The invention relates to power saving cable assemblies, in particular, cable assemblies for use with electrical devices having on-board rechargeable batteries and, more particularly, to cable assemblies for laptop computers or other electrical devices capable of sending an electrical signal indicating the electrical device has been turned on so the cable assembly connects power to the electrical device and shifts from a disconnect state in which power drain commonly known as “phantom” load is substantially reduced or eliminated.
Currently, it is known to use power adapters and chargers for charging or powering a variety of electronic devices having an on-board battery or power supply, and the chargers provide power to the battery. As used herein, the term “charger” refers to devices that provide a step in power (i.e., step power from an input voltage to an output voltage), convert power (i.e., convert input alternating current (AC) to output direct current (DC)) or both.
For an electrical device in the form of a laptop computer, for instance, the power cable assembly provided is essentially a charger, the cable assembly being detachable and including a “brick” with internal circuitry for converting power. The cable assembly generally has two connection points, a first one for receiving power such as from a power outlet and a second one for connecting with and conveying power to an input on the laptop computer itself. The first connection point is generally prongs or blades that are inserted into the power outlet for receiving power therefrom which, in the United States, is alternating current power. The second connection point is generally a connector plug removably received in a socket of the laptop. As examples, the input power may be alternating current of a first voltage (such as 110/120V), and the output power may be direct current of a second, generally lower, voltage such as 19.5V.
Because of their on-board power supply, many electrical devices are capable of providing an electrical signal corresponding to when the electrical device is turned on, though the devices are generally not equipped to specifically do so. For some electrical devices, such as laptop computers and at least some MP3 players, the electrical device itself is relied upon to power a separate device, such as a memory device commonly and variously referred to as a thumb drive or USB drive or USB plug that is connected (both physically and electrically for use as a memory device) via a USB connector on one end received in a USB port on the electrical device. When a laptop computer, for instance, is powered on, a USB plug connected with the laptop computer is automatically powered on by the laptop computer and typically includes an LED light that indicates such. When the laptop computer is turned off, it automatically turns off the USB plug, and the LED light turns off.
It is not uncommon for laptop computers to be disconnected from their power cable assemblies, as such are designed for portability, while the cable assembly itself remains connected with the power outlet. Accordingly, the cable assembly continues to draw power from the wall outlet. This power draw is one type of drain known as phantom load and is wasted energy. One of the reasons the cable assembly is left is because the intent for the use of the laptop is such that the on-board battery life (generally in the order of 2 to 4 hours) is sufficiently long for the user to return the laptop to the cable assembly before the life is reached. Other reasons may be that the user transports the laptop computer between two different sites at which separate cable assemblies are maintained, such as an office and a home. In any event, it is not uncommon for the cable assembly to be secured with the power outlet, with the remote first connection plug or prongs, in a manner that makes it tedious or difficult to unplug the cable assembly from the outlet when the laptop is disconnected, such as when the outlet is behind furniture or the cable assembly is routed through office furniture.
Accordingly, a user may plug the cable assembly prong into the power owlet of their choice (whether it is behind furniture or some other obstruction), and may leave the connector end for the electrical device in a place that is convenient for connecting and disconnecting the electrical device. However, by leaving the cable assembly connected with the outlet, power draw continues. To be more precise, this draw is phantom load, that is, residual power consumption by power cable assemblies or other devices when not connected to their host electronic device (i.e., a laptop computer), or when the electronic device is shut off.
Phantom load is becoming a greater issue for the public. Electrical devices that result in the described phantom load are continually increasing in per capita usage, populations increase exponentially, and great portions of the world's population are gaining the discretionary capital that enables the purchase of such devices. Energy is becoming more expensive on a monetary basis, and energy production overwhelmingly has an environmental impact, such as fossil fuel or nuclear energy.
Extensive effort has been and continues to be put into development of energy-efficient devices of all sorts. The “Energy Star” program sponsored by the United States Environmental Protection Agency and the United States Department of Energy is well known, though principally for energy efficiency appliances and building products such as glass doors and windows. In parallel with Energy Star standards efforts, a variety of state and federal laws have been enacted that are directed toward external power-supply products, which includes power devices or chargers for portable electronic devices.
Nokia has announced a prototype device from Nokia that operates with a mechanical switch. Specifically, the Nokia device has a housing end receivable in a power receptacle and including internal circuitry for the charger/adapter functions. A button is located on the housing for turning the Nokia device on, and the circuitry automatically turns off by releasing the button.
