The present invention relates to the general art of footwear, and to the particular field of impact absorbing and energy-return mechanisms associated with footwear.
It has long been known, that when people walk, jog, or run, a significant percentage of their forward and upward kinetic energy is wasted and lost. This loss results in two undesirable effects, the first of which is locomotion inefficiency. More specifically, a person's potential for attaining their maximum walking/running speed and endurance as well as jumping height (without motorized assistance) is diminished. The second negative effect of this lost energy is manifested in the substantial shock which is imparted to a person's knees and feet when impacting with the ground while running or jumping. As a result, great effort has been exerted by both independent inventors and large corporations to develop effective “energy-return” footwear that could replace standard athletic footwear.
Energy-return footwear designs, generically referred to as “spring-shoes”, have been around for centuries and may be as old as the invention of springs themselves. The concept is obvious: build shoes with springs or some other energy storage device and augment a person's performance and/or comfort. However, this has been a difficult task as evidenced by the hundreds of such patents, filed since the mid 1800s, with very few designs being accepted in the marketplace.
Designing an effective energy-return shoe requires identifying and meeting several important objectives. The shoe must: 1) store and return a significant portion of kinetic energy, 2) be stable and controllable, 3) promote a natural motion during locomotion, 4) be both durable and reasonably light, 5) be simple in design, and 6) be designed with spring geometry that can be optimized for either comfort or performance or any compromise in between. Creating a shoe that successfully combines these qualities would represent a revolutionary advancement in the art and insure its widespread acceptance by consumers.
In order to store and return a significant portion of energy during locomotion (i.e. the first objective), a shoe's sole must transfer kinetic energy due to heel compression forces, and return them to the toe, during liftoff. That is, the heel and toe portions of the soles must work together upon heel-strike and toe-lift, allowing greater energy storage and return. Additionally, the sole must be both substantially compressible and free to compress and expand without hindrance (i.e. not be dampened by the walls of a rubber sole or any other impediments). Furthermore, the spring rates should be tailored to the user's weight and specific use such that the springs store and return as much of the impact forces as possible. These qualities work together to insure that during toe-off the wearer will experience the right force at the right time for a reasonable duration. Energy-return can be even further augmented if a shoe's sole can be held in the compressed position through the point of peak load and released during toe lift-off. Such an arrangement would allow for spring rates 2 to 3 times higher than would otherwise be used.
An effective energy-return footwear design needs to be both stable and controllable. This aspect is important both for allowing a user to effectively use the energy that is returned and for obvious safety reasons. Shoes with compressible soles that have been designed with an emphasis on energy-return have struggled in meeting this objective. This is often due to the fact that the lower sole is not constrained in its movement relative to the upper sole and there is no provision for the use of a wearer's toes (or a structure that performs in a similar function) or in the case of higher compression designs there is a lack of ankle support. More specifically, the lower sole may slide or skew longitudinally or laterally, or sometimes in any direction, relative to the wearer's foot and the design may employ a rigid upper and lower sole that does not bend at the ball of the foot limiting the user's balance and traction that toes can provide. In many cases, where sole designs have sought to address these limitations, they have relied on the use polymers instead of, or in addition to, mechanical devices or they have limited the use of mechanical devices to the heel region. In so doing, these designs have compromised energy-return.
The sole design of an effective energy-return shoe promotes a natural motion during locomotion. This is important because energy-return footwear that encourages unnatural motions by the wearer compromises the benefits of storing and returning energy in locomotion and may also pose a safety risk. To provide for natural movement, the shoe sole design must: provide for the effective use of the wearer's toes (i.e., upper and lower toe sole pivoting from an upper and lower heel sole), release the stored-energy in a direction that is perpendicular to the user's foot (i.e. generally in line with the wearer's leg), provide a rigid lower sole frame with a flexible tread surround that is likened to a bare foot (or in the case of a higher-compression design, a laterally tilting lower sole with longitudinally pivoting heel and toe pads) and release the stored energy at an optimal time during the stride. Other energy-return footwear designs that have inadequately addressed these requirements have failed to promote a natural running motion and would not be considered a viable alternative to standard athletic footwear.
