This disclosure relates to engaging test slots and related devices, systems, and methods.
Storage device manufacturers typically test manufactured storage devices for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of storage devices serially or in parallel. Manufacturers tend to test large numbers of storage devices simultaneously. Storage device testing systems typically include one or more tester racks having multiple test slots that receive storage devices for testing. In some cases, the storage devices are placed in carriers which are used for loading and unloading the storage devices to and from the test racks.
The testing environment immediately around the storage device is regulated. Minimum temperature fluctuations in the testing environment may be critical for accurate test conditions and for safety of the storage devices. In addition, the latest generations of disk drives, which have higher capacities, faster rotational speeds and smaller head clearance, are more sensitive to vibration. Excess vibration can affect the reliability of test results and the integrity of electrical connections. Under test conditions, the drives themselves can propagate vibrations through supporting structures or fixtures to adjacent units. This vibration “cross-talking,” together with external sources of vibration, contributes to bump errors, head slap and non-repetitive run-out (NRRO), which may result in lower yields and increased manufacturing costs. Current disk drive testing systems employ automation and structural support systems that contribute to excess vibrations in the system and/or require large footprints.
In general, this disclosure relates to engaging test slots and related devices, systems, methods, and means.
In one aspect, a test slot is engaged with automated machinery to inhibit movement of the test slot, thereby inhibiting transmission of vibration from the test slot to its surroundings. While the automated machinery is engaged with the test slot, the automated machinery is actuated to insert a storage device into the test slot, or remove the storage device from the test slot.
In another aspect, an apparatus includes at least one engaging element configured to engage a test slot to inhibit movement of the test slot, thereby inhibiting transmission of vibration from the test slot to its surroundings. The apparatus further includes an automated transporter, while the at least one engaging element is engaged with the test slot, configured to insert a storage device into the test slot; or remove the storage device from the test slot.
In another aspect, automated machinery includes means for engaging a test slot to inhibit movement of the test slot, thereby inhibiting transmission of vibration from the test slot to its surroundings. The automated machinery also includes means for, while the automated machinery is engaged with the test slot, inserting a storage device into the test slot, or removing the storage device from the test slot.
Embodiments may include one or more of the following features. The automated machinery engages the test slot with one or more actuators. The one or more actuators include one or more first engaging elements. The test slot includes one or more second engaging elements. Engaging the test slot includes causing the one first engaging elements to temporarily connect to the one or more second engaging elements. The one or more first engaging elements may include an element selected from a group consisting of: a pin, a recess, a slot, a magnet, an adhesive, a clasp, and a hook. The one or more first engaging elements may alternatively be constructed so as to present a surface to engage the test slot by friction. The one or more second engaging elements may include an element selected from a group consisting of: a pin, a recess, a slot, a magnet, an adhesive, a clasp, and a hook. The one or more second engaging elements may alternatively be constructed so as to present a surface to be engaged by friction. The automated machinery includes a robot that includes a manipulator for carrying the storage device. The actuators are coupled to the robot and/or the manipulator. The storage device is carried by a storage device transporter. The automated machinery includes a robot and a manipulator for engaging the storage device transporter, and the actuators are coupled to the robot and/or the manipulator. The at least engaging element is configured to temporarily connect to one or more second engaging elements of the test slot. The at least one engaging element includes an element selected from a group consisting of a pin, a recess, a slot, a magnet, an adhesive, a clasp, and a hook. The at least one engaging element is adapted to engage the test slot by friction. The one or more second engaging elements include an element selected from a group consisting of a pin, a recess, a slot, a magnet, an adhesive, a clasp, and a hook. The automated transporter comprises a robot that comprises a manipulator for carrying the storage device, wherein the at least one engaging element is coupled to the robot and/or the manipulator. The storage device is carried by the automated transporter.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
System Overview
As shown in
Each carrier receptacle 106 can support a test slot carrier 110. As shown in
A storage device, as used herein, includes disk drives, solid state drives, memory devices, and any device that benefits from asynchronous testing. A disk drive is generally a non-volatile storage device which stores digitally encoded data on rapidly rotating platters with magnetic surfaces. A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD using SRAM or DRAM (instead of flash memory) is often called a RAM-drive. The term solid-state generally distinguishes solid-state electronics from electromechanical devices.
As shown in
Referring to
Referring to
Referring to
Referring to
As shown in
Engaging the Test Slot
As mentioned above, storage devices (e.g., storage device 600) are susceptible to shock and vibration during operation and testing. Shock and vibration events can also occur, for example, when a storage device is inserted or removed from a test slot 500. During testing, storage devices are frequently swapped out for different storage devices while the surrounding storage devices are operating or being tested. In some examples, it can be difficult to insert or remove a storage device from the test slot 500 without causing a frame (e.g., frame 502) of the test slot 500 from bumping into the chassis 102 of the test rack 100 (
In some examples, additional shock or vibration events can be created while the storage device 600 is pushed against or pulled away from one or more electrical connecting elements located in the test slot 500. In order for the storage device 500 to mate or un-mate with the electrical connecting elements, some degree of force (e.g., 45 Newtons) must be exerted on the storage device 600. This force can be greater than the force require to insert the storage device 600 into the test slot 500.
