Energy delivery systems and uses thereof

Information

  • Patent Grant
  • 11389235
  • Patent Number
    11,389,235
  • Date Filed
    Monday, July 16, 2007
    16 years ago
  • Date Issued
    Tuesday, July 19, 2022
    a year ago
Abstract
The present invention relates to systems and devices for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In particular, the present invention relates to systems and devices for the delivery of energy with a linear array of antenna components having optimized energy delivery characteristics. In certain embodiments, methods are provided for treating a tissue region (e.g., a tumor) through application of energy with the systems and devices of the present invention.
Description
FIELD OF THE INVENTION

The present invention relates to systems and devices for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In particular, the present invention relates to systems and devices for the delivery of energy with a linear array of antenna components having optimized energy delivery characteristics. In certain embodiments, methods are provided for treating a tissue region (e.g., a tumor) through application of energy with the systems and devices of the present invention.


BACKGROUND

Ablation is an important therapeutic strategy for treating certain tissues such as benign and malignant tumors, cardiac arrhythmias, cardiac dysrhythmias and tachycardia. Most approved ablation systems utilize radio-frequency (RF) energy as the ablating energy source. Accordingly, a variety of RF based catheters and power supplies are currently available to physicians. However, RF energy has several limitations, including the rapid dissipation of energy in surface tissues resulting in shallow “burns” and failure to access deeper tumor or arrhythmic tissues. Another limitation of RF ablation systems is the tendency of eschar and clot formation to form on the energy emitting electrodes which limits the further deposition of electrical energy.


Microwave energy is an effective energy source for heating biological tissues and is used in such applications as, for example, cancer treatment and preheating of blood prior to infusions. Accordingly, in view of the drawbacks of the traditional ablation techniques, there has recently been a great deal of interest in using microwave energy as an ablation energy source. The advantage of microwave energy over RF is the deeper penetration into tissue, insensitivity to charring, lack of necessity for grounding, more reliable energy deposition, faster tissue heating, and the capability to produce much larger thermal lesions than RF, which greatly simplifies the actual ablation procedures. Accordingly, there are a number of devices under development that utilize electromagnetic energy in the microwave frequency range as the ablation energy source (see, e.g., U.S. Pat. Nos. 4,641,649, 5,246,438, 5,405,346, 5,314,466, 5,800,494, 5,957,969, 6,471,696, 6,878,147, and 6,962,586; each of which is herein incorporated by reference in their entireties).


Unfortunately, current devices configured to deliver microwave energy have drawbacks. For example, current devices produce relatively small lesions because of practical limits in power and treatment time. Current devices have power limitations in that the power carrying capacity of the feedlines are small. Larger diameter feedlines are undesirable, however, because they are less easily inserted percutaneously and may increase procedural complication rates. Microwave devices are also limited to single antennas for most purposes thus limiting the ability to simultaneously treat multiple areas or to place several antennas in close proximity to create large zones of tissue heating. In addition, heating of the feedline at high powers can lead to burns around the area of insertion for the device.


Improved systems and devices for delivering energy to a tissue region are needed. In addition, improved systems and devices capable of delivering microwave energy without corresponding microwave energy loss are needed. In addition, systems and devices capable of percutaneous delivery of microwave energy to a subject's tissue without undesired tissue burning are needed. Furthermore, systems for delivery of desired amounts of microwave energy in a multiple-antenna format without requiring physically large invasive components are needed.


SUMMARY OF THE INVENTION

The present invention relates to systems and devices for delivering energy (e.g., microwave energy, radiofrequency energy, ultrasound energy) to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, intraluminal ablation of a hollow viscus, cardiac ablation for treatment of arrhythmias, electrosurgery, tissue harvest, cosmetic surgery, intraocular use, etc.). In particular, the present invention relates to systems and devices for the delivery of microwave energy through a linear array of antenna components with optimized energy delivery characteristics. In certain embodiments, methods are provided for treating a tissue region (e.g., a tumor) through application of microwave energy with the systems and devices of the present invention. The systems and methods of the present invention provide for control of energy delivery (e.g., delivery of different amounts of energy along the length of a catheter) to precisely sculpt an ablation zone.


The present invention provides systems, devices, and methods that employ components for the delivery of energy (e.g., microwave energy, radiofrequency energy, ultrasound energy) at an optimized characteristic impedance through a linear array of antenna components configured to emit energy from varied locations. In some embodiments, an antenna is provided comprising an inner conductor and an outer conductor, wherein the outer conductor is provided in two or more linear segments separated by gaps, such that the length and position of the segments is configured for optimized delivery of energy at the distal end of the antenna. For example, in some embodiments, an antenna comprises a first segment of outer conductor that spans the proximal end of the antenna to a region near the distal end and a second segment of outer conductor distal to the first segment wherein a gap separates or partially separates the first and second segments. The gaps may entirely circumscribe the outer conductor or may only partially circumscribe the outer conductor. In some embodiments, the length of the second segment is λ/2, λ/4, etc., although the present invention is not so limited. In some embodiments one or more additional (e.g., third, fourth, fifth) segments are provided distal to the second segment, each of which is separated from the other by a gap. In some embodiments, the antenna is flexible for purposes of positioning the device around, for example, pulmonary veins and/or tubular structures. In some embodiments, the antenna is terminated with a conductive terminal end that is in electronic communication with the inner conductor. In some embodiments, the conductive terminal end comprises a disc having a diameter substantially identical to the diameter of the outer conductor. Such antenna of the present invention provide multiple peaks of energy delivery along the length of the distal end of the antenna, providing a broader region of energy delivery to target larger regions of tissue. The location and position of the peaks is controlled by selecting the length of the outer conductor segments and by controlling the amount of energy delivered.


In some embodiments, one side of the outer conductor is flat of substantially flat, with the directional pattern radiated from the flat portion to allow the device to seat against the surface of a body.


The present invention is not limited by the nature of the various components of the antenna. A wide variety of components may be used to provide optimal performance, including, but not limited to, the use of a variety of materials for the inner and outer conductors, the use of a variety of materials and configurations for dielectric material between the inner and outer conductors, the use of coolants provided by a variety of different methods.


The present invention is not limited by the type of device or the uses employed. Indeed, the devices may be configured in any desired manner. Likewise, the systems and devices may be used in any application where energy is to be delivered. Such uses include any and all medical, veterinary, and research applications. However, the systems and devices of the present invention may be used in agricultural settings, manufacturing settings, mechanical settings, or any other application where energy is to be delivered.


In some embodiments, the device is configured for percutaneous, intravascular, intracardiac, laparoscopic, or surgical delivery of energy. In some embodiments, the device is configured for delivery of energy to a target tissue or region. The present invention is not limited by the nature of the target tissue or region. Uses include, but are not limited to, treatment of heart arrhythmia, tumor ablation (benign and malignant), control of bleeding during surgery, after trauma, for any other control of bleeding, removal of soft tissue, tissue resection and harvest, treatment of varicose veins, intraluminal tissue ablation of any organ (e.g., to treat esophageal pathologies such as Barrett's Esophagus and esophageal adenocarcinoma, endobronchial treatment of lung tumors, intraluminal treatment of colon or small intestinal pathologies), treatment of bony tumors, normal bone, and benign bony conditions, intraocular uses, uses in cosmetic surgery, treatment of pathologies of the central nervous system including brain tumors and electrical disturbances, sterilization procedures (e.g., ablation of the fallopian tubes) and cauterization of blood vessels or tissue for any purposes. In some embodiments, the surgical application comprises ablation therapy (e.g., to achieve coagulative necrosis). In some embodiments, the surgical application comprises tumor ablation to target, for example, metastatic tumors. In some embodiments, the device is configured for movement and positioning, with minimal damage to the tissue or organism, at any desired location, including but not limited to, the brain, neck, chest, abdomen, and pelvis. In some embodiments, the device is configured for guided delivery, for example, by computerized tomography, ultrasound, magnetic resonance imaging, fluoroscopy, endoscopy, direct vision, and the like.


In certain embodiments, the device comprises a linear antenna, wherein the linear antenna comprises an outer conductor enveloped around an inner conductor, wherein the inner conductor is designed to receive and transmit energy (e.g., microwave energy, radiofrequency energy, ultrasound energy), wherein the outer conductor has therein a series of gap regions (e.g., at least two) positioned along the outer conductor, wherein the inner conductor is exposed at the gap regions, wherein the energy transmitting along the inner conductor is emitted through the gap regions. The device is not limited to a particular number of gap regions (e.g., 2, 3, 4, 5, 6, 10, 20, 50). In some embodiments, the inner conductor comprises a dielectric layer enveloping a central transmission line. In some embodiments, the dielectric element has near-zero conductivity. In some embodiments, the device further comprises a stylet. In some embodiments, the device further comprises a tuning element for adjusting the amount of energy delivered through the gap regions. In certain embodiments, when used in tissue ablation settings, the device is configured to deliver a sufficient amount of energy to ablate a tissue region or cause thrombosis.


In some embodiments, the size of the device is consistent with a 20-gauge needle or a component of similar diameter to a 20-gauge needle. Preferably, the diameter of the device is not larger than a 16-gauge needle (e.g., no larger than an 18-gauge needle). However, in some embodiments, larger devices are used, as desired. For example, in some embodiments, a device consistent with a 12-gauge needle is provided, or the device can be larger in diameter if mounted on an endoscope, for use during laparoscopic or open surgery, or used under direct vision for superficial structures.


