The present invention relates generally to hearing systems, devices, output transducer supports, and methods. More particularly, the present invention is directed to hearing systems that comprise an elongate support adapted to minimize contact with the ear while the transducer is positioned near the user's eardrum, thereby providing improved comfort to the user. The systems may be used to enhance the hearing process of those that have normal or impaired hearing with comfort.
People who wear hearing aids would like hearing aids with certain characteristics, such as cosmetic appeal, comfort and sound quality. With respect to comfort, hearing aids are often used for prolonged periods of time and people generally do not want to use a device that is uncomfortable. Although the importance of cosmetics will vary among individuals, people generally have a desire to hide a handicap such as a hearing deficit. Amplified sound quality is also important, in particular restoring the ears natural ability to detect sound localization cues at high frequencies. Although current hearing aids provide some benefit to the user, the above characteristics are generally not all satisfied with a single device.
Efforts to improve hearing aids have often resulted in an improvement of one characteristic at the expense of another. Early hearing aids included behind the ear hearing aides (hereinafter “BTE aids”) that placed much of the hearing aid electronics, for example the microphone and speaker, behind the ear. Although BTE aides provided somewhat improved hearing, these aids were readily apparent on the user and not cosmetically attractive. Advancements in electronics technology provided smaller components that led to the development of the completely in canal hearing aid (hereinafter “CIC aids”). The CIC aids have desirable cosmetics because the device is generally deep in the canal and not visible. However, these devices can be uncomfortable due to jaw movements, and the user's own voice can sound hollow and unnatural.
The unnatural and hollow sound that can occur with CIC aids has been referred to the occlusion effect. To reduce the occlusion effect, a vent can be placed in the CIC device that allows sound waves to pass through the device. Although such vents can improve the sound quality of the user's own voice, vents can also cause unwanted feedback, which produces a whistling sound.
A potential problem with hearing aids that place the microphone behind the pinna of the ear is that directionally dependent sound localization cues, for example in the 6 to 12 kHz frequency range, may not be present in the amplified signal. As described in the co-pending U.S. patent application Ser. No. 11/121,517, filed May 3, 2005, entitled “Hearing System Having Improved High Frequency Response”, these localization cues are important for understanding speech, for example speech of a desired person in the presence of additional people who are also speaking. Although placing the microphone near the ear canal can improve these sound localization cues, the microphone is often near a sound emitting transducer, such as a speaker, so that feedback can result.
Although open canal hearing aids can provide improved comfort, these devices have generally been deficient with respect to other desired characteristics. For example, some open canal hearing aids use external electronics, for example microphones and speakers such that these devices may not be cosmetically appealing. Also, open canal hearing aids have generally had limited success in providing frequency dependent sound localization cues. Open canal hearing aids are described in U.S. Pat. No. 5,987,146 and have been sold under the name of ReSound AiR, available from GN ReSound North America, Bloomington, Minn. Several modifications and refinements have been made to the original open canal hearing aids, for example as described in U.S. Pat. No. 5,606,621 and U.S. Pub. Nos. US 2005/0078843 and 2005/0190939, and open canal hearing aids are commercially available, for example from Vivatone Hearing Systems LLC of Shelton Conn.
Hearing aids with the sound sensitive microphone positioned in the ear canal show some promise of potentially providing sound localization cues. However, placement of the microphone in the canal of an acoustic hearing aid which uses a sound generating speaker positioned in the ear canal can produce significant feedback. Thus, many open canal acoustic hearing aids do not use a microphone in the ear canal. Although the amplification gain of a hearing aid device can be decreased to reduce feedback, decreasing the gain can also make it harder for a user to hear weak sounds, which is contrary to the purpose of wearing a hearing aid device. Because of this feedback that generally precludes placement of the microphone in the ear canal, many acoustic hearing aids do not provide directionally dependent sound localization cues. One approach to providing sound localization cues has been to provide a directional microphone instead of an omni-directional microphone. However in at least some instances, devices using directional microphones have met with only limited success.
One promising approach to provide sound localization cues has been to place the microphone inside the ear canal and drive the eardrum or other ear structure directly with non-acoustic energy, for example with electromagnetic energy, so that feedback is reduced. Rather than using acoustic energy to drive the eardrum, the eardrum can be driven electromagnetically with a magnet placed on the ear so as to reduce the acoustic feedback to the ear canal microphone as discussed in U.S. Pat. Nos. 5,259,032; 5,276,910; and 5,425,104; as well as U.S. patent application Ser. No. 11/121,517 and U.S. Patent Application Publication No. 2006/0023908, entitled “Transducer for Electromagnetic Hearing Devices”. Such devices typically use a coil wrapped around a core (hereinafter “core/coil”) to transmit electromagnetic energy from the coil to the magnet positioned on the ear structure.
One difficulty encountered with hearing aid devices that use a coil to electromagnetically drive a magnet positioned on the eardrum, stapes or other ear structure is that such devices can be uncomfortable for the user. Work in relation with the present invention suggests that this discomfort is associated with placement of the coil deep within the ear canal near the eardrum. One the one hand, this placement near the eardrum is desirable as the coil is near the magnet positioned on the ear structure so that electromagnetic energy can be effectively coupled to the magnet. However, as the coil is positioned near the eardrum, the coil should be held accurately to avoid damage to the eardrum. With such devices, an ear canal shell can be used to hold the core/coil in place deep within the ear canal. Although the shell can be customized specific to each user, for example molded, and have openings to provide an open canal hearing aid design, such devices have provided less than ideal results. In particular, users can experience skin irritation, discomfort, and even ear pain due to friction between the shell and the canal skin. Friction can arise from speech production, mastication, and swallowing, potentially causing irritation and discomfort.
In addition to the shortcomings described above, present coil designs for electromagnetically driven eardrum magnet hearing aids may be less than ideal. In some instance, the size requirements of the coil are dictated by electromagnetic field requirements (B fields) to drive the magnet. However, the size of the coil of such devices may be larger than necessary and contribute to user discomfort.
In light of the above, what is needed is a comfortable hearing aid device that is cosmetically attractive and provides good sound quality including sound localization cues.
Description of the Background Art. U.S. Pat. Nos. 5,259,032; 5,276,910; 5,425,104; 5,987,146 and 5,606,621 have been described above. Other patents of interest include: U.S. Pat. Nos. 4,800,084; 5,804,109; 6,084,975 and 6,436,028. Patent Application Publication Nos. 2005/0078843; 2005/0190939 and 2006/0023908 have been described above. World Intellectual Property Organization (hereinafter “WIPO”) publication WO/2006/042298 is of interest. Journal publications of interest include: Hammershoi and Moller, “Sound transmission to and within the human ear canal,” J. Acoust. Soc. Am., 100(1):408-427; Decraemer et al., “A method for determining three-dimensional vibration in the ear,” Hearing Res., 77:19-37 (1994); Puria et al., “Sound-pressure measurements in the cochlear vestibule of human cadaver ears,” J. Acoust. Soc. Am., 101(5):2754-2770 (May 1997); Moore, “Loudness perception and intensity resolution,” Cochlear Hearing Loss, Chapter 4, pp. 90-115, Whurr Publishers Ltd., London (1998); Puria and Allen “Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am., 104(6):3463-3481 (December 1998); Hoffman et al. (1998); Fay et al., “The discordant eardrum,” Proc. Nat. Academ. Sci. USA 103(52):1974-8 (2006); and Hato et al., “Three-dimensional stapes footplate motion in human temporal bones,” Audiol. Neurootol., 8:140-152 (Jan. 30, 2003). Conference presentation abstracts from the Association for Research in Otolaryngology: Best et al., “The influence of high frequencies on speech localization,” Abstract 981 (Feb. 24, 2003); and Carlile and Schonstein, “Frequency bandwidth and multi-talker environment,” Aud. Eng. Soc. (2006).
