The invention described herein is a lighting device whose lighting source is made up of light emitting diodes (known as LED by its English acronym). This lighting device may be connected to any socket into which a conventional light bulb may be connected and also offers a variation that consists of being able to connect it to photovoltaic cell-powered batteries, even directly to the photovoltaic cells or to any direct current voltage source. The lighting device contains an LED network distributed in arrangements which may be linear, matrix, circular, or any other type of standard or non-standard arrangements. These LEDs are connected individually or in groups according to the amount of LEDs placed in the device and the need for lighting required by the user.
The main objective of this invention is to reduce the consumption of electric power necessary for lighting and to produce efficient lighting. This is accomplished because the LED array only lights one or a group of LEDs at a time. This is performed through the technique called “scanning” by our research group through which the LEDs light up and turn off consecutively, either one by one, or group by group. A group is made up by two or more LEDs. This turning on and turning off is carried out at a frequency that is imperceptible to the human eye, which creates the perception that the LED array is constantly on. Consequently, the LEDs of the lighting device appear to always be on but the energy consumed is proportional to the number of LEDs which are on resulting in an energy consumption which is 80% less than a conventional light bulb.
This invention refers to a technology to generate lighting with low energy consumption. More specifically, the invention which is disclosed herein is a lighting device made up of a network of LEDs.
It is generally known that the current resources for electric power generation in the world are very limited, and therefore, it is vital to consume as little energy as possible, for financial reasons as well as to preserve the environment.
And with the purpose of finding a solution, primarily for the problem of lighting, different types of lighting devices have been developed, among which we may mention conventional devices, such as for example, the incandescent light bulb described in the publication: WO/2006/070190, which is low in cost, but very inefficient and fragile.
After attempting to reduce high energy consumption other devices have been developed such as that described in the publication: WO/2006/006097 which describes a compact fluorescent lamp, that with a principal similar to its antecedents uses inert gas which, in the presence of electricity, lights up; in general this lighting device is more efficient than the incandescent light bulb because it does make energy saving possible, however, the fluorescent bulb or tube requires ballasts and lighters which makes them more complicated and expensive, together with the fact that they are generally voluminous and fragile.
Another variety is the energy saving light which is known as the high-intensity discharge (HID—by its English acronym) lamp, such as the one described in U.S. Pat. No. 4,431,942; these lamps achieve higher efficiency than the fluorescent lamps, although they have the disadvantage of a high level of ultraviolet light emissions, which requires special filters. They also have the disadvantage of requiring ballasts and lighting aids similar to the fluorescent lamps described in U.S. Pat. No. 5,339,005. Another disadvantage of the HID lamp is that they require power factor correction as mentioned in U.S. Pat. No. 7,078,870. HID lamps are also susceptible to an elevation in their noise level due to acoustical resonance, which requires special measures such as those described in U.S. Pat. No. 7,078,870. The use of HID lamps has spread to automotive lights, as well as in places where large area lighting requires high intensity illumination.
One more variety focused on saving electric power, are light emitting diodes (LED); LEDs represent an advance in the technology, because they consume up to 80% less energy that incandescent lamps because they do not generate heat thanks to their size, but; in the case of white light, the level of efficiency of fluorescent lamps has not yet been reached. Even though competitive levels of efficiency were envisaged in their development. One characteristic of an LED lighting device, is that as light emitting diodes they may be used as part of the electronics required to rectify the current, reducing in this way the total cost. As shown in the application of patent MXNL05000079, in which LEDs are used to rectify the alternating current of an electrical network socket. This concept is also used in this patent for said purpose, however this invention differs from patent MXNL05000079 in that in said patent the LED array turn on and off all the 120 Hz frequencies (60 Hz×2 due to the fact that the diode bridge changes the frequency). In this invention, there is a digital logic stage, which enables the ability to exert special control on portions of the total of LEDs, which results in greater energy savings.
