1. Field of the Invention
The present invention generally relates to energy management systems of a vehicle, in more particularly to energy management systems of a hybrid-electric vehicle.
2. Description of the Known Technology
A hybrid-electric vehicle uses an electric motor in conjunction with a conventional internal combustion engine to create torque to drive its wheels. When the driver of the hybrid-electric vehicle applies the brakes, the hybrid-electric vehicle reverses the function of the electric motor, thus, turning the electric motor into an electric generator. As the hybrid-electric vehicle approaches the stop, the wheels of the hybrid-electric vehicle, in conjunction with the electric motor acting as an electric generator, generate a pulse of electrical power. This pulse of electrical power is stored in an energy storage device such as a capacitor or battery and later used to drive the wheels and/or power the vehicle accessories, such as a heating, ventilation and air conditioning (“HVAC”) system. However, because of the nature of the pulse, when storing the electrical power, some of the electrical power is lost due to parasitic losses.
The electric motor, acting as an electric generator, is not the only source of electrical power in a hybrid-electric vehicle. For example, an alternator and heat capture devices, such as thermoelectric devices placed on the exhaust of the hybrid-electric vehicle, may be utilized to generate electrical power. This electrical power may be stored in an energy storage device. Similar to the electrical power generated by the electric motor, some of the generated electrical power is lost due to parasitic losses.
When the hybrid-electric vehicle is at a stop, it is common for the hybrid-electric vehicle to shut down its internal combustion engine. However, when the HVAC system of the hybrid-electric vehicle is in operation, the hybrid-electric vehicle may have to drain the energy storage device and/or keep the internal combustion engine operating in order to keep the HVAC system running. These demands will decrease fuel economy.
Therefore, it is desire to provide a more efficient system for providing heating and cooling to the occupant compartment of the hybrid-electric vehicle while maximizing the storage of the pulse of electrical power generated during braking and by the other electrical power generated by the hybrid-electric vehicle.
In overcoming the drawbacks and limitations of the known technologies, a system method for managing electrical power generated by a vehicle is disclosed. The system includes a HVAC device and a thermal storage device both being configured to provide heating and cooling to an occupant compartment of the vehicle. The system further includes a controller connected to an electrical storage device and an electrical generating device. The electrical generating device may be several devices, such as an alternator, a regenerative braking generator and a waste recovery power generator. The controller will receive electrical power generated by the electrical generating device and store the electrical power in at least one of the electrical storage device and the thermal storage device. Furthermore, the controller will direct at least one above the HVAC device and the thermal storage device to provide heating and cooling to the occupant compartment of the vehicle.
As to the method, the method includes the steps of receiving electrical power, monitoring the available storage of the electrical and thermal storage devices and storing the electrical power received in at least one of the electrical storage device and the thermal storage device. Furthermore, the method may include the steps of storing the electrical power in the electrical storage device when the thermal storage device is at a maximum capacity and storing electrical power in the thermal storage device when the thermal storage device is below a maximum capacity.
The method may further include steps for providing heating and cooling to the occupant compartment of the vehicle. This includes monitoring the thermal requirements of the occupant compartment and providing heating and cooling to the occupant compartment from at least one of the thermal storage device and the HVAC device based upon the thermal requirements of the occupant compartment. If the thermal requirements of the occupant compartment can be met solely by the thermal storage device, the thermal storage device will provide the heating and cooling. However, if the thermal requirements of the occupant compartment will not be satisfied by the thermal storage device, the HVAC device may supplement the thermal storage device or solely provide the heating and cooling.
These and other advantages, features and embodiments of the invention will become apparent from the drawings, detailed description and claims which follow.
Referring to
The alternator 14 is preferably a belt driven alternator, driven by an engine (not shown) of the vehicle and has clutches that selectively create electrical power. The regenerative brake system generator 16 is preferably a regenerative braking system commonly used on hybrid-electric vehicles, which generate electrical power while the hybrid-electric vehicle is braking. The waste heat recovery generator system 18 is preferably a system for capturing heat created by the vehicle during operation. The waste heat recovery generator system 18 may be one or more thermoelectric modules located near areas of the vehicle which create heat, such as the exhaust and engine of the vehicle. Electrical power generated by the alternator 14, the regenerative braking system generator 16, and the waste heat recovery system 18 is directed to the controller 12.
