Energy device with integral collector surface for electromagnetic energy harvesting and method thereof

Information

  • Patent Grant
  • 8906523
  • Patent Number
    8,906,523
  • Date Filed
    Tuesday, August 11, 2009
    14 years ago
  • Date Issued
    Tuesday, December 9, 2014
    9 years ago
Abstract
An apparatus, method, and system to harvest and store electromagnetic energy is disclosed. The present invention uses, for example, conductive surfaces within the energy storage component itself as a means of electromagnetic energy collection. The surface may be an integral portion of the energy device, such as a charge collection surface within a battery or a capacitor that mainly provides the battery or a capacitor with a necessary function. In another embodiment of the invention a metallic or conductive surface is added to and specifically built into the energy device during manufacturing for the main purpose of collecting electromagnetic energy for the energy device but is otherwise not necessary for the energy storage component. Once the energy is collected, it can be rectified either via rectification components that were built directly into the energy storage component during its manufacture or connected external to the energy storage component but within the energy device. The so-designed energy device may represent a self-sustaining, autonomous electromagnetic energy harvesting—energy storage device.
Description
TECHNICAL FIELD AND BACKGROUND OF THE INVENTION

This invention relates to an apparatus and/or a system or method of harvesting energy. In particular, the present invention collects electromagnetic energy that exists in the ambient environment or that is intentionally directed to an energy harvesting device and stores said energy for later use.


Electromagnetic energy exists in all sorts of forms. It is generally used to transmit information, but also exists, albeit typically small, as a source of energy which may be collected and stored.


Generally, systems that collect electromagnetic energy, such as antennas for example, are only designed to capture the information that is being transmitted through the electromagnetic medium and generally do not capture a substantial portion of the energy itself. Information-carrying signals, once received by the antenna, can then be amplified by the receiver and filtered to obtain the information. As such, the focus of such systems is on the information and the particular wavelength on which the information is transmitted, rather than the actual energy itself.


Presently, at the same time that the amount of energy electronic apparatus use is decreasing, the amount of electromagnetic energy being transmitted is increasing. Further, more and more electronics operate autonomously—either passively, by sensing or collecting information, or actively, by performing a function.


SUMMARY OF INVENTION

It is one object of certain exemplary embodiments of this invention to operate by collecting and storing energy from the surrounding environment. Therefore, although certain embodiments of the present invention may contain information-receiving circuitry to accept transmissions, it is one exemplary object of the invention to collect electromagnetic energy from the surrounding environment and store it for current or later use. Various aspects and embodiments of the present invention, as described in more detail and by example below, address certain of the shortfalls of the background technology and emerging needs in the relevant field.


The present invention may include, for example, an apparatus, system, and method for harvesting energy in the form of electromagnetic radiation. In a preferred embodiment the invention may include at least one electrically conductive surface that is adapted to collect electromagnetic energy and an energy storage component to store said energy.


An embodiment of the present invention includes, for example, a metallic or conductive surface within the energy storage component of an energy device such as an antenna to collect energy. The surface may be an integral portion of the energy device, such as a charge collection surface within a battery or a capacitor that mainly provides the battery or a capacitor with another necessary function.


In another embodiment of the invention a metallic or conductive surface may be added to and specifically built into the energy device during manufacturing for the purpose of collecting electromagnetic energy for the energy device but is otherwise not necessary for the energy storage component.


An integral conductive layer of one or more embodiments of the present invention may be composed of the anode or cathode collecting plate of a battery, and may perform the additional function of collecting electromagnetic energy. In one embodiment, the integral conductive layer may also be the actual anode material of an energy device. In another embodiment, the integral conductive layer may be the conductive outer packaging material of an energy device such as the outermost conductive casing of a capacitor.


Added features, patterns, or shapes may be applied to the conductive surface of an energy device to increase efficiency and/or capacity in energy collection for a specific frequency band, broad band, or other energy applications. For flexible devices, the integral conductive surface may, for example, be curved (e.g., z-axis displacement) to enhance its energy collecting capabilities or to enhance its directional reception characteristics.





BRIEF DESCRIPTION OF DRAWINGS

Some features and advantages of the invention are described with reference to the drawing of a certain preferred embodiment, which is intended to illustrate and not to limit the invention.


The accompanying drawing, which is included to provide a further understanding of the invention and is incorporated in and constitutes a part of this specification, illustrates an exemplary embodiment of the invention that together with the description serves to explain certain principles of the invention:



FIG. 1 is a cross section of an embodiment of the present invention with the energy storage component comprising an electrochemical cell.



FIG. 2A is a top down view of an embodiment of the present invention with the antenna on top and without adding a depiction of the substrate below it which might extend beyond the dimensions of the antenna.



FIG. 2B is a cross-sectional side view of an embodiment of the present invention.



FIG. 3A is a top down view of an embodiment of the present invention with the antenna on top and without adding a depiction of the substrate below it which might extend beyond the dimensions of the antenna.



FIG. 3B is a cross-sectional side view of an embodiment of the present invention adding a diode.



FIG. 4 is cross-sectional side view of an embodiment of an omni-directional array of the present invention.



FIG. 5 is a cross-sectional side view of an embodiment of a dual frequency array of the present invention.



FIG. 6 is a cross-sectional side view of an embodiment of a curved surface energy device used in an omni directional format of the present invention.



FIG. 7A is a cross-sectional top view of a multi-planar embodiment of the present invention.



FIG. 7B is a side view of one device of a multi-planar embodiment of the present invention.



FIG. 7C is a side view from a different angle of a second device of a multi-planar embodiment of the present invention.



FIG. 8 is a cross section of an embodiment of the present invention comprising an energy storage component.



FIGS. 9
a and 9b are cross sections of an embodiment of the present invention with an electrically conductive surface layer comprising various conductive protrusions.



FIGS. 10
a-10d are various views of electrically conductive surface layers having various shapes.



FIG. 11 is a top down view of an embodiment of the present invention including a rectifying element.



FIG. 12
a is a top down view of an embodiment of the present invention including multiple energy collection components connected in series.



FIG. 12
b is a top down view of an embodiment of the present invention including multiple energy collection components connected in parallel.



FIG. 13
a is a top down view of an embodiment of the present invention including multiple energy devices connected in series.



FIG. 13
b is a top down view of an embodiment of the present invention including multiple energy devices connected in parallel.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

It is to be understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements, and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps or subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices and materials are described although any methods, techniques, devices, or materials similar or equivalent to those described may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures.


All patents and other publications are incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be useful in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason.


This application is related to U.S. patent application Ser. No. 11/561,277, entitled “Hybrid Thin-Film Battery,” filed on Nov. 17, 2006, and U.S. patent application Ser. No. 11/687,032, entitled “Metal Foil Encapsulation,” filed on Mar. 16, 2007, which are incorporated by reference herein in their entirety.



FIG. 1 shows a cross-sectional side view of one embodiment of the present invention. In this embodiment, the electrically conductive surface 180 forms part of the structure of an energy storage device. In the embodiment shown in FIG. 1, the energy storage device is an electrochemical cell having a cathode 130 and anode 150 separated by an electrolyte 140. This embodiment contains a barrier layer 120 and positive terminal substrate 110. An insulating layer 160 encapsulates the electrochemical cell with one or more conductors 170 extending from anode 150 to the electrically conductive surface 180.



FIG. 8 shows a cross-sectional side view of an additional embodiment of the invention. In this embodiment, an electrically conductive surface layer 880 forms an integral part of an energy storage component 830 and may be separated by an insulating layer 860. The electrically conductive surface layer 880 may cover the energy storage component 830, and a conductor 870 may connect the electrically conductive surface layer 880 to the energy storage component 830. A positive terminal substrate 810 may be connected to the energy storage component via a barrier layer 820.


In one particular embodiment, the electrochemical cell is a thin film battery as disclosed in U.S. patent application Ser. No. 11/561,277 and previously incorporated by reference. In this embodiment, from bottom to top, the device may, for example, contain a metal foil substrate 110 serving as a positive contact; a barrier layer 120 serving as a cathode current collector and preferably composed of, for example, a gold, silver or platinum sub-layer fabricated over a chromium, nickel, or titanium sub-layer; a cathode 130, preferably composed of, for example, Lithium Cobalt Oxide (LiCoO2); a solid-state electrolyte 140 preferably made of, for example, LiPON; and an anode 150 preferably comprising, for example, Lithium. An insulating/adhesive layer 160 preferably made of, for example, a Surlyn layer that may cover the electrochemical device and a wire mesh conductor 170 may be woven between and in contact with the electrically conductive surface 180 and the electrochemical device.


In addition to an electrochemical storage device, such as a battery or thin film battery, the energy storage component may be an electrical storage device such s a capacitor or thin-film capacitor but may also be a mechanical energy storage device, such as, for example, a flywheel, micro-flywheel, micro electro-mechanical system (MEMS), or a mechanical spring. The energy storage component may also be an electro-mechanical device, such as a piezo-electric element or a magneto-electric element, such as, for example, various embodiments of the invention disclosed in U.S. Pat. No. 7,088,031, entitled “Method and Apparatus for an Ambient Energy Battery or Capacitor Recharge System” which is herein incorporated by reference in its entirety. The energy storage component may also be a thermal energy storage device, such as a thermal mass container, or it may be a chemical energy storage device, such as, for example, a hydrogen generator with hydrogen container or an ozone generator with ozone container. Each one of these devices may be used to store energy based on certain exemplary elements of the system.


Similarly, the material and geometry of the electrically conductive surface may vary depending on the system application. In a preferred embodiment, the electrically conductive surface may have a suitable electromagnetic impedance that is adapted to the frequencies of the collected electromagnetic energies. In some embodiments, the electrically conductive surface may be made of metals, alloys, semiconductors, conductive organics, polymers, and/or conductive composites. The device may also be flexible, for example, and made to be wound upon itself in order to better collect certain types of electromagnetic energy.


In several embodiments, the electrically conductive surface may also be an integral part of the energy storage component. For example, an electrically energy collecting conductive surface may be embodied by the anode of an electrochemical storage device, the anode current collector of an electrochemical storage device, the cathode of an electrochemical storage device, the cathode current collector of an electrochemical storage device, the encapsulation of an electrochemical storage device, the substrate of an electrochemical storage device, the casing of an electrochemical storage device, the negative electrode of a capacitor, the positive electrode of a capacitor, or the casing of a capacitor.


In some embodiments where the electrically conductive energy collecting surface is integral to the energy storage component, the surface may be, for example, structurally or chemically modified beyond the primary functional need of said energy storage component so as to optimize the adaptation of said surface to the collection of electromagnetic energy. Structural modifications may include enlarging the surface area of one or more surfaces by expanding, stretching, increasing, or otherwise extending the surface. For example in the energy device of FIG. 1 the electrically conductive surface 180 may be expanded, extended, or otherwise increased in shape. Similarly, substrate 110, conductor 170, or any other conductive surface may, for example, be modified to extend the surface area to improve the energy harvesting capacity of that or those elements alone or in combination. Additionally, these conductive surfaces may be increased in thickness or perforated in any preferable direction to increase the surface area and/or the energy harvesting attributes of these device elements.


In some embodiments, the electrically conductive surface layer may include one or more protrusions. As shown in FIG. 9a, an electrically conductive surface layer 900 may include a protrusion 910 extending therefrom in a direction parallel to the component layers. Similarly, as shown in FIG. 9b, an electrically conductive surface layer 920 may include a protrusion 930 extending therefrom in a direction orthogonal to the component layers.