In some embodiments, the device further comprises an anchoring element for securing the antenna at a particular tissue region. The device is not limited to a particular type of anchoring element. In some embodiments, the anchoring element is an inflatable balloon (e.g., wherein inflation of the balloon secures the antenna at a particular tissue region). An additional advantage of utilizing an inflatable balloon as an anchoring element is the inhibition of blood flow or air flow to a particular region upon inflation of the balloon. Such air or blood flow inhibition is particularly useful in, for example, cardiac ablation procedures and ablation procedures involving lung tissue, vascular tissue, and gastrointestinal tissue. In some embodiments, the anchoring element is an extension of the antenna designed to engage (e.g., latch onto) a particular tissue region. Further examples include, but are not limited to, the anchoring elements described in U.S. Pat. Nos. 6,364,876, and 5,741,249; each herein incorporated by reference in their entireties.


Thus, in some embodiments, the systems, devices, and methods of the present invention provides an ablation device coupled with a component that provides occlusion of a passageway (e.g., bronchial occlusion). The occlusion component (e.g., inflatable balloon) may be directly mounted on the ablation system or may be used in combination with another component (e.g., an endotracheal or endobronchial tube) associated with the system.


In some embodiments, the devices of the present invention may be mounted onto additional medical procedure devices. For example, the devices may be mounted onto endoscopes, intravascular catheters, or laproscopes. In some embodiments, the devices are mounted onto steerable catheters.


In some embodiments, one or more components of the systems of the present invention may contain a coating (e.g., Teflon or any other insulator) to help reduce heating or to impart other desired properties to the component or system.


In some embodiments, the device further comprises a tuning element for adjusting the amount of energy delivered to the tissue region. In some embodiments, the tuning element is manually adjusted by a user of the system. In some embodiments, the device is pretuned to the desired tissue and is fixed throughout the procedure. In some embodiments, the tuning element is automatically adjusted and controlled by a processor of the present invention. In some embodiments, the processor adjusts the energy delivery over time to provide constant energy throughout a procedure, taking into account any number of desired factors including, but not limited to, heat, nature and/or location of target tissue, size of lesion desired, length of treatment time, proximity to sensitive organ areas, and the like. In some embodiments, the system comprises a sensor that provides feedback to the user or to a processor that monitors the function of the device continuously or at time points. The sensor may record and/or report back any number of properties, including, but not limited to, heat at one or more positions of a components of the system, heat at the tissue, property of the tissue, and the like. The sensor may be in the form of an imaging device such as CT, ultrasound, magnetic resonance imaging, or any other imaging device. In some embodiments, particularly for research application, the system records and stores the information for use in future optimization of the system generally and/or for optimization of energy delivery under particular conditions (e.g., patient type, tissue type, size and shape of target region, location of target region, etc.).


In certain embodiments, the present invention provides a system for ablation therapy, comprising a power distributor.


In certain embodiments, the present invention provides a system for ablation therapy, comprising a power distributor, a power splitter, and a device described herein (e.g., having a linear array of antenna components configured to emit energy from varied locations). In some embodiments, the power splitter is configured to provide the same power throughout the device. In some embodiments, the power splitter is configured to provide a different amount of power to different regions of the antenna, as so desired by the user or directed by a tuning element. In some embodiments, the system comprises more than one ablation device as described herein (e.g., having a linear array of antenna components configured to emit energy from varied locations) for purposes of, for example, phasing the energy delivery from the devices in a constructive or destructive manner. The devices of the present invention may be combined or utilized with any kind of additional ablation devices (see, e.g., U.S. Pat. Nos. 7,033,352, 6,893,436, 6,878,147, 6,823,218, 6,817,999, 6,635,055, 6,471,696, 6,383,182, 6,312,427, 6,287,302, 6,277,113, 6,251,128, 6,245,062, 6,026,331, 6,016,811, 5,810,803, 5,800,494, 5,788,692, 5,405,346, 4,494,539, U.S. patent application Ser. Nos. 11/237,136, 11/236,985, 10/980,699, 10/961,994, 10/961,761, 10/834,802, 10/370,179, 09/847,181; U.S. Provisional Patent Nos. 60/785,690, 60/785,467, and 60/785,466; Great Britain Patent Application Nos. 2,406,521, 2,388,039; European Patent No. 1395190; and International Patent Application Nos. WO 06/008481, WO 06/002943, WO 05/034783, WO 04/112628, WO 04/033039, WO 04/026122, WO 03/088858, WO 03/039385 WO 95/04385; each herein incorporated by reference in their entireties).


In certain embodiments, the present invention provides a method of treating a tissue region, comprising providing a tissue region and a device described herein (e.g., having a linear array of antenna components configured to emit energy from varied locations); positioning a portion of the device in the vicinity of the tissue region, and delivering an amount of energy with the device to the tissue region. In some embodiments, the tissue region is a tumor. In some embodiments, the delivering of the energy results in, for example, the ablation of the tissue region and/or thrombosis of a blood vessel, and/or electroporation of a tissue region. In some embodiments, the user is able to control the release of energy through different regions of the device and control the amount of energy delivered through each region of the device for purposes of precisely sculpting an ablation zone. In some embodiments, the tissue region is a tumor. In some embodiments, the tissue region comprises one or more of the heart, liver, genitalia, stomach, lung, skin, breast, large intestine, small intestine, brain, neck, bone, kidney, muscle, tendon, blood vessel, prostate, bladder, and spinal cord.


In some embodiments, energy is delivered to the tissue region in different intensities and from different locations within the device. For example, certain regions of the tissue region may be treated through one portion of the device, while other regions of the tissue may be treated through a different portion of the device. In addition, two or more regions of the device may simultaneously deliver energy to a particular tissue region so as to achieve constructive phase interference (e.g., wherein the emitted energy achieves a synergistic effect). In other embodiments, two or more regions of the device may deliver energy so as to achieve a destructive interference effect. In some embodiments, the method further provides additional devices for purposes of achieving constructive phase interference and/or destructive phase interference. In some embodiments, phase interference (e.g., constructive phase interference, destructive phase interference), between one or more devices, is controlled by a processor, a tuning element, a user, and/or a power splitter.


In some embodiments, the device is configured for percutaneous, intravascular, intracardiac, laparoscopic, endoscopic, or surgical delivery of energy. In some embodiments, the device is configured for delivery of energy to a target tissue or region. The present invention is not limited by the nature of the target tissue or region. The device may be rigid or flexible, and mounted on a number of different delivery tools including but not limited to: a percutaneous needle shaft, a laparoscope, an endoscope, intravascular catheters, etc.


The systems, devices, and methods of the present invention may be used in conjunction with other systems, device, and methods (see, e.g., U.S. Provisional Patent Nos. 60/785,466, 60/785,467, and 60/785,690, each of which is herein incorporated by reference in their entireties). For example, the systems, devices, and methods of the present invention may be used with other ablation devices, other medical devices, diagnostic methods and reagents, imaging methods and reagents, and therapeutic methods and agents. In some embodiments, the devices of the present invention may be mounted onto additional medical procedure devices. For example, the devices may be mounted onto endoscopes, intravascular catheters, or laproscopes. In some embodiments, the devices are mounted onto steerable catheters. Use may be concurrent or may occur before or after another intervention. The present invention contemplates the use systems, devices, and methods of the present invention in conjunction with any other medical interventions.


In some embodiments, the energy delivery systems of the present invention utilize coolant systems so as to reduce undesired heating within and along an energy delivery device (e.g., tissue ablation catheter). The systems of the present invention are not limited to a particular cooling system mechanism. In some embodiments, the systems are designed to circulate a coolant (e.g., air, liquid, etc.) throughout an energy delivery device such that the coaxial transmission line(s) and antenna(e) temperatures are reduced. In some embodiments, the systems utilize energy delivery devices having therein channels designed to accommodate coolant circulation. In some embodiments, the systems provide a coolant sheath wrapped around the antenna or portions of the antenna for purposes of cooling the antenna externally (see, e.g., U.S. patent application Ser. No. 11/053,987; herein incorporated by reference in its entirety). In some embodiments, the systems utilize energy delivery devices having a conductive covering around the antenna for purposes of limiting dissipation of heat onto surrounding tissue (see, e.g., U.S. Pat. No. 5,358,515; herein incorporated by reference in its entirety).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic view of a system for microwave therapy.



FIG. 2 shows a cross-section view of a device of the present invention.





DETAILED DESCRIPTION

The present invention relates to systems and devices for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In particular, the present invention relates to systems and devices for the delivery of energy with a linear array of antenna components configured to emit energy from varied locations having optimized energy delivery characteristics. In certain embodiments, methods are provided for treating a tissue region (e.g., a tumor) through application of energy with the systems and devices of the present invention.


In preferred embodiments, the systems, devices, and methods of the present invention employ microwave energy. The use of microwave energy in the ablation of tissue has numerous advantages. For example, microwaves have a broad field of power density (e.g., approximately 2 cm surrounding an antenna depending on the wavelength of the applied energy) with a correspondingly large zone of active heating, thereby allowing uniform tissue ablation both within a targeted zone and in perivascular regions (see, e.g., International Publication No. WO 2006/004585; herein incorporated by reference in its entirety). In addition, microwave energy has the ability to ablate large or multiple zones of tissue using multiple probes with more rapid tissue heating. Microwave energy has an ability to penetrate tissue to create deep lesions with less surface heating. Energy delivery times are shorter than with radiofrequency energy and probes can heat tissue sufficiently to create an even and symmetrical lesion of predictable and controllable depth. Microwave energy is generally safe when used near vessels. Also, microwaves do not rely on electrical conduction as it radiates through tissue, fluid/blood, as well as air. Therefore, microwave energy can be used in tissue, bone, lumens, lungs, and intravascularly.


