The present disclosure is directed to passive and active suspension systems. More particularly, the present disclosure is directed to passive and active suspension systems that harvest the energy generated during the damping of the suspension system.
This section provides background information related to the present disclosure which is not necessarily prior art.
Suspension systems are provided to filter or isolate the vehicle's body (sprung portion) from the vehicle's wheels and axles (unsprung portion) when the vehicle travels over vertical road surface irregularities as well as to control body and wheel motion. In addition, suspension systems are also used to maintain an average vehicle attitude to promote improved stability of the vehicle during maneuvering. The typical passive suspension system includes a spring and a damping device in parallel with the spring which are located between the sprung portion and the unsprung portion of the vehicle.
Hydraulic actuators, such as shock absorbers and/or struts, are used in conjunction with conventional passive suspension systems to absorb unwanted vibration which occurs during driving. To absorb this unwanted vibration, hydraulic actuators include a piston located within a pressure cylinder of the hydraulic actuator. The piston is connected to the sprung portion or body of the vehicle through a piston rod. Because the piston is able to restrict the flow of damping fluid within the working chamber of the hydraulic actuator when the piston is displaced within the pressure cylinder, the hydraulic actuator is able to produce a damping force which counteracts the vibration of the suspension. The greater the degree to which the damping fluid within the working chamber is restricted by the piston, the greater the damping forces which are generated by the hydraulic actuator.
In recent years, substantial interest has grown in automotive vehicle suspension systems which can offer improved comfort and road handling over the conventional passive suspension systems. In general, such improvements are achieved by utilization of an “intelligent” suspension system capable of electronically controlling the suspension forces generated by hydraulic actuators.
Different levels in achieving the ideal “intelligent” suspension system called a semi-active or a fully active suspension system are possible. Some systems control and generate damping forces based upon the dynamic forces acting against the movement of the piston. Other systems control and generate damping forces based on the static or slowly changing dynamic forces, acting on the piston independent of the velocity of the piston in the pressure tube. Other, more elaborate systems, can generate variable damping forces during rebound and compression movements of the hydraulic actuator regardless of the position and movement of the piston in the pressure tube.
The movement produced in the hydraulic actuators in both the passive and active suspension systems converts mechanical energy and this mechanical energy is changed into heat of the hydraulic actuator's fluid and the components of the actuator.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure provides the art with a system which captures the energy generated in a passive or active suspension system in a way that the energy can be reused later or the energy can be converted into another form of energy such as electrical energy.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. There is shown in
Referring to
Active energy harvesting device 20 comprises a hydraulic actuator 30, a four quadrant convertor assembly 32, a pump/turbine 34 and a motor/generator 36. Four quadrant convertor assembly 32, pump/turbine 34 and motor/generator 36 define means for recuperating energy. Hydraulic actuator 30 comprises a pressure tube 40 having a fluid chamber 42 that is divided into an upper working chamber 44 and a lower working chamber 46 by a piston assembly 48. Piston assembly 48 is slidingly received within pressure tube 40 and piston assembly 48 includes a piston rod 50 that extends through upper working chamber 44 and is attached to the sprung portion of vehicle 10. Pressure tube 40 is attached to the unsprung portion of vehicle 10.
Referring now to
Check valves 60 and 62 are disposed in a fluid line 86 which extends between upper working chamber 44 and lower working chamber 46. A fluid line 88 extends from fluid line 86 at a position between check valve 60 and 62 to four quadrant convertor 68. Check valve 60 prohibits fluid flow from upper working chamber 44 to fluid line 88 but allows fluid flow from fluid line 88 to upper working chamber 44. Check valve 62 prohibits fluid flow from lower working chamber 46 to fluid line 88 but allows fluid flow from fluid line 88 to lower working chamber 46.
Hydraulic inductance unit 64 is disposed within a fluid line 90 which extends between fluid line 86 where it is in communication with upper working chamber 44 and four quadrant convertor 68. Hydraulic inductance unit 66 is disposed within a fluid line 92 which extends between fluid line 86 where it is in communication with lower working chamber 46 and four quadrant convertor 68. A fluid line 94 extends between four quadrant convertor 68 and pump/turbine 34.