The present invention provides hearing systems, devices, output transducer supports, and methods that improve user comfort and position a transducer deep in the ear canal. The output transducer supports, devices and hearing systems of the present invention may comprise an elongate support adapted to minimize, and even avoid, contact with the ear while the transducer is positioned near the user's eardrum, thereby avoiding frictional contact with the ear and providing improved comfort for the user. In many embodiments, the support comprises a flexible support that can bend and/or flex in response to user movement, so as to provide comfort to the user.
In a first aspect, embodiments of the present invention provide a hearing aid device for placement in an ear of a user. The device comprises an elongate support and an energy delivery transducer. The elongate support has a proximal portion and a distal end. The energy delivery transducer is attached to the elongate support near the distal end. The support is adapted to position the transducer near an eardrum while the proximal portion is placed at the location near an ear canal opening. An intermediate portion of the elongate support is sized to minimize contact with the ear between the proximal portion and distal end.
In many embodiments, the elongate support includes specific adaptations to provide user comfort. Often, the elongate support is adapted to at least partially support the transducer from the proximal portion, thereby reducing support of the transducer by the ear within the canal. The intermediate portion extends along at least about 50% of a distance from the proximal portion to the distal end, and the distance corresponds to a distance of a canal of the ear, thereby avoiding contact with the ear along much of the support. Also, the elongate support has a cross sectional width, for example a diameter, less than a cross sectional width, for example a diameter, of the transducer. In a specific embodiment, the elongate support is adapted to flex in response to user movement for improved comfort, for example jaw movement, which decreases pressure on the ear within the canal when the user moves, and the elongate support is adapted to conduct heat from the energy delivery transducer.
In further embodiments, a positioner is attached to the elongate support near the transducer and is adapted to contact the ear in the canal near the transducer and support the transducer. The positioner can include specific adaptations to provide user comfort. For example, the positioner can be sufficiently wide to contact the ear in the canal so as to support the transducer, and the positioner can include a flexible portion adapted to bend while the positioner is positioned in the canal. Additionally, the positioner is often adapted to suspend and center the transducer in the canal to avoid transducer to ear contact while the positioner contacts the ear. To avoid occlusion, the positioner includes openings formed thereon to pass sound waves through the openings. The positioner can include flanges, petals or spokes that define the openings. The positioner includes an outer boundary that can be oval, circular, or even molded to the user's ear, and is adapted to engage the canal while the positioner suspends the transducer in the canal. The positioner can be tapered proximally to facilitate insertion into the canal. Often, the positioner will comprise a thickness no more than a length of the transducer.
In many embodiments, the transducer is adapted for user comfort. For example, the transducer has a width of no more than about 4 mm, thereby avoiding contact with the ear. Although the transducer can be adapted to transmit electromagnetic energy toward the eardrum to stimulate a magnet suspended on the eardrum and/or an ossicle, other forms of energy, for example ultrasound, can be transmitted toward the eardrum. While the transducer can be a coil adapted to transmit electromagnetic energy toward the eardrum with frequency components in the audio range, other frequencies of electromagnetic energy can be used, for example optical and radio frequencies.
In specific embodiments, the transducer comprises a coil. The coil comprises a length from about 3 to 6 mm and a width from about 3 to 4 mm. In a specific embodiment, the coil is adapted to drive a magnet positioned on an eardrum while a distal end of the coil is positioned a distance from about 2 to 6 mm from the eardrum.
In some embodiments, the transducer is adapted to transmit electromagnetic energy toward the eardrum, and the electromagnetic energy comprises optical frequencies.
Many embodiments include a microphone attachable to the support near the proximal portion of the support to position the microphone near the opening to the ear canal. The microphone is adapted to generate an electrical signal in response to an audio signal. A processor connected to the microphone is adapted to modify the audio signal from the microphone with a transform function and apply the modified audio signal to the transducer to stimulate the ear. The processor and a battery to power the processor can be adapted to be worn behind a pinna of the ear. The microphone can be attached to the support to position the microphone within about 6 mm of the opening to the canal.
In many embodiments, the elongate support defines an enclosure, and a microphone is positioned within the enclosure. The intermediate portion may comprise the enclosure, and the microphone may be positioned within the intermediate portion.
In many embodiments, the elongate support comprises at least one opening and the microphone is configured to measure a sound pressure of the ear canal through at least one opening. The elongate support may comprise a flexible tube and the enclosure may comprise a lumen of the tube.
In many embodiments, the energy delivery transducer comprises a coil assembly positioned within the enclosure. An opening of the microphone can be positioned no more than about 12 mm from a proximal end of the coil to measure a sound pressure of the ear canal near the eardrum.
In specific embodiments, the microphone is adapted to be worn behind a pinna of the ear, and the microphone comprises a probe tube that extends to the ear canal opening; the probe tube has an opening near the ear canal opening such that the microphone detects sound from the ear canal opening.
In another aspect, embodiments of the present invention provide a hearing aid system for use with an ear. The system comprises a microphone, a processor, a transducer and a flexible elongate support. The microphone is adapted to generate a signal. The processor connected to the microphone and adapted to apply a transform function to the signal to produce a transformed signal. The transducer is adapted to receive the transformed signal and emit electromagnetic energy in response to the transformed signal. The flexible elongate support includes a proximal portion and a distal end. The flexible elongate support extends at least from the proximal portion to the distal end, and the proximal portion is adapted for placement near an opening of an ear canal. The distal end is adapted to support the transducer near an eardrum while the proximal portion is placed near the opening.
In many embodiments, an intermediate portion of the elongate support located between the proximal portion and the distal end is sized to avoid contact with the ear.
In specific embodiments, the elongate support is adapted to suspend the transducer in the ear canal to avoid contact with the ear. A positioner can be attached to the elongate support near the transducer, the wide is support adapted to engage the canal of the ear to suspend the transducer in the canal to avoid transducer to ear contact while the proximal portion is placed near the opening of the canal.
In many embodiments, the microphone is disposed near the proximal portion to position the microphone near the opening to the ear canal when the proximal portion is placed near the opening. In specific embodiments, the support can be adapted to position the microphone within about 6 mm of the opening and position a distal end of the transducer from about 2 to 6 mm from the eardrum, while the proximal portion is placed near the opening.
In many embodiments, the elongate support defines an enclosure, and a microphone is positioned within the enclosure. The intermediate portion may comprise the enclosure and the microphone can be positioned within the intermediate portion. The elongate support may comprise at least one opening, and the microphone may be configured to measure a sound pressure of the ear canal through the at least one opening. In specific embodiments, the elongate support may comprise a flexible tube and the enclosure may comprise a lumen of the tube. The energy delivery transducer may comprise a coil positioned within the enclosure, and an opening of the microphone may be no more than about 12 mm from a proximal end of the coil to measure a sound pressure of the ear canal near the eardrum.
