This disclosure relates to utility energy management, and more particularly to management of a energy supply of a utility company or of an entire supply system. In addition, this disclosure relates to energy management of facilities using energy-using devices, including such facilities as, but not limited to, households, commercial installations, manufacturing facilities, and office buildings. The disclosure finds particular application to varying consumption of a facility or of a group of facilities in accordance with demand on supply as a whole, demand of individual devices, priority of devices within a group of devices, and user preferences.
Utilities generally produce or purchase energy for customer usage in response to demand up to a maximum amount available or a maximum amount that can be handled by a distribution network. Cost and strain on the distribution network and/or on the generation and storage facilities generally increases with demand. Additional strain can be introduced by sudden changes in demand.
An embodiment of an energy management system manages the energy consumption of at least one managed device. The managed device is disposed to receive energy via a meter connected to an energy supply, the energy supply including at least one of an external energy source and an internal energy source. The system includes a system controller with a computer processor configured for communication with the managed devices, the meter, and a computer readable storage medium. The computer readable storage medium contains computer executable instructions that, when executed by the computer processor, perform a method including obtaining an energy consumption rate of the at least one managed device from the meter, determining whether the energy consumption rate exceeds energy available from the internal energy source, and obtaining demand information from a demand information source, the demand information comprising information about a demand state of the external energy source. The method also includes determining from the demand information whether the demand state of the external energy source is a peak demand state, determining a priority of the at least one managed device, and determining an energy need of the at least one managed device. The method instructs the at least one managed device to employ an operational mode based on the priority, the energy need, the demand state and whether the energy consumption rate of the at least one managed device exceeds energy available from at least one of the external energy source and internal energy source.
Another embodiment includes a facility energy management system for managing energy consumption of a facility connected to an energy supply, the energy supply including at least one of an external energy source and an internal energy source. The facility has at least one energy consuming device, and the system includes a system controller with a computer processor configured for communication with the managed device, the external energy source, and the internal energy source. The computer processor is also in communication with a computer readable storage medium containing computer executable instructions that, when executed by the computer processor, perform a method including obtaining external energy source information including at least one of demand state, demand limit, and cost, obtaining internal energy source information including at least one of a quantity of energy available and a supply rate available, establishing a maximum energy consumption value for the facility based on the external and internal energy source information, and instructing the at least one managed device to employ an operational mode based on the maximum energy consumption value, the demand state, and the demand limit.
Additionally, an embodiment of a facility energy management system for a facility connected to and selectively drawing energy from an external energy supply is disclosed. The system includes a computer readable storage medium including computer executable code in a format readable and executable by a computer processor, a system controller including a computer processor and connected to the computer readable storage medium such that the system controller loads and executes the computer executable code. The computer executable code causes the computer processor to receive a facility demand limit, determine a demand state that is one of at least a peak demand state and an off-peak demand state, and allocate a facility energy demand of a facility based on a priority of an energy consuming device in the facility and on an energy need of the energy consuming device, the energy need being determined by a minimum energy requirement of the energy consuming device for proper operation. The code additionally causes the processor to, responsive to determining that a local energy storage unit is present and is depleted, initiate charging the local energy storage unit during an off-peak demand state, responsive to determining that a local energy storage unit is present and that an energy demand of the facility exceeds the demand limit, draw energy from the local energy storage unit. amd. responsive to determining that a local energy generation device is present, initiate drawing energy from the local energy generation device when an energy demand of the facility exceeds the demand limit. The code further causes the processor to, responsive to a high priority of the energy consuming device, instruct the energy consuming device to employ a normal operational mode, responsive to a low priority of the energy consuming device, instruct the energy consuming device to employ a reduced operational mode, and. responsive to an energy need of the energy consuming device exceeding an amount of energy supplied in a reduced operational mode, override an instruction to employ the reduced operational mode. The code also causes the processor, responsive to a customer command, override an instruction to employ the reduced operational mode.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
With reference to the accompanying Figures, examples of a facility energy management system and method according to embodiments of the invention are disclosed. For purposes of explanation, numerous specific details are shown in the drawings and set forth in the detailed description that follows in order to provide a thorough understanding of embodiments of the invention. It will be apparent, however, that embodiments of the invention may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one ore more other features, integers, steps, operations, element components, and/or groups thereof.