As depicted, for example, in FIGS. 2A and 2B, the height of the dielectric 260 may conform to the thickness of a dielectric in a capacitor or a battery or the separating element in a battery or capacitor or a combination of both. It may, for example, represent a battery cathode thickness plus a separator material. Substrate 230 in FIG. 2B may be provided, for example, by the cathode current collector of a thin film battery. The antenna element 280 may, for example be provided by an anode current collector of a battery or a separate element. The dimensions for the various elements may be derived, for example, by extrapolating from the descriptions found in Antenna Theory, Analysis and Design, 2nd edition, Constantine A. Balanis, 1982, 1997, ISBN 0-471-59268-4, incorporated herein in its entirety. The height of the dielectric (h), it's dielectric constant (∈r), and the frequency of interest (fr) may be adjusted by design. Once these values are set, the following equations may, for example, be used to optimize length, and appropriate width ratios. The lengths of the antenna may be some even division of wavelength (λ), such as λ/2, λ/4, λ/8, λ/16, and so forth. V0 is the velocity of light in free space.

W=½fr√{square root over (μ00)}*√{square root over (2 /(∈r−1))}=v0/2fr*√{square root over (2/(∈r+1))}
L=[1/(2fr√{square root over (∈reff)}√{square root over (μ00)})]−2ΔL where ∈reff is the effective dielectric:
reff=[(∈r+1)/2]+[(∈r−1)/2]*[1+12h/W]−1/2


The electrically conductive surface in each embodiment may be designed, for example, to be able to collect electromagnetic energy in one or more particular forms. Such forms may, for example, include electrical field coupled energy, magnetic field coupled energy, light wave direct coupled energy, light wave thermally coupled energy, laser or coherent light coupled energy, sub-millimeter wavelength radiation coupled energy, broad band frequency, narrow band frequency, directed energy, indirect energy, ultra low frequency, super low frequency, very low frequency, low frequency, medium frequency, high frequency, very high frequency, ultra high frequency, super high frequency, extremely high frequency, infra red light frequency, visible light frequency, ultra violet light frequency, and/or x-ray frequency.


Additional components may also be included in certain embodiments of the present invention. For example, an embodiment of the present invention may include one or more electrical components electrical components for rectifying the alternating current induced onto an electrically conductive energy collecting surface into a direct current so that it may be easily stored in, for example, a battery or capacitor. These components may, for example, be external to the energy storage component; however they may also alternatively or additionally be imbedded within the energy storage component. For example, the semiconductor characteristics of Lithium Cobalt Oxide, which may be used as a component of an electrochemical cell, could be n-type and p-type doped in certain regions, thereby creating devices with diode characteristics, which may be configured to operate as a rectifier.


For example, FIG. 11 depicts an embodiment of the invention providing a rectifying element 1110 positioned between an antenna surface 1120 and conductive substrate surface 1140. As described by example above, the antenna surface 1120 may, for example be provided by an anode current collector of a battery or a separate element. A dielectric 1130 may be representative of the dielectric in a capacitor or a battery or the separating element in a battery or capacitor or a combination of both. It may, for example, represent a battery cathode thickness plus a separator material. The conductive substrate surface 1140 may be provided, for example, by the cathode current collector of a thin film battery. Direct charging of the energy storage device may be accomplished, for example, by connecting the rectifying element 1110 between the antenna surface 1120 and the conductive substrate surface 1140. The rectifying element 1110 may be an integral portion of the manufactured energy storage device or an external discreet component.



FIGS. 3A and 3B depict an embodiment of the invention providing a diode between an antenna surface 380 and conductive substrate surface 330. As described by example above, the antenna surface 380 may, for example be provided by an anode current collector of a battery or a separate element. Dielectric 360 may be representative of the dielectric in a capacitor or a battery or the separating element in a battery or capacitor or a combination of both. It may, for example, represent a battery cathode thickness plus a separator material. Substrate surface 330 in FIG. 3B may be provided, for example, by the cathode current collector of a thin film battery. Direct charging of the energy storage device may be accomplished, for example, by connecting a diode between the antenna surface and the conductive substrate surface. This connection may be of the cathode of the diode attached to the antenna surface 380 and the anode of the diode connected to the substrate surface 330. The diode may be an integral portion of the manufactured energy storage device or an external discreet component.


A system for harvesting electromagnetic energy is also, for example, provided by various disclosures herein. This system may for example include a plurality of energy harvesting devices connected together to form an array. The arrangement of devices within the array may vary to, for example, optimize the collection of electromagnetic energy in an omni-directional or uni-directional manner. The energy harvesting devices themselves may vary within a single system, for example, to optimize the collection of electromagnetic energy of varying wavelengths-this may include the shape and size of the electrically conductive surface, but also the type of material. Further, the interconnection of the energy harvesting devices may be arranged in series or parallel, for example, to create certain voltage outputs. One example of an omni-directional array, as depicted in FIG. 4, provides for two substrates 430 to be placed together and the collection surfaces 481 and 482 to be directed outwardly. Dielectric layers 461 and 462 are provided between the substrate 430 and collection surfaces 481 and 482. Alternatively, a substrate with a battery or other energy storage device may be placed on either side of the substrate. Multiple surfaces of various configurations may also be provided. A multifrequency array may be provided, for example as depicted in FIG. 5 by providing two energy storage devices 581, 582, possibly with differing L/W ratios (i.e., L1/W1≠L2/W2), for example, on one or more substrates 530. Multiple surfaces and/or devices may also be provided in various embodiments. Alternatively, the top of a single cell may be provided with an insulator/conductor patterned top that electrically “looks” like the arrangement of FIG. 5, providing a multi-frequency antenna with no external alteration because the battery substrate would “look” like the total substrate in the figure. FIG. 6 provides one example of a curved surface energy device that may be used in an omni directional format. The curve may be used to create a receiving surface that is, for example, some portion of a sphere to allow gathering energy 610 and/or 620 as shown coming from the bottom or top of the drawing. As discussed, by way of example above, a diode may similarly be integrated into this exemplary design. Further, an antenna element 680, dielectric element 660 and substrate element 630 may be provided, for example, as shown.


An example of a multi-planar embodiment of the present invention is set forth, for example, in FIGS. 7A, 7B, and 7C. In this example, two or more devices (depicted in FIG. 7A as 781, 782) may be arranged at an angle a to each other. These devices may be built on separate substrates (depicted as 731 and 732 in FIG. 7A) or on one substrate that is formed at the appropriate angle either during manufacturing or as a post process step. The angle a may be any angle, and may, for example range from 0° to 180°. Device 781 has a length of L2 and a width of W2, as illustrated in FIG. 7B. Device 782 has a length of L1 and a width of W1 as illustrated in FIG. 7C. The length, width and height values (L, W, and h), and ratio's for these values, for any given frequency, group of frequencies, or any pair of frequencies or bands may be identical or entirely different. Additionally, diode rectification may be performed on this or these embodiments similarly to a single plane device wherein a diode may be provided, for example, across each antenna/substrate.



FIGS. 10
a-10d illustrate various energy devices and/or energy storage components having varying geometric shapes. For example, as shown in FIG. 10a, the energy device or energy storage component may have a square, rectangular, or multi-sided polygonal shape 1010. As shown in FIG. 10b, the energy device or energy storage component may have a triangular or non-uniform in thickness shape 1020. As shown in FIG. 10c, the energy device or energy storage component may have a circular, round or curvy shape 1030. As shown in FIG. 10d, the energy device or energy storage component may have a wavy shape 1040.


As shown in FIG. 12a, multiple energy storage components 1210 and 1220 may be operably connected in series. Alternatively, as shown in FIG. 12b, multiple energy storage components 1230 and 1240 may be operably connected in parallel. Similarly, as shown in FIG. 13a, multiple energy devices 1310 and 1320 may be operably connected in series. Alternatively, multiple energy devices 1330 and 1340 may be connected in parallel.


This system may be used, for example, to supply power to an autonomous electrical circuit solely, or in conjunction with another source of power, such as, for example, a solar cell or solar thermal collector. Such a combination would allow for an autonomous electrical circuit to operate with or without sunlight in an environment containing electromagnetic energy. For example, a solar cell may be deposited directly onto a storage device during manufacture, on top or bottom. This deposition may include PVD or, for example, printing. Such a solar cell may include at least two semi-conductors in contact with each thereby creating a p-n junction. In addition, there may be metallically conducting current collectors and a substrate in the solar cell. In particular, a dielectic layer such as, for example, SiO2 may be covered by a metallically conducting anti-reflection layer such as, for example, Si—Ti—Pd—Ag. Similar to a battery that might serve as an antenna-like receiver plane, a solar cell may be provided that may produce energy but may not store the energy. However, the SiO2/Si—Ti—Pd—Ag antenna-like receiver plane may be connected to a battery, which in turn may or may not serve as an antenna-like receiver plane to its own self.


A method of harvesting electromagnetic energy and/or a new use of a device for energy harvesting is also, for example, described herein. For example, one or more energy harvesting devices or systems may be placed in an environment containing a known or unknown source of electromagnetic energy with known or unknown parameters such as frequency and power. The electromagnetic energy incident upon the electrically conductive surface may induce a current into the electrically conductive surface. That current may then be collected by the energy storage component. In one embodiment, an electrical current is, for example, rectified by a rectifier circuit before it charges an electrochemical cell or capacitor. The electrical current may also charge other energy storage components mentioned above. Having collected and stored the energy, the device may then be able to, for example, provide an autonomous electrical device power to operate for a period of time.