In many embodiments, a magnet is adapted for placement on the eardrum, and the magnet adapted to receive the electromagnetic energy from the transducer to drive the eardrum and stimulate the ear. Although the microphone is often placed near the opening to the ear canal or within the ear canal, the microphone can be adapted to be worn behind a pinna of the ear with a tube having an opening within about 6 mm of the ear canal opening.
In another aspect, embodiments of the present invention comprise a method of fitting a hearing aide device to a user. A transducer, a microphone and elongate support for placement in an ear canal of the user are provided. A user characteristic is measured. The measured user characteristic is one that is correlated with a distance from an opening of an ear canal to the user's tympanic membrane. A length along the elongate support is determined based on the measured characteristic to position the transducer near the tympanic membrane when the support is placed in the ear canal. The length is determined before the support is placed in the ear canal. The length is determined to position the transducer near the tympanic membrane when the support is placed in the ear canal.
In many embodiments, a size of a positioner is determined for placement in the ear canal near the transducer. The positioner is sized to contact the ear to support and center the transducer in the ear canal and avoid contact between the transducer and the ear. The length of the elongate support is determined to position the transducer from about 2 to 6 mm from the tympanic membrane.
In many embodiments, the length along the elongate support is determined to position the microphone near the opening of the ear canal when the support is placed in the ear canal. The microphone can be positioned at the location along the support to position the microphone within about 6 mm of the opening of the ear canal while the transducer is positioned near the tympanic membrane, and the microphone can be positioned in response to the length of the elongate support.
In many embodiments, the elongate support defines an enclosure, and a microphone is positioned within the enclosure. The intermediate portion may comprise the enclosure and the microphone can be positioned within the intermediate portion. The elongate support may comprise at least one opening, and the microphone may be configured to measure a sound pressure of the ear canal through the at least one opening.
In many embodiments, the elongate support may comprise a flexible tube and the enclosure may comprise a lumen of the tube. The energy delivery transducer may comprise a coil positioned within the enclosure, and an opening of the microphone may be about 12 mm or less from a proximal end of the coil to measure a sound pressure of the ear canal near the eardrum.
The length of the elongate support is determined to minimize contact with the ear between the microphone and the transducer.
In a further aspect, embodiments of the present invention provide an energy delivery transducer for use in an ear canal with a hearing aid. The transducer comprises a coil assembly and a biocompatible coating. The coil assembly comprises a wire with turns adapted to generate a magnetic field. The coil assembly has a length from about 3 to 6 mm and a maximum cross sectional width from about 3 to 4 mm. The coil assembly is adapted for placement in the canal of the ear to permit sound waves to travel along the canal past the coil between the coil and the canal. The biocompatible coating is disposed on and around the coil to protect the ear.
In many embodiments, the coil includes a number of turns and the number of turns is from about 100 to about 450 turns. The wire comprises a gauge in a range from about 36 to about 44 gauge, although the range can be narrower, for example from about 38 to 42. The coil assembly comprises a length from about 3 to 6 mm, although the length can be from about 3.5 to 5 mm, for example 4 about mm. The coil assembly comprises a width from about 1 to about 4 mm, for example from about 3.2 to about 4.2 mm. The transducer can include a core with the wire placed around the core with turns of the wire. The core can include a maximum cross sectional width from about 0.5 to about 3.3 mm, for example from about 1.5 to 3.3 mm.
In another aspect, a modular hearing aid assembly for use with an ear of a user is provided. The assembly comprises a behind the ear component. The behind the ear component comprises a battery and a processor, and the behind the ear component sized to fit at least partially behind a pinna of the user. An elongate canal component comprises a coil assembly shaped to fit in an ear canal and adapted to transmit electromagnetic energy toward and drive a magnet suspended on an eardrum and/or an ossicle of the user. The elongate canal component is adapted to flex in response to user movement. An elongate pinna component has a first end configured to connect to the behind the ear component and a second end configured to connect to the transducer component.
In many embodiments, the elongate canal component comprises an annular section adapted to flex in response to user movement. The elongate pinna component may comprise a first connector on the first end adapted to mate with a connector on the behind the ear component and a second connector on the second end adapted to mate with a connector on the canal component.
In many embodiments, a length of the elongate pinna component and a length of the elongate canal component are each sized to fit the user.
In many embodiments, the elongate pinna component comprises a flexible tubing having wires disposed therein. The flexible tubing may comprise plastic and the wires can be sized to support the pinna component. The wires sized to support the pinna component can transmit electrical energy from the behind the ear component to the elongate transducer component.
In many embodiments, the elongate pinna component comprises a microphone located near the second end to detect sound near an opening of the ear of the user.
In some embodiments, the elongate pinna component comprises an elongate tube adapted to conduct sound from an opening in the user's ear near the second end to a microphone positioned near the first end, such that the microphone detects sound from the opening in the user's ear with sound conducted along the elongate tube. The microphone can be located in the behind the ear component, and the elongate tube can extend to the microphone.
In another aspect, embodiments of the present invention provide a method of fitting a hearing aid device to an ear of a user. An elongate pinna component is selected, in which the selected elongate pinna component has a length related to a distance from an opening in the users ear to an upper portion of a pinna of the user. An elongate ear canal component is selected in which the elongate ear canal component has a length related to a length of a canal of the ear of the user.
In many embodiments, the pinna component is selected from among at least two sizes of pinna components, and the canal component is selected from among at least two sizes of canal components. For example, the pinna component can be selected from among at least three sizes of pinna components, and the canal component can be selected from among at least three sizes of canal components.
In many embodiments, the pinna component is selected based on a size of the pinna and the canal component is selected based on a size, for example a length, of the user's canal.
In another aspect, embodiments of the present invention provide a hearing aid device for placement in an ear of a user. The device comprises an elongate support having a proximal portion and a distal end. An energy delivery transducer is coupled to the elongate support to transmit electromagnetic energy comprising optical frequencies from the distal end. A positioner is coupled to the elongate support and configured to position the distal end within the ear canal.
In many embodiments, the energy delivery transducer comprises at least one of a light emitting diode or a laser diode coupled to the proximal portion of the elongate support to transmit optical energy to the distal end. The elongate support may comprise at least one waveguide, for example a single waveguide or a plurality of two or more waveguides, configured to transmit optical energy at least from the proximal portion to the distal end. The support can be adapted to position the distal end near an eardrum when the proximal portion is placed at a location near an ear canal opening. An intermediate portion of the elongate support can be sized to minimize contact with a canal of the ear between the proximal portion to the distal end.
Several components of the hearing aid device are attached to elongate support 50. A microphone 44 is shown attached to elongate support 50 near opening 17. A coil assembly 40 is shown supported by elongate support 50. Coil assembly 40 includes a coil of wire wrapped around a ferromagnetic core and a biocompatible coating. Coil assembly 17 is an energy delivery transducer that converts electrical current to a magnetic field. The magnetic field is transmitted a permanent magnet 28. Permanent magnet 28 is positioned on a support component 30 that is removably attached to tympanic membrane 16. The magnetic field transmitted to permanent magnet 28 applies a force to the tympanic membrane. The applied force causes tympanic membrane 16 to move in a manner similar that which occurs when sound impinges on the tympanic membrane in the normal manner. Magnet 28 and support component 30 are available from available from EarLens Corporation of Redwood City, Calif. In alternate embodiments, a magnet and/or a magnetic material is attached to at least one of the malleus, the incus and the stapes, and coil assembly 17 is used to drive the magnet and/or magnetic material.