As used in the instant disclosure, “energy” includes, but is not limited to, electricity, natural gas, heating oil, propane, hydrogen, biodiesel, ethanol, and other fuels, as well as steam and compressed air in some applications.
Utilities generally produce or purchase energy for customer usage in response to demand for the energy up to a maximum amount of energy available or a maximum amount of energy that can be handled by a distribution network. As seen in
Consequently, it would be beneficial for utilities to shift demand to ease strain on energy production and supply equipment. Additional benefit could be achieved were utilities to charge higher rates during peak demand to cover their increased costs of production and supply, and also to shift demand to other parts of the day. To take fluctuations of demand and energy production costs into account, rate schedules such as that seen in
One possible solution provides a system where a controller minimizes facility energy consumption. For example, the controller “switches” the actual energy supply to the energy consuming devices, such as appliances or control units, on and off. Another possible solution is to vary different functions of energy consuming devices with demand, such as by employing preprogrammed energy savings and/or other operational modes of one or more of the energy consuming devices as instructed by the system controller, an on-board controller, or other apparatus. Still another possible solution includes an Advanced Metering Infrastructure (AMI) system in which a computer system at a utility company controls or communicates with a meter at a facility to control energy usage in the facility. The meter would communicate with a controller, which would implement various strategies to minimize facility energy demand. However, any solution that focuses on energy use minimization and/or solely on the energy consumption of a single facility can lead to sudden, dramatic drops in demand on the overall energy supply and distribution system as illustrated in
There is thus a need for an energy management system and method that optimizes facility energy consumption, yet takes the state of the overall energy production and supply system into account. There is also a need for an energy management system that provides a method of distributing energy demand and changes in energy demand to avoid sudden, dramatic changes in energy demand on the overall energy production and supply system.
Broadly, embodiments of the invention are directed to management of energy supply and consumption. Embodiments include a demand-limit-based system and method to reduce energy consumption over a distribution network during on-peak or peak demand hours by reducing the demand on the energy supply chain, including, but not limited to, the energy distribution network. In addition, demand is distributed over a greater period to lessen a negative impact on, for example, energy generation facilities that might otherwise be experienced by a sudden drop in demand. Embodiments also provide cost savings to the user/consumer/customer by reducing consumption of, for example, energy consuming devices under the customer's control during times when energy is more expensive, such as during peak demand. These benefits are provided via a system and method that are easy to use, convenient, and substantially transparent to the customer once set up and operating. Additional cost savings are enjoyed in embodiments by adding local energy storage and/or generation at customer sites and integrating control of such local energy storage and/or generation devices into the system and method of embodiments. Still more savings can be achieved by including energy consuming devices that have multiple levels of energy consumption via multiple operational modes, particularly such energy consuming devices that are “intelligent.” That is, energy consuming devices each including a module with a controller that can process incoming signals and/or determine various ambient conditions and/or monitor operating variables of the respective device can provide more efficient, lower cost operation, particularly in on peak situations or peak demand states. With wide usage of the system and method of embodiments, the resulting redistribution of energy demand can reduce strain on the energy production and supply system. For example, the resulting reduction in energy consumption during peak demand periods can reduce or eliminate rolling brownouts or blackouts that occur during such periods. In addition, the system and method of embodiments take advantage of numerous communications protocols to simplify installation and communication, such as, for example, WiFi, ZigBee®, PLC, Ethernet, X10®, FM, AM/SSB, Radio Broadcast Data System, and several additional simple, low cost protocols as will be described. These can be employed in single source embodiments, demand side management embodiments, and embodiments that employ a mixture thereof.
Still more savings are achieved in embodiments employing subscription based utility services in which a customer agrees to let another party, such as a utility company, control the utility product consumption of facilities under the customer's control. In such embodiments, a third party, such as a utility company, offers energy at lower rates via a subscription agreement in which customers typically agree to limit or eliminate their ability to override reduced energy consumption measures implemented by the system at the utility company's instruction. Under some such subscription agreements, override capability is disabled or the system notifies the utility company of an override so that appropriate action, such as billing and/or cancellation of the subscription plan, can be taken.
