The present invention relates to a driving circuit useable in a magnetically-coupled telemetry system, and has particular applicability to implantable medical device systems.
Implantable stimulation devices are devices that generate and deliver electrical stimuli to body nerves and tissues for the therapy of various biological disorders, such as pacemakers to treat cardiac arrhythmia, defibrillators to treat cardiac fibrillation, cochlear stimulators to treat deafness, retinal stimulators to treat blindness, muscle stimulators to produce coordinated limb movement, spinal cord stimulators to treat chronic pain, cortical and deep brain stimulators to treat motor and psychological disorders, and other neural stimulators to treat urinary incontinence, sleep apnea, shoulder sublaxation, etc. The present invention may find applicability in all such applications, although the description that follows will generally focus on the use of the invention within a Spinal Cord Stimulation (SCS) system, such as that disclosed in U.S. Pat. No. 6,516,227, which is incorporated herein by reference in its entirety.
Spinal cord stimulation is a well-accepted clinical method for reducing pain in certain populations of patients. As shown in
As shown in
As just noted, an external controller 12, such as a hand-held programmer or a clinician's programmer, is used to send data to and receive data from the IPG 100. For example, the external controller 12 can send programming data to the IPG 100 to dictate the therapy the IPG 100 will provide to the patient. Also, the external controller 12 can act as a receiver of data from the IPG 100, such as various data reporting on the IPG's status. The external controller 12, like the IPG 100, also contains a PCB 70 on which electronic components 72 are placed to control operation of the external controller 12. A user interface 74 similar to that used for a computer, cell phone, or other hand held electronic device, and including touchable buttons and a display for example, allows a patient or clinician to operate the external controller 12.
Wireless data transfer between the IPG 100 and the external controller 12 takes place via inductive coupling, and specifically magnetic inductive coupling. To implement such functionality, both the IPG 100 and the external controller 12 have coils 13 and 17 respectively. Either coil can act as the transmitter or the receiver, thus allowing for two-way communication between the two devices. When data is to be sent from the external controller 12 to the IPG 100 for example, coil 17 is energized with alternating current (AC), which induces an electromagnetic field 29, which in turn induces a current in the IPG's telemetry coil 13. The power used to energize the coil 17 can come from a battery 76, which like the IPG's battery 26 is preferably rechargeable, but power may also come from plugging the external controller 12 into a wall outlet plug (not shown), etc. The induced current in coil 13 can then be transformed at the IPG 100 back into the telemetered data signals. To improve the magnetic flux density, and hence the efficiency of the energy transfer, the IPG's telemetry coil 13 may be wrapped around a ferrite core 13′.
As is well known, inductive transmission of data from coil 17 to coil 13 can occur transcutaneously, i.e., through the patient's tissue 25, making it particular useful in a medical implantable device system. During the transmission of data, the coils 13 and 17 lie in planes that are preferably parallel. Such an orientation between the coils 13 and 17 will generally improve the coupling between them, but deviation from ideal orientations can still result in suitably reliable data transfer.
To communicate a serial stream of digital data bits via inductive coupling, some form of modulation is generally employed. In a preferred embodiment, Frequency Shift Keying (FSK) can be employed, in which the logic state of a bit (either a logic ‘0’ or a logic ‘1’) corresponds to the frequency of the induced magnetic field 29 at a given point in time. Typically, this field has a center frequency (e.g., fc=125 kHz), and logic ‘0’ and ‘1’ signals comprise offsets from that center frequency (e.g., f0=121 kHz and f1=129 kHz respectively). Once the data is modulated in this manner at the transmitting device (e.g., the external controller 12), it is then demodulated at the receiving device (e.g., the IPG 100) to recover the original data. While FSK modulation may be preferred for a given application, one skilled in the art will recognize that other forms of data modulation (e.g., amplitude modulation, On-Off-Keying (OOK), etc.) can be used as well. These modulation schemes as used in a medical implantable device system are disclosed in U.S. Pat. No. 7,177,698, which is incorporated herein by reference in its entirety, and because they are well known, they are not further discussed.
