Not applicable.
The instant disclosure relates archery. Particularly, the instant disclosure relates to archery bows. Specifically, the instant disclosure pertains to compound bows, e.g., crossbows.
Bows are used for target shooting and as a weapon for hunting. Compound bows include cams configured for increasing the mechanical advantage for drawing of the bowstring. Some bow designs include cams configured for decreasing the draw force near the full draw position. In some bow designs, power cables are used for synchronizing the rotation of the cams.
In recent years, bow preference has shifted from a forward-draw configuration to a reverse-draw configuration. One advantage of the reverse-draw configuration over the forward-draw configuration is the increase in the power stroke.
Reverse-draw configurations include at least one pair of cables extending between a pair of cams disposed on either side of a barrel or track or rail of the bow. Such cables are often referred to as “power cables” by those skilled in the art. The cables and the cams are arranged such that when the bowstring is drawn, the cam on one side of the barrel rotates to pull-in the cam on the other side towards the barrel. For example, when the bowstring is drawn, the cam on the right side of the barrel rotates to pull-in the other cam, i.e., the cam on the left side of the barrel, towards the barrel while the cam on the left side of the barrel rotates to pull-in the cam on the right side of the barrel towards the barrel. This arrangement requires the cables to cross each other and, in most configuration, the cables are in frictional contact at the point of intersection. As is well known in the art, such configurations induce “cam lean” as well as wear on the cable.
Conventional cams used in reverse-draw bow configurations have one or more spiral grooves for receiving at least one cable when the bowstring is drawn and/or released. In some instances, one or more cable or string is wrapped around in the one or more spiral grooves of the cam while the bowstring is not drawn, and the cable or string unwraps from the spiral groove of the cam when the bowstring is drawn. In other instances, one or more cable or string wraps around onto or into the one or more spiral grooves of the cam when the bowstring is drawn, and the cable or string unwraps from the spiral groove of the cam when the drawn bowstring is released. As will be apparent to one of ordinary skill in the art, providing spiraling grooves increases the size of a cam.
A non-limiting exemplary embodiment of a bow includes a riser, first and second limbs coupled to the riser, first and second wheels rotatably coupled to the first and second limbs, respectively, first and second power cords, and a string. In some embodiments, the first and second limbs each include a first end and a second end, wherein the first end of each limb is coupled to the riser. In certain embodiments, the first and second wheels are rotatably coupled to the first and second limbs, respectively, proximate their respective second ends. In some embodiments, the first and second wheels each include an upper pulley and a lower pulley, a spool extending between and affixed to the upper and lower pulleys, a stud disposed between and coupled to at least one of the upper and lower pulleys, and a post disposed between and coupled to at least one of the upper and lower pulleys. In certain embodiments, the first and second power cords each include a first end and a second end. In some embodiments the first end of each power cord is coupled to the riser, and the second end of the first and second power cord, respectively, is coupled to the stud of the first and second wheel. In certain embodiments, the string includes a middle section, a first section coupled to a first end of the middle section, and a second section coupled to a second end of the middle section. In some embodiments, the first and second sections of the string each include a first end and a second end. In certain embodiments, the first end of the first and second sections, respectively, is coupled to the upper pulley of the first and second wheel, and the second end of the first and second sections, respectively, is coupled to the lower pulley of the first and second wheel.
and
One or more non-limiting exemplary embodiments are disclosed herein with reference to the accompanying drawings, wherein like numerals indicate like, but not necessarily identical, elements. It should be clearly understood that the embodiments described with reference to the drawings are merely exemplary in that any one or more of them may be implemented in alternative manner as may become apparent to a person of ordinary skills. The figures, wherein some features may have been exaggerated or minimized to illustrate details of particular components, are not necessarily to scale. Specific structural and/or functional features and details disclosed herein are not to be construed as limiting, but should rather be treated as a basis for teaching one of ordinary skills. There is no intent, implied or otherwise, to limit the disclosure in any way, shape or form to the embodiments illustrated and described herein. Accordingly, any and all variants for providing structures and/or functionalities similar to those described herein are considered as being within the metes and bounds of the instant disclosure.