Elongate support 50 functions as a scaffolding to hold the microphone and coil assembly in place. Elongate support 50 includes structures that allow the support to hold the energy delivery transducer and microphone in place while permitting elongate support 50 to flex and/or bend to accommodate user motion and individual user characteristics. Elongate support 50 can comprise a tube to hold the wires for transducers, for example microphone 44 and coil assembly 40. The elongate support can include a flexible cable, for example a cable formed from the wires electrically connected to a transducer such as coil 40. Coil assembly 40 is attached near the end of elongate support 50. Elongate support 50 is shaped to position a distal end of coil assembly 40 from about 2 to 6 mm from tympanic membrane 16, for example about 4 mm from tympanic membrane 16. Coil assembly 40 is adapted to electromagnetically drive permanent magnet 28 while a distal end of coil assembly 40 is positioned from 2 to 6 mm from tympanic membrane 16, for example 4 mm from tympanic membrane 16.
As shown
Resilient member 74 has properties that provide improved patient comfort with elongate support 50. The mechanical properties of elongate support 50 are substantially determined by the properties of resilient member 74, for example resilience, flexure and deformation properties. Resilient member 74 is elastically flexible in response to small deflections, such as patient chewing and other patient movements. Additionally, resilient member 74 can be deformed to a desired shape that matches the user's ear canal with larger deflections so as to permit resilient member 74 to be deformed to a shape that corresponds to the user's ear canal so as to avoid frictional contact between coil assembly 40 and the user's ear. In addition resilient member 74 is formed from a heat conducting material to transport heat away from core 78, for example metal and/or carbon materials. One ordinary skill can select appropriate materials with appropriate shapes to provide resilient member 74, for example wires of appropriate gauge and material.
Resilient member 74 conducts heat away from core 78 and out of the ear canal to provide improved patient comfort. As illustrated in
In the case of hearing aids, input transducer assembly 142 typically comprises microphone 44 attached to elongate support 50 as described above. While it is possible to position the microphone behind the pinna, in the temple piece of eyeglasses, or elsewhere on the user, it is preferable to position the microphone within the ear canal (as described in copending application “Hearing System having improved high frequency response”, 11/121,517 filed to May 3, 2005, the full disclosure of which has been previously incorporated herein by reference). Suitable microphones are well known in the hearing aid industry and are amply described in the patent and technical literature. The microphones will typically produce an electrical output that is received by the transmitter assembly 144, which in turn will produce a processed digital signal. In the case of ear pieces and other hearing systems, the sound input to the input transducer assembly 142 will typically be electronic, such as from a telephone, cell phone, a portable entertainment unit, or the like. In such cases, the input transducer assembly 142 will typically have a suitable amplifier or other electronic interface which receives the electronic sound input and which produces a filtered electronic output suitable for driving the transmitter assembly 144 and output transducer assembly 126.
Transmitter assembly 144 typically comprises a digital signal processor, also referred to as a DSP unit 150, that processes the electrical signal from the input transducer and delivers a signal to a transmitter element that produces the processed output signal that actuates the output transducer assembly 126. The transmitter element that is in communication with the digital signal processor is in the form of coil assembly 40. A power source, for example a battery 155 comprised within the transmitter assembly, is coupled to the assemblies to provide power, for example coupled to the coil assembly to supply a current to the coil assembly. The current delivered to the coil assembly will substantially correspond to the electrical signal processed by the digital signal processor. One useful electromagnetic-based assembly is described in commonly owned, copending U.S. patent application Ser. No. 10/902,660, filed Jul. 28, 2004, entitled “Improved Transducer for Electromagnetic Hearing Devices,” the complete disclosure of which is incorporated herein by reference. As can be appreciated, embodiments of the present invention are not limited to coil transmitter assemblies. A variety of different transmitter assemblies may be used with the hearing systems of the present invention, for example ultrasound transmitter assemblies and optical transmitter assemblies as described in, U.S. Pat. App. No. 60/702,532, filed on Jul. 25, 2006, entitled “Light-Actuated Silicon Sound Transducer” the full disclosure of which has been previously incorporated by reference.
As noted above, the hearing system 110 of embodiments of the present invention may incorporate a variety of different types of input/output transducer assemblies 142, 126 and transmitter assemblies 144. Thus, while the examples of
The various elements of the hearing system 110 may be positioned anywhere desired on or around the user's ear. In some configurations, all of the components of hearing system 110 are partially disposed or fully disposed within the user's auditory ear canal 11. For example, in one preferred configuration, the input transducer assembly 142 is positioned in the auditory ear canal so as to receive and retransmit the low frequency and high-frequency three dimensional spatial acoustic cues. If the input transducer assembly was not positioned within the auditory ear canal, (for example, if the input transducer assembly is placed behind-the ear (BTE)), then the signal reaching its input transducer assembly 142 may not carry the spatially dependent pinna cues, and there is little chance for there to be spatial information particularly in the vertical plane. In other configurations, however, it may be desirable to position at least some of the components behind the ear or elsewhere on or around the user's body, for example transmitter assembly 144 may be positioned behind the ear as shown above with reference to the driver unit.
Positioner 210 is adapted for comfort during insertion into the user's ear and thereafter. Positioner 210 is tapered proximally (and laterally) toward the ear canal opening to facilitate insertion into the ear of the user. Also, positioner 210 has a thickness transverse to its width that is sufficiently thin to permit positioner 210 to flex while the support is inserted into position in the ear canal. However, in some embodiments the positioner has a width that approximates the width of the typical ear canal and a thickness that extends along the ear canal about the same distance as coil assembly 40 extends along the ear canal. Thus, as shown in
Positioner 210 permits sound waves to pass and provides and can be used to provide an open canal hearing aid design. Positioner 210 comprises several spokes and openings formed therein. In an alternate embodiment, positioner 210 comprises soft “flower” like arrangement. Positioner 210 is designed to allow acoustic energy to pass, thereby leaving the ear canal mostly open.
Coil Assembly Coating Material
Once the coil assembly described above is manufactured, it is coated with a biocompatible material. This coating has several functions. One is to make the coil assembly biocompatible. The coil assembly material includes copper wires and possibly a ferrite core are these materials are not generally biocompatible. To protect the user from the coil assembly material and/or products of corrosion, the coil assembly is sealed with a coating that comprises a biocompatible material. The coating also keeps various ions, such as chloride ions that are formed when common salts are mixed with water, from corroding the coil assembly. Since the coil assembly will be potentially in contact with the skin, this contact can result in adverse conditions such as frictional irritation. The coating material is chosen to also minimize friction. Such materials include but are not limited to silicone, rubber, acrylic, epoxy, and polyethylene. All of these coating materials are non magnetic which is also beneficial. Another reason to coat the coil assembly is to ensure that the coil wires remain intact as coated wires are less susceptible to damage.