Four quadrant convertor 68 includes a fluid line 96 within which check valves 70, 72, 74 and 76 are disposed. Fluid line 88 connects to fluid line 96 at a position between check valves 72 and 76. Fluid line 90 connects to fluid line 96 at a position between check valves 70 and 72. Fluid line 92 connects to fluid line 96 at a position between check valves 74 and 76. Fluid line 94 connects to fluid line 96 at a position between check valves 70 and 74. Check valve 70 allows fluid flow from fluid line 90 to fluid line 94 but prohibits fluid flow from fluid line 94 to fluid line 90. Check valve 72 allows fluid flow from fluid line 88 to fluid line 90 but prohibits fluid flow from fluid line 90 to fluid line 88. Check valve 74 allows fluid flow from fluid line 92 to fluid line 94 but prohibits fluid flow from fluid line 94 to fluid line 92. Check valve 76 allows fluid flow from fluid line 88 to fluid line 92 but prohibits fluid flow from fluid line 92 to fluid line 88. Both the combination of check valves 70 and 72 and the combination of check valves 74 and 76 allow fluid flow from fluid line 88 to fluid line 94 but prohibit fluid flow from fluid line 94 to fluid line 88.
Two state valves 78 and 80 are disposed in a fluid line 98 which extends from fluid line 96 at a position between check valves 70 and 74 to fluid line 96 at a position between check valves 72 and 76. A fluid line 100 extends from fluid line 98 at a position between the two state valves 78 and 80 to fluid line 96 at a position between check valves 70 and 72 where fluid line 100 is also in communication with fluid line 90. Two state valves 82 and 84 are disposed in a fluid line 102 which extends from fluid line 96 at a position between check valves 70 and 74 to fluid line 96 at a position between check valves 72 and 76. A fluid line 104 extends from fluid line 102 at a position between the two state valves 82 and 84 to fluid line 96 at a position between check valves 74 and 76 where fluid line 104 is also in communication with fluid line 92.
Fluid line 94 is connected to one side of pump/turbine 34 and to one side of a two state valve 110. A fluid line 112 connects an accumulator 114 to fluid line 94. The opposite ends of pump/turbine 34 and two state valve 110 are connected to a fluid line 116 which extends from a fluid reservoir 118 to fluid line 86 at a position between check valves 60 and 62 where fluid line 116 is also in communication with fluid line 88.
Motor/generator 36 is mechanically connected to pump/turbine 34. When motor/generator 36 is used as a motor, motor/generator 36 will operate pump/turbine 34 to pump fluid in active energy harvesting device 20. When motor/generator 36 is used as a generator, fluid within active energy harvesting device 20 will drive pump/turbine 34 which will in turn drive motor/generator 36 to generate electrical energy. The accumulator 114 can also be used to store hydraulic energy.
As illustrated in
Typically, the motion energy provided to wheel 18 from road contact is high frequency. This poses inertia limitations on pump/turbine 34 and motor/generator 36. These limitations affect the ability of pump/turbine 34 and motor/generator 36 to handle the hydraulic power needed. This issue can be resolved by separating the high bandwidth side from the low bandwidth side by the use of four quadrant convertor 68.
Four quadrant convertor 68 separates a semi-fixed pressure level at accumulator 114 to the high frequency side of hydraulic actuator 30. Valves 78, 80, 82 and 84 are two state valves, on or off, in order to prevent large amounts of hydraulic losses. The hydraulic bursts caused by the switching of valves 78, 80, 82 and 84 are smoothened in accumulator 114 and hydraulic inductance units 64 and 66. Accumulator 114 smoothens the pressure drops caused by the switching of valves 78, 80, 82 and 84 and accumulator 114 provides enough flow to drive hydraulic actuator 30. Hydraulic inductance units 64 and 66 smoothen the flow of fluid to hydraulic actuator 30 and decouple the pressure in accumulator 114 from the pressures in the upper and lower working chambers 44 and 46 of hydraulic actuator 30.
Energy can be delivered to or retracted from accumulator 114 by means of motor/generator 36. Two state valve 110 is a pressure control valve that secures the various hydraulic fluid storage components of active energy harvesting device 20 for peak fluid pressures.