The controller 12 is also connected to an electrical storage device 20 and stores electrical power generated by the alternator 14, the regenerative braking system generator 16, and the waste heat recovery system 18. The electrical storage device 20 is preferably one or more capacitors or batteries, but may be any device suitable for storing electrical power.
Connected to the controller 12 is a HVAC device 24. The HVAC device 24 is preferably an electrical HVAC device but may be a conventional belt driven device or any vehicle heating and cooling system that is now known or later developed. If a conventional belt driven HVAC system is utilized, a system of clutches may be implemented to selectively place the HVAC unit in an operating mode. One or more ducts 29 are coupled to the HVAC device 24 and direct conditioned, heated or cooled air from the HVAC device 24 to the occupant compartment 26.
A thermal storage device 22 is coupled to the HVAC unit 24. In certain situations described below, the HVAC unit 24 converts the electrical power directed to the HVAC unit 24 from the controller 12 into thermal power and stores this thermal power in the thermal storage device 22. Typically, one or more thermoelectric devices are utilized to convert the electrical power into thermal power but any suitable electrical power to thermal power conversion device may be used. In order to store the thermal power, the thermal storage device 22 may contain both a high and low temperature phase change material, such as wax (a high temperature phase change material) and water (a low temperature phase change material).
The energy management system 10 further includes an electrical storage level sensor 32 and a thermal storage temperature sensor 34 for determining the available amount of storage available for electrical and thermal power in the electrical storage device 20 and the thermal storage device 22, respectively. An occupant compartment temperature sensor 36 is connected to controller 12, such that the temperature of the occupant compartment can be monitored by the controller 12.
Last, the energy management system 10 further includes vehicle accessories 37 connected to the controller 12. The vehicle accessories 37 may include fuel injectors, interior and exterior lighting, vehicle information, entertainment and navigation systems or any electrical powered device found in the vehicle. The controller 12 direct electrical power to the accessories 37 as needed.
When in operation, the controller 12 will receive electrical power generated from at least one source, such as the alternator 14, the regenerative brake system generator 16 or the waste heat recovery system 18. The controller will monitor the available amount of storage remaining for electrical and thermal power storage by monitoring the output of the electrical storage level sensor 32 and the thermal storage temperature sensor 34, respectively. Based upon the remaining storage available in the thermal storage device 22, the controller 12 will direct the electrical power to either the electrical storage device 20 or the HVAC unit 24. The HVAC unit 24 will then function to convert the electrical power to thermal power and store the thermal power in the thermal storage device 22 for later use.
If the thermal storage device 22 has inadequate suitable storage for storing the thermal power, the electrical power will be directed to the electrical storage device 20. Alternatively, the controller 12 can direct a portion of the electrical power to be stored in the thermal storage device 22 and the rest of the electrical power to the electrical storage device 20. It is preferred to first store the electrical power in the thermal storage device 22, rather than the electrical storage device 20, because it is more efficient to store the thermal power in the thermal storage device 22.
The controller 12 will also monitor the temperature of the occupant compartment 26 via the occupant compartment temperature sensor 36 and direct the HVAC device 24 to provide heating or cooling to the occupant compartment 26. The HVAC may provide all or part of the heating and cooling to the occupant compartment 26 by using the thermal power stored in the thermal storage device 22 or may generate the required thermal power on its own. Also, the HVAC device 24 may supplement the heating and cooling it provides to the occupant compartment 26 with the thermal power stored in the thermal storage unit 22.
By having the thermal storage device 22 provide all or part of the heating and cooling to the occupant compartment 26, the vehicle may be able to not require HVAC device 24 to generate the necessary heating and cooling for extended periods of time. By minimizing the use of the HVAC device 24 for generating the heating and cooling, the vehicle will be able to achieve greater fuel efficiency.