This invention has been described herein in several embodiments. It is evident that there are many alternatives and variations that can embrace the performance of energy or electronic devices enhanced by the present invention in its various embodiments without departing from the intended spirit and scope thereof The embodiments described above are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described here, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims. Thus is intended that the present invention cover the modifications of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. An energy device comprising: an energy storage component comprising an electrochemical cell having a plurality of component layers;at least one electrically conductive surface layer that is provided by an anode current collector of said energy storage component,wherein said at least one electrically conductive surface layer is adapted to collect electromagnetic energy thereby enabling a current to be induced within the at least one electrically conductive surface layer, and wherein the energy storage component is adapted to collect and store at least a portion of the current, wherein said at least one electrically conductive surface layer comprises an electrically conductive protrusion extending in a direction parallel to the plurality of component layers of the electrochemical cell and said at least one electrically conductive surface layer extends beyond a dimension of the plurality of component layers of the electrochemical cell; anda substrate that is provided by a cathode current collector of said energy storage component, wherein the substrate extends beyond a dimension of said at least one electrically conductive surface layer.
  • 2. The energy device of claim 1, wherein said energy storage component comprising components selected from the group of: a battery, or a thin-film battery.
  • 3. The energy device of claim 1, wherein said electrically conductive surface comprises a suitable electromagnetic impedance that is adapted to frequencies of the collected electromagnetic energies such that the dimensions of said electrically conductive surface are sized to create signal gains in the wavelength targeted for harvesting.
  • 4. The energy device of claim 3, wherein said electrically conductive surface layer comprises a height of a dielectric (h), and a dielectric constant (∈r), and said dimensions of said electrically conductive surface layer for harvesting energy frequency(fr) comprises width W=½fr√{square root over (μ0∈0)}*√{square root over (2/(∈r−1))}=v0/2fr*√{square root over (2/(∈r+1))} and lengthL=[1/(2fr√{square root over (∈reff)}√{square root over (μ0∈0)}−2ΔL where v0=1/√{square root over (μ0∈0)}=a velocity of light in free space,ΔL=change in length, and ∈reff is the effective dielectric: ∈reff=[(∈r+1)/2]+[(∈r−1)/2]*[1+12h/W]−1/2.
  • 5. The energy device of claim 1, wherein said at least one electrically conductive surface is structurally or chemically modified beyond the primary functional need by said energy storage component, whereby said modification causes an increase in the ability of said electrically conductive surface layer to collect electromagnetic energy.
  • 6. The energy device of claim 5, wherein the electrically conductive protrusion is a first electrically conductive protrusion, wherein said at least one electrically conductive surface layer further comprises a second electrically conductive protrusion extending in the direction orthogonal to the energy storage component layers.
  • 7. The energy device of claim 5, wherein said electrically conductive surface comprises a height of a dielectric (h), and a dielectric constant (∈r), and said dimensions of said electrically conductive surface layer for harvesting energy frequency (fr) comprises width W=½fr√{square root over (μ0∈0)}*√{square root over (2/(∈r+1) )}=v0/2fr*√{square root over (2/(∈r+1))} and lengthL=[1/(2fr√{square root over (∈reff)}√{square root over (μ0∈0)}−2ΔL where v0=1/√{square root over (μ0∈0)}=a velocity of light in free space,ΔL=change in length, and ∈reff is the effective dielectric: ∈reff=[(∈r+1)/2]+[(∈r−1)/2]*[1+12h/W]−1/2.
  • 8. The energy device of claim 5 wherein said electrically conductive surface is adapted to affect the RF conductive properties in regions of the electrically conductive surface layer to provide for isolated, conductive and semicondutive areas.
  • 9. The energy device of claim 1, wherein the electrically conductive protrusion is a first electrically conductive protrusion, wherein said at least one electrically conductive surface layer further comprises a second electrically conductive protrusion extending in a direction orthogonal to the energy storage component.
  • 10. The energy device of claim 1, further comprising said electrically conductive surface incorporated into said device during the fabrication of said energy storage component.
  • 11. The energy device of claim 10 wherein a conductive layer and an associated insulating layer are added to said device during the fabrication of said energy storage component.
  • 12. The energy device of claim 1, wherein said electrically conductive surface comprises a material selected from the group of: metals, alloys, semiconductors, conductive organics and polymers, and conductive composites.
  • 13. The energy device of claim 1, wherein the shape of said device is selected from the group of: square, rectangular, triangular, multi-sided polygonal, round, curved, wavy, and non-uniform in thickness.
  • 14. The energy device of claim 1, wherein the collected electromagnetic energy comprises energy selected from the group of: electrical field coupled energy, magnetic field coupled energy, light wave direct coupled energy, light wave thermally coupled energy, laser or coherent light coupled energy, and sub-millimeter wavelength radiation coupled energy.
  • 15. The energy device of claim 1, further comprising a plurality of electrically conductive surfaces.
  • 16. The energy device of claim 15, wherein said electrically conductive surfaces are adapted to form an array that improves the collection of power of the electromagnetic energy in an omni-directional response.
  • 17. The energy device of claim 15, wherein said electrically conductive surfaces are adapted to form an array that improves the collection of power of the electromagnetic energy in an uni-directional response.
  • 18. The energy device of claim 15, wherein said plurality of electrically conductive surfaces comprises a connection in series or in parallel that are adapted to collect electromagnetic energy.
  • 19. The energy device of claim 18, wherein all electrically conductive surfaces comprise substantially equal size and shape.
  • 20. The energy device of claim 18, wherein at least one of said electrically conductive surfaces comprises a substantially different size and shape than other electrically conductive surfaces.
  • 21. The energy device of claim 1, further comprising at least one external rectification element adapted to rectify the collected electromagnetic energy.
  • 22. The energy device of claim 21, wherein said at least one rectification element is selected from the group of external diode, rectenna comprising said external diode and said electrically conductive surface, external full bridge rectifier, external half bridge rectifier, and external reactive components, wherein said external reactive components comprise any combination of capacitors, coils, diodes, transistors, RF chokes, and integrated devices.
  • 23. The energy device of claim 1, wherein said at least one electrically conductive surface layer comprises at least two electrically conductive surfaces of differing sizes.
  • 24. The energy device of claim 1, wherein said at least one electrically conductive surface layer comprising at least two electrically conductive surfaces of similar sizes.
  • 25. The energy device of claim 1, wherein said energy storage component comprises a geometrical shape selected from the group of square, rectangular, triangular, multi-sided polygonal, round, curved, wavy, and non-uniform in thickness.
  • 26. The energy device of claim 1, further comprising more than one energy storage component.
  • 27. The energy device of claim 1, wherein said energy storage components comprises two or more energy storage components connected in series or in parallel and wherein at least one of said energy storage components is adapted for said at least one electrically conductive surface layer to be adapted to collect electromagnetic energy.
  • 28. The energy device of claim 27, wherein said energy storage components all comprise substantially the same size and shape.
  • 29. The energy device of claim 27, wherein at least one of said energy storage components comprise a substantially different size and shape than the other energy storage components.
  • 30. The energy device of claim 1 further comprising one or more layers between a plurality of conductive surfaces, said layers comprising an insulating layer.
  • 31. An array comprising a plurality of energy devices of claim 1.
  • 32. The array of claim 31, further comprising electrically conductive surfaces adapted to collect electromagnetic energy in an omni-directional response.
  • 33. The array of claim 32, comprising a substrate element and at least two collection surfaces, each said collection surface located on opposite sides of said substrate element.
  • 34. The array of claim 31, further comprising electrically conductive surfaces adapted to collect electromagnetic energy in a uni-directional response.
  • 35. The array of claim 31, wherein said array of energy devices comprise a connection in series or in parallel and wherein at least one of said energy devices provides an electrically conductive surface that is adapted to collect electromagnetic energy.
  • 36. The energy device of claim 35, wherein said energy devices all comprise substantially equal size and shape.
  • 37. The energy device of claim 35, wherein at least one of said energy devices comprise a substantially different size and shape than the other energy devices.
  • 38. A method of collecting electromagnetic energy within an environment containing electromagnetic energy comprising: providing at least one energy harvesting device within the environment,said device comprising an electrically conductive surface, a substrate, and an energy storage component,wherein the electrically conductive surface is provided by an anode current collector of the energy storage component,wherein the electrically conductive surface is adapted to collect the electromagnetic energy thereby enabling a current to be induced within the electrically conductive surface,wherein the energy storage component comprises and electrochemical cell having a plurality of component layers,wherein the electrically conductive surface comprises an electrically conductive protrusion extending in a direction parallel to the plurality of component layers of the electrochemical cell and the electrically conductive surface extends beyond a dimension of the plurality of component layers of the electrochemical cell,wherein the substrate is provided by a cathode current collector of the energy storage component and extends beyond a dimension of the electrically conductive surface;collecting the electromagnetic energy from the environment across said electrically conductive surface; and storing the energy in said energy storage component.
  • 39. The method of claim 38, further comprising modifying the geometry of said electrically conductive surface to improve the collection of electromagnetic energy.
  • 40. The method of claim 38, further comprising rectifying the collected electromagnetic energy before storing the energy in said energy storage component.
  • 41. The method of claim 38, further comprising powering an autonomous electrical device.
  • 42. The method of claim 38 further comprising incorporating said electrically conductive surface into said device during -fabrication of said energy storage component.
RELATED APPLICATIONS

This application is related to and claims the benefit under 35 U.S.C. §119 of U.S. Provisional Patent Application Ser. No. 61/087,927, entitled “Energy Device with Integral Collector Surface for Electromagnetic Energy Harvesting and Method Thereof,” filed on Aug. 11, 2008, which is incorporated herein by reference in its entirety.