With reference to
The demand state and the demand limit are provided by a demand information source 103 which, in an embodiment, includes a preloaded schedule. In another embodiment, the schedule is loaded or programmed by the customer, but in yet another embodiment, the demand information source 103 is a computer-based demand server, and the system controller polls the demand server for the schedule. Advantageously, a demand server in embodiments is a computer system based in a coordinating entity 10, such as a utility company facility. Alternatively, an embodiment determines the demand state and the demand limit by receiving updates from the demand server 103 when these variables change.
In embodiments, the customer can view and/or enter data or information via a processor driven user interface 104 connected to the system controller 101. The user interface, for example, allows the demand limit to be set by a customer, overriding any other demand limit provided, such as a demand limit provided by the demand server 103 where a demand server 103 is employed or provided by a schedule where a schedule is employed. For example, the user interface 104 of an embodiment includes a display, such as a screen or indicator lights, and an input device, such as a touch-screen interface, a keypad, a keyboard, or buttons. In an embodiment, the user interface 104 is provided via the display of a personal computer 105, the input device being the input device(s) of the personal computer. The user interface 104 in embodiments is part of the system controller 101, such as part of instructions written in computer readable and executable code stored on a computer readable medium in or connected to the system controller 101. Additionally, in an embodiment, a utility meter 106 receives and transmits to the system controller 101 the demand limit and a notification of the demand state, such as that the demand state is a peak demand state.
The system controller 101 of embodiments receives information via an external communications network 107, which can include computer networks, the internet, energy line transmission/reception, electromagnetic radiation broadcast/reception, telephone networks, and other suitable forms as may be appropriate for a particular application. Embodiments send and receive signals between the system controller 101 and other components of the system 100 via an internal communications network 108 of the facility as represented schematically by the connecting lines between the system controller 101 and the various other components schematically illustrated in
The system controller 101 in an embodiment also communicates with a local or internal energy supply comprising, for example, a local energy storage device 116 and/or a local energy generation device 117 in an embodiment. In such an embodiment, a local energy storage device 116 and/or a local energy generation device 117 is connected to the external energy supply system, such as that of a utility, and to a facility internal energy distribution network, such as facility wiring, to selectively supply energy to the energy consuming devices 102 and/or to the external energy supply system responsive to the system controller 101. The system controller 101 commands the storage device 116 to charge when it is depleted, such as during an off-peak demand state. If the storage device 116 has enough energy to supply the energy consuming devices 102 during a peak demand state, or if demand in the facility simply exceeds the demand limit, then the system controller 101 supplements the facility's energy consumption with energy from the storage unit 116. Similarly, if facility energy demand exceeds the demand limit, whether or not there is a peak demand state, the system controller 101 can supplement the facility's energy consumption with energy from the local energy generation device 117. In embodiments, one device is both a local energy storage device and a local energy generation device.
In an embodiment, the system controller 101 receives managed device information, including information regarding the operational state, energy need, energy demand, and/or capabilities of the managed or energy consuming device 102 in the facility. Responsive to the information about the energy consuming device 102, the demand state, demand limit, facility energy consumption rate, and/or local energy supply availability, the system controller 101 controls operation of the energy consuming device 102 and energy consumption of the facility as a whole. In particular, the system controller 101 in an embodiment controls energy consumption of the facility based on the demand limit, taking any local or internal energy supply into account. The system controller 101 in an embodiment instructs the energy consuming device 102 to employ at least one operational mode, the system controller 101 choosing the at least one operational mode based on a rate charged for energy, a priority of the energy consuming device, and/or an energy need of the energy consuming device. As used herein, “energy need” means an amount of energy required for the energy consuming device 102 to operate above a predefined threshold. For example, a device's energy need might be defined as the amount of energy it needs to remain in a normal operational state.
In an embodiment in which no local energy supply is present, the system controller 101 compares the current rate of energy consumption to the demand limit. If the current rate of energy consumption is less than the demand limit, then additional energy can be drawn from the external energy supply and consumed by the facility. The system controller 101 then allocates the available energy to devices within the facility based on priority and need. In an embodiment, the system controller 101 receives a request from an energy consuming device 102 for energy, determines a priority and an energy need of the energy consuming device 102 requesting energy, and provides or denies energy to the requesting device based on the priority, energy need, available energy, and whether other energy consuming devices 102 in the facility can be operated at reduced energy consumption or shut off to provide additional energy for the requesting device if the available energy is not adequate.