One way to reduce the likelihood of causing shock or vibration events is to use precision automation. As described above, an automated transporter (e.g., the robot 300 (
In some examples, a portion of the robot 300 can engage (e.g., grab, pinch, hug, stabilize, attach to, or the like) a frame of the test slot 500 in order to reduce shock and vibration events caused by inserting or removing a storage device. Engaging the frame of the test slot inhibits movement of the test slot relative to a chassis supporting the test slot, including inhibiting movement in the direction used to insert or remove a storage device from the test slot. By holding on to the test slot 500, the robot 300 can push or pull the storage device relative to the test slot 500 without moving the test slot 500. Thus, forces exerted on the test slot 500 are transmitted to the robot 300, rather than to the chassis 102 and adjacent storage devices.
Certain features of the test slot 500 or the robot 300 can allow the robot 300 to more easily or more effectively engage the test slot 500. These features can also allow the robot 300 to approximately register relative to the test slot 500, and then engage the test slot 500 while moving it into a precise alignment with the robot 300.
In the example of
In some examples, after the robot 300 extends the manipulator 312 (and the attached actuators 516, 518) toward the test slot 500, the robot 300 may use cameras or other sensors to crudely align the manipulator 312 and actuators 516, 518 with the test slot 500. Once the actuators are in a position to engage the test slot 500 (e.g., by aligning the engaging element 506 with the recess 512 and by aligning the engaging elements 508, 510 with the recess 514), the actuators 516, 518 can “grab” the test slot 500 by causing the actuators 516, 518 to move in directions 520, 522, respectively. While in some examples, this force can be applied pneumatically, hydraulically, or mechanically, the dimensions of the actuators 516, 518 relative to the test slot 500 can be design such that the actuators 516, 518 simply “slip” over the engaging elements.
Once the engaging elements 506, 508, 510 have mated with the recesses 512, 514, an indication can be sent to the robot 300 that the robot 300 has successfully engaged the test slot 500. After this indication has been received, the manipulator 312 can begin to insert the transporter 400 into the test slot 500 by applying force to the transporter 400 in a direction 524. The manipulator 312 may continue to apply force to the transporter 400 until the transporter 400 or storage device 600 has successfully mated with one or more connectors (not shown) located near the distal end 526 of the test slot 500. Again, an indication can be sent to the robot 300 when the transporter and storage device have been successfully inserted into the test slot 500.
By gripping the test slot 500 prior to inserting the transporter 400 into the test slot 500, any impact of the transporter 400 or storage device 600 against a frame of the test slot 500 will not transmit vibration energy to the chassis 102. Instead, because the actuators 516, 518 are engaged with the test slot 500, any shock or vibration energy will be absorbed by the actuators 516, 518, the manipulator 312, and the robot 300. If the robot 300, the manipulator 312, and the actuators 516, 518 are mechanically isolated from the test rack 100, this energy will not be transferred to the test rack 100 or the other storage devices being tested therein.
Similar techniques can be used to remove the transporter 400 and/or the storage device 600 from the test slot 500. In that case, the robot 300 first engages the test slot 500 with the actuators 516, 518 to stabilize the test slot 500. Once the actuators 516, 518 have successfully engaged the test slot 500, the manipulator 312 can begin removing the transporter 400 and/or storage device 600 from the test slot 500 (e.g., the manipulator can being engaging the transporter 400, or can begin to remove a transporter 400 with which the manipulator 312 is already interfacing).
While in the examples above there are two actuators 516, 518, any number or type of actuators can be used.
While in the examples above the engagement elements 506, 508, and 510 are described as kinematic pins, other types of engagement elements can be used. For example the engaging elements may be self-aligning, kinematic, non self-aligning, non kinematic, or a combination thereof. Exemplary engagement elements may include pins, pegs, recesses, slots, holes, detents, grooves, friction elements, or magnets. In the case where the engagement elements use friction to engage the test slot, the engagement elements may include one or more friction pads, or one or more textured surfaces of the engagement elements. In some examples, the engagement elements may engage the test slot using a native friction associated with the engagement elements. Similarly, while the actuators 516, 518 have been described as including recesses 512, 514, any suitable engagement element can be used to correspond with the engagement elements of the test slot 500. Moreover, the test slot 500 and the actuators 516, 518 can include any number, shape, size, or type of engagement elements. The test slot can also be engaged in locations on the test slot in addition to or instead of the side walls of the test slot 500. For example, the test slot can be engaged at side and the front, the side and the top, the side and the bottom, the top and the bottom, or any combination thereof.
