Claims
- 1. A continuous flow lockhopper for the removal of output product, or byproduct, of a reactor comprising a hopper at the bottom outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas for continuous removal of said reactor products or byproducts by gravity force,
- a fluidics flow control chamber having an input port connected to said hopper of said reactor vessel, said control chamber further having an output port for the passage of nongaseous reactor products and a pressure control inlet port,
- a continuous flow pressure letdown means connected to said output port of said control chamber for gradually reducing the pressure of said nongaseous reactor products,
- a source of pressurized control gas connected to said pressure control inlet of said control chamber, and
- means for controlling the pressure of said control gas into said control chamber to maintain the gas pressure in said control chamber equal to or slightly higher than the gas pressure in said reactor vessel to substantially eliminate or minimize reactor gas losses from said reactor vessel through said hopper during flow control adjustment, and to eliminate such losses during steady state operation of said continuous flow lockhopper.
- 2. A continuous flow lockhopper as defined in claim 1 wherein said source of pressurized control gas comprises a water jacket surrounding said outlet hopper, said water jacket having a cooling water inlet and a steam outlet, and said means for controlling the pressure of said control gas into said control chamber is comprised of a valve connected to said pressure control input port of said control chamber and a pressure control means responsive to the difference in pressure between said control chamber and in said reactor vessel to maintain the pressure in said control chamber equal to or slightly higher than the pressure in said reactor vessel, thereby to substantially eliminate or minimize losses of gases in said reactor vessel through said control chamber during flow control adjustments and to eliminate such losses during steady state operation while nongaseous reactor products feed from said outlet hopper through said control chamber into said pressure letdown means.
- 3. A continuous flow lockhopper as defined in claim 2 wherein the axis of said input port of said control chamber is offset from the center of said control chamber output port and said pressure control inlet of said control chamber directs steam perpendicularly to the flow of said nongaseous reactor products flowing into said chamber in a direction at least 90.degree. from a line between the center of said inlet and outlet ports, and said control chamber having a curved shape to create a vortex which starts at said pressure control inlet port, surrounds both said input and output ports of said control chamber, and ends at a point near said pressure control inlet and outlet ports, said curve shape being fashioned to intercept said flow of nongaseous reactor products redirected by said steam entering said control chamber through said pressure control inlet and create a vortex of said redirected nongaseous reactor products from the input port towards said output port after passing around said output port.
- 4. Apparatus as defined in claim 3 including means for adjusting the size of said steam inlet to said control chamber comprising a D-shaped sector pivotally positioned on one side of said inlet contiguous with said inlet to vary the inlet size from a maximum while the straight part of said D-shaped sector is in line with said one side of said inlet, to a minimum while the straight port of said D-shaped sector is pivoted to very near the side of said inlet opposite said one side at the point where said inlet opens into said control chamber.
- 5. Apparatus as defined in claim 4 wherein said pressure letdown means for gradually reducing the pressure of said nongaseous reactor products is comprised of a tubular chamber having baffles perpendicular to the axis of said tubular chamber with annular openings of successively larger openings from one baffle to the next starting at the inlet end of said tubular chamber, each center part of said tubular chamber being supported by a shaft having its axis coincident with the axis of said tubular chamber.
- 6. Apparatus as defined in claim 5 wherein said shaft is rotatable.
- 7. Apparatus as defined in claim 6 wherein the center of each of said center parts is offset from the axis of said shaft, and the offset is in the opposite direction of the offsets for adjacent center parts.
- 8. Apparatus as defined in claim 7 wherein said annular openings have side walls sloped in the direction of flow toward the axis of said shaft, and said shaft is adjustable in axial position to adjust the size of said annular openings as the sides of said openings wear.
- 9. Apparatus as defined in claim 8 wherein the side wall of each center part of said baffles having annular openings is provided with a spiral groove.
- 10. Apparatus as defined in claim 9 wherein said spiral groove of each center part is partially filled with a spiral form of a metal softer than the metal of center part.
- 11. Apparatus as defined in claim 1 wherein said pressure letdown means for gradually reducing the pressure of said nongaseous reactor products is comprised of a vertical chamber having horizontal baffles with annular openings of successively larger diameter from one baffle to the next starting at the top of said vertical chamber, each center part of said vertical chamber being supported by a shaft having its axis coincident with the center of said annular openings.
- 12. Apparatus as defined in claim 11 wherein said shaft is rotatable.
- 13. Apparatus as defined in claim 12 wherein the center of each of said center parts is offset from the axis of said shaft, and the offset is in the opposite direction for adjacent center parts.
- 14. Apparatus as defined in claim 13 wherein said annular openings have side walls sloped in the direction of flow toward the axis of said shaft, and said shaft is axially adjustable in position to adjust the size of said annular openings as the sides of said annular openings wear.
- 15. Apparatus as defined in claim 14 wherein the side wall of each center part of said baffles having annular openings is provided with a spiral groove.
- 16. Apparatus as defined in claim 15 wherein said spiral groove of each center part is partially filled with a metal softer than the metal of said center part.
- 17. An energy efficient continuous flow lockhopper comprising a reactor vessel, a lockhopper below said reactor vessel for continuous removal of said reactor products or byproducts by gravity force, a source of control fluid under pressure, a fluidics flow control chamber at the bottom of said lockhopper, means for controlling the pressure of control fluid in said control chamber to regulate fluid pressure at the bottom of said lockhopper to a pressure at least equal to fluid pressure in said reactor vessel, whereby fluid is prevented from exiting the reactor through said lockhopper while solid reactor products or byproducts flow continuously through said control chamber and said lockhopper under the force of gravity.
- 18. An energy efficient continuous flow lockhopper as defined in claim 17 including a pressure letdown device comprising a vertical chamber connected to said fluidics control chamber to receive solid reactor products or byproducts fed by gravity from said reactor, and horizontal baffles in said chamber with successively larger openings to accomodate the downward flow therein as pressure is reduced gradually with said successively larger openings accommodating the same flow rate of solid reactor products, or by products, which expand upon pressure being reduced, and means for continuously feeding material into said reactor vessel.
- 19. An energy efficient continuous flow lockhopper as defined in claim 17, including a source of pressure control fluid, wherein said control chamber not only provides a place through which pressure is applied to the bottom of said reactor, but also a place to control a flow rate of solid reactor products, or byproducts, out of the bottom of said reactor, said control chamber having an input port offset from the center of an output port and a control inlet for receiving a pressure control fluid into said chamber, said control inlet being positioned to introduce pressure control fluid directly over said input port in a direction at least 90.degree. away from the direction of said input port to said output port, said control chamber having a curved side wall to create a vortex which starts at said input port, surrounds said output port, and passes generally over said output port, the size of said vortex depending upon the velocity imparted to the flow of said reaction products, or byproducts, by said control fluid, said velocity being a function of pressure and volume of control fluid, such that the greater said velocity, the larger the vortex, and therefore the lower the reactor product, or byproduct flow rate.
- 20. An energy efficient continuous flow lockhopper as defined in claim 19 including means for controlling the cross sectional area of said pressure control inlet to control the velocity of control fluid injected into said control chamber, thereby controlling the flow rate of the reactor product, or byproduct.
ORIGIN OF THE INVENTION
The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected not to retain title.
US Referenced Citations (14)