The illustrated embodiments provided below describe the systems and devices of the present invention in terms of medical applications (e.g., ablation of tissue through delivery of microwave energy). However, it should be appreciated that the systems and devices of the present invention are not limited to medical applications. In addition, the illustrated embodiments describe the systems and devices of the present invention in terms of medical devices configured for tissue ablation. It should be appreciated that the systems and devices of the present invention are not limited to medical devices configured for tissue ablation. The illustrated embodiments describe the systems and devices of the present invention in terms of microwave energy. It should be appreciated that the systems and devices of the present invention are not limited to a particular type of energy (e.g., radiofrequency energy).


The systems and devices of the present invention provide numerous advantages over the currently available systems and devices. For example, a major drawback with currently available medical devices that utilize microwave energy is that the emitted energy is provided locally, thereby precluding delivery of energy over a deeper and denser scale. The devices of the present invention overcome this limitation by providing an applicator device having a linear array of antenna components configured to deliver energy (e.g., microwave energy) over a wider and deeper scale (e.g., as opposed to local delivery). Such a device is particularly useful in the tissue ablation of dense and/or thick tissue regions (e.g., tumors, organ lumens) and particularly deep tissue regions (e.g., large cardiac areas, brains, bones).


Certain preferred embodiments of the present invention are described below. The present invention is not limited to these embodiments.



FIG. 1 shows a schematic view of a system for microwave therapy 100 configured for medical procedures (e.g., tissue ablation). In some embodiments, the system for microwave therapy 100 is configured to simultaneously deliver microwave energy from numerous vantage points (e.g., through a linear array of antenna components) thereby allowing the treatment (e.g., ablation) of dense and/or thick tissue regions (e.g., tumors, organ lumens) and particularly deep tissue regions (e.g., large cardiac areas, brains, bones). The system for microwave therapy 100 is not limited to a particular type of microwave therapy. Indeed, the system for microwave therapy 100 encompasses any type of microwave therapy (e.g., exposure of a tissue (e.g., cancer cells) to high temperatures so as to kill the tissue or to make the tissue more sensitive to alternative treatment forms (e.g., to render tissue more sensitive to the effects of radiation; to render tissue more sensitive to anticancer drugs)). In some embodiments, the system for microwave therapy 100 generally comprises a generator 110, a power distribution system 120, and an applicator device 130.


Still referring to FIG. 1, in some embodiments, the generator 110 serves as an energy source to the system for microwave therapy 100. In some embodiments, the generator 110 is configured to provide as much as 100 watts of microwave power of a frequency of 2.45 GHz, although the present invention is not so limited. The system for microwave therapy 100 is not limited to a particular type of generator 110. Exemplary generators that find use with the present invention include, but are not limited to, those available from Cober-Muegge, LLC, Norwalk, Conn., USA.


Still referring to FIG. 1, in some embodiments, the power distribution system 120 distributes energy from the generator 110 to the applicator device 130. The power distribution system 120 is not limited to a particular manner of collecting energy from the generator 110. The power distribution system 120 is not limited to a particular manner of providing energy to the applicator device 130. In some embodiments, the power distribution system 120 is configured to transform the characteristic impedance of the generator 110 such that it matches the characteristic impedance of the applicator device 130. In some embodiments, an impedance tuning component (not shown) is provided to permit continuous and variable impedance matching, as desired.


In some embodiments, the power distribution system 120 is configured with a variable power splitter so as to provide varying energy levels to different regions of a device (e.g., a linear array of antenna components configured to emit energy from varied locations). In some embodiments, the power splitter is used to feed multiple energy delivery devices with separate energy signals. In some embodiments, the power splitter electrically isolates the energy delivered to each energy delivery device so that, for example, if one of the devices experiences an increased load as a result of increased temperature deflection, the energy delivered to that unit is altered (e.g., reduced, stopped) while the energy delivered to alternate devices is unchanged. The present invention is not limited to a particular type of power splitter. In some embodiments, the power splitter is configured to receive energy from a power generator and provide energy to additional system components (e.g., energy delivery devices). In some embodiments the power splitter is able to connect with one or more additional system components (e.g., 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 50, 100, 500 . . . ). In some embodiments, the power splitter is configured to deliver variable amounts of energy to different regions within an energy delivery device for purposes of delivering variable amounts of energy from different regions of the device. In some embodiments, the power splitter is used to provide variable amounts of energy to multiple energy delivery devices for purposes of treating a tissue region. In preferred embodiments, the power splitter is configured to operate within a system comprising a processor, an energy delivery device, a temperature adjustment system, a power splitter, a tuning system, and/or an imaging system.


In some embodiments, where multiple antennas are employed, the system of the present invention may be configured to run them simultaneously or sequentially (e.g., with switching). In some embodiments, the system is configured to phase the fields for constructive or destructive interference. Phasing may also be applied to different elements within a single antenna.


Still referring to FIG. 1, in some embodiments, the applicator device 130 is configured to receive energy (e.g., microwave energy) from the power distribution system 120 and deliver the energy to a load (e.g., tissue region). In some embodiments, the applicator device 130 is configured to transform the characteristic impedance of the power distribution system 120 such that it matches the characteristic impedance level of the applicator device 130. In preferred embodiments, the applicator device 130 is configured to deliver microwave energy from a plurality of vantage points through a linear array of antenna components (described in more detail below). One skilled in the art will appreciate any number of alternative configurations that accomplish the physical and/or functional aspects of the present invention. The applicator device 130 is configured to deliver energy (e.g., microwave energy) to deep portions of a tissue from a plurality of vantage points (e.g., linear array of antenna components). The applicator device 130 is not limited to particular size dimensions. In some embodiments, the size of the applicator device 130 is designed for passage through a medical catheter and into a subject's internal body cavities (e.g., heart, brain, stomach, bone). In some embodiments, the applicator device 130 is designed for percutaneous insertion into a subject's body. The applicator device 130 is not limited to a particular length. In some embodiments, the length of the applicator device 130 is designed so as to maximize or minimize the emission of energy depending on a user's intention.



FIG. 2 shows a schematic cross-section perspective of an applicator device 130 connected to a power distribution system 120. The applicator device 130 is not limited to particular configurations. In some embodiments, the applicator device 130 is shaped in a tubular configuration. The applicator device 130 is not limited to a particular length or width. In preferred embodiments, the configuration of the applicator device 130 is such that it is capable of delivering microwave energy to a load (e.g., a tissue region) from a plurality of vantage points. In some embodiments, the applicator device 130 comprises an antenna 140, a conductive terminal end 145, and, in some embodiments, a stylet 150.


Still referring to FIG. 2, the antenna 140 is configured to receive, transfer and emit microwave energy. The antenna 140 is not limited to particular size dimensions. The antenna 140 is not limited to receiving, transferring, or emitting a particular amount of microwave energy. The antenna 140 is not limited to receiving, transferring, or emitting microwave energy at a particular rate. In preferred embodiments, the antenna 140 is designed to simultaneously emit microwave energy from a plurality of vantage points thereby permitting the treatment (e.g., ablation treatment) of dense and/or thick tissue regions (e.g., tumors, organ lumens) and particularly deep tissue regions (e.g., large cardiac areas, brains, bones). In some embodiments, the antenna 140 comprises an inner conductor 160 and an outer conductor 170.


Still referring to FIG. 2, the inner conductor 160 is designed to receive, transfer and emit microwave energy. The inner conductor 160 is not limited to receiving, transferring, or emitting a particular amount of microwave energy. The inner conductor 160 is not limited to receiving, transferring, or emitting microwave energy at a particular rate. The inner conductor 160 is designed to receive and transfer microwave energy such that the transmission follows a wavelength pattern. The inner conductor 160 is not limited to particular size dimensions. In some embodiments, the length of the inner conductor 160 is consistent with the length of the antenna 140. The inner conductor 160 generally comprises a central transmission line 180 and a dielectric layer 190.


Still referring to FIG. 2, the central transmission line 180 is configured to receive, transfer and emit any amount of microwave energy, at any rate. The central transmission line 180 is not limited to particular size dimensions. In preferred embodiments, the length of the central transmission line 180 is consistent with the length of the antenna 140. In some embodiments, the antenna is configured to conduct cooling fluid along its length via any mechanism, including, but not limited to, flowing coolant through chambers or channels (e.g., in the dielectric material 190) or around the outer surface of the antenna. In some embodiments, the central transmission line 180 is hollow. In some embodiments, the central transmission line 180 has a diameter of, for example, 0.012 inches.


Still referring to FIG. 2, a dielectric layer 190 is provided. The dielectric layer 190 is not limited to particular size dimensions. In some embodiments, the material of the dielectric layer 190 has near-zero conductivity (e.g., air, gas, fluid). In some embodiments, the material of the dielectric layer 190 is rigid (e.g., ceramic, fiberglass, etc.) while maintaining near-zero conductivity. In some embodiments, the dielectric layer 190 is coated with a heat-resistant coating (e.g., Teflon).


Still referring to FIG. 2, an outer conductor 170 is provided. The outer conductor 170 is not limited to particular size dimensions. The outer conductor 170 is not limited to a particular type of material (e.g., metal, plastic, ceramic, etc.). In some embodiments, the outer conductor 170 is coated with a heat-resistant coating (e.g., Teflon). In preferred embodiments, the outer conductor 170 is provided in two or more outer conductor segments 200 separated by gaps 210.