A typical driving circuit (or an amplifier circuit) 150 used to energize the transmitting coil is shown in
The driving circuit 150 of
However, the resistor R also produces a significant disadvantage, namely excessive power consumption. As one skilled in the art will appreciate, a resistor dissipates energy, and hence operation of the driving circuit 150 of
But just like the driving circuit of
However, disadvantageously, driving circuit 150′ produces a wireless modulated data signal 29 with relatively narrow frequency response characteristic, as shown to the right in
From the foregoing, it should be clear that the art of magnetically-coupled telemetry systems would benefit from a new driving circuit, one which: produces a relatively wide frequency response which allows for the reception of signals f0 and f1 without additional trimming and complexity; is able to quickly transition between logic states to enable high-speed, high-bandwidth data transfer; and is respectful of power consumption and/or can increase the operating distance between the external controller and the IPG. This disclosure provides embodiments of such a solution.
The description that follows relates to use of the invention within a spinal cord stimulation (SCS) system. However, it is to be understood that the invention is not so limited. Rather, the invention may be used with any type of implantable medical device system that could benefit from improved communications between an external controller and the device. For example, the present invention may be used as part of a system employing an implantable sensor, an implantable pump, a pacemaker, a defibrillator, a cochlear stimulator, a retinal stimulator, a stimulator configured to produce coordinated limb movement, a cortical and deep brain stimulator, or in any other neural stimulator configured to treat any of a variety of conditions.
One embodiment of the improved driving circuit 200 is shown in
The driving circuit 200 of
The primary winding L1 (17) in conjunction with capacitor C, are made to resonate by toggling switches 160 and 160′. Because the switches 160 and 160′ are controlled with complementary clock signals, Clk and Clk′, Vbat is applied to the resonant circuit with alternating polarities. Driving the resonant circuit from both of its ends by the two switches 160 and 160′ has the benefit of doubling the voltage across coil L1 and thus doubling magnetic field 29. However, the use of two switches 160 and 160′ is not strictly necessary, and instead a single switch can be used in driving circuit as well (such as will be illustrated in the alternative embodiment of
The windings or coils L1 and L2 in the transformer 202 have N1 and N2 turns respectively, which set the relation of the voltages across them: VL1=VL2*N1/N2. The voltage produced on the secondary winding L2, VL2, is connected to the battery 76 via a diode D. This has the effect of limiting VL2 to the battery voltage, Vbat. (This assumes that the threshold voltage of the diode is negligible, i.e., Vt≈0). Should VL2 try to exceed Vbat during resonance, the diode D becomes forward biased (again, assuming that the diode has a threshold voltage of zero, i.e., Vt≈0), and a battery recovery current, ie, flows to the battery 76. Such current flow limits the potential of VL2 to Vbat, which in turn clamps the voltage across the coil 17 L1 to a maximum value: VL1max=Vbat*(N1/N2). (Should a significant diode threshold voltage Vt be present, this equation is modified as follows: VL1max=(Vbat+Vt)*(N1/N2)). By contrast, when VL2 is less than Vbat during resonance, the diode D prevents the flow of current out of the battery 76 (ie≈0) to prevent discharging. The bypass capacitor Cbp reduces the peak current flowing in/out of the rechargeable battery 76 to provide for stability.
By shunting the recovery current ie to the rechargeable battery 76, the battery 76 is recharged. Such recharging occurs during a portion of the time that the circuit is resonating, i.e., when the resonance produces high voltages across the coil 17 that (absent clamping) would exceed Vbat*(N1/N2). The result is an energy efficient solution rivaling that of the solution depicted in
Moreover, shunting the recovery current ie assists in dampening the resonance, which allows the driving circuit 200 to switch frequencies, and hence data states, more quickly, enabling the transmission of higher data rates. Such active dampening also tends to spread the width of the resonance of the driving circuit (i.e., at 121 kHz and 129 kHz). This eases the need to precisely match hardware components of the driving circuit 200 to that of the receiver, and hence allows the driving circuit to be constructed of components of lesser accuracy.