An effective energy-return footwear design needs to be both durable and reasonably light. This goal represents a significant challenge for full-length mechanical soles due to the extreme forces at play and fact that they usually rely on metal components that are either reasonably light or durable but not both. Although major advancements have been made in the area of materials engineering (i.e. composite fibers) these developments alone cannot solve this problem. The solution, instead, is found in designing an efficient mechanical system that employs structure-leverage and the efficient use of materials. For example it is preferred that a large percentage of the sole's height or thickness be compressible (i.e. that it is not unnecessarily tall.)
The fifth characteristic of an effective energy-return shoe is that it be manufacturable. This is as important for energy-return footwear designs as it is for most any mechanical design. Benefits to design simplicity include reduced friction, improved durability and minimized manufacturing cost.
A design for an effective energy-return shoe should be such that the spring geometry can be optimized for either comfort or performance or any compromise in between. There exist many energy-return footwear patents that recognize the benefit of tailoring the energy-storage component's capacity to a user's weight and/or type of activity, but the vast majority of these designs do not address the merits of managing the force rates by which energy is stored and returned. The underlying premise of this concept is that there is a tradeoff between energy-absorption and energy-return. That is, a shoe that is designed for comfort would not be ideally suited for performance applications and vice-versa. More specifically, the energy-return forces for a comfort-designed shoe should be linear and progressive (for example as delivered by a simple compression spring as widely exemplified in the prior art). On the other hand, energy-return forces for a performance shoe should be either constant or regressive. For example, employing a regressive force rate would mean that as the shoe compresses, the resistance force diminishes and conversely, as the shoe expands, the expansion force increases. Additionally, the force curve could be developed as a wide range of compromises between pure comfort and pure performance. Such variety of force rate characteristics are achieved by using compression springs, torsion springs or extension springs between two opposing hinges or a spring combination thereof. The method and structure for creating force rate curves optimized for a variety of applications and preferences will be explained in the Detailed Description of the Invention section.
The following examples are provided to illustrate the limitations of these prior designs.
A patent of interest is U.S. Pat. No. 4,133,086 “Pneumatic Springing Shoe” to Brennan has a rigid lower sole supporting an upper sole via two pneumatic springs. This design is limited by lack heel-to-toe energy transfer and an inflexible lower sole which prevents a natural running motion. Also this design is unnecessarily heavy and bulky due to the fact that it requires a tall sole to produce the desired amount of compression.
U.S. Pat. No. 4,196,903 “Jog-Springs” to Illustrato employs a full-length spring-suspended sole but does not provide a correlation between the heel springs and the toe springs to effectively transfer energy from heel to toe. Additionally, it is limited by its inherent instability and uncontrollability and unnatural use.
U.S. Pat. No. 4,912,859 “Spring-shoe” to Ritts has a full-length mechanical sole that relies on a hefty longitudinal link to resist lateral tilting. This design is limited by a lack of heel-to-toe energy transfer and inflexible lower sole which prevents a natural running motion. Also this design relies on the stoutness of this link to limit such movement and thus adds considerable weight to the sole.
Another patent of interest is U.S. Pat. No. 4,936,030 to Rennex titled, “Energy Efficient Running Shoe.” This patent recognizes that an increase in performance requires transfer of energy from heel-strike to the ball or toe region during step-off via a series of complex levers and shafts. This patent recognizes that an increase in performance may be possible with a system to hold the energy loaded during heel-strike and release it from the ball or toe region during step-off. This design employs a ratchet to hold the loaded spring and triggers its release by bending the toe section of the shoe. These structures provide neither an optimum nor precise timing for energy release. The optimum timing of energy release is immediately following ball peak-force during step-off. The system releases the loaded spring either: 1) when said spring reaches a certain and fixed degree of compression, 2) when said spring reaches the limit of compression during push-off, or 3) after a fixed time delay. Although the patent neither explains nor diagrams the process by which it accomplishes (2) or (3), these methods are inadequate and not optimal. The first and third processes are based on fixed criteria and cannot adapt to the variable forces and time periods during normal running. The second process is inadequate because it releases the spring prematurely. A user, during a turn or stop may load the forces on his forefoot at constant level before he has picked his final direction. This process therefore, can cause the user to lose control. The system does not guarantee nor does it disclose that the ball and heel will compress in a parallel manner. Additionally, these complex structures fall short in the area of promoting natural movement; provide a platform for stability, durability and lightness.