Reduction of Coil Assembly Generated Heat
Current carrying wires generate heat due to the finite resistance in wires. Normally, the generated heat is sufficiently low so that the coil assembly temperature is not very different from body temperature. Under some conditions, for example the conditions of high level and continuous current stimulation, the coil assembly temperature may become elevated above the body temperature of the user, for example a typical body temperature. If the temperature is too high the elevated temperature may cause discomfort, and in extreme cases the user may spontaneously remove the device and stop using it. To minimize this potentially adverse condition, it is desirable to have a heat conducting material along the elongate support that allows heat generated by the coil assembly to be transported away by diffusion. One end of the heat conducting material is in contact with the core or coil while the other end is directed towards the ear canal opening and can extend beyond the canal opening. The heat conducting transport material can be formed as a wire along a core of the elongate support, for example a resilient member as described above, or the heat conducting transport material can be formed as a twisted cable. In alternate embodiments, the heat conducting transport material can be formed as a coating on the outside of the elongate support and coil. The heat conducting transport material can comprise any suitable material for example aluminum, silver, gold, carbon, or any other material with a relatively high heat conductivity.
Flexible Transducer Scaffolding
The elongate support functions as a flexible scaffolding used to hold the coil assembly and microphone. The elongate support is flexible enough to accommodate a bend in the ear canal and rigid enough to hold the transducers in a fixed position. Thus large deformations of the support allow the elongate support to maintain a prescribed curvature, while small deformations result in resilient deformation of the support. This flexibility is also useful for insertions of the device in the canal where the user first deforms the unit to make it easier to put it in.
Subject Specific Support Length
For a given magnetic field generated at the core tip, the field intensity decreases as distance increases. Thus it is desirable to have the medial end of coil assembly 40 be close to magnet 28. However, if the medial end of coil assembly 40 is too close to magnet 28 the static force due to the ferrite core will have a tendency to pull magnet 28 away from the tympanic membrane. If the distance is too far then the effective output of magnet 28 is reduced. Work in relation with embodiments of the present invention suggests that the optimal distance between the medial/distal end of the core of coil assembly 40 and magnet 28 is within a range of about 2 to 6 mm, for example about 4 mm. As the ear canal length can vary from user to user, an ear surgeon uses a measurement instrument to determine the ear canal length from the opening on the lateral end of the canal to the tympanic membrane on the medial end of the canal. Alternatively, as the ear canal length is correlated to other anatomical features such as head size and/or body weight, the other anatomical features can be measured to approximately determine the length of the ear canal. This information can then be used to determine the length of elongate support 50 and the location of microphone 44 for each individual user.
Microphone Location
The location of microphone 44 along elongate support 50 is determined by at least two factors. First, to minimize acoustic feedback from magnet 28, it is desirable to place the microphone as lateral as possible toward the ear canal opening so that the microphone is far from the magnet. Work in relation to embodiments of the present invention suggests that magnetically coupled hearing aids can produce feedback because the magnet positioned on the tympanic membrane can drive the tympanic membrane as a speaker to produce sound which emanates from the tympanic membrane. Thus, although feedback is reduced with magnetically coupled hearing aids, some feedback can occur if the microphone is too close to the tympanic membrane. Second, to ensure that high frequency sound localization cues are present at the microphone location, it is desirable to place the microphone in the ear canal or at least near the ear canal opening, for example in the ear canal and within about 6 mm of the opening to the ear canal. In some embodiments, the high frequency spatial localization cues are present even if the microphone is located slightly outside the ear canal, for example outside the ear canal and within about 6 mm of the ear canal opening.
Ear Canal Gain
Studies have shown that the transfer of sound from the canal opening to the eardrum varies with frequency. This transfer function is compensated in the signal from the output amplifier stage of the system. Around 4 kHz there is 14 dB gain in pressure due to the canal resonance. Above and below 4 kHz the gain decreases towards 0 dB. At near 12 kHz there is a second resonant peak of about 10 dB. The resonant frequencies and gain levels are user dependent. Thus, in some embodiments, for example with the microphone near the ear canal opening, the ear canal to eardrum pressure gain of the output stage is measured and corrected based on the transfer function, in a user specific manner. Such corrections can be made with the DSP unit, as described above. In some embodiments, placement of the microphone closer to the eardrum can avoid having to measure the gain and thus avoid having to compensate it, which has practical advantages.
Coil Design
The coil assembly can be optimized to provide the best possible combination of sound output, efficiency, size, ease of fitting and comfort. In addition, there are many constraints placed on the coil assembly design. The overall system operates with a limited battery voltage and limited available current. In some embodiments, rechargeable batteries provide the battery voltage and current. Coil performance parameters of interest include the maximum B field output of the system at the specified current and voltage maximums, and the B-field per unit of current (hereinafter “B/I”). The B/I parameter should be maximized to improve efficiency, as higher B/I indicates a more efficient system and thus longer battery life for the system. Additional relevant design parameters to consider include battery voltage, maximum coil current, and coil inductance, which is related to the desired bandwidth. High frequency requirements can result in high coil impedance. To overcome this, a higher voltage battery can be used to generate adequate current at the higher frequencies. Some prior coil assembly designs have used a 1.5-volt standard battery. Embodiments of the present invention use the higher voltage of rechargeable batteries, which are typically 3.7 volts to provide an optimized coil design.
Sizes and shapes of coil assemblies that can be easily put into the ear canal are limited. Since the typical ear canal has an elliptical shape with minor axis dimension of about 4 mm, the maximum allowable diameter of the coil assembly can be about 3.5 mm in some embodiments. The extra 0.5 mm can be reserved for external coatings, for example biocompatible coatings as described above, and other factors, such that the final coil assembly, with coating, comprises a width of about 4 mm. In many embodiments, the coil assembly comprises a width from about 1 to about 4 mm, for example from about 3.2 to about 4.2 mm. As ear canals can have a tortuous nature, long coil assemblies can result in insertion difficulties. Work in relation with embodiments of the present invention suggests that a length of about 4 mm is suitable to navigate a tortuous ear canal and also provide enough room for the wire turns, although other lengths can be used for example lengths from about 3 to 6 mm.
The analytical framework described above and with respect to
Another constraint on the core diameter is the B field at the location of the magnet, which can be chosen to be about 4 mm from the medial end of the core tip, as shown for the value of the “z” parameter in
Although coil #1, coil #2 and coil #3 each show acceptable results, coil number #3 provides an optimal design. Coil #3 provides a coil that can be placed in the ear canal and provide an open ear canal that permits sound waves to pass the coil. In addition coil #3 is short and thus does not require a rigid structure in the ear canal for anchoring, for example a rigid shell is not required. As indicated in the maximum B field and B/I rows, coil #3 is not significantly different from coil #4. Thus, a 4 mm coil can provide coil characteristics similar to a much longer 15 mm coil. The advantage is comparable system output with a significantly shorter coil assembly. Although the resistance for coil #3 is higher than coil #4 due to the smaller gauge wire used for coil #3, the inductance for coil #3 is lower than for coil #4.
It should be appreciated that the specific steps illustrated in
Wire 812 and wire 814 are resilient members and are sized and comprise material selected to elastically flex in response to small deflections and provide support to coil assembly 819. Wire 812 and wire 814 are also sized and comprise material selected to deform in response to large deflections so that elongate support 810 can be deformed to a desired shape that matches the ear canal. Wire 812 and wire 814 comprise metal and are adapted conduct heat from coil assembly 819. Wire 812 and wire 814 are soldered to coil 816 and can comprise a different gauge of wire from the wire of the coil, in particular a gauge with a range from about 26 to about 36 that is smaller than the gauge of the coil to provide resilient support and heat conduction. Additional heat conducting materials can be used to conduct and transport heat from coil assembly 819, for example shielding positioned around wire 812 and wire 814. Elongate support 810 and wire 812 and wire 814 extend toward the driver unit and are adapted to conduct heat out of the ear canal.
