typically more gaseous mass in the chamber to be compressed and expanded than would be the case for gasoline engines. As the skilled person will appreciate, the ideal inlet pressure varies between engine and vehicle types, and can be derived, for example from the design load map for such a vehicle.
Dual-Mode Battery
According to an exemplary embodiment of the present aspect, a mechanical flywheel battery 40 operates in parallel with a chemical battery 42, feeding into the power electronics 44 of an electric machine 46 which, in turn, is arranged to provide power to the hybrid driveline 48 of a vehicle.
The arrangement as shown in
By using a mechanical flywheel battery 40 in conjunction with a chemical battery 42, it is possible to reduce the overall costs of the battery supply for an electric machine since a smaller chemical battery will be required for use in conjunction with a mechanical battery for any given power requirement, as compared to a chemical battery being used on its own, without mechanical battery support. Alternatively, the lifetime costs of the electrical supply system could be reduced by increasing the life of an existing battery by reducing the cycling frequency and/or the peak power demanded of, or supplied to, the chemical battery.
Looking at
Going back to control step 510, if it is decided at step 528 that power is to go into the battery system, the next consideration is whether this power-in will happen at low cycling power 530, for example during plug-in charging or otherwise slow charge maintenance, or whether the power-in is to happen at high cycling loads or power, for example during regenerative braking or engine load levelling. For low cycling power-in, the energy will be stored in the chemical battery 42. However for high cycling loads or power the energy will instead be stored in the mechanical flywheel battery 40. In this manner, a control system is provided that optimises the energy storage and recovery cycling characteristics of each of the battery types whilst at the same time ensuring that each battery is sufficiently charged to deal with dynamically changing engine and vehicle requirements.
a to 6e further illustrate the above-exemplified control logic.
In
In
In
Finally,
a and 7b show a typical battery charge cycle for a chemical battery, as compared to vehicle speed, for a conventional chemical battery working in isolation and for a chemical battery working in dual mode with a flywheel battery, respectively. It can be seen from these Figures that by using energy from a flywheel battery during periods of, for example, fast acceleration or deceleration, and thereby avoiding high power flows and high cycling frequency of charge in a chemical battery, greater stability of charge in the chemical battery is achieved.
By way of further example, according to conventional vehicles using chemical batteries alone in a configuration such as that shown in
In a further advantage, the use of a flywheel in dual mode with a chemical battery avoids high power flows in and out of the chemical battery, thereby preventing excessive temperature elevation in the chemical battery. As the skilled person will appreciate, elevation of temperature in a chemical battery over a period of time contributes to its deterioration. Furthermore, elevating the internal temperature of the chemical battery will lead to increased system inefficiency as Ohmic losses in subcomponents rise with increased Impedance, commensurate with the elevation in battery temperature.
The overall mechanical battery/chemical battery dual-mode arrangement has an extended expected lifetime as compared to conventional chemical-only battery arrangements. Dual mode mechanical/chemical battery operation as described herein is not limited to use in conventional hybrid engines or to electric vehicles. Instead the principle may be applied more globally to other vehicle machinery and equipment, including lifts and cranes.
Flywheel Torque Fill-In System
According to a yet further aspect, a flywheel according to the present embodiments may be used to “fill-in” output driveline torque on a vehicle during a “torque-interrupt” caused by a gearshift event on an automated manual transmission vehicles. As will be understood from the description below, the fill-in layout and associated control methods herein address the “torque-interrupt” sensation, which can be a problem for some users, by using flywheel energy to drive or brake transmission output during a gearshift event to at least reduce or potentially eliminate the torque-interrupt feel for the user.
a shows a possible layout for using stored flywheel energy to provide torque fill-in. A flywheel motor 80 is connected to a variator 82 by a suitable isolating coupling 81. In turn, the variator 82 is mechanically coupled to the output of the internal combustion engine 84 downstream of its transmission 86, so that both the flywheel 80 and the engine 84 can provide energy to the final drive 88 of the vehicle.