U.S. Pat. No. 5,343,637 “Shoe and Elastic Sole Insert Therefore” to Schindler has two elastic inserts contained within a hollow and flexible rubber sole. Although this design does allow flexibility at the ball of the foot, the lack of a framework for the lower sole results in an uncontrolled compression and expansion of the spring. This limits the user's ability to balance and move in a controlled fashion. To the extent that stiffer sole walls are used to improve stability, there is a commensurate increase in damping which diminishes the energy-return capacity of the spring.
Another patent of interest is U.S. Pat. No. 5,343,639 “Shoe with an Improved Midsole” to Kilgore et al., employs a “plurality of compliant elastomeric support elements” in the heel to absorb impact forces. Although this design attempts to make advances in the resilient material employed, it is still limited in the same way that all polymer-based designs are limited. More specifically, this design is compromised by the fact that there is no provision for the transfer of heel impact forces to the toe during lift-off, the sole is not substantially compressible and there is no provision for optimizing the energy-return force curves for performance applications.
In another patent of interest, U.S. Pat. No. 5,435,079 “Spring Athletic Shoe” to Gallegos has a conical heel spring. This design is limited by the lack of energy transfer from the heel to the toe. Additionally this design is limited in that the spring geometry cannot be tailored to anything other than comfort (i.e. not for performance applications).
U.S. Pat. No. 5,517,769, “Spring-Loaded Snap-Type Shoe,” to Zhao. This patent recognizes that a significant increase in performance may be possible with a system to hold the energy loaded during heel-strike and release the energy during step-off. The system has a ratchet to hold the loaded spring and triggers its release by bending the toe section of the shoe. Thus, this system attempts to time the release of energy during step-off. This system provides neither an optimum nor precise timing for energy release. The optimum timing of energy release occurs immediately following the decrease force during step-off. The system releases the loaded spring when the user bends at the ball of the foot which is not necessarily during and perhaps never at the optimum time. The system also returns energy to the heel alone. This is not ideal because the heel is not in contact with the ground during step-off. The system also requires a hollow cavity extending the length of the foot for the containment of the ratchet and spring system but does not provide a suspension system for maintaining this cavity leaving it to compress randomly.
Another patent of interest is U.S. Pat. No. 6,029,374 to Herr: “Shoe and Foot Prosthesis with Bending Beam Spring Structures.” This patent attempts to address the problem with carbon fiber bending beam springs. This patent also attempts to address the need for both heel and toe springs that prevent lateral movement. This structure is inadequate for some of the following reasons: 1) It does not provide a strictly parallel postured upper and lower sole and thus it cannot return more than half the user's weight, 2) it does not provide a parallel upper and lower toe sole and therefore depends on a tapered leaf spring for traction and control in which it does not provide either in an optimum way, 3) it does not provide a hold and release system (HRS) that limits the combined load forces of the springs to approximately the user's weight.
Another patent of interest is U.S. Pat. No. 6,282,814 B1 “Spring Cushioned Shoe” to Krafsur, et al., wherein wave springs are placed in the heel and toe regions of a polymer sole. Although this sole design does include mechanical components (i.e. wave springs) in both the toe and heel regions of the sole, their effectiveness is greatly diminished by their independence and disconnection which prevents a transfer of energy from the heel to the toe. Also, they are limited by the dampening effect of the polymer sole in which they are placed. Additionally, wave springs themselves tend to lack free movement due to the friction generated by their “crest to crest” design.