Still referring to FIG. 2, the outer conductor segments 200 are not limited to a particular length. The outer conductor 170 is not limited to a particular number of outer conductor segments 200 (e.g., 2, 3, 4, 5, 10, etc.). In some embodiments, the outer conductor 170 has therein two outer conductor segments 200. In some embodiments, the length of the outer conductor segments 200 corresponds to the distance of a half-wavelength (λ/2) of microwave energy transmitting through the inner conductor 160. In some embodiments, the length of the outer conductor segments 200 are varied.


Still referring to FIG. 2, the outer conductor segment gaps 210 are designed to permit emission of microwave energy transmitting through the antenna in desired locations. The outer conductor 170 is not limited to a particular number of outer conductor segment gaps 210 (e.g., 2, 3, 4, 5, 10, etc.). The outer conductor segment gaps 210 are not limited to particular size dimensions. In some embodiments, the gaps entirely circumscribe the outer conductor, while in other embodiments, the gaps only partially circumscribe the outer conductor (e.g., 180 degrees, 270 degrees, 90 degrees, etc.). In the latter case, such embodiments find use for unidirectional operation (e.g., for cardiac ablation). In some embodiments, the partially circumscribing gaps are alternated (e.g., one gap on one side of the circumferences, the next gap on the other side). In some embodiments, the spacing and width of the gaps are varied so as to ensure even heating along the antenna. In some embodiments, the size of the gaps is varied so as to alter the homogeneity of the energy distribution. For example, in some embodiments, smaller gaps at the proximal end of the device are provided to allow energy to be delivered to larger gaps at the distal end. In some embodiments, several small gaps are used with different element lengths between them, typically each being less than one wavelength, to alter the homogeneity of the field intensity pattern. Thus, configuration may be optimized for deep field penetration, for shallow heating, etc. In preferred embodiments, the size of the outer conductor segment gaps 210 is such that microwave energy transmitting by the antenna is permitted to peak in desired locations defined by the location of the segments 200 and gaps 210 (e.g., for purposes of tissue ablation). The outer conductor segment gaps 210 are not limited to a particular position along the outer conductor 170. In some embodiments, the outer conductor segment gaps 210 are positioned along the outer conductor 170 so as to coincide with the wavelength peaks of the microwave energy transmitting along the antenna (e.g., for purposes of maximum microwave energy emission). In some embodiments, the outer conductor segment gaps 210 are filled with a material to prevent accumulation of tissue or fluid within the gap. In preferred embodiments, the outer conductor segment gaps 210 are filled with a material to prevent accumulation of tissue or fluid within the gap, while not precluding emission of the microwave energy transmitting along the inner conductor 160. Dielectric material may be used to fill the gaps to provide a uniform, smooth outer surface.


As demonstrated in FIG. 2, the outer conductor 170 has therein two outer conductor segments 200 and two outer conductor segment gaps 210. FIG. 2 shows an exemplary energy emission pattern 220. As shown, the energy emission pattern 220 reaches a peak of intensity near the center of each conductor segment gap 210, and diminishes in intensity near the edges of each conductor segment gap 210. In some embodiments, two or more outer segment gaps are positioned in close proximity so as to achieve a combined energy emission (e.g., a cumulative effect, constructive phase interference, destructive phase interference) over a contiguous or nearly contiguous length of the antenna (described in more detail below).


Still referring to FIG. 2, the distal end of the inner conductor 160 engages a conductive terminal end 145. The conductive terminal end 145 is not limited to particular size dimensions. In some embodiments, the diameter of the conductive terminal end 145 is consistent with outer diameter of the outer conductor 170. The conductive terminal end 145 is not limited to a particular shape. In some embodiments, the conductive terminal end 145 has a disc shape.


Still referring to FIG. 2, the conductive terminal end 145 engages a stylet 150. The applicator 130 is not limited to a particular stylet 150. In some embodiments, the stylet 150 is designed to facilitate percutaneous insertion of the applicator 130.


In some embodiments, the device further comprises an anchoring element for securing the antenna at a particular tissue region. The device is not limited to a particular type of anchoring element. In some embodiments, the anchoring element is an inflatable balloon (e.g., wherein inflation of the balloon secures the antenna at a particular tissue region). An additional advantage of utilizing an inflatable balloon as an anchoring element is the inhibition of blood flow or air flow to a particular region upon inflation of the balloon. Such air or blood flow inhibition is particularly useful in, for example, cardiac ablation procedures and ablation procedures involving lung tissue, vascular tissue, and gastrointestinal tissue. In some embodiments, the anchoring element is an extension of the antenna designed to engage (e.g., latch onto) a particular tissue region. Further examples include, but are not limited to, the anchoring elements described in U.S. Pat. Nos. 6,364,876, and 5,741,249; each herein incorporated by reference in their entireties.


In some embodiments, the device is configured to attach with a detachable handle. The present invention is not limited to a particular type of detachable handle. In preferred embodiments, the detachable handle is configured to connect with multiple devices (e.g., 1, 2, 3, 4, 5, 10, 20, 50 . . . ) for purposes of controlling the energy delivery through such devices.


In some embodiments, the device is designed to physically surround a particular tissue region for purposes of energy delivery (e.g., the device may be flexibly shaped around a particular tissue region). For example, in some embodiments, the device may be flexibly shaped around a blood vessel (e.g., pulmonary vein) for purposes of delivering energy to a precise region within the tissue.


In use, the applicator device is particularly useful for tissue ablation of dense and/or thick tissue regions (e.g., tumors, organ lumens) and particularly deep tissue regions (e.g., large cardiac areas, brains, bones). Indeed, the applicator device may be positioned inside or in the vicinity of a tissue requiring a tissue ablation (e.g., a tumor). Whereas standard ablation instruments only permit localized delivery of microwave energy to a tissue to be treated, the devices of the present invention can simultaneously deliver energy to a plurality of locations or a broader area within the tissue. In some embodiments, the devices of the present invention are used in the ablation of a tissue region having high amounts of air and/or blood flow (e.g., lung tissue, cardiac tissue, gastrointestinal tissue, vascular tissue). In some embodiments involving ablation of tissue regions having high amounts of air and/or blood flow, an element is further utilized for inhibiting the air and/or blood flow to that tissue region. The present invention is not limited to a particular air and/or blood flow inhibition element. In some embodiments, the device is combined with an endotracheal/endobronchial tube. In some embodiments, a balloon attached with the device may be inflated at the tissue region for purposes of securing the device(s) within the desired tissue region, and inhibiting blood and/or air flow to the desired tissue region.


In addition, the devices of the present invention are configured to deliver energy from different regions of the device (e.g., outer conductor segment gaps) at different times (e.g., controlled by a user) and at different energy intensities (e.g., controlled by a user). Such control over the device permits the phasing of energy delivery fields for purposes of achieving constructive phase interference at a particular tissue region or destructive phase interference at a particular tissue region. For example, a user may employ energy delivery through two (or more) closely positioned outer conductor segments so as to achieve a combined energy intensity (e.g., constructive phase interference). Such a combined energy intensity may be useful in particularly deep or dense tissue regions. In addition, such a combined energy intensity may be achieved through utilization of two (or more) devices. In some embodiments, phase interference (e.g., constructive phase interference, destructive phase interference), between one or more devices, is controlled by a processor, a tuning element, a user, and/or a power splitter.


The systems and devices of the present invention may be combined within various system/kit embodiments. For example, the present invention provides kits comprising one or more of a generator, a power distribution system, an applicator, along with any one or more accessory agents (e.g., surgical instruments, software for assisting in procedure, processors, temperature monitoring devices, etc.). The present invention is not limited to any particular accessory agent. Additionally, the present invention contemplates kits comprising instructions (e.g., ablation instructions, pharmaceutical instructions) along with the systems and devices of the present invention and/or a pharmaceutical agent (e.g., a sedating medication, a topical antiseptic, a topical anesthesia).