In order to be a true “zero-waste” device, the power input (i.e., AC input) to the power device itself must be cut. Therefore, the location within the circuit at which the power is cut is central. In other words, a switch that merely cuts the output power from the connector (such as might be used to prevent overcharging of a battery) while the converter/adapter circuitry remains under power is not a “zero-waste” device because the internal circuitry is allowed to draw power, the effect being no different than simply removing the electronic device itself.
The paradigm for Nokia, then, appears to be to provide a “zero-waste” device by having the switch co-located with the input to the charger. However, as the use of many detachable power chargers is described above, the charger input is often in a difficult-to-reach position, resulting in people not bothering to unplug the device. The Nokia device still requires access before and after use to turn the device on and off.
Accordingly, it is desirable and there is a need for an improved power device, charger or otherwise, for reducing phantom load when a portable electrical device is turned off or disconnected from the power cable assembly or power device or otherwise not intended to be drawing power from the power device. It is also desirable to provide a device that allows disconnection of power to an electrical device, the electrical device continuing to utilize its manufacturer-supplied power cord.
In accordance with an aspect of the present invention, in combination with an electrical device, a system for connecting and disconnecting electrical power to the electrical device is disclosed including a plug portion for connection with a power source for receiving input electrical power, a converter portion including converter circuitry for converting electrical power, and switch circuitry for controlling an on and an off state for the system, wherein the switch circuitry automatically disconnects the input electrical power to switch the system to the off state.
In some forms, the switch circuitry monitors power draw from the electrical device indicating an on state for the electrical device, and the switch circuitry disconnects the input electrical power to switch the electrical device to an off state.
In some forms, switch circuitry includes a timer, and the switch circuitry disconnects the input electrical power after a predetermined period of time to switch the electrical device to an off state.
In some forms, the combination includes a connection for electrically connecting the system with the electrical device. The electrical device may include a user-actuated switch electrically connected to the system via the connection, and actuation of the switch may activate the system to the on state to connect the input electrical power. The connection may include a pair of inputs for providing an electrical circuit between the electrical device and the power source, and the connection may include at least a hot connection for electrical connection between the user-actuated switch and the switch circuitry. The hot connection may provide an electrical signal from the user-actuated switch to the switch circuitry, the electrical signal switching the switch circuitry to and between the on and off states. The connection may include a pair of inputs for providing an electrical circuit between the electrical device and the power source, and the connection may include at least a first control line for electrical connection between the electrical device and the switch circuitry, the switch circuitry receiving an electrical signal from the control line indicating the electrical device in the on state, and the switch circuitry at least maintaining the system in an on state with the input electrical power connected. The switch circuitry may connect the input electrical power to the system in response to receiving the electrical signal from the control line.
In some forms, the system is removably connected with the electrical device. The electrical device may be a laptop computer. The electrical device may include an on-board battery.
In some forms, the system is a cable assembly integrated with a power converter for converting input power from the power source to output power for the electrical device. The cable assembly may include a plug for connection with the power source in the form of a power outlet. The cable assembly may include a connector for removable connection with the electrical device. The connector may include a pair of electrical connectors for delivering electrical power to the electrical device and may include at least a control line for providing an on state for the system. The cable assembly may include a user-actuated switch for activating the system to an on state. The cable assembly may be electrically connected to the electrical device by a pair of electrical connectors for delivering electrical power to the electrical device and includes at least a control line, wherein the switch circuitry is in the on state for delivering electrical power to the electrical device when an electrical signal is received from the electrical device via the control line. The electrical device may include a user-actuated switch for activating the system to an on state. The user-actuated switch may provide the electrical signal via the control line to the switch circuitry.
In some forms, the switch circuitry may include a pair of contacts, and the contacts may be electrically connected to connect the electrical device with the input power, and the contacts may be electrically disconnected to disconnect the electrical device from the input power.
In accordance with another aspect, an integrated cable assembly for connecting and disconnecting electrical power to an electrical device is disclosed including a plug portion for connection with a power source for receiving input electrical power, a converter portion including power converter circuitry for converting electrical power from input electrical from the power source to output power for the electrical device, and switch circuitry for controlling an on and an off state for the system, wherein the cable assembly draws no power from the power source in the off state.
