The subject matter of this application relates generally to capacitors and capacitor housings and relates more particularly to double-layer capacitors and double-layer capacitor housings.
Conventional capacitor technology is well known to those skilled in the art. The energy and power density that can be provided by conventional capacitor technology is typically low, for example, conventional capacitors are normally capable of providing less than 0.1 Wh/kg. Applications that require greater energy density from an energy source, therefore, typically do not rely on conventional capacitor technology. The amount of energy delivered by conventional capacitor technology can be increased, but only by increasing the number of capacitors.
Relatively recently in the energy storage field, a capacitor technology called double-layer capacitor technology, also referred to as ultra-capacitor technology and super-capacitor technology, has been developed. Double layer capacitors store electrostatic energy in a polarized electrode/electrolyte interface layer that is created by an electrical potential formed between two electrode films when a finished capacitor cell is immersed in an electrolyte. When the electrode forms and associated collecting plates are immersed in the electrolyte, a first layer of electrolyte dipole and a second layer of charged particles and a second layer of charging species is formed (hence the name “double-layer” capacitor). Individual double-layer capacitor cells are typically available with values greater than 0.1 Farad and above. For any given housing size, a double-layer capacitor cell may provide on the order of about 100-1000 times, or more, as much capacitance as a conventional capacitor cell. In one example, the energy density provided by a double-layer capacitor is on the order of about 10 Wh/kg, and the power density is on the order of about 10,000 W/kg.
In one embodiment, four 2600 F|2.5 V|60 mm×172 mm|525 g| sealed capacitors are interconnected as a series string of capacitors. In one embodiment, it has been identified that when charged to 10 volts, over 1500 amps of instantaneous peak current may flow through such four series connected capacitors at through their terminals. Accordingly, in one embodiment each capacitor preferably comprises terminals and interconnections that are sized to safely carry 1500 amps of peak current. Although only four series connected capacitors are discussed, the scope of the embodiments and inventions described herein envisions the interconnection of less or more than four series and/or parallel connected capacitors.
Referring now to
Double-layer capacitors have intrinsic properties that limit their maximum charging voltage to a theoretical value of no more than about 4.0 volts. In one embodiment, a nominal maximum charging voltage of a double-layer capacitor is in a range of about 2.5 or 3.0 volts, which it is identified is a voltage that encompasses the output voltage of a wide range of available rechargeable and non-rechargeable batteries.
It is identified that double-layer capacitors can be designed to comprise a power density that is greater than lead acid, and many Nickel Cadmium, Lithium, and Alkaline type batteries; and with an energy density that approaches that of, or overlaps, the energy density available from lead acid, Nickel Cadmium, Lithium, and Alkaline batteries.
Referring now to
In one embodiment, a battery form factor sized housing manufacture as an Energizer™ brand D-cell sized batter comprises a diameter of about 32.3-34.2 mm and height of 59.5-61.5 mm. Accordingly, in one embodiment, a battery form factor sized capacitor housing 100 comprises a diameter of about 33+0/−1 mm and a height of about 61.5+0/−2 mm, which are dimensions that are within the ANSI/NEDA and IEC dimensions for D-cell sized battery housings, and Energizer brand batter D-cell dimensions. It is understood that, D-cell dimensions are illustrative of one possible standardized battery form factor sized housing that is within the scope of the present invention, which should be limited only by the scope of the claims. For example, a C-cell form factor sized capacitor housing can comprises a diameter of about 25.2+0/−1 mm and a height of about 49.0+0/−2 mm, an AA-cell form factor sized capacitor housing can comprise a diameter of about 13.0+0/−1 mm and a height of about 50.0+0/−2 mm, and a AAA-cell form factor sized capacitor housing can comprise a diameter of about 10.0+0/−1 mm and a height of 44.0+0/−2 mm. In one embodiment, a double-layer capacitor in a D-cell form factor sized capacitor housing 100 has been demonstrated to provide 425 F, 3.2 mOhm at about 2.5 Vdc in a 56 g cell and an energy density of about 6.5 Wh/kg and a power density of about 8.7 kW/kg.
In one embodiment, a capacitor housing 100 may be provided with external electrode connections/connectors/terminals 70, 80 similar to, or the same as, those of standardized batteries. Inclusion of battery style terminal ends on a capacitor housing 100 enables that the housing can be provided to easily connect to apparatus that utilize battery style connectors of a reverse sex. Because existing standardized battery style connectors, and modules that use them, can be readily obtained from manufacturers, redesign time and costs can be appreciably reduced when implementing one or more of the embodiments described here.