The devices of the present invention may be used in any medical procedure (e.g., percutaneous or surgical) involving delivery of energy (e.g., microwave energy) to a tissue region. The present invention is not limited to a particular type or kind of tissue region (e.g., brain, liver, heart, breast, skin, blood vessels, foot, lung, bone, etc.). For example, the systems of the present invention find use in ablating tumor regions. In such uses, the applicator device is inserted into, for example, a subject such that the linear array of antenna components are positioned in the vicinity of and/or within a desired tissue region (e.g., a dense tumor). Next, the generator is used to provide a desired amount of microwave energy to the power distribution system at a characteristic impedance level, which in turn provides the energy at a characteristic impedance level to the applicator. Next, a desired amount of microwave energy is delivered to the desired tissue region (e.g., tumor) through the outer conductor segment gaps within the outer conductor (see, e.g., FIG. 2), thereby generating a plurality of electric fields of sufficient strength to ablate the desired tissue region. In some embodiments, all of the outer conductor segment gaps are utilized to deliver energy, while in other embodiments, only a limited number (e.g., at least one) of the outer conductor segment gaps are utilized to deliver energy. In some embodiments, maximum energy is delivered through the outer conductor segment gaps, while in other embodiments, the intensity of energy delivered through the outer conductor segment gaps is varied depending on the tissue region being treated and the user's (e.g., physician's) discretion. Due to multiple energy emissions permitted with the devices of the present invention, the devices of the present invention permit treatment (e.g., ablation treatment) of dense, long, and/or thick tissue regions (e.g., tumors, organ lumens) and particularly deep tissue regions (e.g., large cardiac areas, brains, bones) in a manner superior to standard ablation devices (e.g., through constructive phase interference and/or destructive phase interference). In addition, the devices of the present invention may be combined with additional ablation devices or features of other ablation devices (see, e.g., U.S. Provisional Patent Nos. 60/785,466, 60/785,467, and 60/785,690, each of which is herein incorporated by reference in their entireties). In some embodiments, the present invention further provides software for regulating the amount of microwave energy provided to a tissue region through monitoring of the temperature of the tissue region (e.g., through a feedback system). In such embodiments, the software is configured to interact with the systems for microwave therapy of the present invention such that it is able to raise or lower (e.g., tune) the amount of energy delivered to a tissue region. In some embodiments, the type of tissue being treated (e.g., liver) is inputted into the software for purposes of allowing the software to regulate (e.g., tune) the delivery of microwave energy to the tissue region based upon pre-calibrated methods for that particular type of tissue region. In other embodiments, the software provides a chart or diagram based upon a particular type of tissue region displaying characteristics useful to a user of the system. In some embodiments, the software provides energy delivering algorithms for purposes of, for example, slowly ramping power to avoid tissue cracking due to rapid out-gassing created by high temperatures. In some embodiments, the software allows a user to choose power, duration of treatment, different treatment algorithms for different tissue types, simultaneous application of power to the antennas in multiple antenna mode, switched power delivery between antennas, coherent and incoherent phasing, etc.


In some embodiments, the software is configured for imaging equipment (e.g., CT, MRI, ultrasound). In some embodiments, the imaging equipment software allows a user to make predictions based upon known thermodynamic and electrical properties of tissue and location of the antenna(s). In some embodiments, the imaging software allows the generation of a three-dimensional map of the location of a tissue region (e.g., tumor, arrhythmia), location of the antenna(s), and to generate a predicted map of the ablation zone.


In some embodiments, the devices of the present invention may be mounted onto additional medical procedure devices. For example, the devices may be mounted onto endoscopes, intravascular catheters, or laproscopes. In some embodiments, the devices are mounted onto steerable catheters. Any desirable configuration may be used. In some embodiments, a flexible catheter is mounted on an endoscope, intravascular catheter or laparoscope. For example, the flexible catheter, in some embodiments, has multiple joints (e.g., like a centipede) that permits bending and steering as desired to navigate to the desired location for treatment.


All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.

Claims
  • 1. A device consisting of an antenna, a stylet, and a conductive terminal end having a conductive terminal end proximal end and a conductive terminal end distal end, wherein said antenna comprises an outer conductor enveloped around an inner conductor, the outer conductor having an outer conductor proximal end and an outer conductor distal end, the inner conductor having an inner conductor proximal end and an inner conductor distal end, wherein material of the outer conductor from the outer conductor proximal end to the outer conductor distal end is the same,wherein said inner conductor is designed to receive and transmit microwave or radiofrequency energy, wherein the inner conductor is hollow,wherein said outer conductor has therein a plurality of gaps positioned circumferentially along said outer conductor, wherein each of the plurality of gaps has a proximal end and a distal end, wherein one of the plurality of gaps is positioned most distally along the length of the antenna,wherein multiple energy peaks are configured to be generated along a length of said antenna, wherein positions of said multiple energy peaks are controlled by a location of said plurality of gaps,wherein said antenna comprises a dielectric layer disposed between said inner conductor and said outer conductor, wherein the dielectric layer has a proximal end and a distal end,wherein the antenna is configured to conduct cooling fluid along its length through one or more channels, wherein the one or more channels have a proximal end and a distal end, wherein the distal end of the one or more channels engages the conductive terminal end proximal end, wherein the distal end of the one more channels is closed,wherein the dielectric layer distal end and the inner conductor distal end each engage but do not extend into the conductive terminal end proximal end, wherein a terminal point of the distal end of a most distally positioned gap of the plurality of gaps coincides with the terminal points of the dielectric layer distal end and the inner conductor distal end,wherein the inner conductor distal end is closed,wherein the stylet engages the conductor terminal end distal end,wherein one of the plurality of gaps is positioned circumferentially along said outer conductor between the outer conductor distal end and the conductive terminal end proximal end,wherein the conductive terminal end comprises a disc having a diameter substantially identical to a diameter of the outer conductor,wherein the antenna is flexible.
  • 2. The device of claim 1, wherein said plurality of gaps is at least two gaps.
  • 3. The device of claim 1, wherein said inner conductor has a diameter of approximately 0.013 inches or less.
  • 4. The device of claim 1, further comprising a tuning element for adjusting an amount of energy delivered.
  • 5. The device of claim 1, wherein the one or more channels are positioned within the dielectric layer.
  • 6. The device of claim 1, wherein the one or more channels are positioned within the outer conductor.
  • 7. A system for ablation therapy, consisting of a power distributor and a device comprising an antenna, a stylet, and a conductive terminal end having a conductive terminal end proximal end and a conductive terminal end distal end, wherein said antenna comprises an outer conductor enveloped around an inner conductor, the outer conductor having an outer conductor proximal end and an outer conductor distal end, the inner conductor having an inner conductor proximal end and an inner conductor distal end, wherein material of the outer conductor from the outer conductor proximal end to the outer conductor distal end is the same,wherein said inner conductor is designed to receive and transmit microwave or radiofrequency energy, wherein the inner conductor is hollow,wherein said outer conductor has therein a plurality of gaps positioned circumferentially along said outer conductor, wherein each of the plurality of gaps has a proximal end and a distal end, wherein one of the plurality of gaps is positioned most distally along the length of the antenna,wherein multiple energy peaks are configured to be generated along a length of said antenna, wherein positions of said multiple energy peaks are controlled by a location of said plurality of gaps,wherein said antenna comprises a dielectric layer disposed between said inner conductor and said outer conductor, wherein the dielectric layer has a proximal end and a distal end,wherein the antenna is configured to conduct cooling fluid along its length through one or more channels, wherein the one or more channels have a proximal end and a distal end, wherein the distal end of the one or more channels engages the conductive terminal end proximal end, wherein the distal end of the one more channels is closed,wherein the dielectric layer distal end and the inner conductor distal end each engage but do not extend into the conductive terminal end proximal end, wherein a terminal point of the distal end of the most distally positioned gap coincides with the terminal points of the dielectric layer distal end and the inner conductor distal end,wherein the inner conductor distal end is closed,wherein the stylet engages the conductor terminal end distal end,wherein one of the plurality of gaps is positioned circumferentially along said outer conductor between the outer conductor distal end and the conductive terminal end proximal end,wherein the conductive terminal end comprises a disc having a diameter substantially identical to a diameter of the outer conductor,wherein the antenna is flexible.
  • 8. The system of claim 7, wherein said plurality of gaps is at least two gaps.
  • 9. The system of claim 7, wherein said inner conductor has a diameter of approximately 0.013 inches or less.
  • 10. The system of claim 7, further comprising a tuning element for adjusting an amount of the energy delivered.
  • 11. A method of treating a tissue region, consisting of: a) providing a device, wherein said device comprises an antenna, a stylet, and a conductive terminal end having a conductive terminal end proximal end and a conductive terminal end distal end,wherein said antenna comprises an outer conductor enveloped around an inner conductor, the outer conductor having an outer conductor proximal end and an outer conductor distal end, the inner conductor having an inner conductor proximal end and an inner conductor distal end, wherein material of the outer conductor from the outer conductor proximal end to the outer conductor distal end is the same,wherein said inner conductor is designed to receive and transmit energy, wherein the inner conductor is hollow,wherein said outer conductor has therein a plurality of gaps positioned circumferentially along said outer conductor, wherein each of the plurality of gaps has a proximal end and a distal end, wherein one of the plurality of gaps is positioned most distally along the length of the antenna,wherein multiple energy peaks are configured to be generated along a length of said antenna, wherein positions of said multiple energy peaks are controlled by a location of said plurality of gaps,wherein said antenna comprises a dielectric layer disposed between said inner conductor and said outer conductor, wherein the dielectric layer has a proximal end and a distal end,wherein the antenna is configured to conduct cooling fluid along its length through one or more channels, wherein the one or more channels have a proximal end and a distal end, wherein the distal end of the one or more channels engages the conductive terminal end proximal end, wherein the distal end of the one more channels is closed,wherein the dielectric layer distal end and the inner conductor distal end each engage but do not extend into the conductive terminal end proximal end, wherein a terminal point of the distal end of the most distally positioned gap coincides with the terminal points of the dielectric layer distal end and the inner conductor distal end,wherein the inner conductor distal end is closed,wherein the stylet engages the conductor terminal end distal end,wherein one of the plurality of gaps is positioned circumferentially along said outer conductor between the outer conductor distal end and the conductive terminal end proximal end,wherein the conductive terminal end comprises a disc having a diameter substantially identical to a diameter of the outer conductor,wherein the antenna is flexible;b) positioning said device in a vicinity of a tissue region,c) delivering an amount of the energy with said device to said tissue region.
  • 12. The method of claim 11, wherein said tissue region is selected from the group consisting of a tumor and lung tissue.
Parent Case Info

The present application claims priority to U.S. Provisional Application Ser. No. 60/831,055, filed Jul. 14, 2006, herein incorporated by reference in its entirety.