In a non-limiting exemplary embodiment, the first and second wheels 28 and 30 are substantially similar. Therefore, in the following, the first and second wheels 28 and 30 will be described in the singular with reference to “a wheel” or “the wheel” 38. Accordingly, the following description of “a wheel” or “the wheel” 38 applies equally to both the first and the second wheel 28 and 30.
In a non-limiting exemplary embodiment, the first and second power cords 32 and 34 are substantially similar.
In a non-limiting exemplary embodiment, first and second wheels 28 and 30 are substantially similar to exemplary wheel 38. Accordingly, first and second wheels 28 and 30 each include an upper pulley, such as the exemplary upper pulley 40; a lower pulley, such as the exemplary lower pulley 42; a spool, such as the exemplary spool 44; a stud, such as the exemplary stud 46; a post, such as the exemplary post 48; and a stud or a post, such as the exemplary stud or post 50, on their respective outer sides, such as exemplary outer side 52.
In a non-limiting exemplary embodiment, the first section 66 of the string 36 extends between first and second ends 78 and 80. In some embodiments, the first end 78 of the first section 66 is coupled to or affixed to or anchored at the stud or post (such as exemplary stud or post 50) on the outer side (such as exemplary outer side 52) of the upper pulley (such as exemplary upper pulley 40) of the first wheel 28, and at least a portion of the first section 66 extending away from the first end 78 wraps around the upper pulley of the first wheel 28; and the second end 80 of the first section 66 is coupled to or affixed to or anchored at the stud or post (such as exemplary stud or post 50) on the outer side (not shown) of the lower pulley (such as exemplary lower pulley 42) of the first wheel 28, and at least a portion of the first section 66 extending away from the second end 80 wraps around the lower pulley (such as exemplary lower pulley 42) of the first wheel 28.
Likewise, in a non-limiting exemplary embodiment, the second section 68 of the string 36 extends between first and second ends 82 and 84. In some embodiments, the first end 82 of the second section 68 is coupled to or affixed to or anchored at the stud or post (such as exemplary stud or post 50) on the outer side (such as exemplary outer side 52) of the upper pulley (such as exemplary upper pulley 40) of the second wheel 30, and at least a portion of the second section 68 extending away from the first end 82 wraps around the upper pulley of the second wheel 30; and the second end 84 of the second section 68 is coupled to or affixed to or anchored at the stud or post (such as exemplary stud or post 50) on the outer side (not shown) of the lower pulley (such as exemplary lower pulley 42) of the second wheel 30, and at least a portion of the second section 68 extending away from the second end 84 wraps around the lower pulley of the second wheel 30.
In a non-limiting exemplary embodiment, the first power cord 32 extends between first and second ends 56 and 58. In some embodiments, the first power cord 32 and the riser 14 are coupled at first end 56. In certain embodiments, the second end 58 of the first power cord 32 is coupled to or affixed to or anchored at the stud (such as exemplary stud 46) of the first wheel 28. In a non-limiting exemplary embodiment, at least a portion of the first power cord 32 extending away from the second end 58 wraps around the post (such as exemplary post 48) of the first wheel 28 and extends through or between the post and the spool (such as exemplary spool 44) of the first wheel 28.
Likewise, in a non-limiting exemplary embodiment, the second power cord 34 extends between first and second ends 60 and 62. In some embodiments, the second power cord 34 and the riser 14 are coupled at first end 60. In certain embodiments, the second end 62 of the second power cord 34 is coupled to or affixed to or anchored at the stud (such as exemplary stud 46) of the second wheel 30. In a non-limiting exemplary embodiment, at least a portion of the second power cord 34 extending away from the second end 62 wraps around the post (such as exemplary post 48) of the second wheel 30 and extends through or between the post and the spool (such as exemplary spool 44) of the second wheel 30.
In a non-limiting exemplary embodiment, the first limb 16 is defined at least in part by upper and lower limbs 86 and 88. In some embodiments, the first wheel 28 is rotatably coupled to the first limb 16 proximate the second end 22 thereof. In certain embodiments, the first wheel 28 is disposed between the upper and lower limbs 86 and 88 of the first limb 16. In some embodiments, a first axle or rod 94 extends through the spool (such as exemplary spool 44) of the first wheel 28 and away from the outer sides (such as exemplary outer side 52) of the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the first wheel 28. In certain embodiments, the first axle or rod 94 extending out of the first wheel 28 is fixedly or rotatably coupled to the upper and lower limbs 86 and 88 of the first limb 16.
