Technical Field
The present disclosure relates to electrosurgical systems, and more particularly, to energy delivery conduits for use with electrosurgical devices during RF and/or microwave ablation procedures.
Background of Related Art
Energy delivery conduits, including coaxial cables are well known in the art and its applications are numerous. Coaxial cables are typically used, in surgical procedures, to transfer energy from one point to another while minimizing losses during said transmission.
Although many kinds of coaxial cables have been designed, for the most part, these devices serve primarily as energy transmission conduits. Aside from transmitting energy, it is often desirable to have coaxial cables with different characteristics and features.
The present disclosure relates to a conduit assembly for transmitting electrosurgical energy between an electrosurgical generator and an energy delivering device. The conduit assembly comprises a first cable sub-assembly including a cable; and a second cable sub-assembly including a cable. The flexibility of the cable of the first cable sub-assembly is less than the flexibility of the cable of the second cable sub-assembly. Further, the energy attenuation of the cable of the first cable sub-assembly is less than the energy attenuation of the cable of the second cable sub-assembly. In one embodiment, the diameter of the first cable sub-assembly is larger than the diameter of the second cable sub-assembly. In another embodiment, the length of the first cable sub-assembly is greater than the length of the second cable sub-assembly.
The conduit assembly may further include a connector assembly. The connector assembly includes a first connector operatively connected to a first end of the cable of the first cable sub-assembly and a second connector operatively connected to the second end of the cable of the second cable sub-assembly. The first and second connecters are matable with one another to electrically connect the cable of the first cable sub-assembly with the cable of the second cable sub-assembly.
Additionally, the cable of the first cable sub-assembly includes an inner conductor surrounded by a dielectric material and an outer conductor surrounding the dielectric material. The cable of the second cable sub-assembly also includes an inner conductor surrounded by a dielectric material and an outer conductor surrounding the dielectric material.
Embodiments of the presently disclosed conduit assemblies are disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed energy transmission conduit assembly are now described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the terms “distal” refers to that portion of the conduit assembly, or component thereof, farther from the user while the term “proximal” refers to that portion of the component thereof, closest to the user.
Electrosurgical energy delivering systems employ electrosurgical energy (e.g., RF or microwave) to ablate tissue at a specific target site. During electrosurgical procedures, electrosurgical energy delivering systems directly apply therapeutic energy to a desired tissue location to ablate said tissue.
Electrosurgical energy delivering systems include an electrosurgical energy generator “G” (i.e., RF and/or microwave generator), an energy delivery device or instrument “D” having a probe, needle, antenna, and/or knife and at least one energy delivery conduit interconnecting the energy delivering device “D” and the generator “G”.
The energy transmission conduit assembly hereinbelow described is intended to be used with a microwave energy delivering system. It is contemplated, however, that the energy transmission conduit assembly described below may be utilized with any suitable electrosurgical system known in the art. The described energy transmission conduit assembly is designed to minimize loss of energy along or throughout a length thereof.
Referring initially to
As seen in
Generator connector 102 may include an insulative or dielectric covering 102a such as a polyolefin heat-shrink tubing, as depicted in
With reference to
It is contemplated that cable 105 of first cable sub-assembly 104 may be flexible or semi-rigid. Accordingly, inner conductor 112 of cable 105 may be flexible (i.e., having a stranded transverse cross-sectional profile or any other suitable flexible structure known in the art) or semi-rigid (i.e., having a solid transverse cross-section profile or any other semi-rigid structure known in the art). Outer conductor 116 may be flexible (i.e., made of braided silver plated cooper or any other suitable material known in the art) or semi-rigid (i.e., be fabricated of solid cooper or any other suitable material known in the art).
Inner conductor 112 of first cable sub-assembly 104 may be fabricated from cooper or from any other suitable electrically conductive material. Additionally, inner conductor 112 may contain a conductive plating or the like. The conductive plating may be comprised of silver or other suitable material known in the art.