US Referenced Citations (449)
Number Name Date Kind
3800552 Sollami Apr 1974 A
3838242 Goucher Sep 1974 A
3991770 LeVeen Nov 1976 A
4057064 Morrison Nov 1977 A
4074718 Morrison Feb 1978 A
4312364 Convert Jan 1982 A
4375220 Matvias Mar 1983 A
4446874 Vaguine May 1984 A
4494539 Zenitani Jan 1985 A
4534347 Taylor Aug 1985 A
4557272 Carr Dec 1985 A
4586491 Carpenter May 1986 A
4589424 Vaguine May 1986 A
4601296 Yerushalmi et al. Jul 1986 A
4621642 Chen Nov 1986 A
4627435 Hoskin Dec 1986 A
4641649 Walinsky Feb 1987 A
4643186 Rosen Feb 1987 A
4662383 Sogawa May 1987 A
4700716 Kasevich et al. Oct 1987 A
4712559 Turner Dec 1987 A
4776086 Kasevich Oct 1988 A
4790311 Ruiz Dec 1988 A
4800899 Elliott et al. Jan 1989 A
4860752 Turner Aug 1989 A
4880015 Nierman Nov 1989 A
4901719 Trenconsky Feb 1990 A
4945912 Langberg Aug 1990 A
4974587 Turner Dec 1990 A
5007437 Sterzer Apr 1991 A
5026959 Ito Jun 1991 A
5057104 Chess Oct 1991 A
5057106 Kasevich Oct 1991 A
5074861 Schneider Dec 1991 A
RE33791 Carr Jan 1992 E
5097845 Fetter Mar 1992 A
5098429 Sterzer Mar 1992 A
5129396 Rosen Jul 1992 A
5150717 Rosen et al. Sep 1992 A
5167619 Wuchinich Dec 1992 A
5211625 Sakurai May 1993 A
5213561 Weinstein May 1993 A
5246438 Langberg Sep 1993 A
5248312 Langberg Sep 1993 A
5275597 Higgins Jan 1994 A
5277201 Stern Jan 1994 A
5281213 Midler Jan 1994 A
5281217 Edwards Jan 1994 A
5295955 Rosen Mar 1994 A
5300099 Rudie Apr 1994 A
5301687 Wong Apr 1994 A
5314466 Stern May 1994 A
5344418 Ghaffari Sep 1994 A
5344435 Turner Sep 1994 A
5348554 Imran Sep 1994 A
5358515 Hurter Oct 1994 A
5364392 Warner et al. Nov 1994 A
5366490 Edwards Nov 1994 A
5369251 King Nov 1994 A
5370678 Edwards Dec 1994 A
5405346 Grundy Apr 1995 A
5431649 Muller Jul 1995 A
5433740 Yamaguchi Jul 1995 A
5456684 Schmidt Oct 1995 A
5462556 Powers Oct 1995 A
5472423 Gronauer Dec 1995 A
5480417 Hascoet Jan 1996 A
5489256 Adair Feb 1996 A
5507743 Edwards Apr 1996 A
5531677 Lundquist Jul 1996 A
5540649 Bonnell Jul 1996 A
5559295 Sheryll Sep 1996 A
5575794 Walus Nov 1996 A
5578029 Trelles Nov 1996 A
5591227 Dinh Jan 1997 A
5597146 Putman Jan 1997 A
5599295 Rosen Feb 1997 A
5599352 Dinh Feb 1997 A
5603697 Diederich Feb 1997 A
5620479 Diederich Apr 1997 A
5643175 Adair Jul 1997 A
5647871 Levine Jul 1997 A
5688267 Panescu et al. Nov 1997 A
5693082 Warner Dec 1997 A
5697949 Giurtino Dec 1997 A
5716389 Walinsky Feb 1998 A
5737384 Fenn Apr 1998 A
5741249 Moss Apr 1998 A
5755752 Segal May 1998 A
5755754 Rudie May 1998 A
5759200 Azar Jun 1998 A
5776129 Mersch Jul 1998 A
5776176 Rudie Jul 1998 A
5782827 Gough Jul 1998 A
5788692 Campbell Aug 1998 A
5788694 Vancaillie Aug 1998 A
5800494 Campbell Sep 1998 A
5810803 Moss Sep 1998 A
5810804 Gough Sep 1998 A
5849029 Eckhouse Dec 1998 A
5902251 Vanhooydonk May 1999 A
5904709 Arndt May 1999 A
5921935 Hickey Jul 1999 A
5957969 Warner Sep 1999 A
5963082 Dick Oct 1999 A
5995875 Biewett Nov 1999 A
6002968 Edwards Dec 1999 A
6012457 Lesh Jan 2000 A
6016811 Knopp Jan 2000 A
6026331 Feldberg Feb 2000 A
6044846 Edwards Apr 2000 A
6051018 Larsen Apr 2000 A
6056744 Edwards May 2000 A
6067475 Graves May 2000 A
6073052 Zelickson Jun 2000 A
6083255 Laufer Jul 2000 A
6086529 Arndt Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6097985 Zasevich Aug 2000 A
6102885 Bass Aug 2000 A
6104959 Spertell Aug 2000 A
6106524 Eggers Aug 2000 A
6120496 Whayne et al. Sep 2000 A
6165163 Chien Dec 2000 A
6174307 Daniel Jan 2001 B1
6182666 Dobak, III Feb 2001 B1
6188930 Carson Feb 2001 B1
6190382 Ormsby Feb 2001 B1
6208903 Richards Mar 2001 B1
6210323 Gilhuly Apr 2001 B1
6223085 Dann Apr 2001 B1
6312427 Berube Apr 2001 B1
6230060 Mawhinney May 2001 B1
6235022 Hallock et al. May 2001 B1
6241725 Cosman Jun 2001 B1
6245062 Berube Jun 2001 B1
6246784 Summers Jun 2001 B1
6246905 Mogul Jun 2001 B1
6251128 Knopp Jun 2001 B1
6254598 Edwards Jul 2001 B1
6273884 Altshuler Aug 2001 B1
6273885 Koop Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6277113 Berube Aug 2001 B1
6287302 Berube Sep 2001 B1
6306130 Anderson Oct 2001 B1
6306132 Moorman Oct 2001 B1
6325796 Berube Dec 2001 B1
6347251 Deng Feb 2002 B1
6355033 Moorman Mar 2002 B1
6364876 Erb Apr 2002 B1
6383182 Berube May 2002 B1
6395803 Angeletakis May 2002 B1
6398781 Goble Jun 2002 B1
6402742 Blewett Jun 2002 B1
6427089 Knowlton Jul 2002 B1
6435872 Nagel Aug 2002 B1
6461351 Woodruff Oct 2002 B1
6461352 Morgan Oct 2002 B2
6471696 Berube Oct 2002 B1
6500174 Maguire Dec 2002 B1
6506189 Rittman Jan 2003 B1
6514249 Maguire Feb 2003 B1
6524308 Muller Feb 2003 B1
6527768 Berube Mar 2003 B2
6530922 Cosman Mar 2003 B2
6546077 Chornenky Apr 2003 B2
6575969 Rittman, III Jun 2003 B1
6577903 Cronin Jun 2003 B1
6582426 Moorman Jun 2003 B2
6582486 Delpiano Jun 2003 B1
6585733 Wellman Jul 2003 B2
6593395 Angeletakis Jul 2003 B2
6602074 Suh Aug 2003 B1
6622731 Daniel Sep 2003 B2
6635055 Cronin Oct 2003 B1
6638277 Schaefer et al. Oct 2003 B2
6652520 Moorman Nov 2003 B2
6663625 Ormsby Dec 2003 B1
6666579 Jensen Dec 2003 B2
6683625 Muthusamy Jan 2004 B2
6694163 Vining Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702576 Fischer Mar 2004 B2
6709271 Yin Mar 2004 B2
6740107 Loeb May 2004 B2
6749606 Keast Jun 2004 B2
6752767 Turovskiy Jun 2004 B2
D493531 Padain Jul 2004 S
6770070 Balbierz Aug 2004 B1
6780178 Palanker Aug 2004 B2
6673068 Berube Oct 2004 B1
6802840 Chin Oct 2004 B2
6817976 Rovegno Nov 2004 B2
6817999 Berube Nov 2004 B2
6823218 Berube Nov 2004 B2
6837712 Qian Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6852091 Edwards Feb 2005 B2
6866624 Chornenky Mar 2005 B2
6866663 Edwards Mar 2005 B2
6869431 Maguire Mar 2005 B2
6878147 Prakash Apr 2005 B2
6890968 Angeletakis May 2005 B2
6893436 Woodard May 2005 B2
6898454 Atalar May 2005 B2
D507649 Padain Jul 2005 S
6918905 Neuberger Jul 2005 B2
6924325 Qian Aug 2005 B2
6957108 Turner Oct 2005 B2
6962586 Berube Nov 2005 B2
6972016 Hill Dec 2005 B2
6976986 Berube Dec 2005 B2
6994546 Fischer Feb 2006 B2
7022105 Edwards Apr 2006 B1
7033352 Gauthier Apr 2006 B1
7097641 Arless Aug 2006 B1
7101369 van der Welde Sep 2006 B2
7115126 Berube Oct 2006 B2
7128739 Prakash Oct 2006 B2
7142633 Eberhard Nov 2006 B2
7147632 Prakash Dec 2006 B2
7153298 Cohen Dec 2006 B1
7156842 Sartor et al. Jan 2007 B2
7160289 Cohen Jan 2007 B2
7160292 Moorman Jan 2007 B2
7182762 Bortkiewicz Feb 2007 B2
7184824 Hashimshony Feb 2007 B2
7197363 Prakash Mar 2007 B2
7233820 Gilboa Jun 2007 B2
7244254 Brace Jul 2007 B2
7263997 Madsen Sep 2007 B2
7266407 Li Sep 2007 B2
7282049 Orszulak Oct 2007 B2
7311703 Turovskiy Dec 2007 B2
7318824 Prakash Jan 2008 B2
7324104 Bitter Jan 2008 B1
7331960 Schaer Feb 2008 B2
7381208 van der Walt Jun 2008 B2