In some forms, the switch circuitry includes a manual actuator, and operation of the manual actuator turns the switch circuitry to the on state. The switch circuitry may include a microprocessor, and operation of the manual actuator may provide a signal to the microprocessor to turn the switch circuitry to the on state. The microprocessor may monitor power draw through the cable assembly and disconnect power therethrough when the power draw is below a predetermined threshold level. The microprocessor may include a timer may disconnect power through the cable assembly after a predetermined time period. The microprocessor may receive an electrical signal from the electrical device indicating an on state for the electrical device disconnect power through the cable assembly in response to an absence of the electrical signal. The manual actuator may further be operated in a second manner for providing a signal to the microprocessor to disconnect power through the cable assembly.
In the Figures,
Referring initially to
As will be described in greater detail below, the laptop computer 30, in its “on” state, monitors the USB port 42 and powers any device connected thereto such that an electrical signal is sent through the cable assembly USB connector 40 to activate or maintain the cable assembly 10 connected thereto in a corresponding “on” state. In its “on” state, the cable assembly 10 draws power from the power outlet and transmits the power to the power assembly 26 for conversion and delivery to the laptop computer 30. When the laptop computer 30 is turned off, the power to the USB port 42 is shut down, and the cable assembly 10 recognizes such to also disconnect power draw from the outlet.
For simplicity's sake, the form of the invention illustrated in
Turning now to
The switch circuitry 54 can be in many forms. In a typical application, the power received by the control lines 70, 72 is direct current. In
As described herein, use of the terms “relay,” “relay coil,” or “latching relay,” are generally referring to use of an electrical signal to power a coil, the coil operating to bring two plates or contacts of the relay together. Generally, the coil provides movement to the contacts in a particular direction based on current flow (i.e., voltage); as such, the direction may be reversed by reversing the voltage. However, reversing of voltage is not always practical or preferred. Instead, it may be preferred to include a first relay coil for joining the contacts when the first relay coil is activated by an electrical signal, and a second relay coil for separating the contacts when the second relay coil is activated by an electrical signal. It should also be understood that the contacts may be maintained in the closed position by continued application of the electrical signal to the relay coil, and cessation or cutting of the power to the relay allows the contacts to open. Finally, it should be understood that the contacts in the form of latching contacts may be coupled and electrically connected by the coil, and the contacts remain coupled despite the coil not receiving a continued supply of electrical power; in such a form, power must be reversed to the coil to unlatch the contacts or a second relay must be provided that, when energized, uncouples the contacts. These different forms of relays are well-known in the art, and their use is generally interchangeable depending on design consideration. As used herein, it should be understood that reference to one form incorporates substitution of the other forms.
While
Turning now to
The charger outputs 112, 114 are connected to the electrical device 120. As shown, the cable assembly 99 including the charger 100 is removably connected to the electrical device 120 via a connection represented by 122. More specifically, the charger outputs 112, 114 are connected to the on-board battery 130 for the electrical device 120 for charging the battery 130.
The electrical device 120 is turned on or off by a user-actuated power switch 140. Solely for the sake of convenience while referring to a specific form without limiting it to such, the user-actuated power switch 140 is referred to herein as a laptop power button 140. The laptop power button 140 is electrically connected to the battery 130, typically through a microprocessor or integrated chip (IC) 142 at a low voltage. The IC 142 controls the main power to the electrical device 120 and operational components 125 thereof.
When the laptop power button 140 is actuated, an electrical signal is sent both to the IC 142 to activate the main power and, thus, to turn on the electrical device 120, and to the switch circuitry 110 in the charger 100. As shown, the connection between the laptop power button 140 and the charger 100 may be a single “hot” connection 144, or may be a paired connection including a secondary connection 146. The electrical signal sent to the charger 100 activates the cable assembly switch circuitry 110 to connect the second input 104 to the converter circuitry 106 so power is delivered therethrough and to the battery 130 and electrical device 120.