In an embodiment in which local energy supply is present, the system controller 101 takes into account energy available from local energy storage and/or generation devices 116, 117, including the quantity of energy available and a rate at which the energy can be supplied (supply rate), and uses this local energy before drawing additional energy from the external energy supply. Thus, the facility energy consumption rate in excess of local energy supply is compared to the demand limit. If the local energy supply can provide all energy needed by the facility, then no energy need be drawn from the external energy supply. If the local energy supply exceeds the facility energy demand, then the system controller 101 can activate additional energy consuming devices, sell or send the excess energy to an external energy supplier. In an embodiment, the system controller 101 also enables as many energy consumption reduction measures as possible, within parameters provided by the customer, before drawing energy from the external energy supply.
The demand state and the demand limit in an embodiment are based on a preloaded schedule. The system controller 101 then controls the energy consuming device 102 in accordance with the schedule and the time of day. Additionally, the system controller 101 can take into account the date and/or the time of year. In an embodiment, the schedule is loaded or programmed by the customer or user, but in another embodiment, the system controller polls a demand server 103, such as a computer system based in a utility company facility 10, for the schedule. Alternatively, an embodiment determines the demand state and the demand limit by receiving updates from the demand server 103 when these variables change.
In embodiments in which a customer override can be employed, such as, for example, via the system user interface 104, the system controller 101 is responsive to the override command to permit operation of the energy consuming device 102 at a higher level of energy consumption than would otherwise be employed. In an embodiment in which subscription services or the like are employed, the system controller 101, in accordance with the terms of the subscription agreement to which the user or customer agreed, prevents execution of override instructions received from the user, though in an alternative embodiment, the system controller 101 executes but logs any override instructions and notifies the utility company of the override(s). In embodiments of the system in which the user or customer can designate which devices are managed by the system and which are not, and in which a subscription agreement requires certain devices to be managed by the system, the system controller 101 overrides customer designation of unmanaged devices when such devices are required to be managed by the subscription agreement. Alternatively, the controller 101 can log or notify the utility or third party that a required device has been removed from the management system.
In an embodiment, a method is provided in computer executable code form on a computer readable medium that enables facility energy management when executed on a computer processor, such as a processor included in the system controller 101, as schematically illustrated in
Once the demand state and demand limit are received, the method includes checking to see if the demand state is a peak demand state (block 503). If not, then the method includes instructing the energy consuming device 102 to employ a normal operational mode (block 504) and returns to receiving the demand state and demand limit (block 502) in case one or both have changed. In addition, in an off-peak demand state, responsive to the presence of a local energy storage device and the energy storage device being depleted, the system controller 101 charges the energy storage device (block 505).
If the demand state is a peak demand state, then the system controller 101 can take several different courses of action. In an embodiment, the system controller 101 simply instructs the energy consuming device 102 to enter a reduced operational mode during a peak demand state (block 506). In another embodiment in which overrides are enabled, the method includes checking to see if an override command or instruction has been received (block 507). If an override command has been received, the method includes checking to see if overrides are allowed (block 508). If overrides are allowed, then the method proceeds by instructing the energy using device(s) to employ normal operational mode (block 504). If overrides are not allowed, then the method includes checking to see whether overrides are logged and/or reported or are forbidden (block 509). If overrides are forbidden, the method proceeds by instructing the energy using device(s) to employ the reduced operational mode (block 506). If overrides are logged and/or reported, then the method includes logging and/or reporting the override (block 510) and instructing the energy using device(s) to employ normal operational mode (block 504).