7400929 Zelickson et al. Jul 2008 B2
7402140 Spero Jul 2008 B2
7410484 Littrup Aug 2008 B2
7467015 Van der Weide et al. Dec 2008 B2
7473219 Glenn Jan 2009 B1
7527623 Prakash May 2009 B2
7594313 Prakash Sep 2009 B2
7601149 DiCarlo et al. Oct 2009 B2
7625369 Abboud Dec 2009 B2
7722620 Truckai May 2010 B2
7731677 Sakurai Jun 2010 B2
7815637 Ormsby Oct 2010 B2
7826904 Appling Nov 2010 B2
7862559 Prakash Jan 2011 B2
7875024 Turovskiy Jan 2011 B2
8035570 Prakash Oct 2011 B2
8059059 Bonn Nov 2011 B2
8093500 Deborski Jan 2012 B2
8109895 Williams Feb 2012 B2
8147511 Perry Apr 2012 B2
8152799 Ormsby Apr 2012 B2
8155418 Delso Apr 2012 B2
8235981 Prakash Aug 2012 B2
8357148 Boulais Jan 2013 B2
8403924 Behnke Mar 2013 B2
8430871 Brannan Apr 2013 B2
8454589 Deno Jun 2013 B2
8515554 Carr Aug 2013 B2
8523854 Willyard Sep 2013 B2
8540710 Johnson Sep 2013 B2
8574227 Hancock Nov 2013 B2
8643561 Prakash Feb 2014 B2
8653828 Hancock Feb 2014 B2
8655454 Prakash Feb 2014 B2
8672932 van der Weide Mar 2014 B2
8747398 Behnke Jun 2014 B2
8764744 Brannan Jul 2014 B2
8932281 Brannan Jan 2015 B2
8934989 Ormsby Jan 2015 B2
8945111 Brannan et al. Feb 2015 B2
8968290 Brannan Mar 2015 B2
9008793 Cosman Apr 2015 B1
9011421 Brannan Apr 2015 B2
9017319 Brannan Apr 2015 B2
9041616 Prakash May 2015 B2
9072532 van der Weide Jul 2015 B2
9113926 Brannan Aug 2015 B2
9119649 van der Weide Sep 2015 B2
9119650 Brannan Sep 2015 B2
9161811 Cronin Oct 2015 B2
9173706 Rossetto Nov 2015 B2
9192436 Willyard Nov 2015 B2
9192438 Thiel Nov 2015 B2
9198725 Willyard Dec 2015 B2
9220441 Yoo Dec 2015 B2
20010020166 Daly et al. Sep 2001 A1
20010039416 Moorman Nov 2001 A1
20010049524 Morgan Dec 2001 A1
20020022836 Goble Feb 2002 A1
20020026187 Swanson et al. Feb 2002 A1
20020026188 Balbierz et al. Feb 2002 A1
20020040185 Atalar et al. Apr 2002 A1
20020072742 Schaefer Jun 2002 A1
20020087151 Mody Jul 2002 A1
20020087157 Sliwa et al. Jul 2002 A1
20020173780 Altshuler Nov 2002 A1
20020183740 Edwards Dec 2002 A1
20030032951 Rittman et al. Feb 2003 A1
20030060813 Loeb Mar 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030088242 Prakash May 2003 A1
20030120268 Bertolero Jun 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20040030367 Yamaki et al. Feb 2004 A1
20040068208 Cimino et al. Apr 2004 A1
20040082859 Schaer Apr 2004 A1
20040116921 Sherman Jun 2004 A1
20040133254 Sterzer Jul 2004 A1
20040158237 Abboud Aug 2004 A1
20040186517 Hill Sep 2004 A1
20040199154 Nahon Oct 2004 A1
20040215131 Sakurai et al. Oct 2004 A1
20040215294 Littrup Oct 2004 A1
20040243004 Carr Dec 2004 A1
20040243200 Turner Dec 2004 A1
20040249272 Carr Dec 2004 A1
20040267248 Duong Dec 2004 A1
20050011885 Seghatol Jan 2005 A1
20050015081 Turovskiy Jan 2005 A1
20050075629 Chapelon Apr 2005 A1
20050107870 Wang May 2005 A1
20050109900 Schilt May 2005 A1
20050113824 Sartor May 2005 A1
20050143726 Bortkiewicz Jun 2005 A1
20050149010 Turovskiy Jul 2005 A1
20050165389 Swain Jul 2005 A1
20050177209 Leung et al. Aug 2005 A1
20050245919 van der Welde Nov 2005 A1
20050245920 Vitullo et al. Nov 2005 A1
20060064083 Khalaj Mar 2006 A1
20060079886 Orszulak et al. Apr 2006 A1
20060094956 Vismanathan May 2006 A1
20060106281 Boulais May 2006 A1
20060122625 Truckai Jun 2006 A1
20060129140 Todd et al. Jun 2006 A1
20060155270 Hancock Jul 2006 A1
20060171506 Lovoi et al. Aug 2006 A1
20060189973 van der Weide Aug 2006 A1
20060200026 Wallace et al. Sep 2006 A1
20060200120 DiCarlo Sep 2006 A1
20060224220 Zelickson Oct 2006 A1
20060264921 Deutsch et al. Nov 2006 A1
20060276780 Brace et al. Dec 2006 A1
20060289528 Chiu Dec 2006 A1
20070016180 Lee Jan 2007 A1
20070021741 Abboud Jan 2007 A1
20070066972 Ormsby Mar 2007 A1
20070185554 Appling et al. Aug 2007 A1
20070203551 Cronin Aug 2007 A1
20070208389 Amundson Sep 2007 A1
20070230757 Trachtenberg et al. Oct 2007 A1
20070270924 McCann et al. Nov 2007 A1
20070276362 Rioux Nov 2007 A1
20070282319 van der Weide Dec 2007 A1
20070288079 van der Weide Dec 2007 A1
20080033424 Van Der Weide Feb 2008 A1
20080114345 Arless et al. May 2008 A1
20080147056 Van der Weide Jun 2008 A1
20080161890 Lafontaine Jul 2008 A1
20080188868 Weitzner Aug 2008 A1
20080188869 Weitzner Aug 2008 A1
20080188871 Smith Aug 2008 A1
20080188890 Weitzner Aug 2008 A1
20080195226 Williams Aug 2008 A1
20080221391 Weitzner Sep 2008 A1
20080243176 Weitzner Oct 2008 A1
20090005766 Brannan Jan 2009 A1
20090054962 Lefler Feb 2009 A1
20090076492 Behnke Mar 2009 A1
20090118725 Auth et al. May 2009 A1
20090187180 Brannan Jul 2009 A1
20090187186 Jakus Jul 2009 A1
20090196480 Nields et al. Aug 2009 A1
20090222002 Bonn Sep 2009 A1
20090306644 Perry Oct 2009 A1
20090281536 Beckman et al. Nov 2009 A1
20100023866 Peck Jan 2010 A1
20100045558 Rossetto Feb 2010 A1
20100045559 Rossetto Feb 2010 A1
20100076424 Carr Mar 2010 A1
20100081928 Hyde et al. Apr 2010 A1
20100137796 Perry et al. Jun 2010 A1
20100228244 Hancock Sep 2010 A1
20100268223 Coe Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100292766 Duong Nov 2010 A1
20100305561 Prakash et al. Dec 2010 A1
20100312095 Jenkins Dec 2010 A1
20100312096 Guttman Dec 2010 A1
20100317962 Jenkins Dec 2010 A1
20110077635 Bonn et al. Mar 2011 A1
20110098696 Brannan Apr 2011 A1
20110118723 Turner May 2011 A1
20110118725 Mayse May 2011 A1
20110213352 Lee Sep 2011 A1
20110238060 Lee, Jr. Sep 2011 A1
20110238061 van der Weide Sep 2011 A1
20110257647 Mayse Oct 2011 A1
20110301587 Deem Dec 2011 A1
20120016358 Mayse Jan 2012 A1
20120053577 Lee Mar 2012 A1
20120116286 Williams May 2012 A1
20120182134 Doyle Jul 2012 A1
20120194409 Brannan Aug 2012 A1
20120203216 Mayse Aug 2012 A1
20120203222 Mayse Aug 2012 A1
20120209257 van der Weide Aug 2012 A1
20120209261 Mayse Aug 2012 A1
20120209296 Mayse Aug 2012 A1
20120232544 Willyard Sep 2012 A1
20120232549 Willyard Sep 2012 A1
20120310228 Bonn Dec 2012 A1
20120316551 van der Weide Dec 2012 A1
20120316552 Mayse Dec 2012 A1
20120316559 Mayse Dec 2012 A1
20130004037 Scheuering Jan 2013 A1
20130023866 Stringham Jan 2013 A1
20130072924 Burgener Mar 2013 A1
20130116679 van der Weide et al. May 2013 A1
20130123598 Jenkins May 2013 A1
20130131496 Jenkins May 2013 A1
20130165915 Thiel Jun 2013 A1
20130259335 Mallya et al. Oct 2013 A1
20130306543 Beisser Nov 2013 A1
20130338530 Kassab Dec 2013 A1
20140005706 Gelfand Jan 2014 A1
20140046174 Ladtkow Feb 2014 A1
20140046176 Ladtkow Feb 2014 A1
20140152656 Yoo Jun 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140276033 Brannan Sep 2014 A1
20140276200 Brannan Sep 2014 A1
20150148792 Kim May 2015 A1
20150150628 Buysse Jun 2015 A1
20150164587 Bonn et al. Jun 2015 A1
20150190193 Mayse Jul 2015 A1
