The present invention relates to an energy conversion and transfer arrangement for thermophotovoltaic devices and thermophotovoltaic devices comprising such an energy conversion and transfer arrangement.
With the high demand of electricity and even more of clean, CO2 neutral energy sources, the efficiency with which the energy is harvested plays a more and more important role. As gradually many industrialized countries aim for shifting away from nuclear power production, the demand for alternative energy sources is greater than ever. However, so far few if any really viable alternatives are known. Many of the “classical” renewable energy sources such as wind-turbines or solar power plants have significant drawbacks preventing their wide-spreading.
Still, even if these drawbacks of “classical” renewable energy sources such as wind-turbines or solar power plants would be solved, there is still the major problem that quite often these sources of renewable energy are available at a very different location than where the electrical energy is needed. The great distances between the generation location and the energy consumers require very complex, expensive and environmentally unfriendly infrastructure to transport the produced electrical energy. Furthermore, regardless of the improvements of such infrastructures in the latest period, there are still significant losses in the transport of electrical energy over long distances. Therefore there is an urgent need for decentralized energy production. In other words, the future of energy production lies in producing energy as close as possible to the consumer. This not only reduces/eliminates transmission losses but relives the electrical grid while ensuring much higher levels of flexibility.
One of the fields of great interest for decentralized energy production is the field of thermophotovoltaic devices, devices designed to transform chemical energy stored in a fuel into electro-magnetic radiation and then into electricity. However, the relatively reduced efficiency of the existing thermophotovoltaic devices has limited their use and mass-deployment.
Furthermore there is an increasing demand for mobile energy carriers/generators, ranging from portable electronic devices to electrically-powered heavy machinery. There is also a need for multi-purpose energy generators, providing for selective or simultaneous generation of heat; and/or light and/or electric.
As for efficiency, the most problematic aspect efficiency of these chemical-to-electric energy converters is one side the inefficiency of the conversion of chemical energy into electro-magnetic radiation and on the other hand the inefficiency of the conversion of the electro-magnetic radiation into electricity.
The objective of the present invention is thus to provide an energy conversion and transfer arrangement enabling a highly efficient transformation of chemical energy into electricity by means of a thermophotovoltaic element.
A further objective of the present invention is to provide a thermophotovoltaic device comprising such an energy conversion and transfer arrangement.
An even further objective of the present invention is to provide a thermophotovoltaic system for selective and/or simultaneous generation of heat, light and electricity.
The above-identified objectives of the present invention are solved by an energy conversion and transfer arrangement, comprising a spectral shaper with an input surface 3.X defining a flow-through heat transfer area and an electro-magnetic radiation emitter arranged within said flow-through heat transfer area to be exposable to thermal radiation, the electro-magnetic radiation emitter being configured for emitting predominantly near-infrared radiation when exposed to high temperature.
The spectral shaper is configured as a band pass filter for a first, optimal spectral band of the radiation emitted by the electro-magnetic radiation emitter when exposed to high temperature. The spectral shaper is further configured as a reflector for further, non-optimal spectral band(s) of the radiation emitted by the electro-magnetic radiation emitter, so that said second, non-optimal spectral band radiation is recycled as radiation redirected towards the electro-magnetic radiation emitter.
Said further objectives of the present invention are solved by a thermophotovoltaic device comprising such an energy conversion and transfer arrangement and a photovoltaic cell arranged adjacent to said energy conversion and transfer arrangement in a radiating direction of its electro-magnetic radiation emitter.
The even further objectives of the invention are solved by a thermophotovoltaic system comprising such a thermophotovoltaic device and a fuel source arranged such as to direct a combustible fuel mixture from the fuel source towards an input side of the flow-through heat transfer area, wherein the fuel source and/or the flow-through heat transfer area are configured such that the combustion is essentially limited to the surface of the heat transfer-emitter unit and so that combustion of the fuel mixture in the gas phase is minimized.
The most important advantage of the present invention is that achieves a very high efficiency by optimizing all stages of the energy conversion to minimize losses in each stage:
Further characteristics and advantages of the invention will in the following be described in detail by means of the description and by making reference to the drawings. Which show:
Note: The figures are not drawn to scale, are provided as illustration only and serve only for better understanding but not for defining the scope of the invention. No limitations of any features of the invention should be implied form these figures.
Certain terms will be used in this patent application, the formulation of which should not be interpreted to be limited by the specific term chosen, but as to relate to the general concept behind the specific term.
As shown on
The spectral shaper 3 comprises an input surface 3.X which defines a flow-through heat transfer area X. The spectral shaper 3 has the following functions:
The electro-magnetic radiation emitter 2 allows for surface specific fuel combustion processes such as catalytic conversion which heat up the emitter to high temperatures. It either comprises a material which provides sufficient stability and/or it comprises a substrate made of a high temperature resistant material, preferably a ceramic material coated by a material supporting surface specific fuel combustion processes. In addition this electro-magnetic radiation emitter 2 may also serve itself as a spectral shaper (same as 3) which may support the function of the spectral shaper 3 or replace it alltogether. There is also the possibility that 2 and 3 act together as an optical cavity type arrangement to both enhance energy conversion processes and spectral shaping functions.