It is recognized that, at times, the on-board battery of an electrical device as described herein may be drained of power to a degree that a sufficient signal cannot be provided for activating the cable assembly to connect the power from the power source/outlet. Therefore, an override switch, shown as 143 in
In one form, illustrated in
The mechanical actuator 160, at least in some forms, need only be depressed for a brief period of time, in the order of a few seconds or less that a second. For instance, once power is running through the circuit illustrated in
Another form as a modification of the cable assembly 10 of
In one manner of operation, movement of the mechanical actuator 180 to the first position connects terminals 181′ and 183,′ which essentially provides power therethrough between input 52 and output 62. However, the power through the mechanical actuator 180 is preferably restricted (such as with a resistor, not shown, due to current requirements); preferably, then, the connection across the terminals 181′ and 183′ serves to activate the IC 182, which then powers a relay coil 184 to connect the contact 84 (which is connected with input 52) with contact 86 (which is connected with output 62). As described above, the connection between the terminals 181′ and 183′ need only be brief such that the IC 182 is powered to cause the contacts 84, 86 to latch.
Another feature of the circuit shown in
The circuit of
The IC 182 can operate in other manners described herein, or in the related and incorporated applications. For instance, the IC 182 may have a timer (not shown) such that after a predetermined period of time the power to the relay coil 184 is disconnected, and the connection of the contacts 84, 86 is dependent on the control lines 70, 72 being powered. Alternatively, the contacts 84, 86 may be maintained in electrical contact for a sufficient period of time that a full charge of the battery of the electrical device is presumed, the time being in the order of 4 hours. In another form, the IC 182 may continue to monitor the mechanical actuator 180; should a user again depress the actuator 180 to make a connection across terminals 181′ and 183′, the IC 182 can be programmed to utilize the relay coil 184 to separate the contacts 84, 86. As is described in the co-pending parent applications of the present application, the mechanical actuator 180 may be a switch mechanism remotely-located from the inputs 50, 52 and generally co-located with or located proximate to the electrical device. Similarly, it should be recognized how a mechanical actuator may be used with the cable assembly 99 of
The various forms described herein, including those described in the parent applications incorporated herein by reference in their entirety, may be provided with various combinations of features. A possible combination is a cable assembly having a plug for receiving a standard plug of a converter power assembly for the electrical device (like the plug 12 receiving plug 22 of the power assembly 26 in
As described, the cable assemblies are able to fully disconnect input power so that power or current draw is zero or negligible. The cable assemblies cut power to the electrical device and/or charger therefor prior to power conversion.
It should be noted that the cable assemblies 10 and 99, and modifications thereof, may be further modified by the features described in the co-pending parent applications of the present application. For instance, as noted above, the cable assemblies 10 and 99 may incorporate remotely-located switches of a variety of types, including a simple single-throw switch having a toggle member or momentary-contact switches or motion-activated switches, multi-paired cords, a variety of power conversion circuits, integrated circuits or microprocessors incorporating a number of control features such as timers and voltage or current sensors and/or delays therefor, power-limiting devices such as a fuse, additional relay coils for actively disconnecting relay contacts, and user-defined time periods for power connection through the cable assemblies, to name some.
It should be noted that many electrical devices such as laptop computer 30 utilize a ‘soft’ on/off button, which permits and/or expects some powered operation to continue despite the device being in the ‘off’ state. As a comparison, some television sets once utilized vacuum tubes and were provided with a ‘hard’ off, which turned off all power to the television set, and a ‘soft’ off which allowed the vacuum tube to remain warm. This allowed the picture tube to illuminate much faster when the vacuum tube was already warm. In essence, traditional forms of power chargers for laptop computers, for instance, are always warm and are always drawing power, thus resulting in the above-described phantom load.
For laptop computers, as an example, the present devices may be beneficially utilized in further manners. Over time, an on-board battery for a laptop computer will gradually lose its charge, and that charge will further be depleted by powering background operation of the laptop computer in the ‘soft’ off state. During this ‘soft’ off state, the operational components 125 (
Turning to
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.
The present application is related to U.S. Ser. No. 12/251,882, filed concurrently, titled “Energy Saving Cable Assemblies,” and the present application is a continuation-in-part of U.S. Ser. No. 12/176,261, titled “Energy Saving Cable Assemblies,” and filed Jul. 18, 2008, which is a continuation-in-part of U.S. Ser. No. 12/127,592, titled “Energy-Saving Power Adapter/Charger,” and filed May 27, 2008, the entirety of each being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12251882 | Oct 2008 | US |
Child | 12251898 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12176261 | Jul 2008 | US |
Child | 12251882 | US | |
Parent | 12127592 | May 2008 | US |
Child | 12176261 | US |