US Referenced Citations (803)
Number Name Date Kind
712316 Loppe et al. Oct 1902 A
2970180 Urry Jan 1961 A
3309302 Heil Mar 1967 A
3616403 Collins et al. Oct 1971 A
3790432 Fletcher et al. Feb 1974 A
3797091 Gavin Mar 1974 A
3850604 Klein Nov 1974 A
3939008 Longo et al. Feb 1976 A
4082569 Evans, Jr. Apr 1978 A
4111523 Kaminow et al. Sep 1978 A
4127424 Ullery, Jr. Nov 1978 A
4226924 Kimura et al. Oct 1980 A
4283216 Brereton Aug 1981 A
4318938 Barnett et al. Mar 1982 A
4328297 Bilhorn May 1982 A
4395713 Nelson et al. Jul 1983 A
4437966 Hope et al. Mar 1984 A
4442144 Pipkin Apr 1984 A
4467236 Kolm et al. Aug 1984 A
4481265 Ezawa et al. Nov 1984 A
4518661 Rippere May 1985 A
4555456 Kanehori et al. Nov 1985 A
4572873 Kanehori et al. Feb 1986 A
4587225 Tsukuma et al. May 1986 A
4619680 Nourshargh et al. Oct 1986 A
4645726 Hiratani et al. Feb 1987 A
4664993 Sturgis et al. May 1987 A
4668593 Sammells May 1987 A
RE32449 Claussen Jun 1987 E
4672586 Shimohigashi et al. Jun 1987 A
4710940 Sipes, Jr. Dec 1987 A
4728588 Noding et al. Mar 1988 A
4740431 Little Apr 1988 A
4756717 Sturgis et al. Jul 1988 A
4785459 Baer Nov 1988 A
4826743 Nazri May 1989 A
4865428 Corrigan Sep 1989 A
4878094 Balkanski Oct 1989 A
4903326 Zakman et al. Feb 1990 A
4915810 Kestigian et al. Apr 1990 A
4964877 Keister et al. Oct 1990 A
4977007 Kondo et al. Dec 1990 A
4978437 Wirz Dec 1990 A
5006737 Fay Apr 1991 A
5019467 Fujiwara May 1991 A
5030331 Sato Jul 1991 A
5035965 Sangyoji et al. Jul 1991 A
5055704 Link et al. Oct 1991 A
5057385 Hope et al. Oct 1991 A
5085904 Deak et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5100821 Fay Mar 1992 A
5107538 Benton et al. Apr 1992 A
5110694 Nagasubramanian et al. May 1992 A
5110696 Shokoohi et al. May 1992 A
5119269 Nakayama Jun 1992 A
5119460 Bruce et al. Jun 1992 A
5124782 Hundt et al. Jun 1992 A
5147985 DuBrucq Sep 1992 A
5153710 McCain Oct 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5171413 Arntz et al. Dec 1992 A
5173271 Chen et al. Dec 1992 A
5174876 Buchal et al. Dec 1992 A
5180645 Moré Jan 1993 A
5187564 McCain Feb 1993 A
5196041 Tumminelli et al. Mar 1993 A
5196374 Hundt et al. Mar 1993 A
5200029 Bruce et al. Apr 1993 A
5202201 Meunier et al. Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5208121 Yahnke et al. May 1993 A
5217828 Sangyoji et al. Jun 1993 A
5221891 Janda et al. Jun 1993 A
5225288 Beeson et al. Jul 1993 A
5227264 Duval et al. Jul 1993 A
5237439 Misono et al. Aug 1993 A
5252194 Demaray et al. Oct 1993 A
5262254 Koksbang et al. Nov 1993 A
5273608 Nath Dec 1993 A
5287427 Atkins et al. Feb 1994 A
5296089 Chen et al. Mar 1994 A
5300461 Ting Apr 1994 A
5302474 Shackle et al. Apr 1994 A
5303319 Ford et al. Apr 1994 A
5306569 Hiraki Apr 1994 A
5307240 McMahon Apr 1994 A
5309302 Vollmann May 1994 A
5314765 Bates May 1994 A
5326652 Lake Jul 1994 A
5326653 Chang Jul 1994 A
5338624 Gruenstern et al. Aug 1994 A
5338625 Bates et al. Aug 1994 A
5342709 Yahnke et al. Aug 1994 A
5355089 Treger et al. Oct 1994 A
5360686 Peled et al. Nov 1994 A
5362579 Rossoll et al. Nov 1994 A
5381262 Arima et al. Jan 1995 A
5387482 Anani Feb 1995 A
5401595 Kagawa et al. Mar 1995 A
5403680 Otagawa et al. Apr 1995 A
5411537 Munshi et al. May 1995 A
5411592 Ovshinsky et al. May 1995 A
5419982 Tura et al. May 1995 A
5427669 Drummond Jun 1995 A
5435826 Sakakibara et al. Jul 1995 A
5437692 Dasgupta et al. Aug 1995 A
5445856 Chaloner-Gill Aug 1995 A
5445906 Hobson et al. Aug 1995 A
5448110 Tuttle et al. Sep 1995 A
5449576 Anani Sep 1995 A
5455126 Bates et al. Oct 1995 A
5457569 Liou et al. Oct 1995 A
5458995 Behl et al. Oct 1995 A
5464692 Huber Nov 1995 A
5464706 Dasgupta et al. Nov 1995 A
5470396 Mongon et al. Nov 1995 A
5472795 Atita Dec 1995 A
5475528 LaBorde Dec 1995 A
5478456 Humpal et al. Dec 1995 A
5483613 Bruce et al. Jan 1996 A
5493177 Muller et al. Feb 1996 A
5498489 Dasgupta et al. Mar 1996 A
5499207 Miki et al. Mar 1996 A
5501918 Gruenstern et al. Mar 1996 A
5504041 Summerfelt Apr 1996 A
5512147 Bates et al. Apr 1996 A
5512387 Ovshinsky Apr 1996 A
5512389 Dasgupta et al. Apr 1996 A
5538796 Schaffer et al. Jul 1996 A
5540742 Sangyoji et al. Jul 1996 A
5547780 Kagawa et al. Aug 1996 A
5547782 Dasgupta et al. Aug 1996 A
5552242 Ovshinsky et al. Sep 1996 A
5555127 Abdelkader et al. Sep 1996 A
5561004 Bates et al. Oct 1996 A
5563979 Bruce et al. Oct 1996 A
5565071 Demaray et al. Oct 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5582935 Dasgupta et al. Dec 1996 A
5591520 Migliorini et al. Jan 1997 A
5597660 Bates et al. Jan 1997 A
5597661 Takeuchi et al. Jan 1997 A
5599355 Nagasubramanian et al. Feb 1997 A
5601952 Dasgupta et al. Feb 1997 A
5603816 Demaray et al. Feb 1997 A
5607560 Hirabayashi et al. Mar 1997 A
5607789 Treger et al. Mar 1997 A
5612152 Bates et al. Mar 1997 A
5612153 Moulton et al. Mar 1997 A
5613995 Bhandarkar et al. Mar 1997 A
5616933 Li Apr 1997 A
5618382 Mintz et al. Apr 1997 A
5625202 Chai Apr 1997 A
5637418 Brown et al. Jun 1997 A
5643480 Gustavsson et al. Jul 1997 A
5644207 Lew et al. Jul 1997 A
5645626 Edlund et al. Jul 1997 A
5645960 Scrosati et al. Jul 1997 A
5654054 Tropsha et al. Aug 1997 A
5654984 Hershbarger et al. Aug 1997 A
5658652 Sellergren Aug 1997 A
5660700 Shimizu et al. Aug 1997 A
5665490 Takeuchi et al. Sep 1997 A
5667538 Bailey Sep 1997 A
5677784 Harris Oct 1997 A
5679980 Summerfelt Oct 1997 A
5681666 Treger et al. Oct 1997 A
5686360 Harvey, III et al. Nov 1997 A
5689522 Beach Nov 1997 A
5693956 Shi et al. Dec 1997 A
5702829 Paidassi et al. Dec 1997 A
5705293 Hobson Jan 1998 A
5716728 Smesko Feb 1998 A
5718813 Drummond et al. Feb 1998 A
5719976 Henry et al. Feb 1998 A
5721067 Jacobs et al. Feb 1998 A
RE35746 Lake Mar 1998 E
5731661 So et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5742094 Ting Apr 1998 A
5755938 Fukui et al. May 1998 A
5755940 Shindo May 1998 A
5757126 Harvey, III et al. May 1998 A
5762768 Goy et al. Jun 1998 A
5763058 Isen et al. Jun 1998 A
5771562 Harvey, III et al. Jun 1998 A
5776278 Tuttle et al. Jul 1998 A
5779839 Tuttle et al. Jul 1998 A
5790489 O'Connor Aug 1998 A
5792550 Phillips et al. Aug 1998 A
5805223 Shikakura et al. Sep 1998 A
5811177 Shi et al. Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5830330 Lantsman Nov 1998 A
5831262 Greywall et al. Nov 1998 A
5834137 Zhang et al. Nov 1998 A
5841931 Foresi et al. Nov 1998 A
5842118 Wood, Jr. Nov 1998 A
5845990 Hymer Dec 1998 A
5847865 Gopinath et al. Dec 1998 A
5849163 Ichikawa et al. Dec 1998 A
5851896 Summerfelt Dec 1998 A
5853830 McCaulley et al. Dec 1998 A
5855744 Halsey et al. Jan 1999 A
5856705 Ting Jan 1999 A
5864182 Matsuzaki Jan 1999 A
5865860 Delnick Feb 1999 A
5870273 Sogabe et al. Feb 1999 A
5874184 Takeuchi et al. Feb 1999 A
5882721 Delnick Mar 1999 A
5882946 Otani Mar 1999 A
5889383 Teich Mar 1999 A
5895731 Clingempeel Apr 1999 A
5897522 Nitzan Apr 1999 A
5900057 Buchal et al. May 1999 A
5909346 Malhotra et al. Jun 1999 A
5916704 Lewin et al. Jun 1999 A
5923964 Li Jul 1999 A
5930046 Solberg et al. Jul 1999 A
5930584 Sun et al. Jul 1999 A
5942089 Sproul et al. Aug 1999 A
5948215 Lantsmann Sep 1999 A
5948464 Delnick Sep 1999 A
5948562 Fulcher et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955217 Van Lerberghe Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
5961682 Lee et al. Oct 1999 A
5966491 DiGiovanni Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5973913 McEwen et al. Oct 1999 A
5977582 Flemming et al. Nov 1999 A
5982144 Johnson et al. Nov 1999 A
5985484 Young et al. Nov 1999 A
5985485 Ovshinsky et al. Nov 1999 A
6000603 Koskenmaki et al. Dec 1999 A
6001224 Drummond et al. Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6007945 Jacobs et al. Dec 1999 A
6013949 Tuttle Jan 2000 A
6016046 Kaite et al. Jan 2000 A
6019284 Freeman et al. Feb 2000 A
6023610 Wood, Jr. Feb 2000 A
6024844 Drummond et al. Feb 2000 A
6025094 Visco et al. Feb 2000 A
6028990 Shahani et al. Feb 2000 A
6030421 Gauthier et al. Feb 2000 A
6033768 Muenz et al. Mar 2000 A
6042965 Nestler et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6045652 Tuttle et al. Apr 2000 A
6045942 Miekka et al. Apr 2000 A
6046081 Kuo Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6048372 Mangahara et al. Apr 2000 A
6051114 Yao et al. Apr 2000 A
6051296 McCaulley et al. Apr 2000 A
6052397 Jeon et al. Apr 2000 A
6057557 Ichikawa May 2000 A
6058233 Dragone May 2000 A
6071323 Kawaguchi Jun 2000 A
6075973 Greeff et al. Jun 2000 A
6077106 Mish Jun 2000 A
6077642 Ogata et al. Jun 2000 A
6078791 Tuttle et al. Jun 2000 A
6080508 Dasgupta et al. Jun 2000 A
6080643 Noguchi et al. Jun 2000 A
6093944 VanDover Jul 2000 A
6094292 Goldner et al. Jul 2000 A
6096569 Matsuno et al. Aug 2000 A
6100108 Mizuno et al. Aug 2000 A
6106933 Nagai et al. Aug 2000 A
6110531 Paz De Araujo Aug 2000 A
6115616 Halperin et al. Sep 2000 A
6117279 Smolanoff et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120890 Chen et al. Sep 2000 A
6127799 Krishnan Oct 2000 A
6129277 Grant et al. Oct 2000 A
6133670 Rodgers et al. Oct 2000 A
6137671 Staffiere Oct 2000 A
6144916 Wood, Jr. et al. Nov 2000 A
6146225 Sheats et al. Nov 2000 A
6148503 Delnick et al. Nov 2000 A
6156452 Kozuki et al. Dec 2000 A
6157765 Bruce et al. Dec 2000 A
6159635 Dasgupta et al. Dec 2000 A
6160373 Dunn et al. Dec 2000 A
6162709 Raoux et al. Dec 2000 A
6165566 Tropsha Dec 2000 A
6168884 Neudecker et al. Jan 2001 B1
6169474 Greeff et al. Jan 2001 B1
6175075 Shiotsuka et al. Jan 2001 B1
6176986 Watanabe et al. Jan 2001 B1
6181283 Johnson et al. Jan 2001 B1
6192222 Greeff et al. Feb 2001 B1
6197167 Tanaka Mar 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6204111 Uemoto et al. Mar 2001 B1
6210544 Sasaki Apr 2001 B1
6210832 Visco et al. Apr 2001 B1
6214061 Visco et al. Apr 2001 B1
6214660 Uemoto et al. Apr 2001 B1
6218049 Bates et al. Apr 2001 B1
6220516 Tuttle et al. Apr 2001 B1
6223317 Pax et al. Apr 2001 B1
6228532 Tsuji et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232242 Hata et al. May 2001 B1
6235432 Kono et al. May 2001 B1
6236793 Lawrence et al. May 2001 B1
6242128 Tura et al. Jun 2001 B1
6242129 Johnson Jun 2001 B1
6242132 Neudecker et al. Jun 2001 B1
6248291 Nakagama et al. Jun 2001 B1