Cable 105 of first cable sub-assembly 104 may be long enough to allow a surgeon to extend it from electrosurgical energy generator “G” to the patient in a typical medical suite, while at the same time, short enough to limit energy attenuation therealong. Specifically, it is envisioned that the length of cable 105 may range from about 5 feet to about 10 feet. It is further contemplated that cable 105 may have a diameter greater than about 0.14 inches. In one embodiment, the diameter of cable 105 may measure approximately 0.20 inches.
In an alternative embodiment, cable 105 of first cable assembly 104 may be enclosed in an articulating arm that extends into and over the sterile field. The articulating arm may be part of the electrosurgical energy generator “G” or, a separate cart system. Alternatively, cable 105 may be detachably connected to the electrosurgical energy generator “G” via a fastening device such as a removable clip (not shown). The fastening device may prevent cable 105 from exerting excessive force on the energy delivering device “D”. Cable 105 and/or first cable sub-assembly 104 may be reusable or disposable.
Referring now to
With reference to
It is envisioned that cable 109 of second cable sub-assembly 108 may be flexible. Accordingly, inner conductor thereof 120 may be flexible and may have a stranded transverse cross-sectional profile. Copper or other suitable electrically conductive material may be utilized to make inner conductor 120. In an embodiment, inner conductor 120 may include a silver plating.
The length of cable 109 of second cable assembly 108 may be short enough to limit energy attenuation, but sufficiently long to allow good maneuverability of energy delivering device “D”. It is envisioned that the length of cable 109 of second cable sub-assembly 108 may range from about 0.5 feet to about 2.0 feet. In one embodiment, the length of cable 109 of second cable sub-assembly 108 may measure about 12 inches. It is further contemplated that cable 109 of second cable sub-assembly 108 may have a diameter less than about 0.12 inches. In one embodiment, the diameter of cable 109 of second cable sub-assembly 108 may measure about 0.10 inches.
Dielectric material 122 of second cable sub-assembly 108 may be made of any suitable low loss dielectric material such as low density or ultra-low density PTFE, or cellular high density polyethylene. Outer conductor 124 of second cable sub-assembly 108 may be formed of braided silver plated cooper or any other suitable electrically conductive material known in the art.
In use, connectors 102, 106, 110 electrically connect electrosurgical energy generator “G”, first and second cable sub-assemblies 104, 108 of conduit assembly 100, and energy delivering device “D” to one another. To facilitate electrical conductivity throughout and along conduit assembly 100, connectors 102, 106, 110 may have an impedance appropriate for the specific electrosurgical system employed. It is envisioned that each connectors 102, 106, 110 may have an impedance of about 50 Ohms. In addition, an electrically insulative material, such as polylefin, PVC or plastic heat-shrink tubing, may be placed over connectors 102, 106, 110 to provide electrical insulation thereof, as illustrated in
Returning now to
In an alternative embodiment, the electrical connection between inner conductor 112 of first cable sub-assembly 104 and inner conductor 120 of second cable sub-assembly 108 may be achieved by crimping the inner conductor 120 over first inner conductor 112. If cable 105 of first cable sub-assembly 104 has a stranded inner conductor 112, electrical connection may be achieved by crimping the stranded inner conductor 112 over the inner conductor 120 of second cable sub-assembly 108. Electrical connection between outer conductors 116 of first cable sub-assembly 104 and outer conductor 124 of second cable sub-assembly 108 may be achieved by crimping first outer conductor 116 over second outer conductor 124, irrespective of their form.
In one embodiment, electrical connection between inner conductors 112, 120 may be achieved by soldering and/or welding the two inner conductors 112, 120 together. Outer conductors 116, 124 may also be soldered and/or welded together to achieve electrical connectivity therebetween. It is contemplated that a combination of crimping, soldering and welding may be used to connect inner conductors 112, 120 to one another and outer conductors 116, 124 to one another.
Conduit assembly 100 may have cable sub-assemblies having cables of various lengths with various energy attenuation levels. Alternatively, conduit assembly 100, having the same energy loss levels, may have cables of different sizes, diameters and/or lengths. It is envisioned that the conduit assembly 100 may have a maximum energy loss of about −3 dB at about 915 MHz.