Another patent of interest is U.S. Pat. No. 6,684,531 to Rennex for a “Spring Space Shoe,” which is hereby incorporated by reference. This patent introduces a spring-lever mechanism that provides some level of energy absorption upon impact and energy-return during step-off and has a series of linkages that prevent longitudinal tilting between the top and bottom soles. This design, however, is limited in its stability and controllability because it lacks a means to prevent front-to-back sliding of the user's foot with respect to the lower sole of the shoe. For example, in the mechanism of
Another patent of interest is U.S. Pat. No. 6,719,671 B1 “Device for Helping a Person to Walk” to Bock. This patent has a large leaf spring that extends from the back of the knee to the shoe sole as a means of storing and releasing energy during locomotion. Although this design affords a large degree of sole compression, it also weighs more than 5 times the amount of other energy-return footwear. This is due, in large part, to the design and therefore size of the leaf spring. Additionally, this patent does not provide a strictly parallel postured upper and lower sole of normal length nor does it provide a parallel upper and lower toe sole and therefore does not provide adequate balance and control. Furthermore, it does not provide a longitudinally pivoting lower sole and therefore does not allow for adequate traction agility and control.
Finally, U.S. Patent Application 2004/0177531 titled, “Intelligent Footwear System,” has a spring heel that adjusts tension in response to impact forces to modify performance characteristics. Although, this design accounts for the stiffness requirement of a spring depending on the activity it is limited in a number of respects. First there is no transfer of energy from the heel to the toe. Additionally the spring geometry can not be altered and so the shoe is only optimized for comfort and would not be very effective in performance applications. Also, like other shoes that have a polymer component, this design is compromised in its ability to freely store and return energy.
Spring-shoes thus have not been entirely satisfactory in that they have not permitted users to concurrently experience substantial energy-return, traction, control, safety and agility, and therefore have been viewed as incomparable and inferior to non-spring-loaded footwear. Furthermore, we are no closer to reaching the dream of augmenting performance, as no non-fuel-propelled footwear device has so far allowed users to increase their maximum running speed. (While some have allowed an increase in stride-length, their unnatural use and/or excessive weight prevent users from running any faster than with standard running shoes.) Additionally, these prior efforts have employed either complex, expensive, unreliable structures and/-or ineffective and imprecise structures. What is needed is a shoe system that achieves the aforementioned six objectives.
A simplified energy return shoe has a shoe portion, a flexible lower sole portion and an energy-release toe mechanism. As the wearer steps down, energy of the wearer's weight is stored in one or more spring devices and as the wearer begins to lift the foot, the stored energy is returned to help push that foot off the ground.
In one embodiment, an energy-return shoe system is described including a shoe portion having a bottom surface and a toe mechanism. The toe mechanism includes an upper toe plate, a lower toe plate and several toe arms. The upper toe plate is affixed to the bottom surface of the toe area of the shoe portion and the lower toe plate affixed to a top surface of the toe area of a lower sole. A first end of each toe arm is pivotally affixed to the upper toe plate and a distal end of each of the toe arms is pivotally affixed to the lower toe plate such that each toe arm is substantially parallel to an adjacent toe arm, therefore forming a parallelogram with the upper toe plate and the lower toe plate. The toe mechanism provides parallel synchronization between the upper toe plate and a lower toe plate. There is at least one energy storage mechanism (e.g. spring, magnets, rubber band, piston, bladder, etc.) interfaced to store energy as pressure is exerted between the upper toe plate and the lower toe plate, and the energy storage mechanism releases stored energy when the pressure abates.