Although an electromagnetic transducer comprising coil 819 is shown positioned on the end of elongate support 810, the positioner and elongate support can be used with many types of transducers positioned at many locations, for example optical electromagnetic transducers positioned outside the ear canal and coupled to the support to deliver optical energy along the support, for example through at least one optical fiber. The at least one optical fiber may comprise a single optical fiber or a plurality of two or more optical fibers of the support. The plurality of optical fibers may comprise a parallel configuration of optical fibers configured to transmit at least two channels in parallel along the support toward the eardrum of the user.
The at least one positioner, for example positioner 830, can improve optical coupling between the light source and a device positioned on the eardrum, so as to increase the efficiency of light energy transfer from the output energy transducer, or emitter, to an optical device positioned on the eardrum. For example, by improving alignment of the distal end 810D of the support that emits light and a transducer positioned at least one of on the eardrum or in the middle ear. The at least one positioner and elongate support 810 comprising an optical fiber can be combined with many known optical transducer and hearing devices, for example as described in U.S. application Ser. No. 11/248,459, entitled “Systems and Methods for Photo-Mechanical Hearing Transduction”, the full disclosure of which has been previously incorporated herein by reference, and U.S. Pat. No. 7,289,63, entitled “Hearing Implant”, the full disclosure of which is incorporated herein by reference. The positioner and elongate support may also be combined with photo-electro-mechanical transducers positioned on the ear drum with a support, as described in U.S. Pat. Ser. Nos. 61/073,271; and 61/073,281, both filed on Jun. 17, 2008, the full disclosures of which have been previously incorporated herein by reference.
In specific embodiments, elongate support 810 may comprise an optical fiber coupled to positioner 830 to align the distal end of the optical fiber with an output transducer assembly supported on the eardrum. The output transducer assembly may comprise a photodiode configured to receive light transmitted from the distal end of support 810 and supported with support component 30 placed on the eardrum, as described above. The output transducer assembly can be separated from the distal end of the optical fiber, and the proximal end of the optical fiber can be positioned in the BTE unit and coupled to the light source. The output transducer assembly can be similar to the output transducer assembly described in U.S. 2006/0189841, with positioner 830 used to align the optical fiber with the output transducer assembly, and the BTE unit may comprise a housing with the light source positioned therein.
Elongate canal component 920 includes structure to provide patient comfort. A length 922 of elongate canal component 920 can be selected so as to correspond to the ear canal of the patient. A coil assembly 924 can be positioned near the ear canal and is covered with a biocompatible material as described above. Connector 928 is sized to mate the connector on elongate pinna component 930, such that several components can be combined for custom fit to the user. Elongate ear canal component 920 includes a flexible portion 926 disposed between coil assembly 924 and connector 928 such that the elongate ear canal component 920 can flex and bend in response to user movement as described above. Flexible portion 926 includes an inner section that has a hollow conic form to permit movement of the flexible portion.
Elongate pinna component 930 includes several structures to provide patient comfort. A length 932 of elongate pinna component 930 can be selected so as to correspond to the pinna dimension, for example from the BTE unit to the ear opening. A microphone 934 is sized to fit near the ear canal opening, in many embodiments within about 6 mm of the ear canal opening and without contacting the ear of the user. A connector 937 is sized and shaped to mate with connector 928 of the ear canal component such that the combined components have a size customized for the user. Wires 936, in many embodiments 5 wires, extend along the elongate pinna component to send signals from the microphone to the BTE unit and power the coil assembly with processed audio signals. In many embodiments, elongate pinna component 930 comprises an elongate plastic tube disposed over the wires to protect the wires and support the canal component. As least some of wires 936 may be sized to support the canal component and microphone. A connector 938 connects elongate pinna component 930 with BTE unit 910.
Flexible elongate ear canal component 920D includes structures for patient comfort. For example, flexible elongate ear canal component 920D can include structures, such that the elongate ear canal component 920D can flex and/or bend in response to user movement. In many embodiments, a flexible portion 993D of sleeve 990D is disposed between coil assembly 924D and connector 928D. Flexible portion 993D can include a hollow section of enclosure 991D to permit movement of the flexible portion and elongate canal component 920D in response to patient facial movements including opening and closing of the jaw so as to provide patient comfort. Wires 936D that connect the BTE unit to the coil assembly and/or microphone can also flex at least along the flexible portion of the elongate canal component. End 997D of flexible sleeve 990D can be rounded, such the rounded end 997D can slide along the ear canal when the rounded end contacts the ear inside the canal. Flexure of the elongate canal component, for example with bending of the flexible portion, can also minimize patient discomfort when the rounded end contacts the ear canal and/or slides along the ear canal.
In many embodiments, microphone 934 can be positioned between the coil assembly 924D and the connector 928D to measure sound near the eardrum. In specific embodiments, a microphone port, for example opening 935D, faces the coil assembly 924D. An air gap 992D can be provided in a hollow section of enclosure 991D between the coil assembly 924D and microphone opening 935D. Microphone opening 935D is in acoustic communication with the ear canal so as to receive sound from the ear canal through at least one opening, for example several openings 994D, in sleeve 990D. Air gap 992D may extend a distance 996D of no more than about 12 mm, for example no more than about 6 mm, such that opening 935D and openings 994D are positioned deep in the ear canal so as to receive sound similar to that received by the eardrum. This placement of the microphone and openings near the eardrum can avoid having to measure the gain of sound transfer from the ear canal opening to the eardrum, and thus may avoid having to compensate for this transfer function, which can have practical advantages.
In some embodiments, microphone opening 935D and air gap 992D are protected from invasion by ear canal wax and corrosive substances with known “cerumen guard” methods and/or substances applied to the several port openings 994D.
The embodiments of
A length 922D of elongate canal component 920D can be selected so as to correspond to the ear canal of the patient, as described above. A coil assembly 924D can be positioned inside the ear canal and is covered with a biocompatible material, as described above. Connector 928D is sized to mate connector 937D on elongate pinna component 930, such that several components can be combined for custom fit to the user, as described above.
Elongate pinna component 930D includes several structures to provide patient comfort similar to those described above. A length 932D of elongate pinna component 930D can be selected so as to correspond to the pinna dimension, for example from the BTE unit to the ear opening. A connector 937D is sized and shaped to mate with connector 928D of the ear canal component such that the combined components have a size customized for the user. Wires 936D, in many embodiments 5 wires, extend along the elongate pinna component to send signals from the microphone to the BTE unit and power the coil assembly with processed audio signals. In many embodiments, elongate pinna component 930D comprises an elongate plastic tube disposed over the wires to protect the wires and support the canal component. As least some of wires 936D may be sized and/or coiled to flex with the canal component and microphone. A connector 938D connects elongate pinna component 930D with BTE unit 910D.
Elongate pinna component 930 and elongate ear canal component 920 may comprise optical waveguides, for example optical fibers, to transmit light to a transducer positioned on the eardrum, as described above. For example, the light source may be positioned on the BTE component, and each of the elongate pinna component and the elongate ear canal component may comprise an optical fiber and an optical coupling to couple light from the BTE component to the distal end of the elongate support.