In one embodiment, conduit cable assembly 100 may include first cable sub-assembly 104 having a cable 105 with a length of about 9 feet. Cable 105 is connected through cable connector 106 to a cable 109 of second cable sub-assembly 108 having a length of about 1 foot. Conduit cable assembly 100 also includes a generator connector 102 disposed at a proximal end thereof. As previously discussed, generator connector 102 is configured and adapted for connection to electrosurgical energy generator “G”. Generator connector 102 may include an insulative or dielectric covering 102a such as a polyolefin heat-shrink tubing. A device connector 110 is disposed at the distal end of the conduit assembly 100 and is configured and adapted for connection to electrosurgical energy delivery device “D”. Cable 105 may have an energy attenuation of about −0.14 dB/foot at about 915 MHz. In turn, cable 109 may have an energy attenuation of about −0.25 dB/foot at about 915 MHz. Each connector 102, 106, 110 may have an energy attenuation of about −0.07 dB at about 915 MHz. In this embodiment, the total energy attenuation at about 915 MHz may be about −1.79 dB. This embodiment may be used particularly for percutaneous applications.
In a further embodiment, conduit assembly 100 has a first cable sub-assembly 104 having a cable 105 with a length of about 6 feet. Cable 105 is connected through cable connector 106 to a cable 109 of second cable sub-assembly 108 having a length of about 1 foot. Conduit assembly 100 may have a generator connector 102 disposed at the proximal end thereof and a device connecter 110 disposed at the distal end thereof. Generator connector 102 is configured and adapted for connection to an electrosurgical energy generator “G”. Device connector 110 is configured and adapted for connection to an energy delivering device “D.” In this embodiment, cable 105 has an energy attenuation of about −0.14 dB/foot at about 915 MHz. Cable 109 has an energy attenuation of about −0.25 dB/foot at about 915 MHz. Each connector 102, 106, 110 may have an energy attenuation of about −0.07 dB at about 915 MHz. The total energy attenuation in this embodiment may be about −1.37 dB. This embodiment may be used particularly for surgical applications. While the figures of the present disclosure illustrate a conduit assembly 100 with only two cables, it is contemplated that more than two cables may be used to attain the desired combination of energy attenuation and assembly flexibility.
In use, first cable sub-assembly 104 allows transmission of electrosurgical energy from electrosurgical energy generator “G” to second cable sub-assembly 108. Cable connector 106 interconnects first cable sub-assembly 104 and second cable sub-assembly 108. To achieve low energy losses, the impedance of cable 105 of first cable sub-assembly 104 must be appropriate for the specific electrosurgical system used. For example, in one embodiment, first cable 105 of first cable sub-assembly 104 has an impedance of about 50 Ohms.
Moreover, cable 105 of second cable sub-assembly 108 has a higher degree of flexibility than cable 109 of first cable sub-assembly 104. However, cable 105 of first cable sub-assembly 108 has lower energy attenuation than cable 109 of second cable sub-assembly 104. Such a design provides conduit assembly 100 with good maneuverability, while at the same time, limits energy losses between electrosurgical energy generator “G” and energy delivering device “D”.
In operation, energy delivering device “D” is connected to electrosurgical energy generator “G” through conduit assembly 100 and receives electrosurgical energy from energy generator “G”. During operation, conduit assembly 100 minimizes the energy attenuation along its length, thereby maximizing the energy transmitted to energy delivering device “D”, and limiting heating of conduit assembly 100. Moreover, the flexibility of conduit assembly 100 allows a surgeon to easily maneuver energy delivering device “D” during clinical procedures.
Turning now to
As seen in
Transition section 205a varies in diameter between first section 204 and second section 208. A proximal end of transition section 205a has a diameter equal to the diameter of first section 204. A distal end of transition section 205a has a diameter equal to the diameter of second section 208.
First section 204 is connectable to an electrosurgical energy generator “G” via a generator connector 202. Generator connector 202 may include an insulative or dielectric covering 202a such as a polyolefin heat-shrink tubing. Second section 208, in turn, is connectable to an energy delivering device “D” via device connector 210.