In another embodiment, the method responds to a peak demand state after block 503 by checking facility energy consumption (block 511), such as by reading a utility meter of the facility, and compares the rate of energy consumption rate to the demand limit (block 512). If the demand limit is exceeded, the system controller 101 instructs the energy consuming device to employ a reduced operational mode (block 506) and/or draws energy from a local energy storage 116 and/or a local energy generating device 117, responsive to the presence of such energy storage and/or generation device(s) (block 513). Additionally, in an embodiment, if there is excess local generation capacity available when the demand limit is not exceeded, then the controller will determine whether to bring energy generation devices online for selling or storing the energy (block 514). If so, and the energy is to be stored, then the method charges local storage (block 505) and returns to receiving the demand state and/or demand limit (block 502). If the energy generation devices are brought online and the energy is to be sold, then the method sends the energy to an external energy supply(ier) (block 515) and returns to receiving the demand state and/or demand limit (block 502). The system controller 101 throughout the method can take into account the nature of any present energy generation device, such as by more readily engaging renewable energy generation by solar or wind powered energy generation devices, and take into account the presence of any energy storage device.
The flow diagrams depicted herein are just one example. There may be many variations to this diagram or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.
A method according to embodiments is realized via, and a system according to embodiments includes, computer-implemented processes and apparatus for practicing such processes, such as the system controller 101. Additionally, an embodiment includes a computer program product including computer code, such as object code, source code, or executable code, on tangible media, such as magnetic media (floppy diskettes, hard disc drives, tape, etc.), optical media (compact discs, digital versatile/video discs, magneto-optical discs, etc.), random access memory (RAM), read only memory (ROM), flash ROM, erasable programmable read only memory (EPROM), or any other computer readable storage medium on which the computer program code is stored and with which the computer program code can be loaded into and executed by a computer. When the computer executes the computer program code, it becomes an apparatus for practicing the invention, and on a general purpose microprocessor, specific logic circuits are created by configuration of the microprocessor with computer code segments. A technical effect of the executable instructions is to implement energy consumption reduction and/or optimization in an energy consuming device, a facility with at least one energy consuming device, and/or an energy supply distribution system.
The computer program code is written in computer instructions executable by the controller, such as in the form of software encoded in any programming language. Examples of suitable programming languages include, but are not limited to, assembly language, VHDL (Verilog Hardware Description Language), Very High Speed IC Hardware Description Language (VHSIC HDL), FORTRAN (Formula Translation), C, C++, C#, Java, ALGOL (Algorithmic Language), BASIC (Beginner All-Purpose Symbolic Instruction Code), APL (A Programming Language), ActiveX, HTML (HyperText Markup Language), XML (eXtensible Markup Language), and any combination or derivative of one or more of these.
