The subject application generally relates to capturing radio-frequency energy for use in powering devices and, more specifically, to harvesting radio-frequency energy available in an environment to power low energy devices and adapt behavior of those devices based on available energy.
Retail environments often experience moderate to high levels of ambient radio-frequency energy from various sources. For example, consumers and workers may carry smartphones into a store that operate using one or more frequency bands, such as the 700 MHz LTE band. Stores may also have a WiFi network or be in proximity to a nearby WiFi network operating on the 2.4 GHz or 5 GHz frequencies. Retail environments may also have Bluetooth beacons, or Bluetooth low energy (LE) systems, to inform consumers through mobile marketing about available items of commerce available for purchase, or use Electronic Article Surveillance (“EAS”) systems operating at 8.2 Mhz for loss prevention. Inventory control in retail environments can also use radio frequencies through the use of Radio Frequency Identification (“RFID”) reader systems and RFID tags that are attached to items for sale. RFID systems can operate at ultra-high frequencies, for example between 860 MHz to 960 MHz.
According to certain embodiments, an energy harvesting system includes one or more antennas configured to receive one or more radio frequency signals and an energy harvester configured to derive energy from the one or more radio frequency signals to power a power consuming device. The energy harvesting system can include a power integrator that stores the energy until needed by the power consuming device. The energy harvester can also be configured to extract data encoded in the radio frequency signals and transmit the data to the power consuming device, which can change its operation mode based on the received power or data.
In certain embodiments, an energy harvester includes a plurality of antennas and an energy harvester. The antennas are each tuned to distinct frequencies associated with different types of sources and configured to receive radio frequency signals from one or more sources substantially around the tuned frequencies. The energy harvester is configured to receive the radio frequency signals from the antennas, extract energy from the received signals, and provide power from the extracted energy to a power consuming device. The power consuming device is configured to perform one or more operations. Example sources can include radio frequency identification systems, electronic article surveillance systems, Bluetooth systems, WiFi networks, cellular networks, and continuous wave signal generators. For instance, the energy harvester, in one embodiment, could accumulate power from one or more local sources and re-transmit a signal on the same radio frequency. For instance, the extracted energy, such as from WiFi or Bluetooth sources, may transmit a Bluetooth beacon signal associated with the same radio signal.
According to some embodiments, a method includes receiving one or more radio frequency signals from one or more antennas, where each antenna may be tuned to a distinct frequency, extracting energy from the signals by an energy harvester, and providing power to a power consuming device from power derived from the extracted energy. The power consuming device is configured to perform one or more operations unassociated with the radio frequency signal. The method can include changing operation modes on the power consuming device based on the power received from the energy harvester.
Various embodiments will become better understood with regard to the following description, appended claims, and accompanying drawings.
The systems and methods disclosed herein are described in detail by way of examples and with reference to
The systems and methods disclosed herein describe different modalities for capturing energy from nearby radio frequency emitting sources and the present invention is not limited to any one particular modality. Although the systems and methods described herein are particularly applicable to radio frequency emitted by RFID, EAS, WiFi, Bluetooth, and cellular devices, the system and methods can be adapted for use with other types of radiant energy. For example, any suitable source of radio frequency transmissions can be used.
Referring to
An example energy harvester 102 can comprise suitable circuits and electronics for deriving energy from radio frequency signals as would be understood in the art and providing power to a power consuming device 106. In this example, the energy harvester 102 is converting an AC signal (the RF energy received) to a DC signal to power the consuming device—a rectifier. Rectification is achieved using a device that has a different forward and reverse path conduction for a voltage that is applied to it depending on which connection has a higher voltage than the other. A well-known example of this is a diode, which is a single diode and a capacitor that provides a smooth DC supply in order to take an RF AC signal and create a DC supply. The use of multiple diodes can improve the efficiency of the rectifier. For example, a structure with multiple diodes and capacitors, called a Cockroft Waltom multiplier, will produce a DC supply greater than the peak voltage of the RF AC signal. Other structures can act as rectifiers. For example, field effect transistors with the gate connected to the source or drain (depending on the type of FET) act as switches to pass or block the path through depending on whether the differential voltage is positive between source and drain or negative.
By way of analogy, an RFID transponder includes an antenna and/or tuning loop that is coupled to an RFID chip. The RFID chip includes electronics that accumulate energy from RF signals received through the antenna. The RFID chip turns on and transmits back a response code once the RFID chip receives sufficient power (e.g., in one embodiment, approximately 10 μW depending on the chip type) from an RFID reader. The power received at the RFID from a reader depends on the emitted power and distance between tag and readers. Similarly, the energy harvester 102 can derive energy from RF signals emitted by RFID reader systems using similar antenna structures and electronics, but instead of using the power to allow an RFID chip to respond with a code, the energy harvester 102 can deliver power, or power and data, to a power consuming device 106.
Similar structures and electronics can be used to derive energy from radio frequency signals from WiFi networks, Bluetooth systems, EAS systems, cellular networks, smart devices using radio frequencies such as Zigbee devices, and other sources of radio frequency energy. Advantageously, the energy harvester 102 can harvest RF signals from one kind of system and use captured energy for powering a power consuming device 106 that performs operations unassociated with the RF signals.