As seen in
It is envisioned that cable 205 may be flexible or semi-rigid. Accordingly, inner conductor 212 of cable 205 may be flexible (i.e., having a stranded transverse cross-sectional profile or any other suitable flexible structure known in the art) or semi-rigid (i.e., having a solid transverse cross-sectional profile or any other semi-rigid structure known in the art). Cooper or other suitable electrically conductive material may be utilized to make inner conductor 212. Inner conductor 212 may also include silver plating. Outer conductor 216 may be flexible (i.e., made of braided silver plated cooper or any other suitable material known in the art) or semi-rigid (i.e., be fabricated of solid cooper or any other suitable material known in the art).
Dielectric material 214 may be formed of any suitable low energy loss material such as low density or ultra-density PolyTetraFluoroEthylene (“PTFE”), cellular high density polyethylene or the like. Outer sheath 218 may be comprised of any suitable electrically insulative material known in the art such as fluorinated ethylene propylene (“FEP”) or polyolefin. Conduit assembly 200 may have, for example, a total energy loss of about −1.79 dB or −1.37 dB.
Energy delivering device “D” may be used for surgical procedures entailing microwave ablation. However, the applications of the conduit assemblies and methods of using the conduit assemblies, discussed above, are not limited thereto, but may include any number of further electrosurgical applications. Modifications of the above-described conduit assembly and the same, and variations of aspects of the disclosure that are obvious to those of skill in the art are intended to be within the scope of the claims.
The present application is a continuation of U.S. patent application Ser. No. 14/154,871, filed on Jan. 14, 2014, which is a continuation of U.S. patent application Ser. No. 13/740,706, filed on Jan. 14, 2013, now U.S. Pat. No. 8,628,523, which is a continuation of U.S. patent application Ser. No. 11/805,052, filed on May 22, 2007, now U.S. Pat. No. 8,353,901, the entire contents of each of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4658836 | Turner | Apr 1987 | A |
4700716 | Kasevich et al. | Oct 1987 | A |
4776086 | Kasevich et al. | Oct 1988 | A |
4800899 | Elliott | Jan 1989 | A |
4823812 | Eshel et al. | Apr 1989 | A |
4841988 | Fetter et al. | Jun 1989 | A |
4945912 | Langberg | Aug 1990 | A |
5097845 | Fetter et al. | Mar 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5190054 | Fetter et al. | Mar 1993 | A |
5221269 | Miller et al. | Jun 1993 | A |
5234004 | Hascoet et al. | Aug 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5249585 | Turner et al. | Oct 1993 | A |
5275597 | Higgins et al. | Jan 1994 | A |
5281217 | Edwards et al. | Jan 1994 | A |
5301687 | Wong et al. | Apr 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5342355 | Long | Aug 1994 | A |
5344441 | Gronauer | Sep 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5383922 | Zipes et al. | Jan 1995 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5413588 | Rudie et al. | May 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5464445 | Rudie et al. | Nov 1995 | A |
5480417 | Hascoet et al. | Jan 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5509929 | Hascoet et al. | Apr 1996 | A |
5520684 | Imran | May 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5545137 | Rudie et al. | Aug 1996 | A |