Referring to
The controller 12 is configured to determine if the occupant compartment 30 can be sufficiently heated or cooled by the thermal storage device 22 through the duct 28. If the occupant compartment 26 can be adequately heated or cooled by the thermal storage device 22, the controller 12 will direct the thermal storage device to provide the heating or cooling to the occupant compartment 26, while leaving the HVAC in an “off”state. However, if the controller 12 determines that the thermal storage device 22 is unable to provide adequate heating and cooling to the occupant compartment 26, the controller may direct the HVAC device 24 and the thermal storage device 22 to both provide adequate heating and cooling to the occupant compartment 26. Alternatively, if the thermal storage device 22 is unable to provide adequate heating and cooling to the occupant compartment 26, the controller may direct HVAC device 24 to solely provide heating and cooling to the occupant compartment 26.
The foregoing description of the embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiment disclosed. Numerous modifications or variations are possible in light of the above teaching. The embodiment discussed was chosen and described to provide the best illustration of the principles of the invention in its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particulate use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
2984077 | Gaskill | May 1961 | A |
3085405 | Frantti | Apr 1963 | A |
3125860 | Reich | Mar 1964 | A |
3137142 | Venema | Jun 1964 | A |
3138934 | Roane | Jun 1964 | A |
3236056 | Phillips et al. | Feb 1966 | A |
3252504 | Newton | May 1966 | A |
3527621 | Newton | Sep 1970 | A |
3635037 | Hubert | Jan 1972 | A |
3681929 | Schering | Aug 1972 | A |
3779307 | Weiss et al. | Dec 1973 | A |
3885126 | Sugiyama et al. | May 1975 | A |
4038831 | Gaudel et al. | Aug 1977 | A |
4047093 | Levoy | Sep 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4402188 | Skala | Sep 1983 | A |
4444851 | Maru | Apr 1984 | A |
4448028 | Chao et al. | May 1984 | A |
4494380 | Cross | Jan 1985 | A |
4634803 | Mathiprakasam | Jan 1987 | A |
4665707 | Hamilton | May 1987 | A |
4823554 | Trachtenberg et al. | Apr 1989 | A |
4848090 | Peters | Jul 1989 | A |
4858069 | Hughes | Aug 1989 | A |
4905475 | Tuomi | Mar 1990 | A |
4922721 | Robertson et al. | May 1990 | A |
4922998 | Carr | May 1990 | A |
5029446 | Suzuki | Jul 1991 | A |
5038569 | Shirota et al. | Aug 1991 | A |
5092129 | Bayes et al. | Mar 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5111664 | Yang | May 1992 | A |
5119640 | Conrad | Jun 1992 | A |
5167129 | Akasaka | Dec 1992 | A |
5180293 | Hartl | Jan 1993 | A |
5193347 | Apisdorf | Mar 1993 | A |
5232516 | Hed | Aug 1993 | A |
5291960 | Brandenburg et al. | Mar 1994 | A |
5316078 | Cesaroni | May 1994 | A |
5385020 | Gwilliam et al. | Jan 1995 | A |
5407130 | Uyeki et al. | Apr 1995 | A |
5419980 | Okamoto et al. | May 1995 | A |
5431021 | Gwilliam et al. | Jul 1995 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5483807 | Abersfelder et al. | Jan 1996 | A |
5499504 | Mill et al. | Mar 1996 | A |
5549153 | Baruschke et al. | Aug 1996 | A |
5566774 | Yoshida | Oct 1996 | A |
5592363 | Atarashi et al. | Jan 1997 | A |