Likewise, in a non-limiting exemplary embodiment, the second limb 18 is defined at least in part by upper and lower limbs 90 and 92. In some embodiments, the second wheel 30 is rotatably coupled to the second limb 18 proximate the second end 26 thereof. In certain embodiments, the second wheel 30 is disposed between the upper and lower limbs 90 and 92 of the second limb 18. In some embodiments, a second axle or rod 96 extends through the spool (such as exemplary spool 44) of the second wheel 30 and away from the outer sides (such as exemplary outer side 52) of the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the second wheel 30. In certain embodiments, the second axle or rod 96 extending out of the second wheel 30 is fixedly or rotatably coupled to the upper and lower limbs 90 and 92 of the second limb 18.
In a non-limiting exemplary embodiment, when at least a portion of the middle section 64 of the string 36 is pulled in the proximal direction, such as towards the user of bow 10, at least a portion of the first section 66 of the string 36 unwraps from the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the first wheel 28. Concurrently, at least a portion of the second section 68 of the string 36 unwraps from the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the second wheel 30.
In a non-limiting exemplary embodiment, upon releasing the string 36 that has been pulled in the proximal direction, at least a portion of the first section 66 of the string 36 wraps onto or wraps around the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the first wheel 28. Concurrently, at least a portion of the second section 68 of the string 36 wraps onto or wraps around the upper and lower pulleys (such as exemplary upper and lower pulleys 40 and 42) of the second wheel 30.
In a non-limiting exemplary embodiment, when at least a portion of the middle section 64 of the string 36 is pulled in the proximal direction, such as towards the user of bow 10, at least a portion of the first power cord 32 wraps onto the spool (such as exemplary spool 44) of the first wheel 28. Concurrently, at least a portion of the second power cord 34 wraps onto the spool (such as exemplary spool 44) of the second wheel 30.
In a non-limiting exemplary embodiment, upon releasing the string 36 that has been pulled in the proximal direction, at least a portion of the first power cord 32 unwraps from the spool (such as exemplary spool 44) of the first wheel 28. Concurrently, at least a portion of the second power cord 34 unwraps from the spool (such as exemplary spool 44) of the second wheel 30.
In a non-limiting exemplary embodiment, pulling at least a portion of the middle section 64 of the string 36 in the proximal direction, such as towards the user of bow 10, the second ends 22 and 26 of the first and second limbs 16 and 18 displace or move or translate towards each other. In some embodiments, the second ends 22 and 26 are displaced or translate or move towards each other along the same plane. In certain embodiments, the approximate centers of the first and second wheel 28 and 30, for instance at the spool (such as exemplary spool 44) of the first and second wheel 28 and 30 are displaced or translate or move towards each other along substantially the same plane. In other words, the approximate center of the first wheel 28 does not move along a first plane that is substantially above or below a second plane along which the approximate center of the second wheel 30 moves. That is, the “cam lean”, as is known in the art, is eliminated or minimized.
In a non-limiting exemplary embodiment, the energy storage system 12 includes first and second tension rods 98 and 100. In some embodiments, the first tension rod 98 extends between first and second ends 102 and 104; and the second tension rod 100 extends between first and second ends 106 and 108. In certain embodiments, the first and second tension rods 98 and 100 couple the first and second power cords 32 and 34, respectively, to the riser 14. In some embodiments, the first tension rod 98 extends between the riser 14 and the first end 56 of the first power cord 32; and the second tension rod 100 extends between the riser 14 and the first end 60 of the second power cord 34. In certain embodiments, the first end 102 of the first tension rod 98 is coupled to or attached to or affixed to the riser 14; and the second end 104 of the first tension rod 98 is coupled to the first end 56 of the first power cord 32. Likewise, in a non-limiting exemplary embodiment, the first end 106 of the second tension rod 100 is coupled to or attached to or affixed to the riser 14; and the second end 108 of the second tension rod 100 is coupled to the first end 60 of the second power cord 34.
In a non-limiting exemplary embodiment, the energy storage system 12 includes a cable hanger 110 having first and second ends 112 and 114. In some embodiments, the first end 112 of the cable hanger 110 is coupled to the first tension rod 98 proximate the second end 104 thereof; and the second end 114 of the cable hanger 110 is coupled to the second tension rod 100 proximate the second end 108 thereof.