5556377 | Rosen et al. | Sep 1996 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5599295 | Rosen et al. | Feb 1997 | A |
5628770 | Thome et al. | May 1997 | A |
5683382 | Lenihan et al. | Nov 1997 | A |
5720718 | Rosen et al. | Feb 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5755754 | Rudie et al. | May 1998 | A |
5776176 | Rudie | Jul 1998 | A |
5800486 | Thome et al. | Sep 1998 | A |
5810803 | Moss et al. | Sep 1998 | A |
5810804 | Gough et al. | Sep 1998 | A |
5829519 | Uthe | Nov 1998 | A |
5843144 | Rudie et al. | Dec 1998 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5902251 | vanHooydonk | May 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5916240 | Rudie et al. | Jun 1999 | A |
5931807 | McClure et al. | Aug 1999 | A |
5938692 | Rudie | Aug 1999 | A |
5951547 | Gough et al. | Sep 1999 | A |
5957969 | Warner et al. | Sep 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5974343 | Brevard et al. | Oct 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5997532 | McLaughlin et al. | Dec 1999 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6026331 | Feldberg et al. | Feb 2000 | A |
6032078 | Rudie | Feb 2000 | A |
6047216 | Carl et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6059780 | Gough et al. | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6080150 | Gough | Jun 2000 | A |
6097985 | Kasevich et al. | Aug 2000 | A |
6106518 | Wittenberger et al. | Aug 2000 | A |
6122551 | Rudie et al. | Sep 2000 | A |
6134476 | Arndt et al. | Oct 2000 | A |
6146379 | Fleischman et al. | Nov 2000 | A |
6176856 | Jandak et al. | Jan 2001 | B1 |
6181970 | Kasevich | Jan 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6223086 | Carl et al. | Apr 2001 | B1 |
6226553 | Carl et al. | May 2001 | B1 |
6233490 | Kasevich | May 2001 | B1 |
6235048 | Dobak, III | May 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6277113 | Berube | Aug 2001 | B1 |
6289249 | Arndt et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6306132 | Moorman et al. | Oct 2001 | B1 |
6325796 | Berube et al. | Dec 2001 | B1 |
6330479 | Stauffer | Dec 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6347251 | Deng | Feb 2002 | B1 |
6350262 | Ashley | Feb 2002 | B1 |
6355033 | Moorman et al. | Mar 2002 | B1 |
6383182 | Berube et al. | May 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6471696 | Berube et al. | Oct 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6496738 | Carr | Dec 2002 | B2 |
6512956 | Arndt et al. | Jan 2003 | B2 |
6514251 | Ni et al. | Feb 2003 | B1 |
6530922 | Cosman et al. | Mar 2003 | B2 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6564806 | Fogarty et al. | May 2003 | B1 |
6569159 | Edwards et al. | May 2003 | B1 |
6589234 | Lalonde et al. | Jul 2003 | B2 |
6592579 | Arndt et al. | Jul 2003 | B2 |
6663624 | Edwards et al. | Dec 2003 | B2 |
6675050 | Arndt et al. | Jan 2004 | B2 |
6685700 | Behl et al. | Feb 2004 | B2 |
6699241 | Rappaport et al. | Mar 2004 | B2 |
6706040 | Mahon et al. | Mar 2004 | B2 |
6722371 | Fogarty et al. | Apr 2004 | B1 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
7109424 | Nordin et al. | Sep 2006 | B2 |
7174217 | Rioux et al. | Feb 2007 | B2 |
7190989 | Swanson et al. | Mar 2007 | B1 |
7207985 | Duong et al. | Apr 2007 | B2 |
7217282 | Ginsburg et al. | May 2007 | B2 |
7229437 | Johnson et al. | Jun 2007 | B2 |