The power provided by or taken in by a flywheel is proportional to the angular acceleration of the flywheel, i.e. the rate of change of flywheel speed, assuming the flywheel has a constant inertia. Therefore the rate of change of torque delivered by the flywheel 80, via the variator 82, is inversely proportional to the angular acceleration of the flywheel and thus the rate of change of ratio across the variator 82. However it is anticipated that controlling ratio across the variator 82 alone would not provide sufficient control resolution for effective flywheel torque fill-in as required according to the present aspect.
As will be known by the skilled reader, most variators are designed to control the speed ratio there-across and are not inherently designed for torque control. For variatiors in which speed only is controlled, using a variator in isolation to control torque over short durations gives rise to potential problems due to internal slippage of variator elements and, possible delays in the reaction of the variator's regulation mechanism. Therefore, in order to provide sufficient control of the torque delivered to or taken from the driveline by the flywheel 80 according to the present aspect, regulating coupling means 89 are provided between the variator 82 and its final mechanical coupling point 87 with the driveline 88.
This use of regulating coupling 89, including a clutch, appropriately positioned within the ratio train as illustrated in
In operation, the clutch comprised in the regulating coupling 89 can direct and control both brake torque and accelerating torque from the flywheel 80. That is, if the flywheel side element has a speed which is below the speed of the driveline side element then brake torque will result from the clutch action. Conversely, if the flywheel side element has a speed that is above the driveline side element then accelerating torque will result from the clutch action.
It will be appreciated that the magnitude of the slip across the clutch will increase the extent to which energy is dissipated in the clutch. However, according to the present embodiments, minimal energy dissipation is suffered in the clutch device during its operation, providing slip limitation in conjunction with variator control. This allows for downsizing of the clutch unit within the regulating coupling 89 as compared to a typical launch clutch on a separate ratio transmission vehicle. The clutch used in the regulating coupling 89 according to the present embodiments may be of any suitable type including a magnetic clutch, a passively cooled dry clutch unit, a passively cooled sealed wet clutch unit with mechanical actuation device, wet clutch plates with internal passive pumping device, or a multi plate clutch.
The control strategy for flywheel torque fill-in can be understood with respect to the arrangement of
For a “power-on” upshift, the flywheel 80 is required to provide accelerating torque to the driveline 88. This enables the torque change at the vehicle wheels during the gearshift to be spread over the complete shift without compromising the shift time or vehicle speed. Thus advantages provided are over conventional power shifting transmissions which must implement torque change at the wheels during a first torque phase before speed can be changed, thus leading to an interrupt sensation for the user.
By way of illustrative example,
As shown in
The considerations and control flow are similar for a power-on downshift. wherein a conventional power shifting transmission must implement torque change at the wheels in a torque phase after speed has been changed. However, by using a flywheel 80 to contribute to braking torque during a power-on downshift, the torque change at the wheels during the shift can be spread over the complete shift without compromising shift time or speed. Furthermore, the braking energy is collected in the flywheel for later return as per the shiftup scenario discussed hereabove.
During a power-off downshift or upshift using a configuration as shown in
Thus the flywheel configuration and control method according to the present aspect provide a way of controlling torque delivered during a gearshift event in order to provide improved shift comfort for the user over the gearshift period. The flywheel fill-in system provides an efficient means of energy storage and recovery since energy between the flywheel and the driveline remains in the kinetic form, hence preventing energy dissipation that is often associated with energy conversion stages in vehicles and machinery.
Because, according to the present aspect, it is not necessary to convert between energy types, efficiency is increased. Therefore more energy is available in the overall system such that potentially no additional energy sources are required for torque fill-in to be provided. Because the flywheel is arranged both to provide energy to the driveline when required and to recover energy from the driveline at other points during a vehicle usage cycle, it makes use of energy that is already present in a vehicle and thus does not require an energy source in order to provide its torque fill-in function. This provides a significant advantage over, for example, electric motor fill-in systems that require an additional energy source, or at least, an energy conversion stage, in order to provide torque to the driveline.
It is anticipated that an electrically-controlled automated manual transmission having a sufficiently-sized auxiliary flywheel device will realise both torque fill-in and the additional energy efficiency benefits associated with hybrid arrangements as discussed herein. This will enable around a 20% fuel consumption reduction as compared to using a dual clutch transmission for a similar vehicle and engine operating conditions. Furthermore, using an automated manual transmission in combination with flywheel torque fill-in is no more expensive than using a dual clutch transmission.