In this invention, the LEDs serve a double purpose, the first of these as lighting devices and additionally, to rectify the alternating current, thus impacting a reduction in cost. Below we will make a review of patents related to LED lighting devices, such as U.S. Pat. No. 6,016,038 which claims an apparatus to generate light, made up by one or more LEDs, a terminal for connection to a source, and a processor that generates signals through which the intensity or the color of the LEDs may be changed; another example is U.S. Pat. No. 6,149,283 that consists of a lamp made up by a line of blue, red, green LEDs, and that are arranged in such a way that the resulting light is white in color and that may be connected like a conventional light bulb, however its objective is limited to lighting without taking into consideration any reduction in cost. On the other hand, U.S. Pat. No. 6,227,679 claims an LED light bulb designed for general lighting and various other types of lighting, for example, decorative lamps and traffic lights among other applications; this light bulb includes a conical base with two circular openings, the first being of a greater diameter than the second; a flat disk inserted in the first opening, where the circuitry and the LEDs are found, and circuitry designed to provide current to the LEDs. This patent focuses on lighting but not in a special configuration as that which we are presenting and which is the reason for this invention. U.S. Pat. No. 6,268,801 claims a method to adjust a traffic signal by substituting the conventional light bulb used with a module that contains light emitting diodes, a power source connected to the LEDs and cables that connect the power source to a screw in light bulb, however they do not use LEDs for rectification nor do they show an LED array, as in this application, which are laid out in the form of a network.
After mentioning some patents that describe LED lighting systems, we will focus on patents that show the current state of the art related to energy saving techniques base on LEDs and that can be compared to the invention which is the motive for this application. U.S. Pat. No. 5,850,126 presents a screw in light bulb in a conventional form, made up of LEDs. The LEDs turn on and off at a set frequency and they manage currents higher than those they support. Said concept turns all the LEDs on and off and they remain turned off for a greater time than they are turned on, since the pulses that turn them on are smaller than those that keep them turned off By comparing this light bulb with the device presented in this application, we may describe an advantage in that the LEDs are controlled in such a way that we control the number of LEDs that are turned off or on, in such a way that illumination is maintained with the lower number of LEDs turned on and that this is imperceptible by the human eye, generating thus a lower consumption of energy.
U.S. Pat. No. 6,160,354 controls LEDs which are interconnected as a network, whose configuration and purpose are not lighting.
In addition to these patents, there is a concept known as PWM, (Pulse Width Modulation—by its English acronym) for managing LEDs, however, the use of said concept is for intensity effects and do not offer much in the way of energy savings given their focus. All these patents and applications give us a panorama of the current state of the art. However, in the patent documents mentioned, the focus is on using LEDs as an alternative source of lighting but the efforts do not focus on looking for efficient manners to use LEDs to save electricity. This invention is based on a design that makes it possible to use LEDs in an efficient manner, without significant losses in illumination, with which an even more substantial savings is obtained which may be more than 80% of the total consumption of the LEDs.
The invention described herein is a lighting device whose light source is made up of light emitting diodes (known as LED by its English acronym). This device may be connected to any conventional light bulb socket as well as being able to be connected to batteries powered by photovoltaic cells, or any direct current voltage source. The device may be in the form of any conventional light bulb, but its principal technological advantage with respect to other known or conventional light bulbs is that electronic scanning is used to turn them on for the purpose of obtaining low energy consumption.
However, if the lighting device is powered by a DC source, the AC rectifying stage (4) is not used, giving as a result the device shown in the block diagram of the lighting device in its DC variation that is shown in
One of the novelties of this invention is shown in
In
To facilitate the explanation of the controller circuit (scanner) an example shall be shown setting “n” as well as “m” in 4, i.e., it will be explained as an array of 4 LEDs by 4 LEDs giving a total of 16 LEDs.