5653111 | Attey et al. | Aug 1997 | A |
5713426 | Okamura | Feb 1998 | A |
5722249 | Miller, Jr. | Mar 1998 | A |
5725048 | Burk et al. | Mar 1998 | A |
5802856 | Schaper et al. | Sep 1998 | A |
5890371 | Rajasubramanian et al. | Apr 1999 | A |
5901572 | Peiffer et al. | May 1999 | A |
5921088 | Imaizumi et al. | Jul 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5966941 | Ghoshal | Oct 1999 | A |
5977785 | Burward-Hoy | Nov 1999 | A |
5987890 | Chiu et al. | Nov 1999 | A |
6050326 | Evans | Apr 2000 | A |
6059198 | Moroi et al. | May 2000 | A |
6105659 | Pocol et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6122588 | Shehan et al. | Sep 2000 | A |
6127766 | Roidt | Oct 2000 | A |
6138749 | Kawai et al. | Oct 2000 | A |
6158225 | Muto et al. | Dec 2000 | A |
6203939 | Wilson | Mar 2001 | B1 |
6205805 | Takahashi et al. | Mar 2001 | B1 |
6213198 | Shikata et al. | Apr 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6230496 | Hofmann et al. | May 2001 | B1 |
6270015 | Hirota | Aug 2001 | B1 |
6282907 | Ghoshal | Sep 2001 | B1 |
6302196 | Haussmann | Oct 2001 | B1 |
6324860 | Maeda et al. | Dec 2001 | B1 |
6334311 | Kim et al. | Jan 2002 | B1 |
6347521 | Kadotani et al. | Feb 2002 | B1 |
6366832 | Lomonaco et al. | Apr 2002 | B2 |
6385976 | Yamamura et al. | May 2002 | B1 |
6393842 | Kim | May 2002 | B2 |
6401462 | Bielinski | Jun 2002 | B1 |
6407435 | Ma et al. | Jun 2002 | B1 |
6412287 | Hughes et al. | Jul 2002 | B1 |
6457324 | Zeigler et al. | Oct 2002 | B2 |
6464027 | Dage et al. | Oct 2002 | B1 |
6481213 | Carr et al. | Nov 2002 | B2 |
6499306 | Gillen | Dec 2002 | B2 |
6510696 | Guttman et al. | Jan 2003 | B2 |
6530231 | Nagy et al. | Mar 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6539729 | Tupis et al. | Apr 2003 | B2 |
6548750 | Picone | Apr 2003 | B1 |
6554088 | Severinsky et al. | Apr 2003 | B2 |
6560968 | Ko | May 2003 | B2 |
RE38128 | Gallup et al. | Jun 2003 | E |
6598403 | Ghoshal | Jul 2003 | B1 |
6598405 | Bell | Jul 2003 | B2 |
6605773 | Kok | Aug 2003 | B2 |
6606877 | Tomita et al. | Aug 2003 | B2 |
6611115 | Wakashiro et al. | Aug 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6672076 | Bell | Jan 2004 | B2 |
6682844 | Gene | Jan 2004 | B2 |
6705089 | Chu et al. | Mar 2004 | B2 |
6722139 | Moon et al. | Apr 2004 | B2 |
6732534 | Spry | May 2004 | B2 |
6779348 | Taban | Aug 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6796399 | Satou et al. | Sep 2004 | B2 |
6803766 | Kobayashi et al. | Oct 2004 | B2 |
6810977 | Suzuki | Nov 2004 | B2 |
6812395 | Bell | Nov 2004 | B2 |
6862892 | Meyer et al. | Mar 2005 | B1 |
6880346 | Tseng et al. | Apr 2005 | B1 |
6886356 | Kubo et al. | May 2005 | B2 |
6894369 | Irino et al. | May 2005 | B2 |
6896047 | Currle et al. | May 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6942728 | Caillat et al. | Sep 2005 | B2 |
6948321 | Bell | Sep 2005 | B2 |
6973799 | Kuehl et al. | Dec 2005 | B2 |
6975060 | Styblo et al. | Dec 2005 | B2 |
7007491 | Grimm et al. | Mar 2006 | B2 |
7089756 | Hu | Aug 2006 | B2 |
7134288 | Crippen et al. | Nov 2006 | B2 |
7231772 | Bell | Jun 2007 | B2 |
7246496 | Goenka et al. | Jul 2007 | B2 |
7310953 | Pham et al. | Dec 2007 | B2 |
7380586 | Gawthrop | Jun 2008 | B2 |
7426835 | Bell | Sep 2008 | B2 |