6248481 Visco et al. Jun 2001 B1
6248640 Nam Jun 2001 B1
6249222 Gehlot Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6258252 Miyasaka et al. Jul 2001 B1
6261917 Quek et al. Jul 2001 B1
6264709 Yoon et al. Jul 2001 B1
6265652 Kurata et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6271053 Kondo Aug 2001 B1
6271793 Brady et al. Aug 2001 B1
6271801 Tuttle et al. Aug 2001 B2
6280585 Obinata Aug 2001 B1
6280875 Kwak et al. Aug 2001 B1
6281142 Basceri Aug 2001 B1
6284406 Xing et al. Sep 2001 B1
6287986 Mihara Sep 2001 B1
6289209 Wood, Jr. Sep 2001 B1
6290821 McLeod Sep 2001 B1
6290822 Fleming et al. Sep 2001 B1
6291098 Shibuya et al. Sep 2001 B1
6294722 Kondo et al. Sep 2001 B1
6296949 Bergstresser et al. Oct 2001 B1
6296967 Jacobs et al. Oct 2001 B1
6296971 Hara Oct 2001 B1
6300215 Shin Oct 2001 B1
6302939 Rabin Oct 2001 B1
6306265 Fu et al. Oct 2001 B1
6316563 Naijo et al. Nov 2001 B2
6323416 Komori et al. Nov 2001 B1
6324211 Ovard et al. Nov 2001 B1
6325294 Tuttle et al. Dec 2001 B2
6329213 Tuttle et al. Dec 2001 B1
6339236 Tomii et al. Jan 2002 B1
6340880 Higashijima et al. Jan 2002 B1
6344366 Bates Feb 2002 B1
6344419 Forster et al. Feb 2002 B1
6344795 Gehlot Feb 2002 B1
6350353 Gopalraja et al. Feb 2002 B2
6351630 Wood, Jr. Feb 2002 B2
6356230 Greeff et al. Mar 2002 B1
6356694 Weber Mar 2002 B1
6356764 Ovard et al. Mar 2002 B1
6358810 Dornfest et al. Mar 2002 B1
6360954 Barnardo Mar 2002 B1
6361662 Chiba et al. Mar 2002 B1
6365300 Ota et al. Apr 2002 B1
6365319 Heath et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6369316 Plessing et al. Apr 2002 B1
6372383 Lee et al. Apr 2002 B1
6372386 Cho et al. Apr 2002 B1
6373224 Goto et al. Apr 2002 B1
6375780 Tuttle et al. Apr 2002 B1
6376027 Lee et al. Apr 2002 B1
6379835 Kucherovsky et al. Apr 2002 B1
6379842 Mayer Apr 2002 B1
6379846 Terahara et al. Apr 2002 B1
6380477 Curtin Apr 2002 B1
6384573 Dunn May 2002 B1
6387563 Bates May 2002 B1
6391166 Wang May 2002 B1
6392565 Brown May 2002 B1
6394598 Kaiser May 2002 B1
6395430 Cho et al. May 2002 B1
6396001 Nakamura May 2002 B1
6398824 Johnson Jun 2002 B1
6399241 Hara et al. Jun 2002 B1
6402039 Freeman et al. Jun 2002 B1
6402795 Chu et al. Jun 2002 B1
6402796 Johnson Jun 2002 B1
6409965 Nagata et al. Jun 2002 B1
6413284 Chu et al. Jul 2002 B1
6413285 Chu et al. Jul 2002 B1
6413382 Wang et al. Jul 2002 B1
6413645 Graff et al. Jul 2002 B1
6413676 Munshi Jul 2002 B1
6414626 Greeff et al. Jul 2002 B1
6416598 Sircar Jul 2002 B1
6420961 Bates et al. Jul 2002 B1
6422698 Kaiser Jul 2002 B2
6423106 Bates Jul 2002 B1
6423776 Akkapeddi et al. Jul 2002 B1
6426163 Pasquier et al. Jul 2002 B1
6432577 Shul et al. Aug 2002 B1
6432584 Visco et al. Aug 2002 B1
6433380 Shin Aug 2002 B2
6433465 McKnight et al. Aug 2002 B1
6436156 Wandeloski et al. Aug 2002 B1
6437231 Kurata et al. Aug 2002 B2
6444336 Jia et al. Sep 2002 B1
6444355 Murai et al. Sep 2002 B1
6444368 Hikmet et al. Sep 2002 B1
6444750 Touhsaent Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6459726 Ovard et al. Oct 2002 B1
6466771 Wood, Jr. Oct 2002 B2
6475668 Hosokawa et al. Nov 2002 B1
6480699 Lovoi Nov 2002 B1
6481623 Grant et al. Nov 2002 B1
6488822 Moslehi Dec 2002 B1
6494999 Herrera et al. Dec 2002 B1
6495283 Yoon et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6500287 Azens et al. Dec 2002 B1
6503661 Park et al. Jan 2003 B1
6503831 Speakman Jan 2003 B2
6506289 Demaray et al. Jan 2003 B2
6511516 Johnson et al. Jan 2003 B1
6511615 Dawes et al. Jan 2003 B1
6517968 Johnson et al. Feb 2003 B2
6522067 Graff et al. Feb 2003 B1
6524466 Bonaventura et al. Feb 2003 B1
6524750 Mansuetto Feb 2003 B1
6525976 Johnson Feb 2003 B1
6528212 Kusumoto et al. Mar 2003 B1
6529827 Beason et al. Mar 2003 B1
6533907 Demaray et al. Mar 2003 B2
6537428 Xiong et al. Mar 2003 B1
6538211 St. Lawrence et al. Mar 2003 B2
6541147 McLean et al. Apr 2003 B1
6548912 Graff et al. Apr 2003 B1
6551745 Moutsios et al. Apr 2003 B2
6558836 Whitacre et al. May 2003 B1
6562513 Takeuchi et al. May 2003 B1
6563998 Farah et al. May 2003 B1
6569564 Lane May 2003 B1
6569570 Sonobe et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6572173 Muller Jun 2003 B2
6573652 Graff et al. Jun 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579728 Grant et al. Jun 2003 B2
6582480 Pasquier et al. Jun 2003 B2
6582481 Erbil Jun 2003 B1
6582852 Gao et al. Jun 2003 B1
6589299 Missling et al. Jul 2003 B2
6593150 Ramberg et al. Jul 2003 B2
6599662 Chiang et al. Jul 2003 B1
6600905 Greeff et al. Jul 2003 B2
6602338 Chen et al. Aug 2003 B2
6603139 Tessler et al. Aug 2003 B1
6603391 Greeff et al. Aug 2003 B1
6605228 Kawaguchi et al. Aug 2003 B1
6608464 Lew et al. Aug 2003 B1
6608470 Oglesbee et al. Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6615614 Makikawa et al. Sep 2003 B1
6616035 Ehrensvard et al. Sep 2003 B2
6618829 Pax et al. Sep 2003 B2
6620545 Goenka et al. Sep 2003 B2
6622049 Penner et al. Sep 2003 B2
6632563 Krasnov et al. Oct 2003 B1
6637906 Knoerzer et al. Oct 2003 B2
6637916 Mullner Oct 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6642895 Zurcher et al. Nov 2003 B2
6645675 Munshi Nov 2003 B1
6650000 Ballantine et al. Nov 2003 B2
6650942 Howard et al. Nov 2003 B2
6662430 Brady et al. Dec 2003 B2
6664006 Munshi Dec 2003 B1
6673484 Matsuura Jan 2004 B2
6673716 D'Couto et al. Jan 2004 B1
6674159 Peterson et al. Jan 2004 B1
6677070 Kearl Jan 2004 B2
6683244 Fujimori et al. Jan 2004 B2
6683749 Daby et al. Jan 2004 B2
6686096 Chung Feb 2004 B1
6693840 Shimada et al. Feb 2004 B2
6700491 Shafer Mar 2004 B2
6706449 Mikhaylik et al. Mar 2004 B2
6709778 Johnson Mar 2004 B2
6713216 Kugai et al. Mar 2004 B2
6713389 Speakman Mar 2004 B2
6713987 Krasnov et al. Mar 2004 B2
6723140 Chu et al. Apr 2004 B2
6730423 Einhart et al. May 2004 B2
6733924 Skotheim et al. May 2004 B1
6737197 Chu et al. May 2004 B2
6737789 Radziemski et al. May 2004 B2
6741178 Tuttle May 2004 B1
6750156 Le et al. Jun 2004 B2
6752842 Luski et al. Jun 2004 B2
6753108 Hampden-Smith et al. Jun 2004 B1
6753114 Jacobs et al. Jun 2004 B2
6760520 Medin et al. Jul 2004 B1
6764525 Whitacre et al. Jul 2004 B1
6768246 Pelrine et al. Jul 2004 B2
6768855 Bakke et al. Jul 2004 B1
6770176 Benson et al. Aug 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6780208 Hopkins et al. Aug 2004 B2
6797428 Skotheim et al. Sep 2004 B1
6797429 Komatsu Sep 2004 B1
6805998 Jenson et al. Oct 2004 B2
6805999 Lee et al. Oct 2004 B2
6818356 Bates Nov 2004 B1
6822157 Fujioka Nov 2004 B2
6824922 Park et al. Nov 2004 B2
6827826 Demaray et al. Dec 2004 B2
6828063 Park et al. Dec 2004 B2
6828065 Munshi Dec 2004 B2
6830846 Kramlich et al. Dec 2004 B2
6835493 Zhang et al. Dec 2004 B2
6838209 Langan et al. Jan 2005 B2
6846765 Imamura et al. Jan 2005 B2
6852139 Zhang et al. Feb 2005 B2
6855441 Levanon Feb 2005 B1
6861821 Masumoto et al. Mar 2005 B2
6863699 Krasnov et al. Mar 2005 B1
6866901 Burrows et al. Mar 2005 B2
6866963 Seung et al. Mar 2005 B2
6869722 Kearl Mar 2005 B2
6884327 Pan et al. Apr 2005 B2
6886240 Zhang et al. May 2005 B2
6890385 Tsuchiya et al. May 2005 B2
6896992 Kearl May 2005 B2
6899975 Watanabe et al. May 2005 B2
6902660 Lee et al. Jun 2005 B2
6905578 Moslehi et al. Jun 2005 B1
6906436 Jenson et al. Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6916679 Snyder et al. Jul 2005 B2
6921464 Krasnov et al. Jul 2005 B2
6923702 Graff et al. Aug 2005 B2
6924164 Jensen Aug 2005 B2
6929879 Yamazaki Aug 2005 B2
6936377 Wensley et al. Aug 2005 B2
6936381 Skotheim et al. Aug 2005 B2
6936407 Pichler Aug 2005 B2
6949389 Pichler et al. Sep 2005 B2
6955986 Li Oct 2005 B2
6962613 Jenson Nov 2005 B2
6962671 Martin et al. Nov 2005 B2
6964829 Utsugi et al. Nov 2005 B2
6982132 Goldner et al. Jan 2006 B1
6986965 Jenson et al. Jan 2006 B2
6994933 Bates Feb 2006 B1
7022431 Shchori et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7045246 Simburger et al. May 2006 B2
7045372 Ballantine et al. May 2006 B2
7056620 Krasnov et al. Jun 2006 B2
7073723 Fürst et al. Jul 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7129166 Speakman Oct 2006 B2
7131189 Jenson Nov 2006 B2
7144654 LaFollette et al. Dec 2006 B2
7144655 Jenson et al. Dec 2006 B2
7157187 Jenson Jan 2007 B2
7158031 Tuttle Jan 2007 B2
7162392 Vock et al. Jan 2007 B2
7183693 Brantner et al. Feb 2007 B2
7186479 Krasnov et al. Mar 2007 B2
7194801 Jenson et al. Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7202825 Leizerovich et al. Apr 2007 B2
7220517 Park et al. May 2007 B2
7230321 McCain Jun 2007 B2
7247408 Skotheim et al. Jul 2007 B2
7253494 Mino et al. Aug 2007 B2
7265674 Tuttle Sep 2007 B2
7267904 Komatsu et al. Sep 2007 B2
7267906 Mizuta et al. Sep 2007 B2
7273682 Park et al. Sep 2007 B2
7274118 Jenson et al. Sep 2007 B2
7288340 Iwamoto Oct 2007 B2
7316867 Park et al. Jan 2008 B2
7323634 Speakman Jan 2008 B2
7332363 Edwards Feb 2008 B2
7335441 Luski et al. Feb 2008 B2
RE40137 Tuttle et al. Mar 2008 E
7345647 Rodenbeck Mar 2008 B1
7348099 Mukai et al. Mar 2008 B2
7389580 Jenson et al. Jun 2008 B2
7400253 Cohen Jul 2008 B2
7410730 Bates Aug 2008 B2
RE40531 Graff et al. Oct 2008 E
7466274 Lin et al. Dec 2008 B2
7468221 LaFollette et al. Dec 2008 B2
7494742 Tarnowski et al. Feb 2009 B2
7670724 Chan et al. Mar 2010 B1
7848715 Boos Dec 2010 B2
7858223 Visco et al. Dec 2010 B2
8010048 Brommer et al. Aug 2011 B2
8056814 Martin et al. Nov 2011 B2
20010005561 Yamada et al. Jun 2001 A1
20010027159 Kaneyoshi Oct 2001 A1
20010031122 Lackritz et al. Oct 2001 A1
20010032666 Jenson et al. Oct 2001 A1
20010033952 Jenson et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010041294 Chu et al. Nov 2001 A1
20010041460 Wiggins Nov 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010054437 Komori et al. Dec 2001 A1
20010055719 Akashi et al. Dec 2001 A1
20020000034 Jenson Jan 2002 A1
20020001746 Jenson Jan 2002 A1
20020001747 Jenson Jan 2002 A1
20020004167 Jenson et al. Jan 2002 A1
20020009630 Gao et al. Jan 2002 A1
20020019296 Freeman et al. Feb 2002 A1
20020028377 Gross Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020037756 Jacobs et al. Mar 2002 A1
20020066539 Muller Jun 2002 A1
20020067615 Muller Jun 2002 A1
20020071989 Verma et al. Jun 2002 A1
20020076133 Li et al. Jun 2002 A1