By employing the energy management system of embodiments, even at a facility level, demand can be spread to reduce strain on the energy supply. By employing the energy management system of embodiments to manage multiple facilities, multiple utility companies, and/or multiple groups of utility companies making up an energy supply, demand on the entire energy supply grid can be spread, reducing strain on the overall energy supply. An additional benefit in each case is cost savings to customers at every level, and profit maximization to the entities selling energy.
The corresponding structures, materials, acts, and equivalents of any and all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/097,082, filed 15 Sep. 2008.
Number | Name | Date | Kind |
---|---|---|---|
548578 | Morris | Oct 1895 | A |
2545054 | Stitz | Mar 1951 | A |
3683343 | Feldman et al. | Aug 1972 | A |
4048812 | Thomason | Sep 1977 | A |
4167786 | Miller et al. | Sep 1979 | A |
4190756 | Foerstner | Feb 1980 | A |
4216658 | Baker, III et al. | Aug 1980 | A |
4247786 | Hedges | Jan 1981 | A |
4362970 | Grady | Dec 1982 | A |
4454509 | Buennagel et al. | Jun 1984 | A |
4637219 | Grose | Jan 1987 | A |
4659943 | Virant | Apr 1987 | A |
4718403 | McCall | Jan 1988 | A |
4731547 | Alenduff et al. | Mar 1988 | A |
4998024 | Kirk et al. | Mar 1991 | A |
5040724 | Brinkruff et al. | Aug 1991 | A |
5137041 | Hall | Aug 1992 | A |
5183998 | Hoffman et al. | Feb 1993 | A |
5220807 | Bourne et al. | Jun 1993 | A |
5430430 | Gilbert | Jul 1995 | A |
5462225 | Massara et al. | Oct 1995 | A |
5479157 | Suman et al. | Dec 1995 | A |
5479558 | White, Jr. et al. | Dec 1995 | A |
5481140 | Maruyama et al. | Jan 1996 | A |
5495551 | Robinson, Jr. et al. | Feb 1996 | A |
5504306 | Russell et al. | Apr 1996 | A |
5505377 | Weiss | Apr 1996 | A |
5574979 | West | Nov 1996 | A |
5581132 | Chadwick | Dec 1996 | A |
5635895 | Murr | Jun 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5816491 | Berkeley et al. | Oct 1998 | A |
5866880 | Seitz et al. | Feb 1999 | A |
5874902 | Heinrich et al. | Feb 1999 | A |
5880536 | Mardirossian | Mar 1999 | A |
5883802 | Harris | Mar 1999 | A |
5926776 | Glorioso et al. | Jul 1999 | A |
5956462 | Langford | Sep 1999 | A |
6018150 | Maher, Jr. | Jan 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6080971 | Seitz | Jun 2000 | A |
6118099 | Lake | Sep 2000 | A |
6179213 | Gibino et al. | Jan 2001 | B1 |
6185483 | Drees | Feb 2001 | B1 |
6229433 | Rye et al. | May 2001 | B1 |
6244831 | Kawabata et al. | Jun 2001 | B1 |
6380866 | Sizer, II et al. | Apr 2002 | B1 |
6400103 | Adamson | Jun 2002 | B1 |
6480753 | Calder et al. | Nov 2002 | B1 |
6489597 | Hornung | Dec 2002 | B1 |
6694927 | Pouchak et al. | Feb 2004 | B1 |
6704401 | Piepho et al. | Mar 2004 | B2 |
6778868 | Imamura et al. | Aug 2004 | B2 |
6784872 | Matsui et al. | Aug 2004 | B1 |
6806446 | Neale | Oct 2004 | B1 |
6817195 | Rafalovich et al. | Nov 2004 | B2 |
6828695 | Hansen | Dec 2004 | B1 |
6873876 | Aisa | Mar 2005 | B1 |
6904385 | Budike | Jun 2005 | B1 |
6922598 | Lim et al. | Jul 2005 | B2 |
6943321 | Carbone et al. | Sep 2005 | B2 |
6961642 | Horst | Nov 2005 | B2 |
6983210 | Matsubayashi et al. | Jan 2006 | B2 |
7039575 | Juneau | May 2006 | B2 |
7043380 | Rodenberg, III et al. | May 2006 | B2 |
7053790 | Jang et al. | May 2006 | B2 |
7057140 | Pittman | Jun 2006 | B2 |
7069090 | Huffington et al. | Jun 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7110832 | Ghent | Sep 2006 | B2 |
7155305 | Hayes et al. | Dec 2006 | B2 |
7164851 | Sturm et al. | Jan 2007 | B2 |
7206670 | Pimputkar et al. | Apr 2007 | B2 |
7266962 | Montuoro et al. | Sep 2007 | B2 |
7274973 | Nichols et al. | Sep 2007 | B2 |
7274975 | Miller et al. | Sep 2007 | B2 |