In another embodiment, an energy-return shoe system is described including a shoe portion having a bottom surface. An upper toe plate is affixed to the bottom surface of the shoe portion in a toe area of the shoe portion. A lower toe plate is affixed to a top surface of the toe area of a lower sole and two toe arms connect the upper toe plate to the lower toe plate. A first end of each toe arm is pivotally affixed to the upper toe plate and a distal end of each of the toe arms is pivotally affixed to the lower toe plate. The toe arms are substantially parallel to each other. The lower sole is made of a flexible rubber material and there is at least one spring mechanism that urges the shoe portion away from the lower sole.
In another embodiment, a method of using an energy return shoe is described, including providing two energy return shoe mechanisms as described above, wearing a first energy return shoe mechanism on a left foot and wearing a second energy return shoe mechanism on a right foot. The steps include stepping down on the first energy return shoe mechanism, thereby compressing the toe mechanism of the first energy return shoe mechanism and storing energy in the at least one energy storage mechanism of the first energy return shoe mechanism the lifting up on the first energy return shoe mechanism, whereas energy from the at least one energy storage mechanism of the first energy return shoe mechanism is released helping to propel the left foot. Next, stepping down on the second energy return shoe mechanism, thereby compressing the toe mechanism of the second energy return shoe mechanism and storing energy in the at least one energy storage mechanism of the second energy return shoe mechanism then lifting up on the second energy return shoe mechanism, whereas energy from the at least one energy storage mechanism of the second energy return shoe mechanism is released helping to propel the left foot. These steps are repeated to achieve a faster rate of movement than would be achieved with typical standard shoes.
The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures. For the purpose of this specification, the term “shoe” is used generically, meaning any type of footwear including, but not limited to, shoes, boots, snowshoes, ski boots, ice skates and roller skates.
Throughout this description, the term “parallel synchronization” refers to keeping two surfaces or plates in the same longitudinal relationship to each other while allowing the two surfaces or plates to move vertically with respect to each other, each set of points moving together or apart the same amount of distance. In parallel synchronization, one plate is allowed to move forward or backward with respect to the other plate. For example, the top plate is capable of moving back with respect to the bottom plate, but the rate of closure between top plate and second plate is similar across the length of the plate.
Throughout this description, spring and/or spring device refers to a device that accepts, stores and returns energy as would an ordinary spring. Many types of springs are well known. Different types of springs are known to have different force curves and, therefore, in any example where one type of spring is shown, it is anticipated that a different type of spring device be used or a combination of spring devices be used to achieve a desired force curve and shoe operation. In addition, other energy storage/return devices are considered equivalent to springs for the purpose of this disclosure, including, but not limited to, magnets with matching pole alignments (e.g. North to North), gas pistons, air bladders, balloons, etc.
Referring to
In the toe mechanism 8, a first end of each arm 1 is pivotally attached to the upper toe plate 2 by pivot pins 31 and a distal end of each arm 1 is pivotally attached to the lower toe plate 3 by pivot pins 31. This allows the upper toe plate 2 to move horizontally (e.g. towards the heel area) during compression and expansion between the upper sole 14 and the lower sole 16, although it is also possible to reverse the compression and expansion directions. Due to the parallelogram formed by the upper toe plate 2, the arms 1 and the lower toe plate 3, the upper toe plate 2 maintains parallel synchronization with the lower toe plate 3 as the upper toe plate 2 converges or diverges with the lower toe plate 3. In this, a plane of the upper toe plate 2 maintains a constant angle with respect to a plane of the lower toe plate 3. For example, if the plane of the upper toe plate 2 is parallel to the plane of the lower toe plate 3 (angle is zero degrees), then the plane of the upper toe plate 2 remains parallel to the plane of the lower toe plate 3 throughout compression and expansion.
As shown, one or more resilient devices 5/6 urge the upper toe plate 2 away from the lower toe plate 3. As shown, an expansion spring 5 pulls between a flange 4 on the lower toe plate 3 and an upper flange 18 that is affixed or part of the lower shoe portion. As the toe area is compressed, the expansion spring 5 stretches, storing energy in the spring 5 until the wearer starts to shift weight, at which time the expansion spring 5 returns some of the stored energy to help the wearer push off. In some embodiments, multiple springs 5/6 are used to implement greater return force and/or various force curves. In the examples shown in
In some embodiments, the spring 5 is a resilient member such as a rubber band. In some embodiments, reverse polarized magnets are used to store the compression energy and urge the upper toe plate 2 away from the lower toe plate 3 during expansion. Any number and/or type of spring are anticipated.