20020091929 Ehrensvard Jul 2002 A1
20020093029 Ballantine et al. Jul 2002 A1
20020106297 Ueno et al. Aug 2002 A1
20020110733 Johnson Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020134671 Demaray et al. Sep 2002 A1
20020139662 Lee Oct 2002 A1
20020140103 Kloster et al. Oct 2002 A1
20020159245 Murasko et al. Oct 2002 A1
20020161404 Schmidt Oct 2002 A1
20020164441 Amine et al. Nov 2002 A1
20020170821 Sandlin et al. Nov 2002 A1
20020170960 Ehrensvard et al. Nov 2002 A1
20030019326 Han et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030024994 Ladyansky Feb 2003 A1
20030029493 Plessing Feb 2003 A1
20030030589 Zurcher et al. Feb 2003 A1
20030035906 Memarian et al. Feb 2003 A1
20030036003 Shchori et al. Feb 2003 A1
20030042131 Johnson Mar 2003 A1
20030044665 Rastegar et al. Mar 2003 A1
20030048635 Knoerzer et al. Mar 2003 A1
20030063883 Demaray et al. Apr 2003 A1
20030064292 Neudecker et al. Apr 2003 A1
20030068559 Armstrong et al. Apr 2003 A1
20030076642 Shiner et al. Apr 2003 A1
20030077914 Le et al. Apr 2003 A1
20030079838 Brcka May 2003 A1
20030091904 Munshi May 2003 A1
20030095463 Shimada et al. May 2003 A1
20030097858 Strohhofer et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20030134054 Demaray et al. Jul 2003 A1
20030141186 Wang et al. Jul 2003 A1
20030143853 Celii et al. Jul 2003 A1
20030146877 Mueller Aug 2003 A1
20030152829 Zhang et al. Aug 2003 A1
20030162094 Lee et al. Aug 2003 A1
20030173207 Zhang et al. Sep 2003 A1
20030173208 Pan et al. Sep 2003 A1
20030174391 Pan et al. Sep 2003 A1
20030175142 Milonopoulou et al. Sep 2003 A1
20030178623 Nishiki et al. Sep 2003 A1
20030178637 Chen et al. Sep 2003 A1
20030180610 Felde et al. Sep 2003 A1
20030185266 Henrichs Oct 2003 A1
20030231106 Shafer Dec 2003 A1
20030232248 Iwamoto et al. Dec 2003 A1
20040008587 Siebott et al. Jan 2004 A1
20040015735 Norman Jan 2004 A1
20040023106 Benson et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040038050 Saijo et al. Feb 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040048157 Neudecker et al. Mar 2004 A1
20040058237 Higuchi et al. Mar 2004 A1
20040072067 Minami et al. Apr 2004 A1
20040077161 Chen et al. Apr 2004 A1
20040078662 Hamel et al. Apr 2004 A1
20040081415 Demaray et al. Apr 2004 A1
20040081860 Hundt et al. Apr 2004 A1
20040085002 Pearce May 2004 A1
20040101761 Park et al. May 2004 A1
20040105644 Dawes Jun 2004 A1
20040106038 Shimamura et al. Jun 2004 A1
20040106045 Ugaji Jun 2004 A1
20040106046 Inda Jun 2004 A1
20040118700 Schierle-Arndt et al. Jun 2004 A1
20040126305 Chen et al. Jul 2004 A1
20040151986 Park et al. Aug 2004 A1
20040161640 Salot Aug 2004 A1
20040175624 Luski et al. Sep 2004 A1
20040188239 Robison et al. Sep 2004 A1
20040209159 Lee et al. Oct 2004 A1
20040212276 Brantner et al. Oct 2004 A1
20040214079 Simburger et al. Oct 2004 A1
20040219434 Benson et al. Nov 2004 A1
20040245561 Sakashita et al. Dec 2004 A1
20040258984 Ariel et al. Dec 2004 A1
20040259305 Demaray et al. Dec 2004 A1
20050000794 Demaray et al. Jan 2005 A1
20050006768 Narasimhan et al. Jan 2005 A1
20050048802 Zhang et al. Mar 2005 A1
20050070097 Barmak et al. Mar 2005 A1
20050072458 Goldstein Apr 2005 A1
20050079418 Kelley et al. Apr 2005 A1
20050095506 Klaassen May 2005 A1
20050105231 Hamel et al. May 2005 A1
20050110457 LaFollette et al. May 2005 A1
20050112461 Amine et al. May 2005 A1
20050118464 Levanon Jun 2005 A1
20050130032 Krasnov et al. Jun 2005 A1
20050133361 Ding et al. Jun 2005 A1
20050141170 Honda et al. Jun 2005 A1
20050142447 Nakai et al. Jun 2005 A1
20050147877 Tarnowski et al. Jul 2005 A1
20050158622 Mizuta et al. Jul 2005 A1
20050170736 Cok Aug 2005 A1
20050175891 Kameyama et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050181280 Ceder et al. Aug 2005 A1
20050183946 Pan et al. Aug 2005 A1
20050189139 Stole Sep 2005 A1
20050208371 Kim et al. Sep 2005 A1
20050239917 Nelson et al. Oct 2005 A1
20050255828 Fisher Nov 2005 A1
20050266161 Medeiros et al. Dec 2005 A1
20060019504 Taussig Jan 2006 A1
20060021214 Jenson et al. Feb 2006 A1
20060021261 Face Feb 2006 A1
20060040177 Onodera et al. Feb 2006 A1
20060046907 Rastegar et al. Mar 2006 A1
20060054496 Zhang et al. Mar 2006 A1
20060057283 Zhang et al. Mar 2006 A1
20060057304 Zhang et al. Mar 2006 A1
20060063074 Jenson et al. Mar 2006 A1
20060071592 Narasimhan et al. Apr 2006 A1
20060155545 Janye Jul 2006 A1
20060201583 Michaluk et al. Sep 2006 A1
20060210779 Weir et al. Sep 2006 A1
20060222954 Skotheim et al. Oct 2006 A1
20060234130 Inda Oct 2006 A1
20060237543 Goto et al. Oct 2006 A1
20060255435 Fuergut et al. Nov 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070009802 Lee et al. Jan 2007 A1
20070021156 Hoong et al. Jan 2007 A1
20070023275 Tanase et al. Feb 2007 A1
20070037058 Visco et al. Feb 2007 A1
20070053139 Zhang et al. Mar 2007 A1
20070087230 Jenson et al. Apr 2007 A1
20070091543 Gasse et al. Apr 2007 A1
20070125638 Zhang et al. Jun 2007 A1
20070141468 Barker Jun 2007 A1
20070148065 Weir et al. Jun 2007 A1
20070148553 Weppner Jun 2007 A1
20070151661 Mao et al. Jul 2007 A1
20070164376 Burrows et al. Jul 2007 A1
20070166612 Krasnov et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070196682 Visser et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070205513 Brunnbauer et al. Sep 2007 A1
20070210459 Burrows et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070224951 Gilb et al. Sep 2007 A1
20070229228 Yamazaki et al. Oct 2007 A1
20070235320 White et al. Oct 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070278653 Brunnbauer et al. Dec 2007 A1
20070298326 Angell et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080008936 Mizuta et al. Jan 2008 A1
20080014501 Skotheim et al. Jan 2008 A1
20080057397 Skotheim et al. Mar 2008 A1
20080150829 Lin et al. Jun 2008 A1
20080213672 Skotheim et al. Sep 2008 A1
20080233708 Hisamatsu Sep 2008 A1
20080254575 Fuergut et al. Oct 2008 A1
20080261107 Snyder et al. Oct 2008 A1
20080263855 Li et al. Oct 2008 A1
20080286651 Neudecker et al. Nov 2008 A1
20090092903 Johnson et al. Apr 2009 A1
20090124201 Meskens May 2009 A1
20090181303 Neudecker et al. Jul 2009 A1
20090302226 Schieber et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312069 Peng et al. Dec 2009 A1
20100001079 Martin et al. Jan 2010 A1
20100086853 Venkatachalam et al. Apr 2010 A1
20110267235 Brommer et al. Nov 2011 A1
20110304430 Brommer et al. Dec 2011 A1
Foreign Referenced Citations (130)
Number Date Country
1415124 Apr 2003 CN
1532984 Sep 2004 CN
19824145 Dec 1999 DE
10 2005 014 427 Sep 2006 DE
10 2006 054 309 Nov 2006 DE
10 2008 016 665 Oct 2008 DE
10 2007 030604 Jan 2009 DE
0 510 883 Oct 1992 EP
0 639 655 Feb 1995 EP
0 652 308 May 1995 EP
0 820 088 Jan 1998 EP
1 068 899 Jan 2001 EP
0 867 985 Feb 2001 EP
1 092 689 Apr 2001 EP
1 189 080 Mar 2002 EP
1 713 024 Oct 2006 EP
2806198 Sep 2001 FR
2 861 218 Apr 2005 FR
55-009305 Jan 1980 JP
56-076060 Jun 1981 JP
56-156675 Dec 1981 JP
60-068558 Apr 1985 JP
61-269072 Nov 1986 JP
62-267944 Nov 1987 JP
63-290922 Nov 1988 JP
2-054764 Feb 1990 JP
2-230662 Sep 1990 JP
03-036962 Feb 1991 JP
4-058456 Feb 1992 JP
4-072049 Mar 1992 JP
6-010127 Jan 1994 JP
6-100333 Apr 1994 JP
7-233469 May 1995 JP
7-224379 Aug 1995 JP
08-114408 May 1996 JP
10-026571 Jan 1998 JP
10-239187 Sep 1998 JP
11-204088 Jul 1999 JP
2000-144435 May 2000 JP
2000-162234 Jun 2000 JP
2000-188099 Jul 2000 JP
2000-268867 Sep 2000 JP
2001-171812 Jun 2001 JP
2001-259494 Sep 2001 JP
2001-297764 Oct 2001 JP
2001-328198 Nov 2001 JP
2002-140776 May 2002 JP
2002-344115 Nov 2002 JP
2003-17040 Jan 2003 JP
2003-347045 Dec 2003 JP
2004-071305 Mar 2004 JP
2004-149849 May 2004 JP
2004-158268 Jun 2004 JP
2004-273436 Sep 2004 JP
2005-256101 Sep 2005 JP
2002-026412 Feb 2007 JP
7-107752 Apr 2007 JP
2008-54493 Mar 2008 JP
2008-84307 Apr 2008 JP
20020007881 Jan 2002 KR
20020017790 Mar 2002 KR
20020029813 Apr 2002 KR
20020038917 May 2002 KR
20030033913 May 2003 KR
20030042288 May 2003 KR
20030085252 Nov 2003 KR
2241281 Nov 2004 RU
WO 9513629 May 1995 WO
WO 9623085 Aug 1996 WO
WO 9623217 Aug 1996 WO
WO 9727344 Jul 1997 WO
WO 9735044 Sep 1997 WO
WO-9739491 Oct 1997 WO
WO 9847196 Oct 1998 WO
WO 9943034 Aug 1999 WO
WO 9957770 Nov 1999 WO
WO 0021898 Apr 2000 WO
WO 0022742 Apr 2000 WO
WO 0028607 May 2000 WO
WO 0036665 Jun 2000 WO
WO 0006062 Oct 2000 WO
WO 0060689 Oct 2000 WO
WO 0062365 Oct 2000 WO
WO 0101507 Jan 2001 WO
WO 0117052 Mar 2001 WO
WO 0124303 Apr 2001 WO
WO 0133651 May 2001 WO
WO 0139305 May 2001 WO
WO 0173864 Oct 2001 WO
WO 0173865 Oct 2001 WO
WO 0173866 Oct 2001 WO
WO 0173868 Oct 2001 WO
WO 0173870 Oct 2001 WO
WO 0173883 Oct 2001 WO
WO 0173957 Oct 2001 WO
WO 0182390 Nov 2001 WO
WO 0212932 Feb 2002 WO
WO 0242516 May 2002 WO
WO 0247187 Jun 2002 WO
WO 02071506 Sep 2002 WO
WO 02101857 Dec 2002 WO
WO 03003485 Jan 2003 WO
WO 03005477 Jan 2003 WO
WO 03026039 Mar 2003 WO
WO 03036670 May 2003 WO
WO 03069714 Aug 2003 WO
WO 03080325 Oct 2003 WO
WO 03083166 Oct 2003 WO
WO 2004012283 Feb 2004 WO
WO 2004021532 Mar 2004 WO
WO 2004061887 Jul 2004 WO
WO 2004077519 Sep 2004 WO
WO 2004086550 Oct 2004 WO
WO 2004093223 Oct 2004 WO
WO 2004106581 Dec 2004 WO
WO 2004106582 Dec 2004 WO
WO 2005008828 Jan 2005 WO
WO 2005013394 Feb 2005 WO
WO 2005038957 Apr 2005 WO
WO 2005067645 Jul 2005 WO
WO 2005085138 Sep 2005 WO
WO 2005091405 Sep 2005 WO
WO 2006063308 Jun 2006 WO
WO-2006077192 Jul 2006 WO
WO 2006085307 Aug 2006 WO
WO 2007016781 Feb 2007 WO
WO 2007019855 Feb 2007 WO
WO 2007027535 Mar 2007 WO
WO 2007095604 Aug 2007 WO
WO 2008036731 Mar 2008 WO
Non-Patent Literature Citations (154)
Entry
Balanis, C., Antenna Theory: Analysis Design, 2005, John Wiley & Sons, Inc., 3rd Ed., 811-820.
Broadband. [online]. Wikipedia. [retrieved on Apr. 14, 2014]. Retrieved from the internet <URL: http://en.wikipedia.org/wiki/Broadband>.
Narrowband. [online]. Wikipedia. [retrieved on Apr. 14, 2014]. Retrieved from the internet <URL: http://en.wikipedia.org/wiki/Narrowband>.
Ultra low frequency. [online]. Wikipedia. [retrieved on Apr. 14, 2014]. Retrieved from the internet <URL: http://en.wikipedia.org/wiki/Ultra—low—frequency>.
Ultra high frequency. [online]. Wikipedia. [retrieved on Apr. 14, 2014]. Retrieved from the internet <URL: http://en.wikipedia.org/wiki/Ultra—high—frequency>.