A flywheel and associated variator and coupling, if required, can be retrofitted to an existing automated manual transmission, thereby improving its efficiency and providing improved user comfort during gearshift events in a straightforward and relatively low cost manner. The package impact of retrofitting a flywheel as described herein for torque fill-in purposes in existing systems is very low since no major redesign of the system is required for doing so. Therefore the present aspect has potential for use in existing vehicles as well as in future vehicle designs.
Variator and Device Configuration Options
It will be appreciated that the choice of variator type and the device layout or configuration options for the above-described flywheel aspects are not limited to those as specifically described or illustrated herein. Instead, any suitable device choice and layout may be implemented according to the requirements to be met for a particular vehicle, engine, machine or other apparatus.
The function of a variator device is to match the speed of a flywheel to the speed at the mechanical coupling point at which a flywheel is coupled to the output of an ICE or other output means. In effect, the variator is a power translator. That is, power in the flywheel embodiments discussed above is proportional to torque multiplied by angular speed. The function of the variator or other power translator used is to translate high torque and low speed at one side thereof to low torque and high speed at the other side of the power translator.
Both the choice of mechanical coupling point and the variator design impact on the functionality of a flywheel assisted system according to the aspects described herein. The variator options for those aspects in which a variator is utilised include a belt type continuous variably transmission (CVT), a traction type CVT, a mechanical split path infinitely variable transmission (IVT), an electrical split path IVT, a hydrostatic CVT/IVT and one or more electrical motors. Indeed, the system could even be air-driven.
a shows a possible flywheel and variator layout that could be used, for example, for torque fill-in purposes. The flywheel 90 is preferably arranged in a vacuum 92. The flywheel 90 connects to a coupling clutch 94 by any suitable coupling means. The coupling clutch 94 provides a connection between the flywheel 90 and a variator device 96. The variator device 96 is, in turn, mechanically coupled to the transmission input of a vehicle, between the internal combustion engine 97 and the transmission 99.
b shows an alternative layout comprising a split path IVT. Again, a flywheel 90 is provided preferably in a vacuum 92 and is in connection with a coupling clutch 94, which in turn connects to a variator. The variator device used in this arrangement includes epicyclic stages 96 and an inline traction variator 98. The inclusion of an IVT variator system improves the potential functionality of the flywheel assisted engine, providing increased recovery range at low speed and also enabling launch boost.
It will be seen that in
a to 10b further illustrate potential coupling configuration options for flywheel assist according to the presently described aspects.
In
The arrangement in
b shows an alternative coupling configuration similar to that shown in
c illustrates another possible coupling configuration wherein the flywheel 100 is coupled at the transmission output. This arrangement is advantageous since the energy recovery from the flywheel 100 is not interrupted by gearshifts. Furthermore, there is potential for a flywheel only mode, wherein the flywheel 100 is the sole energy source and energy does not come from the ICE 102, which is possible as long as the main clutch 104 is open. However the configuration in
d shows a rear axle system wherein the flywheel 100 is provided between the engine 102 and the rear wheels 109 of a vehicle. As with the arrangement as shown in
A further use of a flywheel in a suitable configuration as discussed above is in launch support. Dependent on the vehicle type and the engine load map, the flywheel may be the sole torque supply for launch or may be used in conjunction with the engine torque supply. For example, for a relatively small vehicle in a situation such as in a queue of traffic, nudging forward at regular intervals, the flywheel could be sufficient to supply torque for launch of the vehicle for each nudge forward. Alternatively, for a larger vehicle or for longer or higher-speed movements of a smaller vehicle, the flywheel could be used in conjunction with part of the engine capability, for example using two engine cylinders out of the four available. An appropriate control strategy can be put in place so that the optimum combination of flywheel and engine torque supply is used at any given time taking into account vehicle factors and potentially also environmental factors such as emissions restrictions in particular areas.