Optionally, a barrier layer 3.1 which is transparent to predominantly near infrared radiation—preferably a quartz barrier layer 3.1—is provided between the heat transfer—emitter unit 2 and the spectral shaper 3 in order to suppress heat conduction as well as to account for possible heat expansion induced forces and to even better filter out/reflect all non-optimal spectral band(s) of the radiation emitted by the electro-magnetic radiation emitter 2, so that said second, non-optimal spectral band radiation is recycled as radiation redirected towards the electro-magnetic radiation emitter 2.
The figures depict functionally and structurally symmetric embodiments of the energy conversion and transfer arrangement 10 with a symmetric spectral shaper 3 located on opposite sides electro-magnetic radiation emitter 2, wherein the electro-magnetic radiation emitter 2 is arranged to emit predominantly near-infrared radiation in two opposing directions. The embodiment shown on
This figure illustrates well how a pair of spectral shapers 3 define the flow-through heat transfer area X having an input side X.4 and an output side X.5. An in-flow of combustible fuel mixture at an input side X.4 of the flow-through heat transfer area X is shown on the figures with waving dashed lines, while the out-flow of exhaust gases at said exhaust side X.5 of the flow-through heat transfer area X is shown with dotted-dashed waving lines.
In its most preferred embodiment (as shown on
Furthermore, the photovoltaic cell 7 comprises a reflective layer 7.9 on a second surface of the conversion area 7.5 situated on an opposite direction as said first surface. Additionally electrical back plane contacts 7.7 are located for example between said conversion area 7.5 and said reflective layer 7.9 and wherein electrical front plane contacts 7.3 are located for example between said anti-reflection layer 7.1 and the conversion area 7.5. Alternatively (not shown on this figure), both electrical front- and back-plane contacts may be arranged either between said conversion area 7.5 and said reflective layer 7.9, or both between said anti-reflection layer 7.1 and the conversion area 7.5. Some of the above described functional layers may also be missing or several functions may be combined in one layer.
As shown on
For cooling of the thermophotovoltaic device 100 and or for providing a heating function, an active cooling layer 6 is provided between the spectral shaper 3 of the energy conversion and transfer arrangement 10 and the photovoltaic cell 7 and/or at a back side of the photovoltaic cell 7 directed in opposite direction as the spectral shaper 3, wherein said active cooling layer 6 comprises a cooling agent, such as water or other coolant between a cooling agent input 6.1 and a cooling agent output 6.2. The cooling layer 6 is configured so as to absorb lower wavelength radiation emitted by the spectral shaper 3 and/or the electro-magnetic radiation emitter 2 of the energy conversion and transfer arrangement 10, providing cooling to the photovoltaic cell 7 by thermal connection.
A cooling layer, optimized for contact cooling, may be located behind the total reflector 1 in addition to other cooling measures or stand alone.
In order to improve the radiation absorption of the cooling layer 6, micro-channels are provided in the cooling layer 6, connecting said cooling agent input 6.1 and said cooling agent output 6.2.
However this active cooling layer 6 may be employed to provide a heating function as well by warming up a cooling agent or simply water at the cooling agent input 6.1, thereby providing heat at the cooling agent output 6.2. This option shall be exploited in a thermophotovoltaic system 200 (described in following paragraphs with reference to
In further embodiments (not shown on the figures), the spectral shaper 3 and/or the photovoltaic cell 7; and/or the barrier layer 3.1; and/or the heat conduction barrier 4 are configured as open cylindroids, preferably open cylinders preferably arranged coaxially around the electro-magnetic radiation emitter 2. Polygonal structures are also possible. The thermophotovoltaic device 100 may have the shape of other symmetrical (e.g. hexagonal, octagonal, elliptical spherical) or non symmetrical bodies.
One shall note that the thermophotovoltaic device 100 must not be completely symmetrical, certain layers (such as the barrier layer 3.1, the heat conduction barrier 4, the spectral filter 5 or the active cooling layer 6) being provided on one but not the other directions.
In a thermophotovoltaic system 200 (described in following paragraphs with reference to
The fuel source 50 is a chemical energy source, wherein the chemical energy carrier is preferably a fossil fuel such as methanol or hydrogen.
As shown on
A further advantageous embodiment of the thermophotovoltaic system 200 comprises in addition a condenser unit 60 configured to recover liquid by condensing vapour in the exhaust gases at said exhaust side X.5 of the flow-through heat transfer area X. In case the fuel is Methanol for example, the condenser unit 60 is laid out for condensing water vapours resulting from combustion of the Methanol. In this way, the thermophotovoltaic system 200 is also capable of acting (simultaneously or selectively) as a source of pure water.
In the specific example of Methanol as fuel, at an efficiency of about 20% a thermophotovoltaic system 200 according to the present invention combusting 1 L of Methanol, will produce:
It will be understood that many variations could be adopted based on the specific structure hereinbefore described without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
12180311.8 | Aug 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/066798 | 8/12/2013 | WO | 00 |