Example power consuming devices 106, or power utilizing devices, can include, but are not limited to, Bluetooth LE beacons, WiFi transceivers, WiGig and chipe transceivers, active transmitters, RFID transponders, lighting modules, optical indicators, for example to alert consumers to the presence of consumable items available for purchase, wireless point of sale terminals, sensors such as environmental sensors, speakers or other sound generating elements, touch interfaces for consumers to interact with systems such as the energy harvesting system 100, or a display. For example, the display can be a power consuming device 106 that, in one embodiment, is powered by an energy harvester 102. In certain embodiments, the display can change modalities based on the power received from the energy harvester 102, as described below in greater detail for
In one embodiment, the display will show a color picture with video when a customer is nearby to engage effectively, but will display a static picture or no picture when no person or object is present, allowing the unit to integrate and store energy for the next operation. In another embodiment, the information displayed is adapted to a nearby consumer based on anonymous identification of needs. For example, if a mobile device carried by a person indicates that they have poor eyesight, the display may change to a high contrast simplified text, for example a larger font with black writing on a yellow background. In the event that multiple consumers are in proximity, the display may cycle though displays better suited to each person. The selection of display options, as before, will depend on the availability of energy. The display can change what is displayed on the screen based on the power, or power and data, received from the energy harvester 102. In certain embodiments, the data may come from the infrastructure 110, such as a WiFi network in a store, or from the smartphone 108 through its link to infrastructure 110 such as a WiFi or cellular network.
Referring to
Referring to
In certain embodiments, the display 302 can be a suitable low power display, such as an e-ink display that requires power only to change what is being displayed on the screen 304, but otherwise can maintain the same displayed image on the screen 304 without consuming power. The e-ink display can change what is being displayed based on the amount of power received from the energy harvester system, or based on both the power and data received from the energy harvesting system. For example, the data may come from the infrastructure, such as a WiFi network in a store, or from a smartphone 308 carried by a person through its link to infrastructure such as a WiFi or as as illustrated in the top image, such as a cellular network.
Referring to
Referring to
Referring to
Referring to
Referring to
The power source 812 can be a low cost, controllable power source for powering one or more nearby energy harvesting systems 800. The power source 812 can be a simple transmitter of a continuous wave signal set to a frequency suitable for energy harvesting by the energy harvesting system 800. For example, in certain embodiment the power source 812 can emit a substantially continuous unmodulated carrier signal. In related embodiments, the signal can include data modulated with the carrier signal, for example data identifying the power source 812 or the battery level of the power source. In certain embodiments, the power source 812 can be battery powered. In certain embodiments, the energy harvesting system 800 only requests power from the power source 812 as needed, for example to conserve battery power. The command data link from the energy harvesting system 800 to the power source 812 can be a direct data link, use an available infrastructure system (not shown, see for example
Referring to
The phase-array RFID reader system 910 can be configured to direct power in various directions to read nearby RFID tags, for example as illustrated by beams 912 labeled A, B, and C. As schematically illustrated, the beam 912 labeled A would provide more power to the energy harvesting system 900 because the beam 912 labeled A is directed at antenna, whereas beams 912 labeled B and C are not directed as directly to antenna 904. In general, the phase-array RFID reader system 910 could be configured to provide power equally in various directions or in directions based on the desired operational performance for reading RFID tags. In certain embodiments, the phase-array RFID reader system 910 can be configured to periodically direct energy to the beam 912 labeled A to provide energy to the energy harvesting system 900, which may slightly degrade RFID tag reading performance. In certain embodiments, the phase-array RFID reader system 910 can be configured to periodically direct more energy to the beam 912 labeled A than to the beams 912 labeled B and C. In certain embodiments, the phase-array RFID reader system 910 can be configured to respond to requests from the energy harvesting system 900 to direct energy to the beam 912 labeled A to provide more energy to the energy harvesting system 900.
The energy harvesting systems described herein illustrate example methods of harvesting energy that can be used in a multitude of different environments, such as retail environments. Energy can be harvested from any number of suitable signal sources such as mobile devices, WiFi hubs, RFID readers, local power sources, and so forth. The energy harvesting systems can use data communications to control power delivery from sources based on the needs of power consuming devices. Sources can be prioritized to efficiently maximize power delivery to energy harvesting systems. Power consuming devices can change operational modes based on the power received from different sources. Among other possible uses, digital signage can be manipulated to affect the behavior of consumers to direct the consumers to areas where power may be needed.
The values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Every document cited herein, including any cross-referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in the document shall govern.
The foregoing description of embodiments and examples has been presented for purposes of description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed and others will be understood by those skilled in the art. The embodiments were chosen and described for illustration of various embodiments. The scope is, of course, not limited to the examples or embodiments set forth herein, but can be employed in any number of applications and equivalent articles by those of ordinary skill in the art. Rather it is hereby intended the scope be defined by the claims appended hereto.
The present application claims priority to and the benefit of U.S. provisional patent application No. 62/673,360 filed May 18, 2018, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62673360 | May 2018 | US |