The various values for the components used in the improved driving circuit 200 of
As in the transformer feedback configuration of
The effect, as with the driving circuit 200 of
The various values for the components used in the improved driving circuit 200′ of
The disclosed driving circuits can be used with any switching type amplifier (Class C, D, E, H, etc.), and for both the transformer feedback configuration (
While disclosed in the context of a medical implantable device system for which the invention was originally contemplated, it should be recognized that the improved driving circuitry disclosed herein is not so limited, and can be used in other contexts employing communications via magnetic inductive coupling, such as in Radio-Frequency Identification (RFID) systems, etc. The disclosed circuitry can further be used in any context in which magnetic inductive coupling could be used as a means of communication, even if not so used before.
Although particular embodiments of the present invention have been shown and described, it should be understood that the above discussion is not intended to limit the present invention to these embodiments. It will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention. Thus, the present invention is intended to cover alternatives, modifications, and equivalents that may fall within the spirit and scope of the present invention as defined by the claims.
This is a continuation application of U.S. patent application Ser. No. 11/780,369, filed Jul. 19, 2007 (now U.S. Pat. No. 9,162,068), which is a continuation-in-part (CIP) application of U.S. patent application Ser. No. 11/778,486, filed Jul. 16, 2007 (abandoned). Priority is claimed to both of these patent applications, and both are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3357434 | Abell | Dec 1967 | A |
3942535 | Schulman | Mar 1976 | A |
4441210 | Hochmair et al. | Apr 1984 | A |
4561443 | Hogrefe et al. | Dec 1985 | A |
5324315 | Grevious | Jun 1994 | A |
5562714 | Grevious | Oct 1996 | A |
5735887 | Barreras, Sr. et al. | Apr 1998 | A |
5769877 | Barreras, Sr. | Jun 1998 | A |
6349116 | Hash et al. | Feb 2002 | B1 |
6442434 | Zarinetchi et al. | Aug 2002 | B1 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6577900 | Silvian | Jun 2003 | B1 |
6658300 | Govari et al. | Dec 2003 | B2 |
6894456 | Tsukamoto et al. | May 2005 | B2 |
6937894 | Isaac et al. | Aug 2005 | B1 |
7151914 | Brewer | Dec 2006 | B2 |
7177698 | Klosterman et al. | Feb 2007 | B2 |
20030040291 | Brewer | Feb 2003 | A1 |
20030085684 | Tsukamoto et al. | May 2003 | A1 |
20040039423 | Dolgin | Feb 2004 | A1 |
20040059392 | Parramon et al. | Mar 2004 | A1 |
20050021108 | Klosterman et al. | Jan 2005 | A1 |
20050119716 | McClure et al. | Jun 2005 | A1 |
20050131494 | Park et al. | Jun 2005 | A1 |
20050131495 | Parramon et al. | Jun 2005 | A1 |
20070032839 | Parramon et al. | Feb 2007 | A1 |
20070055308 | Haller et al. | Mar 2007 | A1 |
20070129768 | He et al. | Jun 2007 | A1 |
20070135867 | Klosterman et al. | Jun 2007 | A1 |
20070150019 | Youker et al. | Jun 2007 | A1 |
20070293914 | Woods et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0128629 | Apr 2001 | WO |
2004002572 | Jan 2004 | WO |
2007030496 | Mar 2007 | WO |
2007067825 | Jun 2007 | WO |
Entry |
---|
U.S. Appl. No. 11/778,486, filed Jul. 16, 2007, Dronov. |
Number | Date | Country | |
---|---|---|---|
20160030756 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11780369 | Jul 2007 | US |
Child | 14883385 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11778486 | Jul 2007 | US |
Child | 11780369 | US |