Standardized battery style connections/connectors/ terminals 70, 80 can also be used to connect multiple capacitor housings 100 together. For example, as with batteries, the operating voltage of a double-layer capacitor 150 may be increased by connecting two or more double-layer capacitors in series. The use of standardized battery style connections/connectors/terminals 70, 80 facilitates such series connections. As well, standardized battery style connections/connectors/terminals 70, 80 can be used to facilitate parallel connections. Battery style connections 70, 80 allow easy drip in capacitor replacement of batteries to be made. The benefits and advantages of the embodiments described herein enable easy connection and replacement of battery technology with double-layer capacitor technology, and thus, increase the number of potential applications that double-layer capacitors can be used in. Furthermore, a change of energy component type, from batter to double-layer capacitor, finds interest in applications where maintenance cost is a key factor, or where cyclability is important.
In one embodiment, it is identified that the ends 70, 80 of a battery form factor sized capacitor housing 100 lend themselves well to a geometrical design that exhibits a relatively large electrical conductive surface area, as compared to conventional capacitor housings that provide small diameter leads, terminals, etc. For example, in one embodiment, a D-cell battery form factor sized capacitor housing 100 may be designed to comprise conductive end surface area(s) of greater than 90 mm2. The large electrical contact surface area at the ends of a D-cell form factor sized capacitor housing 100 allows that high current may flow through the end with minimal electrical loss. Because double-layer capacitors can supply or receive higher current than comparable batteries, the large surface area ends 70, 80 can be used advantageously for this purpose. Large surface area ends 70, 80 also allow that the ends may be provided in many geometrical variations and yet remain within the required dimensions of a particular battery form factor. For example, appropriate dimensioning of the ends 70, 80 may be made to provide large screw-in type connections, mechanical pressure type connections, welding/solder type connections, as well as others that in the capacitor prior art would not be practical or not possible.
Double-layer technology is now capable of being provided with energy and/or power density performance characteristics that approach or exceed those of batteries. Accordingly, it has been identified that double-layer capacitor technology can housed in a standardized battery form factor sized housing to supplement, or substitute for, equivalent sized batteries. Double-layer capacitor technology in a battery form factor sized housing 100 may also improve upon battery technology. For example, a D-cell sized double-layer capacitor 150 can provide many more charge/recharge cycles than may achieved by a D-cell sized rechargeable battery. Because double-layer capacitors utilize an electrostatic storage mechanism, they can be cycled through hundreds of thousands of charges and discharges without performance degradation, which compares with life cycles of less than 1000 for rechargeable batteries.
Although discussed with reference to a D-cell form factor sized housing 100, the present invention is not limited to a D-cell form factor housing and/or standardized battery electrode connections/connectors/terminals 70, 80. For example, one or more of the above identified principles and advantages can be used to effectuate other battery form factor sized capacitor housings and connectors. For example, it is identified that many power tools are now powered by batteries in a power tool specific form factor housing. In one embodiment, double-layer capacitor(s) may be housed is such a manufacturer specific housing. Although some double-layer capacitors may not have the energy density of batteries, the do typically have more power density than batteries, and thus, can be used as a short-term substitute for a power tool battery pack. Because a double-layer capacitor based energy source in a battery form factor sized capacitor housing can be recharged more quickly than a battery, for example, on the order of 15 seconds or so, as opposed to the tens of minutes for a battery, double-layer capacitor technology can be utilized as a battery substitute or supplement when re/charge times are critical.
Referring now to
Referring to
With reference to
An assembled double-layer capacitor comprises a positive and negative polarity. To electrically separate such polarity, an electrical insulator or insulation may be provided, for example, as between a cover 200 and a housing 100. In one embodiment, a sealant may also be provided between the cover 200 and the housing 100.
In one embodiment, it is identified that electrical connection needs to be made between the cover 200 and the jellyroll 300, and for this reason, a portion of the surface 202 to which insulator has been applied is preferably left bare of insulator. In one embodiment, a central potion 205 of the surface 202 is left bare.
It is identified that when a material is required to be applied to only a portion of a cover 200, the bare portion of the cover is typically masked from the material. Such masking, as well as application of material, is time consuming in that it requires individual handling of each cover as well as other processes.
Referring to
Referring to
The exterior and interior of the housing 100 are cleaned using techniques known to those skilled in the art.