Starner “Human-Powered Wearable Computing” 35(3&4) IBM Sys. J. 618-29 (1996)[1].
Strohhofer, C. and Polman, A. “Energy transfer to Er3+ in Ag ion-exchanged glass,” FOM Institute for Atomic and Molecular Physics, 10 pages (2001).
Sugiyama, A. et al., “Gas Permeation Through the Pinholes of Plastic Film Laminated with Aluminum Foil,” Vuoto XXVIII(1-2):51-54 (1999).
Tervonen, A. “Challenges and opportunities for integrated optics in optical networks,” SPIE 3620:2-11 (1999).
Ting, C.Y. et al., “Study of planarized sputter-deposited SiO2 ” J. Vac. Sci Technol, 15(3):1105-1112 (1978).
Tomaszewski, H. et al., “Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering,” Thin Solid Films 287: 104-109 (1996).
Triechel, O. and Kirchhoff, V., “The influences of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass,” Surface and Coating Technology 123:268-272 (2000).
Tukamoto, H. and West, A.R., “Electronic Conductivity of LiCoOs and Its Enhancement by Magnesium Doping,” J. Electrochem. Soc 144(9):3164-3168 (1997).
Van Dover, R.B., “Amorphous Lanthanide-Doped TiOx Dielectric Films,” Appl. Phys. Lett. 74(20):3041-3043 (1999).
Viljanen, J. and Leppihalme, M., “Planner Optical Coupling Elements for Multimode Fibers with Two-Step Ion Migration Process,” Applied Physics 24(1):61-63 (1981).
Villegas, M.A. et al., “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37(6):248-253 (1996).
Von Rottkay, K. et al., “Influences of stoichiometry on electrochromic cerium—titanium oxide compounds,” Presented at the 11th Int'l Conference of Solid State Ionics, Honolulu, Hawaii, Nov. 19, 1997, Published in Solid State Ionics 113-115:425-430. (1998).
Wang, B. et al., “Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem. Soc. 143:3203-13 (1996).
Westlinder, J. et al., “Simulations and Dielectric Characterization of Reactive dc Magnetron Cosputtered (Ta2O5)1-x(TiO2)x Thin Films,” J Vac. Sci. Technol. B 20(3):855-861 (May/Jun. 2002).
Wilkes, K.E., “Gas Permeation Through Vacuum Barrier Films and its Effect on VIP Thermal Performance,” presented at the Vacuum Insulation Panel Symp., Baltimore, Maryland, 21 pages (May 3, 1999).
Chang, C.Y. and Sze, S.M. (eds.), in ULSI Technology, The McGraw-Hill Companies, Inc., Nyew York, Chapter 4, pp. 169-170 and 226-231 (1996).
Chen, G. et al., “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” J. Electrochemical Society 149(8): A1092-A1099 (2002).
Choi, Y.B. et al., “Er—Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering,” Optics Letters 25(4): 263-265 (2000).
Choy et al., “Eu-Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition,” J. Mater. Res. 14(7): 3111-3114 (Jul. 1999).
Cocorullo, G. et al., “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Optics Lett. 21(24): 2002-2004 (1996).
Cooksey, K. et al., “Predicting permeability & Transmission rate for multilayer materials,” Food Technology 53(9): 60-63 (1999).
Crowder, M.A. et al., “Low-temperature single-crystal Si TFT's fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett. 19(8): 306-308 (1998).
Delavaux, J-M. et al., “Integrated optics erbium ytterbium amplifier system in 10Gb/s fiber transmission experiment,” 22nd Euporean Conference on Optical Communication, Osla, I.123-I.126 (1996).
Distributed Energy Resources: Fuel Cells, Projects, 4 pages http://www.eere.energy.gov/der/fuel—cells/projects.html (2003).
Dorey, R.A., “Low temperature micromoulding of functional ceramic devices,” Grant summary for GR/S84156/01 for the UK Engineering and Physical Sciences Research Council, 2 pages (2004).
DuPont Teijin Films, Mylar 200 SBL 300, Product Information, 4 pages (2000).
Electrometals Technologies Limited, Financial Report for 2002, Corporate Directory, Chairman's review, Review of Operations, 10 pages (2002).
E-Tek website: FAQ, Inside E-Tek, E-Tek News, Products; http://www.etek-inc.com/, 10 pages (2003).
Flytzanis, C. et al., “Nonlinear optics in composite materials,” in Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 323-425 (1991).
Frazao, O. et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” Proc. London Comm. Symp. 2001, London, England, 3 pages (2001).
Fujii, M. et al., “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals for Er3+,” Appl. Phys. Lett. 71(9): 1198-1200 (1997).
Garcia, C. et al., “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10): 1595-1597 (2003).
Goossens, A. et al., “Sensitization of TiO2 with p-type semiconductor polymers,” Chem. Phys. Lett. 287: 148 (1998).
Greene, J.E. et al., “Morphological and electrical properties of rf sputtered Y2O3-doped ZrO2 thin films,” J. Vac. Sci. Tech. 13(1): 72-75 (1976).
Han, H.-S. et al., “Optical gain at 1.54 μm in Erbium-doped Silicon nanocluster sensitized waveguide,” Appl. Phys. Lett 79(27): 4568-4570 (2001).
Hayakawa, T. et al., “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Crystalline Solids 259: 16-22 (1999).
Hayakawa, T. et al., “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11): 1513-1515 (1999).
Hayfield, P.C.S., I Development of a New Material-Monolithic Ti4O7 Ebonix® Ceramic, Royal Society of Chemistry, Cambridge, Table of Contents, 4 pages (2002).
Hehlen, M.P. et al., “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Physical Review B 56(15): 9302-9318 (1997).
Hehlen, M.P. et al., “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Optics Letters 22(11); 772-774 (1997).
Horst, F. et al., “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Top. Meeting Integrated Photonics Res. '00, Quebec, Canada, p. IThF1, 3 pages (2000).
Howson, R.P., “The reactive sputtering of oxides and nitrides,” Pure & Appl. Chem. 66(6): 1311-1318 (1994).
Hubner, J. and Guldberg-Kjaer, S., “Planar Er- and Yb-doped amplifiers and lasers,” COM Technical University of Denmark, 10th European Conf. on Integrated Optics, Session WeB2, pp. 71-74 (2001).
Hwang et al., “Characterization of sputter-deposited LiMn2O4 thin films for rechargeable microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Hwang, M-S. et al., “The effect of pulsed magnetron sputtering on the properties of iridium tin oxide thin films,” Surface and Coatings Tech. 171: 29-33 (2003).
Im, J.S. and Sposili, R.S., “Crystalline Si films for integrated active-matrix liquid crystal displays,” MRS Bulletin, pp. 39-48 (1996).
Im, J.S. et al., “Controlled super-lateral growth of Si-films for microstructural manipulation and optimization,” Physica Status Solidi (A) 166(2): 603-617 (1998).
Im, J.S. et al., “Single-crystal Si films for thin-film transistor devices,” Appl. Physics Lett. 70(25): 3434-3436 (1997).
Itoh, M. et al., “Large reduction of singlemode-fibre coupling loss in 1.5% Δ planar lightwave circuits using spot-size converters,” Electronics Letters 38(2): 72-74 (2002).
Jackson, M.K. and Movassaghi, M., “An accurate compact EFA model,” Eur. Conf. Optical Comm., Munich, Germany, 2 pages (2000).
Janssen, R. et al., “Photoinduced electron transfer from conjugated polymers onto nanocrystalline TiO2,” Synthet. Metal., 1 page (1999).
Johnson, J.E. et al., “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Selected topics in Quantum Electronics 6(1): 19-25 (2000).
Jonsson, L.B. et al., “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films 365: 43-48 (2000).
Kato, K. and Inoue, Y., “Recent progress on PLC hybrid integration,” SPIE 3631: 28-36 (1999).
Kato, K. and Tohmori, Y., “PLC hybrid integration technology and its application to photonic components,” IEEE J. Selected Topics in Quantum Electronics 6(1): 4-13 (2000).
Kelly, P.J. and Arnell, R.D., “Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering,” J. Vac. Sci. Technol. A 17(3):945-953 (1999).
Kelly, P.J. et al., “A novel technique for the deposition of aluminum-doped zinc oxide films,” Thin Solid Films 426(1-2): 111-116 (2003).
Kelly, P.J. et al., “Reactive pulsed magnetron sputtering process for alumina films,” J. Vac. Sci. Technol. A 18(6): 2890-2896 (2000).
Kik, P.G. and Polman, A., “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91(1): 536-536 (2002).
Kim et al., “Correlation Between the Microstructures and the Cycling Performance of RuO2 Electrodes for Thin-Film Microsupercapacitros,” J. Vac. Sci. Technol. B20(5): 1827-1832 (Sep. 2002).
Kim, D-W. et al. “Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2—CuO System,” Jpn. J. Appl. Phys. 39:2696-2700 (2000).
Kim, H-K. et al., “Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery,” J. Vac. Sci. Technol. A 22(4): 1182-1187 (2004).
Kim, J-Y. et al. “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sci. Technol. A 19(2):429-434 (2001).
Ladouceur, F. and Love, J.D., in: Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London, Table of Contents, 6 pages (1996).
Ladouceur, F. et al., “Effect of side wall roughness in buried channel waveguides,” IEEE Proc. Optoelectron. 141(4):242-248 (1994).
Lamb, W. and Zeiler, R., Designing Non-Foil Containing Skins for Vacuum Insulation Panel (VIP) Application, Vuoto XXVIII(1-2):55-58 (1999).
Lamb, W.B., “Designing Nonfoil Containing Skins for VIP Applications,” DuPont VIA Symposium Presentation, 35 Pages (1999).
Lange, M.R. et al, “High Gain Ultra-Short Length Phosphate glass Erbium-Doped Fiber Amplifier Material,” OSA Optical Fiber Communications (OFC), 3 Pages (2002).
Laporta, P. et al, “Diode-pumped cw bulk Er: Yb: glass laser,” Optics Letters 16(24):1952-1954 (1991).
Laurent-Lund, C. et al., “PECVD Grown Multiple Core Planar Waveguides with Extremely Low Interface Reflections and Losses,” IEEE Photonics Tech. Lett. 10(10):1431-1433 (1998).
Yanagawa, H. et al., “Index-and-Dimensional Taper and Its Application to Photonic Devices,” J. Lightwave Technology 10(5):587-591 (1992).
Yoshikawa, K. et al., “Spray formed aluminum alloys for sputtering targets,” Powder Metallurgy 43(3): 198-199 (2000).
Zhang, H. et al., “High Dielectric Strength, High k TiO2 Films by Pulsed DC, Reactive Sputter Deposition,” 5 pages (2001).
Abraham, K.M. et al., “Inorganic-organic composite solid polymer electrolytes,” 147(4) J. Electrochem. Soc. 1251-56 (2000).