In a non-limiting exemplary embodiment, the cable hanger 110 is coupled to a barrel or a rail or a track of the bow 10.
In a non-limiting exemplary embodiment, a length of the first tension rod 98 and a length of the second tension rod 100 is adjustable.
In a non-limiting exemplary embodiment, the first and second power cords 32 and 34 are directly coupled to or attached to or affixed to the riser 14. In other words, the first ends 56 and 60 of the first and second power cords 32 and 34, respectively, are coupled to or attached to or affixed to the riser 14 without any intervening parts or components or structures between the riser 14 and the first ends 56 and 60.
In a non-limiting exemplary embodiment, the first and second power cords 32 and 34 are directly coupled to or attached to or affixed to a barrel or a rail or a track of the bow 10. In other words, the first ends 56 and 60 of the first and second power cords 32 and 34, respectively, are coupled to or attached to or affixed to the barrel or the rail or the track of the bow 10.
In a non-limiting exemplary embodiment of the bow 10, the string 36 is distal of the first and second axles or rods 94 and 96. In other words, in some embodiments, the string 36 extending between the first and second wheels 28 and 30 traverses a plane located distal of a plane traversed by or extending between both the first and second axles or rods 94 and 96. In another non-limiting exemplary embodiment of the bow (not shown), the string 36 is proximal of the first and second axles or rods 94 and 96. In other words, in some embodiments, the string 36 extending between the first and second wheels 28 and 30 traverses a plane located proximal of a plane traversed by or extending between both the first and second axles or rods 94 and 96. In yet another non-limiting exemplary embodiment, the bow 10 is configured as a reverse draw bow as is well known in the art. In another non-limiting exemplary embodiment, the bow 10 is configured to eliminate or at least minimize “cam lean” as understood by a person skilled in the art.
In a non-limiting exemplary embodiment, the first and second wheels 28 and 30 each have one or more single-track grooves. In other words, the first and second wheels 28 and 30 are devoid of spiraling or helical grooves or tracks. In a non-limiting exemplary embodiment, the first and second wheels 28 and 30 are substantially similar.
In a non-limiting exemplary embodiment, the first and second wheels 28 and 30 are configured as first and second cams as are known in the art or to a person of ordinary skills. In a non-limiting exemplary embodiment, the first and second cams each have one or more single-track grooves. In other words, the first and second cams are devoid of spiraling or helical grooves or tracks. In a non-limiting exemplary embodiment, the first and second cams are substantially similar.
In view thereof, modified and/or alternate configurations of the non-limiting exemplary embodiments illustrated and described herein may become apparent or obvious to one of ordinary skill. All such variations are considered as being within the metes and bounds of the instant disclosure. For instance, while reference may have been made to particular feature(s) and/or function(s), this disclosure is considered to also encompass any and all equivalents providing functionalities similar to those described herein with reference to the accompanying drawings. Accordingly, the spirit, scope and intent of the instant disclosure embraces all variations. Consequently, the metes and bounds of the instant disclosure are defined by the appended claims and any and all equivalents thereof.
Pursuant to 35 U.S.C. § 371, this patent application is a U.S. National Stage patent application (“371 Application”) of International Patent Application No. PCT/US20/25043 filed Mar. 26, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/830,208 filed Apr. 5, 2019, and of U.S. Provisional Patent Application No. 62/885,540 filed Aug. 12, 2019, which are herein incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/025043 | 3/26/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/205451 | 10/8/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9470471 | DeBole | Oct 2016 | B2 |
9528789 | Biafore, Jr. | Dec 2016 | B2 |
9945634 | Isenhower | Apr 2018 | B1 |
10126088 | Yehle | Nov 2018 | B2 |
10139191 | Kempf | Nov 2018 | B1 |
20140261358 | Pulkrabek | Sep 2014 | A1 |
20150204631 | McPherson | Jul 2015 | A1 |
20150233664 | McPherson | Aug 2015 | A1 |
20170038173 | Yehle | Feb 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20220136797 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62885540 | Aug 2019 | US | |
62830208 | Apr 2019 | US |