In one embodiment, an electrical insulator 100e is applied to the exterior and the interior of the housing 100. In one embodiment, the insulator 100e is applied to the housing while the can is subject to spinning about a central longitudinal axis. In one embodiment, the insulator 100e is applied by spraying the insulator. In one embodiment, the insulator 100e is applied to only a potion of the exterior and the interior of the housing 100. For example, it is identified that the interior and exterior of the housing 100 may need be coated to an extent needed to effectuate subsequent sealing of the housing 100 by a cover 200.
Referring to
Referring to
Referring again to
In one embodiment, after a step of insertion of a jellyroll 300 within the housing 100, the collectors at one end of the jelly-roll are electrically coupled to the housing by welding. During welding, it is desirable to pres down onto the jelly-roll 300 so as to have a more extensive contact and interface between the collectors and the housing 100. In a preferred embodiment, welding is effectuated in a laser welding step, wherein a beam of laser light 300m (
It has been identified that any impurities, dirt, residue, and/or over spray present at the inner bottom end 100f can act to interfere with the welding process. For example, it is identified that overspray from the application of the insulator 100e to the interior walls of the housing 100 can occur and be deposited on inner bottom end 100f of the housing. Such overspray can interact with the externally applied laser beam by acting to locally increase the temperature at the point of application of the laser light 300m. Such increased temperature can act to burn through the bottom end of the housing 100 and/or damage the housing and/or jellyroll 300.
Additionally, such increased temperature can act to interact with the insulator 100e to release or create impurities that can subsequently affect operation of the jelly-roll 300.
After insulator 100e is applied to the interior of the housing 100, the insulator may be dried under appropriate temperature, and a jelly-roll 100 is inserted within the housing (
In one embodiment, wherein an extending collector associated with an outermost electrode layer 300a is coupled to the housing 100 (an “unflipped” jelly-roll orientation), and wherein direct electrical contact between an outermost electrode layer and the housing 100 may be desired to reduce electrical resistance between the housing and the outermost collector of the outermost electrode layer, it is understood that the above described insulator 100e would need to be applied only to the upper inner portion of the housing 100 that is used for subsequent sealing.
To this end, it is identified that in an “unflipped” jelly-roll 300 orientation, it may be preferred during or after manufacture of capacitor sheets 10 (
In one embodiment, prior to insertion within the housing 100, the end of the jelly-roll 300 that would extend from the open end of the housing is attached to the bottom end 600b of the conductive metal 600 (
Referring to
It is identified that during the step of applying the cover 200 to the housing 100, the metal 600 (
In one embodiment, after a housing 100 is sealed by a cover 200, the resulting capacitor product may be impregnated with electrolyte by introduction of the electrolyte through a sealable fill port 800.
Referring to
In one embodiment, it is identified that by appropriate selection of a thickness of the separately applied metal, the disk 750 itself can act as a “fuse,” which could be used in place or in combination with longitudinal indentation 100c (
It is identified that the void within the jelly-roll 300 can be used facilitate the flow and impregnation of electrolyte within a sealed capacitor. Because many of the collectors of the jelly-roll 300 have during an insertion step been folded over inward toward the center of the jelly-roll, thus potentially blocking flow of electrolyte from one portion of the jelly-roll to another portion, the void in the jelly-roll can be used to assist in circulating flow of the electrolyte. However, it has been identified when the metal 600 spring is attached to the jelly-roll 300, the bottom end 600b of the metal spring may block the flow of electrolyte through the void within the jelly-roll. It is identified that when a corresponding void 600d or hole (
In one embodiment, it has been identified that external permanent electrical contact may sometimes be desired to be made to a battery form factor sized capacitor product. As has been described throughout, in one embodiment, a cover 200 and a housing 100 comprise aluminum. In one embodiment, it has been identified that aluminum oxidizes easily and as a consequence aluminum is a difficult metal to make electrical connections to. Without a provision for permanent electrical contacts, it is identified that contact resistance to ends of a double-layer capacitor product made of aluminum would be high, and at the high currents that double-layer capacitors may be used, excessive heat would be generated. Permanent electrical contacts to a capacitor product can be made by welding, but such welding entails high cost, both in money and time. In one embodiment, therefore, a housing 100 and/or cover 200 may be provided with a thin cladding of metal. In one embodiment, the metal is an Nickel based cladding that can be provided by BI-Lame. By providing a cover an external layer of such, cladding, it has been identified that subsequent electrical contact to the cover can be easily made, for example, by low heat soldering.
The above-described embodiment have been described. In doing so, a number of benefits as well as disadvantages may have been noted by the reader. For example, the use of laser welding may cause damage to a capacitor cell, housing, or other component. The use of sealants and insulators requires process steps that may be costly in both time and money. Sealing of a cover to a housing by curling may impact time and money, and as well affect reliability. Hence the present inventors suggest in the following summary various changes, that alone, or in combination with features described herein can make a capacitor product more reliable, cheaper, and more easy to manufacture.