Appetecchi, G.B. et al., “Composite polymer electrolytes with improved lithium metal electrode interfacial properties,” 145(12) J. Electrochem. Soc. 4126-32 (1998).
Bates, J.B. et al., “Electrical properties of amorphous lithium electrolyte thin films,” 53-56 Solid State Ionics 647-54 (1992).
Abrahams, I., “Li6Zr2O7, a new anion valancy ccp based structure, determined by ab initio powder diffraction methods,” 104 J. Solid State Chem. 397-403 (1993).
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries,” 60 Solid State Ionics 357-65 (1993).
Yu, X. et al., “A stable thin-film lithium electrolyte: lithium phosphorus oxynitride,” 144(2) J. Electrochem. Soc. 524-532 (1997).
Delmas, C. et al., “Des conducteurs ioniques pseudo-bidimensionnels Li8MO6 (M=Zr, Sn), Li7LO6 (L=Nb, Ta) et Li6In2O6,” 14 Mat. Res. Bull. 619-25 (1979).
Hu, Y-W. et al., “Ionic conductivity of lithium phosphate-doped lithium orthosilicate,” 11 Mat. Res. Bull. 1227-30 (1976).
Neudecker, B. et al., “Li9SiAlO8: a lithium ion electrolyte for voltages above 5.4 V,” 143(7) J. Electrochem. Soc. 2198-203 (1996).
Ohno, H. et al., “Electrical conductivity of a sintered pellet of octalithium zirconate,” 132 J. Nucl. Mat. 222-30 (1985).
Scholder, V. et al., “Über Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium,” Zeitschrift für Anorganische und Allgemeine Chemie, Band 362, pp. 149-168 (1968).
Sarro, P., “Silicon Carbide as a New MEMS Technology,” Sensors and Actuators 82, 210-218 (2000).
Hwang et al., “Characterization of Sputter-Deposited LiMn2O4 Thin Films for Rechargeable Microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Jones et al., 53-56 Solid State Ionics 628 (1992).
Mattox “Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters,” Albuquerque, New Mexico 660f and 692ff, Noyes Publications (1998).
Affinito, J.D. et al., “PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers” Thin Solid Films 308-309: 19-25 (1997).
Affinito, J.D. et al., “Polymer-oxide transparent barrier layers,” Society of Vacuum Coaters, 39th Ann. Technical Conference Proceedings, May 5-10, 1996, Philadelphia, PA, pp. 392-397 (1996).
Alder, T. et al., “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photonics Tech. Lett. 12(8): 1016-1018 (2000).
Almeida, V.R. et al., “Nanotaper for compact mode conversion,” Optics Letters 28(15): 1302-1304 (2003).
Anh et al., “Significant Suppression of Leakage Current in (Ba,Sr)TiO3 Thin Films by Ni or Mn Doping,” J. Appl. Phys.,92(5): 2651-2654 (Sep. 2002).
Asghari, M. and Dawnay, E., “ASOC™—a manufacturing integrated optics technology,” SPIE 3620:252-262 (Jan. 1999).
Barbier, D. et al., “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Tech. Lett. 9:315-317 (1997).
Barbier, D., “Performances and potential applications of erbium doped planar waveguide amplifiers and lasers,” Proc. OAA, Victoria, BC, Canada, pp. 58-63 (Jul. 21-23, 1997).
Bates et al., “Thin-Film Lithium Batteries” in New Trends in Electrochemical Technology: Energy & Storage Systems for Electronics (T. Osaka & M. Datta eds. Gordon and Breach 2000).
Beach R.J., “Theory and optimization of lens ducts,” Applied Optics 35(12): 2005-2015 (1996).
Belkind, A. et al., “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects,” 43rd Annual Technical Conference Proceedings (2000).
Belkind, A. et al., “Using pulsed direct current power for reactive sputtering of Al2O3,” J. Vac. Sci. Technol. A 17(4): 1934-1940 (1999).
Bestwick, T., “ASOC™ silicon integrated optics technology,” SPIE 3631: 182-190 (1999).
Borsella, E. et al., “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Applied Physics A 71: 125-132 (2000).
Byer, R.L., “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Selected Topics in Quantum Electronics 6(6): 911-930 (2000).
Campbell, S.A. et al., “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Develop. 43(3): 383-392 (1999).
Lee, B.H. et al., “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silion,” Appl. Phys. Lett. 74(21):3143-3145 (1999).
Lee, K.K. et al., “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11):1617-1619 (2000).
Love, J.D. et al., “Quantifying Loss Minimisation in Single-Mode Fibre Tapers,” Electronics Letters 22(17):912-914 (1986).
Mardare, D. and Rusu, G.I., “On the structure of Titanium Oxide Thin Films,” Andalele Stiintifice Ale Universitatii IASI, Romania, pp. 201-208 (1999).
Marques, P.V.S. et al., “Planar Silica-on-Silicon Waveguide Lasers Based in Two Layers Core Devices,” 10th European Conference on Integrated Optics, Session WeB2, pp. 79-82 (2001).
Meijerink, A. et al, “Luminescence of Ag+ in Crystalline and Glassy Srb4O7,” J. Physics Chem. Solids 54(8):901-906 (1993).
Mesnaoui, M. et al, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3—AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29:1001-1013 (1992).
Mitomi, O. et al., “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling,” IEEE J. Quantum Electronics 30(8): 1787-1793 (1994).
Mizuno, Y. et al “Temperature dependence of oxide decomposition on titanium surfaces in UHV,” J. Vac. Sci & Tech. A. 20(5): 1716-1721 (2002).
Ohkubo, H. et al., Polarization-Insensitive Arrayed-Waveguide Grating Using Pure SiO2 Cladding, Fifth Optoelectronics and Communication Conference (OECC 2000) Technical Digest, pp. 366-367 (2000).
Ohmi, S. et al., “Rare earth mental oxides for high-K fate insulator,” VLSI Design 2004, 1 Page (2004).
Ohtsuki, T., et al., “Gain Characteristics of high concentration Er3+-doped phosphate glass waveguide,” J. Appl. Phys. 78(6):3617-3621 (1995).
Ono, H. et al., “Design of a Low-loss Y-branch Optical Waveguide,” Fifth Optoelectronic and Communications Conference (OECC 2000) Technical Digest, pp. 502-503 (2000).
Padmini, P. et al. “Realization of High Tunability Barium Strontium Titanate Thin Films by rf Megnetron Sputtering,” Appl. Phys. Lett. 75(20):3186-3188 (1999).
Pan, T. et al., “Planar Er 3+-doped aluminosilicate waveguide amplifier with more than 10 dB gain across C-band,” Optical Society of America, 3 pages (2000).
Park et al., “Characteristics of Pt Thin Film on the Conducting Ceramics TiO and Ebonex (Ti4O7) as Electrode Materials,” Thin Solid Films 258: 5-9 (1995).
Peters, D.P. et al., “Formation mechanism of silver nanocrystals made by ion irradiation of Na+—Ag+ ion-exchanged sodalime silicate glass,” Nuclear Instruments and Methods in Physics Research B 168:237-244 (2000).
Rajarajan, M. et al., “Numerical Study of Spot-Size Expanders fro an Efficient OEIC to SMF Coupling,” IEEE Photonics Technology Letters 10(8): 1082-1084 (1998).
Ramaswamy, R.V. et al., “Ion-Exchange Glass Waveguides: A Review,” J. Lightwave Technology 6(6): 984-1002 (1988).
Roberts, S.W. et al., “The Photoluminescence of Erbium-doped Silicon Monoxide,” University of Southampton , Department of Electronics and Computer Science Research Journal, 7 pages (1996).
Saha et al., “Large Reduction of Leakage Current by Graded-Layer La Doping in (Ba0.5,Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett. 79(1): 111-113 (Jul. 2001).
Sanyo Vacuum Industries Co., Ltd. Products Infor, TiO2, (2003), 1 page, http://www.sanyovac.co.jp/Englishweb/products?ETiO2.htm.
Schermer, R. et al., “Investigation of Mesa Dielectric Waveguides,” Proceedings of the OSA Integrated Photonics Research Topical Meeting and Exhibit, Paper No. IWB3, 3 pages (2001).
Schiller, S. et al., “PVD Coating of Plastic Webs and Sheets with High Rates on Large Areas,” European Materials Research Society 1999 Spring Meeting, Jun. 1-4, 1999, Strasbourg, France, 13 pages (1999).
Scholl, R., “Power Supplies for Pulsed Plasma Technologies: State-of-the-Art and Outlook,” Advances Energy Industries, Inc. 1-8 (1999).
Scholl, R., “Power Systems for Reactive Sputtering of Insulating Films,” Advances Energy Industries, Inc., 1-8 (Aug. 2001).
Second International Symposium of Polymer Surface Modification: Relevance to Adhesion, Preliminary Program, 13 pages (1999).
Seventh International Conference on TiO2 Photocatalysis: Fundamentals & Applications, Toronto, Ontario, Canada, Final Program, 7 pages (Nov. 17-21, 2002).
Sewell, P. et al., “Rib Waveguide Spot-Size Transformers: Modal Properties,” J Lightwave Technology 17(5):848-856 (1999).
Shaw, D.G. et al., “Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film,” Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, pp. 240-244 (1994).
Shin, J.C. et al. “Dielectric and Electrical Properties of Sputter Grown (Ba,Se)TiO3 Thin Films,” J. Appl. Phys. 86(1):506-513 (1999).
Shmulovich, J. et al., “Recent progress in Erbium-doped waveguide amplifiers,” Bell Laboratories, pp. 35-37 (1999).
Slooff, L.H. et al., “Optical properties of Erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83(1):497-503 (1998).
Smith, R.E. et al., “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Lett. 8(8):1052-1054 (1996).
Snoeks, E. et al., “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8): 1468-1474 (1995).
Dobkin, D.M., “Silicon Dioxide: Properties and Applications”.
Inaguma, Yoshiyuki, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Communications, vol. 86, No. 10, pp. 689-693 (1993).
Guy, D., “Novel Architecture of Composite Electrode for Optimization of Lithium Battery Performance,” Journal of Power Sources 157, pp. 438-442 (2006).
Wolfenstine, J., “Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12,” Journal of Power Sources 180, pp. 582-585 (2008).
Hill, R. et al., “Large Area Deposition by Mid-Frequency AC Sputtering,” Society of Vacuum Coaters, 41st Annual Tech. Conference Proceedings, 197-202 (1998).
Macák, Karol et al, “Ionized Sputter Deposition Using an Extremely High Plasma Density Pulsed Magnetron Discharge,” J. Vac. Sci. Technol. A 18(4):1533-37 (2000).
Jones and Akridge, “A thin film solid state microbattery,” Solid State Ionics 53-56 (1992), pp. 628-634.
“Office Action of Jan. 31, 2014 in Japanese Patent Application No. 2011-523097.” 10 pages.
EP Search Report dated Jul. 11, 2013 in European Application No. 09807167.3, 13 pgs.
European Examination Report (dated Jun. 4, 2014), Application No. 09 807 167.3, Date Filed—Aug. 11, 2009, (9 pages).
Related Publications (1)
Number Date Country
20100032001 A1 Feb 2010 US
Provisional Applications (1)
Number Date Country
61087927 Aug 2008 US