7368686 | Etheredge et al. | May 2008 | B2 |
7372002 | Nakamura et al. | May 2008 | B2 |
7420140 | Lenhart, Jr. et al. | Sep 2008 | B2 |
7420293 | Donnelly et al. | Sep 2008 | B2 |
7446646 | Huomo | Nov 2008 | B2 |
7478070 | Fukui et al. | Jan 2009 | B2 |
7561977 | Horst et al. | Jul 2009 | B2 |
7685849 | Worthington | Mar 2010 | B2 |
7720035 | Oh et al. | May 2010 | B2 |
7751339 | Melton et al. | Jul 2010 | B2 |
7783390 | Miller | Aug 2010 | B2 |
7919729 | Hsu | Apr 2011 | B2 |
7925388 | Ying | Apr 2011 | B2 |
7962248 | Flohr | Jun 2011 | B2 |
7991513 | Pitt | Aug 2011 | B2 |
8024073 | Imes et al. | Sep 2011 | B2 |
8027752 | Castaldo et al. | Sep 2011 | B2 |
8033686 | Recker et al. | Oct 2011 | B2 |
8094037 | Unger | Jan 2012 | B2 |
8190302 | Burt et al. | May 2012 | B2 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010048361 | Mays et al. | Dec 2001 | A1 |
20020024332 | Gardner | Feb 2002 | A1 |
20020125246 | Cho et al. | Sep 2002 | A1 |
20020175806 | Marneweck et al. | Nov 2002 | A1 |
20020196124 | Howard et al. | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030036820 | Yellepeddy et al. | Feb 2003 | A1 |
20030043845 | Lim et al. | Mar 2003 | A1 |
20030178894 | Ghent | Sep 2003 | A1 |
20030193405 | Hunt et al. | Oct 2003 | A1 |
20030194979 | Richards et al. | Oct 2003 | A1 |
20030233201 | Horst et al. | Dec 2003 | A1 |
20040024483 | Holcombe | Feb 2004 | A1 |
20040034484 | Solomita et al. | Feb 2004 | A1 |
20040098171 | Horst | May 2004 | A1 |
20040100199 | Yang | May 2004 | A1 |
20040107510 | Buckroyd et al. | Jun 2004 | A1 |
20040112070 | Schanin | Jun 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040118008 | Jeong et al. | Jun 2004 | A1 |
20040128266 | Yellepeddy et al. | Jul 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040139038 | Ehlers et al. | Jul 2004 | A1 |
20040254654 | Donnelly et al. | Dec 2004 | A1 |
20050011205 | Holmes et al. | Jan 2005 | A1 |
20050134469 | Odorcic et al. | Jun 2005 | A1 |
20050138929 | Enis et al. | Jun 2005 | A1 |
20050173401 | Bakanowski et al. | Aug 2005 | A1 |
20050184046 | Sterling | Aug 2005 | A1 |
20050190074 | Cumeralto et al. | Sep 2005 | A1 |
20060031180 | Tamarkin et al. | Feb 2006 | A1 |
20060036338 | Harkcom et al. | Feb 2006 | A1 |
20060068728 | Ishidoshiro et al. | Mar 2006 | A1 |
20060095164 | Donnelly et al. | May 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060159043 | Delp et al. | Jul 2006 | A1 |
20060190139 | Reaume et al. | Aug 2006 | A1 |
20060208570 | Christian et al. | Sep 2006 | A1 |
20060272830 | Fima | Dec 2006 | A1 |
20060276938 | Miller | Dec 2006 | A1 |
20060289436 | Carbone et al. | Dec 2006 | A1 |
20070005195 | Pasquale et al. | Jan 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070136217 | Johnson et al. | Jun 2007 | A1 |
20070151311 | McAllister et al. | Jul 2007 | A1 |
20070185675 | Papamichael et al. | Aug 2007 | A1 |
20070203860 | Golden et al. | Aug 2007 | A1 |
20070213880 | Ehlers | Sep 2007 | A1 |
20070220907 | Ehlers | Sep 2007 | A1 |
20070229236 | Mercer et al. | Oct 2007 | A1 |
20070271006 | Golden et al. | Nov 2007 | A1 |
20070276547 | Miller | Nov 2007 | A1 |
20080029081 | Gagas et al. | Feb 2008 | A1 |
20080034768 | Pimentel et al. | Feb 2008 | A1 |
20080083729 | Etheredge et al. | Apr 2008 | A1 |
20080106147 | Caggiano et al. | May 2008 | A1 |
20080120790 | Ashrafzadeh et al. | May 2008 | A1 |
20080122585 | Castaldo et al. | May 2008 | A1 |
20080136581 | Heilman et al. | Jun 2008 | A1 |
20080144550 | Makhlouf et al. | Jun 2008 | A1 |
20080167756 | Golden et al. | Jul 2008 | A1 |
20080167931 | Gerstemeier et al. | Jul 2008 | A1 |
20080172312 | Synesiou et al. | Jul 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080204240 | Hilgers et al. | Aug 2008 | A1 |