Referring to
In one embodiment, the cover is comprised of a number of components, that when assembled, provide a seal against leakage of subsequently introduced electrolyte. As described above, a cover comprises a first disk 904 (washer negative). In one embodiment, the first disk has a centrally disposed void within which a slightly smaller metal piece comprising a protrusion can be placed (lid positive 910). At one end of the metal piece, the bendable metal 908 used to connect to the upper end of the jelly roll collectors can subsequently be attached to frame a spring. The first disk and metal piece are dimensioned such that when a sealing separator (seal EPDM 912) is placed over the protrusion, and when the protrusion is inserted within the void of the first disk, the protrusion extends through the void in a manner that a seal may be formed therebetween. At a side of the first disk through which the protrusion extends, over the protrusion is placed a insulating separator (insulation washer 914) that electrically insulates and separates the protrusion, and hence the metal piece form the first disk, and as well a subsequently place retaining right (retaining washer 916). The retaining ring is as well shaped as a second disk with a centrally disposed void that has dimension that allow the void of the second disk to forcibly snapped over the protrusion such that the rubber separator and the plastic separator can be maintained in sealable contact with the first disk. The resulting cover structure comprises a central portion (metal piece with protrusion snapably coupled to second disk) that is sealably and electrically isolated from the first disk. Subsequent bipolar electrical contact to a jellyroll capacitor cell can be thus made separately through the second disk, and separately to the retaining ring or the housing that the first disk is electrically coupled to (
It is identified that because the capacitor housing need not, thus, be necked or flanged radial electrical attachment to the capacitor can more easily be facilitated. In one embodiment an electrical connect or tab can be electrically attached or be part of one end of the housing, and another electrical tab can be attached or be made part of the second disk. Such tabs can extend in the same direction to facilitate attachment to RCBs in a vertical configuration (
It has been identified by the inventors that electrical interconnections between capacitors connected in series or parallel can be made using thermally fitted bus bars or interconnects where voids of an interconnect can be thermally expanded to fit over corresponding terminals. With similar materials (for example, aluminum) used for the terminals and interconnects, subsequent cooling of the interconnects causes the voids to contract about corresponding terminals to form a good mechanical/electrical connection. Capacitors or other devices can in this manner interconnected (mechanically and/or electrically) without the use of additional materials, such as screws, clamps, solder, welds, etc.
In one embodiment, it has been identified that housing and/or covers may be themselves be used to provide similar interconnect functionality. For example, in one embodiment, a cover of one capacitor is shaped with protrusion, and a housing of another capacitor is shaped with recess that can accommodate the protrusion. In one embodiment, the recess is dimensioned to have the same or slightly smaller dimension than the protrusion (
In one embodiment, wherein initially a cover and/or a housing does not comprise an adequately dimensioned protrusion or void, the cover and/or housing may be modified. For example, a protrusion may be coupled to a cover or a housing, and/or a component with a recess can be coupled to the housing or the cover. In one embodiment, the coupled protrusion and the component with a recess may respectfully comprise a disk and a washer like element, wherein the disk fits within a void within the washer. In one embodiment, the protrusion and element with a void may be coupled to a respective cover and housing by means of welding, conductive glues, and others known to those skilled in the art.
Although the particular embodiment described herein are fully capable of attaining the above described advantages and objects of the present invention, it is understood that the description and drawings presented herein represent some, but not all, embodiments of the invention and are therefore broadly representative of the subject matter which is contemplated by the present invention. For example, a double-layer capacitor and/or housing may be designed to confirm to a standardized C-cell battery form factor, an AA-cell battery form factor, or an AAA-cell battery form factor. The above identified principles and advantages may be applied to standardized housing of other battery technologies, for example, NiMh, lithium, alkaline, Nicad, sealed lead-acid, and the like. The above identified principles and advantages may also be applied to other batteries and form factors that may exit or be developed and accepted in the future as standardized. As well, the insulation and sealants described herein may vary or be different in other embodiment. It is therefore understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention should accordingly not be limited.
This non-provisional patent application claims a benefit of priority under 35 U.S.C. 119 to previously filed provisional patent application, Ser. No. 60/734,806 (attorney docket No.: M221P) filed Nov. 9, 2005.
Number | Date | Country | |
---|---|---|---|
60734806 | Nov 2005 | US |