20150250540 Behdad Sep 2015 A1
20150351839 Brannan Dec 2015 A1
20150374438 van der Weide Dec 2015 A1
Foreign Referenced Citations (79)
Number Date Country
2015202149 May 2015 AU
2579361 Oct 2003 CN
1593353 Mar 2005 CN
1703168 Nov 2005 CN
2753408 Jan 2006 CN
201267529 Jul 2009 CN
101511295 Aug 2009 CN
101563042 Oct 2009 CN
1186274 Mar 2002 EP
1265532 Dec 2002 EP
1395190 Mar 2004 EP
1450710 Sep 2004 EP
1499251 Jan 2005 EP
1542607 Jun 2005 EP
1723922 Nov 2006 EP
2098184 Sep 2009 EP
2295000 Mar 2011 EP
2316370 May 2011 EP
1659969 Oct 2012 EP
2388039 Nov 2003 GB
2406521 Apr 2005 GB
10-192286 Jul 1998 JP
2002-541884 Dec 2002 JP
2003-530139 Oct 2003 JP
2003-534037 Nov 2003 JP
2004-188179 Jul 2004 JP
2005-522274 Jul 2005 JP
2007-029457 Feb 2007 JP
2007-532024 Nov 2007 JP
2008-142467 Jun 2008 JP
2009-006150 Jan 2009 JP
2009-521264 Jun 2009 JP
2009-521967 Jun 2009 JP
2009-207898 Sep 2009 JP
2009-285463 Dec 2009 JP
2010-505573 Feb 2010 JP
2010-050975 Mar 2010 JP
2011-511538 Apr 2011 JP
2011-092720 May 2011 JP
2011-152414 Aug 2011 JP
9204934 Apr 1992 WO
199309845 May 1993 WO
95004385 Sep 1995 WO
1997048449 Dec 1997 WO
9956643 Nov 1999 WO
0057811 Oct 2000 WO
0170114 Sep 2001 WO
03039385 May 2003 WO
03086498 Oct 2003 WO
03088806 Oct 2003 WO
03088858 Oct 2003 WO
2003086190 Oct 2003 WO
04004586 Jan 2004 WO
04026122 Jan 2004 WO
04033039 Apr 2004 WO
2004084748 Oct 2004 WO
WO 2004084748 Oct 2004 WO
04112628 Dec 2004 WO
2005011049 Feb 2005 WO
05034783 Apr 2005 WO
05110265 Nov 2005 WO
06002943 Jan 2006 WO
0605579 Jan 2006 WO
06008481 Jan 2006 WO
2006002843 Jan 2006 WO
2006004585 Jan 2006 WO
2006084676 Aug 2006 WO
2006127847 Nov 2006 WO
2006122149 Nov 2006 WO
2007076924 Jul 2007 WO
2007112103 Oct 2007 WO
2008008545 Jan 2008 WO
2008044013 Apr 2008 WO
08142686 Nov 2008 WO
2010067360 Jun 2010 WO
11008903 Jan 2011 WO
2011017168 Feb 2011 WO
2011140087 Nov 2011 WO
2013173481 Nov 2013 WO
Non-Patent Literature Citations (61)
Entry
International Search Report, PCT/US2006/017981, dated Sep. 7, 2006.
International Search Report, PCT/US2006/033341, dated Aug. 17, 2007.
International Search Report, PCT/US06/032811, dated Jan. 25, 2007.
International Search Report, PCT/US06/031644, dated Aug. 17, 2007.
Golio, “The RF and microwave handbook” Edition: 2. Published by CRC Press, 2001 ISBN 0849338592X, 97808493859626.
Brace, Christopher et al., “Analysis and experimental validation of a triaxial antenna for microwave tumor ablation,” IEEE MTTS Int Microw Symp. Jun. 3, 2004(6-11), 1437-1440.
Brace, Christopher et al., “Microwave Ablation with a Triaxial Antenna: Results in ex vivo Bovine Liver,” IEEE Transations on Microwave Theory and Techniques, vol. 53, No. 1 Jan. 2005.
Seki, Toshihito, et al., “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer, Aug. 1, 1994, vol. 74, No. 3, pp. 817-825.
Head, Hayden W., et al., “Thermal Ablation for Hepatocellular Carcinoma,” Gastroenterology, 2004:127:S167-S178.
English translation of a Decision of Refusal from related Japanese Patent Application No. 2013-509179, dated Jun. 30, 2015.
International Search Report & Written Opinion, International Patent Application No. PCT/US2017/027424, dated Oct. 9, 2017.
“Carbon dioxide.” Carbon dioxide—New World Encyclopedia. Web. <http://www.newworldencyclopedia.org/entry/Carbon_dioxide>.
International Search Report re: PCT/US16/58888 dated Feb. 15, 2017.
International Search Report re: PCT/US2016/058890 dated Jan. 19, 2017.
Supplementary European Search Report re: EP11778168 dated Sep. 24, 2013.
U.S. Appl. No. 09/847,181, filed May 1, 2001.
U.S. Appl. No. 10/370,179, filed Feb. 19, 2003.
U.S. Appl. No. 10/834,802, filed Apr. 29, 2004.
U.S. Appl. No. 10/961,761, filed Oct. 7, 2004.
U.S. Appl. No. 10/961,994, filed Oct. 7, 2004.
U.S. Appl. No. 10/980,699, filed Nov. 3, 2004.
U.S. Appl. No. 11/053,987, filed Feb. 8, 2005.
U.S. Appl. No. 11/236,985, filed Sep. 28, 2005.
U.S. Appl. No. 11/237,136, filed Sep. 28, 2005.
U.S. Appl. No. 11/237,430, filed Sep. 28, 2005.
U.S. Appl. No. 11/440,331, filed May 24, 2006.
U.S. Appl. No. 11/452,637, filed Jun. 14, 2006.
U.S. Appl. No. 11/502,783, filed Aug. 11, 2006.
U.S. Appl. No. 11/514,628, filed Sep. 1, 2006.
U.S. Appl. No. 11/728,428, filed Mar. 26, 2007.
U.S. Appl. No. 11/728,457, filed Mar. 26, 2007.
U.S. Appl. No. 11/728,460, filed Mar. 26, 2007.
U.S. Appl. No. 60/679,722, filed May 10, 2005.
U.S. Appl. No. 60/785,466, filed Mar. 24, 2006.
U.S. Appl. No. 60/785,467, filed Mar. 24, 2006.
U.S. Appl. No. 60/785,690, filed Mar. 24, 2006.
U.S. Appl. No. 60/831,055, filed Jul. 14, 2006.
European Search Report, EP Patent Application No. 17168163.8, dated Sep. 13, 2017.
Guy, AW (1971) IEEE Trans. Microwave Theory Tech. 19 pp. 205-214.
European Search Report dated March 9, 2015, EP Patent Application No. 14189493.1.
International Search Report re: PCT/US2007/007408 dated Aug. 31, 2007.
Notice Regarding Extended European Search Report, EP Patent Application No. 11778168 dated Oct. 2, 2013.
International Preliminary Report on Patentability re: PCT/US2007/007408 dated Sep. 30, 2008.
International Preliminary Report on Patentability re: PCT/US2016/058888 dated Dec. 11, 2017.
International Preliminary Report on Patentability re: PCT/US2016/058890 dated May 11, 2018.
European Search Report, EP Patent Application No. 06802385.2, dated Mar. 3, 2009.
European Search Report, EP Patent Application No. 11778168, dated Oct. 2, 2013.
International Preliminary Report, PCT/US2007/007464, dated Sep. 30, 2008.
International Search Report, PCT/US2005/014534, dated Nov. 29, 2005.
International Search Report, PCT/US2006/028821, dated Mar. 21, 2007.
Guy, AW (1971) IEEE Trans. Microwave Theory Tech. 19 pp. 189-217.
European Search Report, EP Patent Application No. 12860249.7, dated Sep. 15, 2015.
European Search Report, EP Patent Application No. 10806929.5, dated Feb. 21, 2013.
European Search Report, EP Patent Application No. 07810483, dated Mar. 22, 2013.
International Search Report, PCT/US2007/016082, dated Jul. 21, 2008.
International Search Report, PCT/US2011/035000, dated Jan. 6, 2012.
International Search Report, PCT/US2012/071310, dated Feb. 25, 2013.
International Preliminary Report on Patentability, PCT/US2007/016082, dated Jan. 14, 2009.
International Preliminary Report on Patentability, PCT/US2010/043558, dated Jan. 31, 2012.
International Preliminary Report on Patentability, PCT/US2011/035000, dated Nov. 6, 2012.
International Preliminary Report on Patentability, PCT/US2012/071310, dated Aug. 19, 2014.
Related Publications (1)
Number Date Country
20080045938 A1 Feb 2008 US
Provisional Applications (1)
Number Date Country
60831055 Jul 2006 US