Another factor in the suitability of the particular variator or coupling configuration according to the presently described aspects is the speed of the flywheel itself during operation. The kinetic energy stored within a flywheel at any given time is directly proportional to the square of its speed (E α ω2). Therefore if for example half the stored energy is extracted from a high-speed flywheel this will cause a smaller percentage speed drop in the high-speed flywheel as compared to taking out half the energy from a low-speed flywheel. It follows that a faster flywheel helps to reduce the required ratio range of the variator device being used for coupling that flywheel to an ICE.
Variants
It will be appreciated that the flywheel aspects as described herein are not mutually exclusive but can be implemented in any suitable combination in a vehicle, machine or other apparatus. For example, an engine layout may include a relatively small flywheel to be used for any or all of: driving a supercharger, charging a chemical battery, and providing an auxiliary energy supply or recovery in addition to that which is provided by the main power source during vehicle start or stop events. The same engine configuration could also include a relatively large flywheel for use in direct and/or hybrid drive of the vehicle wheels.
For any of the above described aspects it is possible for the flywheel to be configured such that, on switch off of the vehicle or the equipment, the flywheel is run down and in doing so charges a chemical or other long term battery storage means.
Dependant on the particular requirements to be met or restrictions to adhere to, a flywheel may be included in an engine or machine during manufacture or retro-fitted to an existing engine or machine after manufacture, in a number of different configurations.
Thus a plurality of aspects are provided herein, in each of which a flywheel is implemented in an engine, vehicle, machine or apparatus in order to advantageously harness the available energy therein and use it to improve overall performance and output. There are no additional energy sources required to run or charge the flywheels, but instead it is recognised according to the present aspects that energy which is dissipated in conventional systems can instead be usefully captured, stored and reused using a suitable flywheel arrangement. Furthermore, the flywheel arrangements herein may be suitably manipulated and controlled in order to meet changing operating conditions and user requirements over time in a straightforward and energy efficient manner.
In practice, operation of the flywheel and other means cooperating therewith according to the above-described aspects can be run and controlled using any suitable hardware or software means. Instructions for controlling the operation may be recorded in a digital or analogue record carrier or computer readable medium. The record carrier may comprise optical storage means such as a readable disc or maybe in a form of a signal such as a focussed laser beam. A magnetic record carrier such as a computer hard drive may also be used for storage of instructions for controlling the flywheel arrangements described herein. Alternatively, solid state storage or any suitable signal recording may be employed.
A computer or other suitable processing means, for example an engine control unit (ECU), may be programmed to execute instructions for controlling operation of the described arrangements. The processing means may also be used for controlling operation of other components within an engine, machine vehicle or apparatus in which the flywheel arrangement is comprised or with which the flywheel arrangement is associated. The processing means may also be used for recording and/or storing data relating to the flywheel arrangement and/or other components.
A computer program may be provided for use in an ECU or other processing means in order to implement the control of the arrangements described herein. Such computer implementation may be used to provide automated control of the flywheel arrangements. Alternatively or additionally, operation and control of the arrangements described herein may be carried out using any suitable combination of computer and user implemented steps. Therefore, in operation, some degree of automation may be provided for controlling operation of the flywheel arrangements but there may also be the option for the user, for example the driver of a vehicle, to issue instructions or take other action in order to control operation of the flywheel arrangements described herein.
The present aspects recognise that energy can most often be recovered in a vehicle or machine in kinetic form and thus, by using a flywheel to store energy also in kinetic form, reduce or avoid energy dissipation due to energy conversion stages. The flywheel can store energy in kinetic form over an extended period of time and, furthermore, can be used to supply energy in kinetic or other forms to other energy storage devices according to conditions overtime, for example, during engine switch off.
The flywheel aspects described herein provide substantial advantages over known arrangements by enabling enhanced efficiency and performance in a user friendly, cost effective, compact and environmentally friendly manner. They can be implemented in any suitable vehicle, engine, machine or apparatus in order to improve its output performance and meet user requirements in a manner not previously possible using prior art arrangements.
Number | Date | Country | Kind |
---|---|---|---|
0918385.6 | Oct 2009 | GB | national |
0918386.4 | Oct 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/065791 | 10/20/2010 | WO | 00 | 8/9/2012 |