During a rebound stroke in the passive mode as illustrated in
During a rebound stroke in the active mode as illustrated in
During a compression stroke in the passive mode as illustrated in
During a compression stroke in the active mode as illustrated in
While the above discussion illustrates the reuse of the energy stored in the passive mode during the active mode, the energy stored in accumulator 114 can be directed through pump/turbine 34 and into fluid reservoir 118. The fluid flowing through pump/turbine 34 will drive pump/turbine 34 which will in turn drive motor/generator 36 which can be used as a generator to generate electrical power. Also, when the fluid pressure in accumulator 114 is below a specified pressure, motor/generator 36 can be driven by electrical power to operate pump/turbine 34 and pump hydraulic fluid from fluid reservoir 118 to accumulator 114.
The above system allows for full four quadrant operation. The system can send and retrieve energy from and to hydraulic actuator 30 is both rebound and compression movements of hydraulic actuator 30. In the above system, pump/turbine 34 only has to provide energy to the system when the pressure in accumulator 114 is below a specified pressure. In prior art active systems, a pump has to constantly provide pressure to the system.
Referring now to
Operation valve system 222 comprises a pair of valves 230, 232 and a check valve 234. Pressure regulation system 224 comprises a hydraulic inductance unit 240, a pair of check valves 242 and 244 and a pair of two state valves 246 and 248. Fluid lines as illustrated in
During a rebound stroke in the passive mode as illustrated in
During a rebound stroke in the active mode as illustrated in
During a compression stroke in the passive mode as illustrated in
During a compression stroke in the active mode as illustrated in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3893702 | Keijzer et al. | Jul 1975 | A |
3917309 | Hegel et al. | Nov 1975 | A |
3954256 | Keijzer et al. | May 1976 | A |
3979134 | Keijzer et al. | Sep 1976 | A |
4743046 | Schnittger | May 1988 | A |
5215327 | Gatter et al. | Jun 1993 | A |
5222759 | Wanner et al. | Jun 1993 | A |
5269556 | Heyring | Dec 1993 | A |
5447332 | Heyring | Sep 1995 | A |
5480188 | Heyring | Jan 1996 | A |
5556115 | Heyring | Sep 1996 | A |
5562305 | Heyring | Oct 1996 | A |
5601306 | Heyring | Feb 1997 | A |
5601307 | Heyring et al. | Feb 1997 | A |
5682980 | Reybrouck | Nov 1997 | A |
5725239 | de Molina | Mar 1998 | A |
5839741 | Heyring | Nov 1998 | A |
5915701 | Heyring | Jun 1999 | A |
6010139 | Heyring et al. | Jan 2000 | A |
6111375 | Zenobi | Aug 2000 | A |
6217047 | Heyring et al. | Apr 2001 | B1 |
6270098 | Heyring et al. | Aug 2001 | B1 |
6338014 | Heyring et al. | Jan 2002 | B2 |
6519517 | Heyring et al. | Feb 2003 | B1 |
6588777 | Heyring | Jul 2003 | B1 |
6669208 | Monk et al. | Dec 2003 | B1 |
6761371 | Heyring et al. | Jul 2004 | B1 |
7040631 | Kotulla et al. | May 2006 | B2 |
7350793 | Munday | Apr 2008 | B2 |
7384054 | Heyring et al. | Jun 2008 | B2 |
7637513 | Kotulla et al. | Dec 2009 | B2 |
7686309 | Munday et al. | Mar 2010 | B2 |
7751959 | Boon et al. | Jul 2010 | B2 |
7789398 | Munday et al. | Sep 2010 | B2 |
20070089924 | de la Torre et al. | Apr 2007 | A1 |
20080257626 | Carabelli et al. | Oct 2008 | A1 |
20100006362 | Armstrong | Jan 2010 | A1 |
20100072760 | Anderson et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
1 878 598 | Jan 2008 | EP |
2001-0011034 | Feb 2001 | KR |
Entry |
---|
Search Report and Written Opinion dated Mar. 25, 2013 issued in corresponding PCT application No. PCT/US2012/059324 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20130104534 A1 | May 2013 | US |