7231259 | Jenney et al. | Jun 2007 | B2 |
7234225 | Johnson et al. | Jun 2007 | B2 |
7234977 | Westlund et al. | Jun 2007 | B2 |
7235070 | Vanney | Jun 2007 | B2 |
7238166 | Callister | Jul 2007 | B2 |
7238184 | Megerman et al. | Jul 2007 | B2 |
7238194 | Monstadt et al. | Jul 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7244254 | Brace et al. | Jul 2007 | B2 |
7245955 | Rashidi | Jul 2007 | B2 |
7264619 | Venturelli | Sep 2007 | B2 |
7270656 | Gowda et al. | Sep 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7270662 | Visram et al. | Sep 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7273480 | Young et al. | Sep 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7282049 | Orszulak et al. | Oct 2007 | B2 |
7285116 | de la Rama et al. | Oct 2007 | B2 |
7293562 | Malecki et al. | Nov 2007 | B2 |
7300438 | Falwell et al. | Nov 2007 | B2 |
7301131 | Gauthier et al. | Nov 2007 | B2 |
7306592 | Morgan et al. | Dec 2007 | B2 |
7309325 | Mulier et al. | Dec 2007 | B2 |
7309336 | Ashley et al. | Dec 2007 | B2 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7311703 | Turovskiy et al. | Dec 2007 | B2 |
7311705 | Sra | Dec 2007 | B2 |
7317949 | Morrison et al. | Jan 2008 | B2 |
7318822 | Darmos et al. | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7318824 | Prakash et al. | Jan 2008 | B2 |
7319904 | Cross, Jr. et al. | Jan 2008 | B2 |
7326204 | Paul et al. | Feb 2008 | B2 |
7326205 | Paul et al. | Feb 2008 | B2 |
7326206 | Paul et al. | Feb 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
7337009 | Schell | Feb 2008 | B2 |
7465300 | Arless et al. | Dec 2008 | B2 |
7601149 | DiCarlo et al. | Oct 2009 | B2 |
8353901 | Rossetto | Jan 2013 | B2 |
8628523 | Rossetto | Jan 2014 | B2 |
9301802 | Rossetto | Apr 2016 | B2 |
20010001819 | Lee et al. | May 2001 | A1 |
20010008966 | Arndt et al. | Jul 2001 | A1 |
20010020178 | Arndt et al. | Sep 2001 | A1 |
20010020180 | Arndt et al. | Sep 2001 | A1 |
20010037812 | Dobak et al. | Nov 2001 | A1 |
20020022832 | Mikus et al. | Feb 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020133148 | Daniel et al. | Sep 2002 | A1 |
20020147444 | Shah et al. | Oct 2002 | A1 |
20020198520 | Coen et al. | Dec 2002 | A1 |
20030004506 | Messing | Jan 2003 | A1 |
20030065317 | Rudie et al. | Apr 2003 | A1 |
20030069578 | Hall et al. | Apr 2003 | A1 |
20030078573 | Truckai et al. | Apr 2003 | A1 |
20030088242 | Prakash et al. | May 2003 | A1 |
20030109862 | Prakash et al. | Jun 2003 | A1 |
20030195499 | Prakash et al. | Oct 2003 | A1 |
20040078038 | Desinger et al. | Apr 2004 | A1 |
20040167517 | Desinger et al. | Aug 2004 | A1 |
20040168692 | Fogarty et al. | Sep 2004 | A1 |
20040243200 | Turner et al. | Dec 2004 | A1 |
20040267156 | Turovskiy et al. | Dec 2004 | A1 |
20050015081 | Turovskiy et al. | Jan 2005 | A1 |
20050065508 | Johnson et al. | Mar 2005 | A1 |
20050085881 | Prakash et al. | Apr 2005 | A1 |
20050107783 | Tom et al. | May 2005 | A1 |
20050148836 | Kleen et al. | Jul 2005 | A1 |
20050159741 | Paul et al. | Jul 2005 | A1 |
20060259024 | Turovskiy et al. | Nov 2006 | A1 |
20060264923 | Prakash et al. | Nov 2006 | A1 |
20060282069 | Prakash et al. | Dec 2006 | A1 |
20070027451 | Desinger et al. | Feb 2007 | A1 |
20070073282 | McGaffigan et al. | Mar 2007 | A1 |
20070123765 | Hetke et al. | May 2007 | A1 |
20070129715 | Eggers et al. | Jun 2007 | A1 |
20070135879 | McIntyre et al. | Jun 2007 | A1 |