It should be appreciated that the specific steps illustrated in
While the exemplary embodiments have been described above in some detail for clarity of understanding and by way of example, a variety of additional modifications, adaptations, and changes may be clear to those of skill in the art. Hence, the scope of the present invention is limited solely by the appended claims.
The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 60/977,605 filed Oct. 4, 2007; the full disclosure of which is incorporated herein by reference in its entirety. The subject matter of the present application is related to copending U.S. patent application Ser. Nos. 10/902,660 filed Jul. 28, 2004, entitled “Transducer for Electromagnetic Hearing Devices”; 11/248,459 filed on Oct. 11, 2005, entitled “Systems and Methods for Photo-Mechanical Hearing Transduction”; 11/121,517 filed May 3, 2005, entitled “Hearing System Having Improved High Frequency Response”; 11/264,594 filed on Oct. 31, 2005, entitled “Output Transducers for Hearing Systems”; 60/702,532 filed on Jul. 25, 2006, entitled “Light-Actuated Silicon Sound Transducer”; 61/073,271 filed on Jun. 17, 2008, entitled “Optical Electro-Mechanical Hearing Devices With Combined Power and Signal Architectures”; and 61/073,281 filed on Jun. 17, 2008, entitled “Optical Electro-Mechanical Hearing Devices with Separate Power and Signal Components”; the complete disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3440314 | Frisch | Apr 1969 | A |
3549818 | Turner et al. | Dec 1970 | A |
3585416 | Mellen | Jun 1971 | A |
3594514 | Wingrove | Jul 1971 | A |
3710399 | Hurst | Jan 1973 | A |
3712962 | Epley | Jan 1973 | A |
3764748 | Branch et al. | Oct 1973 | A |
3808179 | Gaylord | Apr 1974 | A |
3882285 | Nunley et al. | May 1975 | A |
3985977 | Beaty et al. | Oct 1976 | A |
4002897 | Kleinman et al. | Jan 1977 | A |
4061972 | Burgess | Dec 1977 | A |
4075042 | Das | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4120570 | Gaylord | Oct 1978 | A |
4248899 | Lyon et al. | Feb 1981 | A |
4252440 | Frosch et al. | Feb 1981 | A |
4303772 | Novicky | Dec 1981 | A |
4319359 | Wolf | Mar 1982 | A |
4334315 | Ono et al. | Jun 1982 | A |
4334321 | Edelman | Jun 1982 | A |
4357497 | Hochmair et al. | Nov 1982 | A |
4380689 | Giannetti | Apr 1983 | A |
4428377 | Zollner et al. | Jan 1984 | A |
4524294 | Brody | Jun 1985 | A |
4540761 | Kawamura et al. | Sep 1985 | A |
4556122 | Goode | Dec 1985 | A |
4592087 | Killion | May 1986 | A |
4606329 | Hough | Aug 1986 | A |
4611598 | Hortmann et al. | Sep 1986 | A |
4628907 | Epley | Dec 1986 | A |
4641377 | Rush et al. | Feb 1987 | A |
4689819 | Killion | Aug 1987 | A |
4696287 | Hortmann et al. | Sep 1987 | A |
4729366 | Schaefer | Mar 1988 | A |
4741339 | Harrison et al. | May 1988 | A |
4742499 | Butler | May 1988 | A |
4756312 | Epley | Jul 1988 | A |
4766607 | Feldman | Aug 1988 | A |
4774933 | Hough et al. | Oct 1988 | A |
4776322 | Hough et al. | Oct 1988 | A |
4800884 | Heide et al. | Jan 1989 | A |
4817607 | Tatge | Apr 1989 | A |
4840178 | Heide et al. | Jun 1989 | A |
4845755 | Busch et al. | Jul 1989 | A |
4932405 | Peeters et al. | Jun 1990 | A |
4936305 | Ashtiani et al. | Jun 1990 | A |
4944301 | Widin et al. | Jul 1990 | A |
4948855 | Novicky | Aug 1990 | A |
4957478 | Maniglia | Sep 1990 | A |
4999819 | Newnham et al. | Mar 1991 | A |
5003608 | Carlson | Mar 1991 | A |
5012520 | Steeger | Apr 1991 | A |
5015224 | Mariglia | May 1991 | A |
5015225 | Hough et al. | May 1991 | A |
5031219 | Ward et al. | Jul 1991 | A |
5061282 | Jacobs | Oct 1991 | A |
5066091 | Stoy et al. | Nov 1991 | A |
5094108 | Kim et al. | Mar 1992 | A |
5117461 | Moseley | May 1992 | A |
5142186 | Cross et al. | Aug 1992 | A |
5163957 | Sade et al. | Nov 1992 | A |
5167235 | Seacord et al. | Dec 1992 | A |
5201007 | Ward et al. | Apr 1993 | A |
5259032 | Perkins et al. | Nov 1993 | A |
5272757 | Scofield et al. | Dec 1993 | A |
5276910 | Buchele | Jan 1994 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5402496 | Soli et al. | Mar 1995 | A |
5411467 | Hortmann et al. | May 1995 | A |
5425104 | Shennib | Jun 1995 | A |
5440082 | Claes | Aug 1995 | A |
5440237 | Brown et al. | Aug 1995 | A |
5455994 | Termeer et al. | Oct 1995 | A |
5456654 | Ball | Oct 1995 | A |
5531787 | Lesinski et al. | Jul 1996 | A |
5531954 | Heide et al. | Jul 1996 | A |
5554096 | Ball | Sep 1996 | A |
5558618 | Maniglia | Sep 1996 | A |
5606621 | Reiter et al. | Feb 1997 | A |
5624376 | Ball et al. | Apr 1997 | A |
5707338 | Adams et al. | Jan 1998 | A |
5721783 | Anderson | Feb 1998 | A |
5729077 | Newnham et al. | Mar 1998 | A |
5740258 | Goodwin-Johansson | Apr 1998 | A |
5762583 | Adams et al. | Jun 1998 | A |
5772575 | Lesinski et al. | Jun 1998 | A |
5774259 | Saitoh et al. | Jun 1998 | A |
5782744 | Money | Jul 1998 | A |
5788711 | Lehner et al. | Aug 1998 | A |
5795287 | Ball et al. | Aug 1998 | A |
5797834 | Goode | Aug 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5804109 | Perkins | Sep 1998 | A |
5804907 | Park et al. | Sep 1998 | A |
5814095 | Muller et al. | Sep 1998 | A |
5825122 | Givargizov et al. | Oct 1998 | A |
5836863 | Bushek et al. | Nov 1998 | A |
5842967 | Kroll | Dec 1998 | A |
5857958 | Ball et al. | Jan 1999 | A |
5859916 | Ball et al. | Jan 1999 | A |
5879283 | Adams et al. | Mar 1999 | A |
5888187 | Jaeger et al. | Mar 1999 | A |