8261868 | Goenka et al. | Sep 2012 | B2 |
20030140636 | Van Winkle | Jul 2003 | A1 |
20040045594 | Hightower | Mar 2004 | A1 |
20040076214 | Bell et al. | Apr 2004 | A1 |
20040093889 | Bureau et al. | May 2004 | A1 |
20040237541 | Murphy | Dec 2004 | A1 |
20040267408 | Kramer | Dec 2004 | A1 |
20050067862 | Iqbal et al. | Mar 2005 | A1 |
20050074646 | Rajashekara et al. | Apr 2005 | A1 |
20050081834 | Perkins | Apr 2005 | A1 |
20050139692 | Yamamoto | Jun 2005 | A1 |
20050178128 | Harwood et al. | Aug 2005 | A1 |
20050247336 | Inaoka | Nov 2005 | A1 |
20050257531 | Kadle et al. | Nov 2005 | A1 |
20050263176 | Yamaguchi et al. | Dec 2005 | A1 |
20050268621 | Kadle et al. | Dec 2005 | A1 |
20050278863 | Bahash et al. | Dec 2005 | A1 |
20050279105 | Pastorino | Dec 2005 | A1 |
20060005548 | Ruckstuhl | Jan 2006 | A1 |
20060075758 | Rice et al. | Apr 2006 | A1 |
20060150657 | Spurgeon et al. | Jul 2006 | A1 |
20060174633 | Beckley | Aug 2006 | A1 |
20060188418 | Parks et al. | Aug 2006 | A1 |
20060225441 | Goenka et al. | Oct 2006 | A1 |
20060254285 | Lin | Nov 2006 | A1 |
20070000255 | Elliot et al. | Jan 2007 | A1 |
20070017666 | Goenka et al. | Jan 2007 | A1 |
20070056295 | De Vilbiss | Mar 2007 | A1 |
20070214799 | Goenka | Sep 2007 | A1 |
20070272290 | Sims et al. | Nov 2007 | A1 |
20080028768 | Goenka | Feb 2008 | A1 |
20080028769 | Goenka | Feb 2008 | A1 |
20080230618 | Gawthrop | Sep 2008 | A1 |
20080250794 | Bell | Oct 2008 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090007572 | Bell et al. | Jan 2009 | A1 |
20100052374 | Bell | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
1195090 | Oct 1998 | CN |
13 01 454 | Aug 1969 | DE |
2319155 | Oct 1974 | DE |
4238364 | May 1994 | DE |
199 51 224 | May 2001 | DE |
10 2004 041 155 | Jul 2005 | DE |
0 389 407 | Sep 1990 | EP |
0418995 | Mar 1991 | EP |
0 545 021 | Jun 1993 | EP |
1199206 | Apr 2002 | EP |
2806666 | Sep 2001 | FR |
2 879 728 | Jun 2006 | FR |
1 040 485 | Aug 1966 | GB |
2 267 338 | Dec 1993 | GB |
39-27735 | Dec 1964 | JP |
56-18231 | Feb 1981 | JP |
4-165234 | Jun 1992 | JP |
7 156645 | Jun 1995 | JP |
07-253224 | Oct 1995 | JP |
9-089284 | Apr 1997 | JP |
09-254630 | Sep 1997 | JP |
10035268 | Feb 1998 | JP |
10238406 | Sep 1998 | JP |
2000-161721 | Jun 2000 | JP |
2000-274788 | Jun 2000 | JP |
2001304778 | Oct 2001 | JP |
2002-13758 | Jan 2002 | JP |
2002059736 | Feb 2002 | JP |
2003175720 | Jun 2003 | JP |
2005-212564 | Nov 2005 | JP |
WO 9501500 | Jan 1995 | WO |
WO 9722486 | Jun 1997 | WO |
WO 9747930 | Dec 1997 | WO |
WO 9856047 | Dec 1998 | WO |
WO 9910191 | Mar 1999 | WO |
WO 9958907 | Nov 1999 | WO |
WO 0200458 | Jan 2002 | WO |
WO 03014634 | Feb 2003 | WO |
WO 2005023571 | Mar 2005 | WO |
WO 2006037178 | Apr 2006 | WO |
WO 2006064432 | Jun 2006 | WO |
WO 2007001289 | Jan 2007 | WO |
WO 2008148042 | Dec 2008 | WO |
WO 2010048575 | Apr 2010 | WO |
Entry |
---|
Japanese Abstract, Application No. 2006-275796. |
Derwent-Acc-No. 1998-283540, Kwon, H et al., Hyundai Motor Co., corresponding to KR 97026106 A, published Jun. 24, 1997 (2 pages). |
Lofy, John et al., “Thermoelectrics for Environmental Control Automobiles,” 21st International Conference on Thermoelectronics, 2002, p. 471-476. |
Number | Date | Country | |
---|---|---|---|
20070017666 A1 | Jan 2007 | US |