20080215263 | Flohr | Sep 2008 | A1 |
20080272934 | Wang et al. | Nov 2008 | A1 |
20080277487 | Mueller et al. | Nov 2008 | A1 |
20090038369 | Vondras | Feb 2009 | A1 |
20090063257 | Zak et al. | Mar 2009 | A1 |
20090105888 | Flohr et al. | Apr 2009 | A1 |
20090146838 | Katz | Jun 2009 | A1 |
20090235675 | Chang et al. | Sep 2009 | A1 |
20090240381 | Lane | Sep 2009 | A1 |
20090326728 | Chrisop et al. | Dec 2009 | A1 |
20100017242 | Hamilton et al. | Jan 2010 | A1 |
20100070091 | Watson et al. | Mar 2010 | A1 |
20100092625 | Finch et al. | Apr 2010 | A1 |
20100131117 | Mattiocco et al. | May 2010 | A1 |
20100175719 | Finch et al. | Jul 2010 | A1 |
20100179708 | Watson et al. | Jul 2010 | A1 |
20100262963 | Wassermann et al. | Oct 2010 | A1 |
20100301774 | Chemel et al. | Dec 2010 | A1 |
20110001438 | Chemel et al. | Jan 2011 | A1 |
20110062142 | Steurer | Mar 2011 | A1 |
20110085287 | Ebrom et al. | Apr 2011 | A1 |
20110087382 | Santacatterina et al. | Apr 2011 | A1 |
20110095017 | Steurer | Apr 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110114627 | Burt | May 2011 | A1 |
20110123179 | Roetker et al. | May 2011 | A1 |
20110148390 | Burt et al. | Jun 2011 | A1 |
20110290781 | Burt et al. | Dec 2011 | A1 |
20120054123 | Broniak et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1692317 | Nov 2005 | CN |
101013979 | Aug 2007 | CN |
1496324 | Jan 2005 | EP |
2105127 | Mar 1983 | GB |
11313441 | Nov 1999 | JP |
100676905 | Jan 2007 | KR |
8600976 | Feb 1986 | WO |
9012261 | Oct 1990 | WO |
9848335 | Oct 1998 | WO |
2007060059 | May 2007 | WO |
2007136456 | Nov 2007 | WO |
Entry |
---|
Lemay, M.; Nelli, R.; Gross, G; Gunter, C.A.; An Integrated Architecture for Demand Response Communications and Control, Hasaii International Conference on System Sciences, Proceedings of the 41st Annual, 2008, pp. 174-183. |
Extended European Search Report for EP Application No. 10153695.1-2221, dated May 24, 2012, pp. 1-11. |
International Search Report from PCT Application No. PCT/US2009/056878, Nov. 17, 2009. |
International Search Report from PCT Application No. PCT/US2009/056882, Nov. 4, 2009. |
International Search Report from PCT Application No. PCT/US2009/056883, Oct. 26, 2009. |
International Search Report from PCT Application No. PCT/US2009/056886, Nov. 5, 2009. |
International Search Report from PCT Application No. PCT/US2009/056889, Nov. 10, 2009. |
International Search Report from PCT Application No. PCT/US2009/056894, Nov. 13, 2009. |
International Search Report from PCT Application No. PCT/US2009/056895, Nov. 9, 2009. |
International Search Report from PCT Application No. PCT/US2009/056901, Nov. 10, 2009. |
International Search Report from PCT Application No. PCT/US2009/056906, Nov. 10, 2009. |
International Search Report from PCT Application No. PCT/US2009/056913, Nov. 10, 2009. |
International Search Report from PCT Application No. PCT/US2009/056914, Nov. 2, 2009. |
International Search Report from PCT Application No. PCT/US2009/056919, Nov. 2, 2009. |
Partial European Search Report for corresponding EP Application No. 10153695.1-2221, dated Jan. 18, 2012, pp. 1-7. |
English Translation of Chinese Search Report for CN Application No. 2010101352688, dated Oct. 24, 2012, pp. 1-5. |
PCT Application No. PCT/US09/56911, Search Report, Mar. 10, 2010. |
Real-Time Feedback Your Key to Electricity Savings [online]; retrieved on Aug. 7, 2012; retrieved from the Internet: http://oee.nrcan.gc.ca/publications/equipment/10918. |
Chinese Office Action for CN Application No. 201010125729.3, dated Jun. 25, 2013, pp. 1-18. |
Number | Date | Country | |
---|---|---|---|
20100211233 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
61097082 | Sep 2008 | US |