5897486 | Ball et al. | Apr 1999 | A |
5899847 | Adams et al. | May 1999 | A |
5900274 | Chatterjee et al. | May 1999 | A |
5906635 | Maniglia | May 1999 | A |
5913815 | Ball et al. | Jun 1999 | A |
5940519 | Kuo | Aug 1999 | A |
5949895 | Ball et al. | Sep 1999 | A |
5987146 | Pluvinage et al. | Nov 1999 | A |
6005955 | Kroll et al. | Dec 1999 | A |
6024717 | Ball et al. | Feb 2000 | A |
6045528 | Arenberg et al. | Apr 2000 | A |
6050933 | Bushek et al. | Apr 2000 | A |
6068589 | Neukermans | May 2000 | A |
6068590 | Brisken | May 2000 | A |
6084975 | Perkins et al. | Jul 2000 | A |
6093144 | Jaeger et al. | Jul 2000 | A |
6137889 | Shennib et al. | Oct 2000 | A |
6139488 | Ball | Oct 2000 | A |
6153966 | Neukermans | Nov 2000 | A |
6174278 | Jaeger et al. | Jan 2001 | B1 |
6181801 | Puthuff et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6190306 | Kennedy | Feb 2001 | B1 |
6208445 | Reime | Mar 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6222302 | Imada et al. | Apr 2001 | B1 |
6222927 | Feng et al. | Apr 2001 | B1 |
6240192 | Brennan et al. | May 2001 | B1 |
6241767 | Stennert et al. | Jun 2001 | B1 |
6261224 | Adams et al. | Jul 2001 | B1 |
6277148 | Dormer | Aug 2001 | B1 |
6312959 | Datskos | Nov 2001 | B1 |
6339648 | McIntosh et al. | Jan 2002 | B1 |
6354990 | Juneau et al. | Mar 2002 | B1 |
6366863 | Bye et al. | Apr 2002 | B1 |
6385363 | Rajic et al. | May 2002 | B1 |
6387039 | Moses | May 2002 | B1 |
6393130 | Stonikas et al. | May 2002 | B1 |
6422991 | Jaeger | Jul 2002 | B1 |
6432248 | Popp et al. | Aug 2002 | B1 |
6436028 | Dormer | Aug 2002 | B1 |
6438244 | Juneau et al. | Aug 2002 | B1 |
6445799 | Taenzer et al. | Sep 2002 | B1 |
6473512 | Juneau et al. | Oct 2002 | B1 |
6475134 | Ball et al. | Nov 2002 | B1 |
6493454 | Loi et al. | Dec 2002 | B1 |
6519376 | Biagi et al. | Feb 2003 | B2 |
6536530 | Schultz et al. | Mar 2003 | B2 |
6537200 | Leysieffer et al. | Mar 2003 | B2 |
6549633 | Westermann | Apr 2003 | B1 |
6554761 | Puria et al. | Apr 2003 | B1 |
6592513 | Kroll et al. | Jul 2003 | B1 |
6603860 | Taenzer et al. | Aug 2003 | B1 |
6620110 | Schmid | Sep 2003 | B2 |
6626822 | Jaeger et al. | Sep 2003 | B1 |
6629922 | Puria et al. | Oct 2003 | B1 |
6668062 | Luo et al. | Dec 2003 | B1 |
6676592 | Ball et al. | Jan 2004 | B2 |
6695943 | Juneau et al. | Feb 2004 | B2 |
6724902 | Shennib et al. | Apr 2004 | B1 |
6728024 | Ribak | Apr 2004 | B2 |
6735318 | Cho | May 2004 | B2 |
6754358 | Boeson et al. | Jun 2004 | B1 |
6801629 | Brimhall et al. | Oct 2004 | B2 |
6829363 | Sacha | Dec 2004 | B2 |
6842647 | Griffith et al. | Jan 2005 | B1 |
6888949 | Vanden Berghe et al. | May 2005 | B1 |
6900926 | Ribak | May 2005 | B2 |
6912289 | Vonlanthen et al. | Jun 2005 | B2 |
6920340 | Laderman | Jul 2005 | B2 |
6940989 | Shennib et al. | Sep 2005 | B1 |
D512979 | Corcoran et al. | Dec 2005 | S |
6978159 | Feng et al. | Dec 2005 | B2 |
7043037 | Lichtblau | May 2006 | B2 |
7072475 | DeNap et al. | Jul 2006 | B1 |
7076076 | Bauman | Jul 2006 | B2 |
7095981 | Voroba et al. | Aug 2006 | B1 |
7167572 | Harrison et al. | Jan 2007 | B1 |
7174026 | Niederdrank | Feb 2007 | B2 |
7203331 | Boesen | Apr 2007 | B2 |
7239069 | Cho | Jul 2007 | B2 |
7245732 | Jorgensen et al. | Jul 2007 | B2 |
7266208 | Charvin et al. | Sep 2007 | B2 |
7289639 | Abel et al. | Oct 2007 | B2 |
7322930 | Jaeger et al. | Jan 2008 | B2 |
7376563 | Leysieffer et al. | May 2008 | B2 |
7421087 | Perkins et al. | Sep 2008 | B2 |
7444877 | Li et al. | Nov 2008 | B2 |
20010027342 | Dormer | Oct 2001 | A1 |
20020012438 | Leysieffer et al. | Jan 2002 | A1 |
20020030871 | Anderson et al. | Mar 2002 | A1 |
20020086715 | Sahagen | Jul 2002 | A1 |
20020172350 | Edwards et al. | Nov 2002 | A1 |
20020183587 | Dormer | Dec 2002 | A1 |
20030064746 | Rader et al. | Apr 2003 | A1 |
20030125602 | Sokolich et al. | Jul 2003 | A1 |
20030142841 | Wiegand | Jul 2003 | A1 |
20030208099 | Ball | Nov 2003 | A1 |
20040165742 | Shennib et al. | Aug 2004 | A1 |
20040208333 | Cheung et al. | Oct 2004 | A1 |
20040234089 | Rembrand et al. | Nov 2004 | A1 |
20040234092 | Wada et al. | Nov 2004 | A1 |
20040240691 | Grafenberg | Dec 2004 | A1 |
20050020873 | Berrang et al. | Jan 2005 | A1 |
20050036639 | Bachler et al. | Feb 2005 | A1 |
20050163333 | Abel et al. | Jul 2005 | A1 |
20060023908 | Perkins et al. | Feb 2006 | A1 |
20060062420 | Araki | Mar 2006 | A1 |
20060107744 | Li et al. | May 2006 | A1 |
20060177079 | Baekgaard Jensen et al. | Aug 2006 | A1 |
20060189841 | Pluvinage | Aug 2006 | A1 |
20060233398 | Husung | Oct 2006 | A1 |
20060251278 | Puria et al. | Nov 2006 | A1 |
20070083078 | Easter et al. | Apr 2007 | A1 |
20070100197 | Perkins et al. | May 2007 | A1 |
20070127748 | Carlile et al. | Jun 2007 | A1 |
20070191673 | Ball et al. | Aug 2007 | A1 |
20080021518 | Hochmair et al. | Jan 2008 | A1 |
20080107292 | Kornagel | May 2008 | A1 |
Number | Date | Country |
---|---|---|
2004-301961 | Feb 2005 | AU |
2044870 | Mar 1972 | DE |
3243850 | May 1984 | DE |
0 296 092 | Dec 1988 | EP |
1 845 919 | Oct 2007 | EP |
2455820 | Nov 1980 | FR |
60-154800 | Aug 1985 | JP |
WO 9903146 | Jan 1999 | WO |
WO 9915111 | Apr 1999 | WO |
WO 03063542 | Jul 2003 | WO |
WO 2005015952 | Feb 2005 | WO |
WO 2006042298 | Apr 2006 | WO |
WO 2006075175 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090092271 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60977605 | Oct 2007 | US |