20070142829 | Ahn et al. | Jun 2007 | A1 |
20070149964 | Kawabata et al. | Jun 2007 | A1 |
20070156048 | Panescu et al. | Jul 2007 | A1 |
20070156128 | Jimenez | Jul 2007 | A1 |
20070156132 | Drysen | Jul 2007 | A1 |
20070156133 | McDaniel et al. | Jul 2007 | A1 |
20070173680 | Rioux et al. | Jul 2007 | A1 |
20070173798 | Adams et al. | Jul 2007 | A1 |
20070173812 | Bonan et al. | Jul 2007 | A1 |
20070179375 | Fuimaono et al. | Aug 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070185478 | Cosentino | Aug 2007 | A1 |
20070191825 | Cronin et al. | Aug 2007 | A1 |
20070203551 | Cronin et al. | Aug 2007 | A1 |
20070208334 | Woloszko et al. | Sep 2007 | A1 |
20070208335 | Woloszko et al. | Sep 2007 | A1 |
20070208383 | Williams | Sep 2007 | A1 |
20070213700 | Davison et al. | Sep 2007 | A1 |
20070213703 | Naam et al. | Sep 2007 | A1 |
20070215163 | Harrington et al. | Sep 2007 | A1 |
20070219551 | Honour et al. | Sep 2007 | A1 |
20070225701 | O'Sullivan | Sep 2007 | A1 |
20070233057 | Konishi | Oct 2007 | A1 |
20070244529 | Choi et al. | Oct 2007 | A1 |
20070250053 | Fernald et al. | Oct 2007 | A1 |
20070250054 | Drake | Oct 2007 | A1 |
20070250055 | Johnson et al. | Oct 2007 | A1 |
20070250056 | Vanney | Oct 2007 | A1 |
20070255276 | Sliwa et al. | Nov 2007 | A1 |
20070260235 | Podhajsky | Nov 2007 | A1 |
20070260237 | Sutton et al. | Nov 2007 | A1 |
20070270679 | Nguyen et al. | Nov 2007 | A1 |
20070270791 | Wang et al. | Nov 2007 | A1 |
20070276361 | Stevens-Wright et al. | Nov 2007 | A1 |
20070276362 | Rioux et al. | Nov 2007 | A1 |
20070282323 | Woloszko et al. | Dec 2007 | A1 |
20070282324 | Vaska et al. | Dec 2007 | A1 |
20070282325 | Young et al. | Dec 2007 | A1 |
20070287995 | Mayse | Dec 2007 | A1 |
20070287998 | Sharareh et al. | Dec 2007 | A1 |
20070293853 | Truckai et al. | Dec 2007 | A1 |
20070293854 | Pless et al. | Dec 2007 | A1 |
20070293855 | Sliwa et al. | Dec 2007 | A1 |
20070299488 | Carr | Dec 2007 | A1 |
20080004614 | Burdette et al. | Jan 2008 | A1 |
20080004618 | Johnson et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
0 521 264 | Jan 1993 | EP |
0 667 126 | Aug 1995 | EP |
9320767 | Oct 1993 | WO |
9320768 | Oct 1993 | WO |
9634571 | Nov 1996 | WO |
9748449 | Dec 1997 | WO |
9748450 | Dec 1997 | WO |
9748451 | Dec 1997 | WO |
9956642 | Nov 1999 | WO |
9956643 | Nov 1999 | WO |
9956812 | Nov 1999 | WO |
0049957 | Aug 2000 | WO |
0057811 | Oct 2000 | WO |
0160235 | Aug 2001 | WO |
02078777 | Oct 2002 | WO |
03034932 | May 2003 | WO |
03039385 | May 2003 | WO |
03047043 | Jun 2003 | WO |
03088806 | Oct 2003 | WO |
03088858 | Oct 2003 | WO |
2005011049 | Feb 2005 | WO |
Entry |
---|
US 5,326,343, 07/1994, Rudie et al. (withdrawn). |
I Chou, C.K., “Radiofrequency Hyperthermia in Cancer Therapy,” Biologic Effects of Nonionizing Electromagnetic Fields, Chapter 94, CRC Press, Inc., (1995), pp. 1424-1428. |
Urologix, Inc.—Medical Professionals: Targis.TM. Technology (Date Unknown). “Overcoming the Challenge” located at: http://www.urologix.com!medicalUtechnology.html Nov. 18, 1999; 3 pages. |
International Search Report—EP 06 00 9435 dated Jul. 13, 2006. |
Number | Date | Country | |
---|---|---|---|
20160213425 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14154871 | Jan 2014 | US |
Child | 15088516 | US | |
Parent | 13740706 | Jan 2013 | US |
Child | 14154871 | US | |
Parent | 11805052 | May 2007 | US |
Child | 13740706 | US |