For addressing and selection of the LEDs the corresponding coordinate is activated, through the controller (7) and (10) which is described in detail in
For example, when Y4 and X4 are activated at the same time only the LED in the upper right corner will be turned on. If Y4 and X3 were the positions activated, only the preceding LED would be turned on. If only one column transistor is activated as well as another one from a row, only one LED will light at a time.
Said transistors in this example are activated with the controller from
The decoder (19) used to select the columns (X1 to Xm); its outlets should be negated with an inverter to implement the proper control over the NPN transistor in the interconnection between the LED network and the controller. In addition, there is another decoder (18) for the rows, which is directly connected to the base of the PNP transistor, i.e., there so not require being inverted.
In this particular case, the scanning sequence first lights up LED by LED of the first row (Y1), and when it finishes, it does the same in the second row (Y2) and thus successively until it reaches the last row Yn (Y4 for the example) with the last column Xm (X4 for the example) and it starts again. However, the scanning sequence may adapt itself to different requirements being able to perform lighting in any order desired or even may be carried out in random order.
A binary counter provides counts that go up in multiples of 2, for example, 4, 6, 16, 32, and successively duplicating itself. For this circuit, a counter is used that may generate a count that is equal to or greater than the number of LEDs. The circuit design is expandable to a higher number of rows and columns (n by m), here only a small one is shown having 16 bits arranged 4 by 4 to facilitate the explanation, but the invention here proposed may use higher numbers of rows and columns, where the number of rows and columns are not necessarily equal.
The scan may be enlarged, with only one counter, in different forms, one of which is the following: the number of columns is determined in a multiple of 2, and the number of rows should also be thus. Afterwards, the number of bits that generate said counts are determined and linked, assigning a decoder to each count that has the lines necessary per column and if applicable, per row.
Generally speaking, a count of X bits divided into Y and Z bits is had, where Y+Z=X (Y:Z=X). A decoder is used for Y to 2Y lines that is controlled by the bits called Y. Another decoder is used for Z to 2Z lines that is controlled by the bits called Z. The circuit would control a total of 2X LEDs that would light only one at a time. The count generated by the single decimal counter in the circuit would be the Z count.
Returning to
The control system requires two voltages, VAC and VDC; said voltages may be obtained from the AC network as well as from a DC source after being converted and regulated.
As illustrated in
As shown in
In summary, the scanning handles the selected lighting (scanning by rows and columns), alternate and consecutive of the individual LEDs or groups of LEDs that represent a fraction of the total LEDs in the lighting device.
Another of the important characteristics of this device is that the rectification phase is also made up by LEDs, which may be connected in the form of a full wave bridge rectifier FIG. (8), and in this way fulfills a double function of lighting and rectifying, achieving as a result low energy consumption since an extra rectifying phase (AC-AC) is not required to power the LED array and it also achieves greater illumination, the rectifier also may have variations using more LEDs in the bridge as can be seen in
For the circuit rectification stage shown in
This variation substitutes the diodes with light emitting diodes. In this invention, the above fulfills two functions: rectification of the sinoidal wave input (110 or 220 Volts CA) and at the same time the production of light, and for this reason it is able to use fewer LEDs during the scanning stage, and thus obtain greater energy savings. The frequency of oscillation is approximately constant, since it only depends on the frequency of the power outlet (50 or 60 Hertz).
The principal objective of the DC-DC conversion stage is to reduce the DC voltage that delivers the rectifier to a VDC voltage that is useful for the LED network, and which is determined according to the operational parameters of these. The basic circuit of this stage, shown in
At the output of these two stages, the voltage obtained is that required for proper operation of the LED array. The values of the components and the number of circuits that must be placed in cascade for the DC-DC conversion stage is determined by the parameters of VDC voltage and the current required for the LED array. When the VDC voltage is not equal to that required for VAC (for example 5 volts), a circuit with a built-in commercial voltage regulator may be used.
Number | Date | Country | Kind |
---|---|---|---|
MX/A/2007/002578 | Mar 2007 | MX | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MX2008/000027 | 2/25/2008 | WO | 00 | 9/2/2009 |