It is preferred to prevent the arms 1 from opening so far as to be at right angles with respect to the toe plats 2/3. If such was allowed to occur, compression would be prevented until the acute angle was restored. To prevent the arms 1 from opening to a 90 degree or greater angle with respect to the toe plates 2/3, a device is provided to prevent such. Although many different devices are anticipated such as stops, pins, etc., for simplicity, one such device is shown; a cable, wire, string 7 limits divergence between the toe plates 2/3. As shown in
It is also preferred to limit closure of the toe mechanism 8 to limit damage due to excessive force. To prevent the toe mechanism 8 from closing too far, a preferably resilient stop 9 is placed between the toe plates 2/3 or between one of the toe plates 2/3 and one or more of the arms 1. As shown in
It is anticipated that the sole 16 and rear wall 12 are made of a flexible material (e.g. rubber). When the toe mechanism 8 is compressed as shown in
Referring to
Any known pivot mechanism 25 is anticipated. In the example shown in
Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same result.
It is believed that the system and method of the present invention and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
Number | Name | Date | Kind |
---|---|---|---|
1613538 | Schad | Jan 1927 | A |
1964406 | Pellkofer | Jun 1934 | A |
2408617 | Ferrar | Oct 1946 | A |
2522515 | Hill | Sep 1950 | A |
2953861 | Horten | Sep 1960 | A |
3205596 | Hoffmeister | Sep 1965 | A |
3219358 | Hagner | Nov 1965 | A |
3557782 | Wafer | Jan 1971 | A |
4196903 | Illustrato | Apr 1980 | A |
4296557 | Pajevic | Oct 1981 | A |
4302891 | Gulli | Dec 1981 | A |
4457084 | Horibata et al. | Jul 1984 | A |
4492374 | Lekhtman et al. | Jan 1985 | A |
4912859 | Ritts | Apr 1990 | A |
4936030 | Rennex | Jun 1990 | A |
4944099 | Davis | Jul 1990 | A |
5282325 | Ikeda | Sep 1995 | A |
5464380 | Ikeda et al. | Nov 1995 | A |
5621984 | Hsieh | Apr 1997 | A |
5701685 | Pezza | Dec 1997 | A |
5896679 | Baldwin | Apr 1999 | A |
5916071 | Lee | Jun 1999 | A |
5926975 | Goodman | Jul 1999 | A |
6115942 | Paradis | Sep 2000 | A |
6115943 | Gyr | Sep 2000 | A |
6189239 | Gasparovic et al. | Feb 2001 | B1 |
6684531 | Rennex | Feb 2004 | B2 |
6901686 | Hayes | Jun 2005 | B2 |
6928756 | Haynes | Aug 2005 | B1 |
7290354 | Perenich | Nov 2007 | B2 |
7448148 | Martinez et al. | Nov 2008 | B2 |
7900377 | Perenich | Mar 2011 | B1 |
7905033 | Perenich | Mar 2011 | B1 |
7913422 | Perenich | Mar 2011 | B1 |
7950166 | Perenich | May 2011 | B1 |
8171657 | Perenich | May 2012 | B1 |
8627582 | Perenich | Jan 2014 | B2 |
8627583 | Perenich | Jan 2014 | B2 |
20040040180 | Rennex et al. | Mar 2004 | A1 |
20050262725 | Rennex et al. | Dec 2005 | A1 |
20100281710 | Killion | Nov 2010 | A1 |
20110119953 | Perenich | May 2011 | A1 |
20110162231 | Perenich | Jul 2011 | A1 |
20130145649 | Killion | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130125422 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61563308 | Nov 2011 | US |