In some examples, the actuators 516, 518 can engage the test slot 500 after a portion of the storage device 600 or transporter 400 has already been inserted into or removed from the test slot 500. Stated differently, the robot 300 may not use the actuators 516, 518 to “grip” the test slot 500 until at least part of the insertion or removal action has been completed.
In some examples, automated machinery such as the robot 300 (
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, the protrusions on the test slots that interface with the isolators in the body could be embodied as protrusions on the body that interface with isolators on the test slots. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
557186 | Cahill | Mar 1896 | A |
2224407 | Passur | Dec 1940 | A |
2380026 | Clarke | Jul 1945 | A |
2631775 | Gordon | Mar 1953 | A |
2635524 | Jenkins | Apr 1953 | A |
3120166 | Lyman | Feb 1964 | A |
3360032 | Sherwood | Dec 1967 | A |
3364838 | Bradley | Jan 1968 | A |
3517601 | Courchesne | Jun 1970 | A |
3845286 | Aronstein et al. | Oct 1974 | A |
4147299 | Freeman | Apr 1979 | A |
4233644 | Hwang et al. | Nov 1980 | A |
4336748 | Martin et al. | Jun 1982 | A |
4379259 | Varadi et al. | Apr 1983 | A |
4477127 | Kume | Oct 1984 | A |
4495545 | Dufresne et al. | Jan 1985 | A |
4526318 | Fleming et al. | Jul 1985 | A |
4620248 | Gitzendanner | Oct 1986 | A |
4648007 | Garner | Mar 1987 | A |
4654732 | Mesher | Mar 1987 | A |
4665455 | Mesher | May 1987 | A |
4683424 | Cutright et al. | Jul 1987 | A |
4685303 | Branc et al. | Aug 1987 | A |
4688124 | Scribner et al. | Aug 1987 | A |
4713714 | Gatti et al. | Dec 1987 | A |
4739444 | Zushi et al. | Apr 1988 | A |
4754397 | Varaiya et al. | Jun 1988 | A |
4768285 | Woodman, Jr. | Sep 1988 | A |
4778063 | Ueberreiter | Oct 1988 | A |
4801234 | Cedrone | Jan 1989 | A |
4809881 | Becker | Mar 1989 | A |
4817273 | Lape et al. | Apr 1989 | A |
4817934 | McCormick et al. | Apr 1989 | A |
4851965 | Gabuzda et al. | Jul 1989 | A |
4881591 | Rignall | Nov 1989 | A |
4888549 | Wilson et al. | Dec 1989 | A |
4911281 | Jenkner | Mar 1990 | A |
4967155 | Magnuson | Oct 1990 | A |
5012187 | Littlebury | Apr 1991 | A |
5045960 | Eding | Sep 1991 | A |
5061630 | Knopf et al. | Oct 1991 | A |
5119270 | Bolton et al. | Jun 1992 | A |
5122914 | Hanson | Jun 1992 | A |
5127684 | Klotz et al. | Jul 1992 | A |
5128813 | Lee | Jul 1992 | A |
5136395 | Ishii et al. | Aug 1992 | A |
5158132 | Guillemot | Oct 1992 | A |
5168424 | Bolton et al. | Dec 1992 | A |
5171183 | Pollard et al. | Dec 1992 | A |
5173819 | Takahashi et al. | Dec 1992 | A |
5176202 | Richard | Jan 1993 | A |
5205132 | Fu | Apr 1993 | A |
5206772 | Hirano et al. | Apr 1993 | A |
5207613 | Ferchau et al. | May 1993 | A |
5210680 | Scheibler | May 1993 | A |
5237484 | Ferchau et al. | Aug 1993 | A |
5263537 | Plucinski et al. | Nov 1993 | A |
5269698 | Singer | Dec 1993 | A |
5295392 | Hensel et al. | Mar 1994 | A |
5309323 | Gray et al. | May 1994 | A |
5325263 | Singer et al. | Jun 1994 | A |
5349486 | Sugimoto et al. | Sep 1994 | A |
5368072 | Cote | Nov 1994 | A |
5374395 | Robinson et al. | Dec 1994 | A |
5379229 | Parsons et al. | Jan 1995 | A |
5398058 | Hattori | Mar 1995 | A |
5412534 | Cutts et al. | May 1995 | A |
5414591 | Kimura et al. | May 1995 | A |
5426581 | Kishi et al. | Jun 1995 | A |
5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
5477416 | Schkrohowsky et al. | Dec 1995 | A |
5484012 | Hiratsuka | Jan 1996 | A |
5486681 | Dagnac et al. | Jan 1996 | A |
5487579 | Woodruff | Jan 1996 | A |
5491610 | Mok et al. | Feb 1996 | A |
5543727 | Bushard et al. | Aug 1996 | A |
5546250 | Diel | Aug 1996 | A |
5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
5563768 | Perdue | Oct 1996 | A |
5570740 | Flores et al. | Nov 1996 | A |
5593380 | Bittikofer | Jan 1997 | A |
5601141 | Gordon et al. | Feb 1997 | A |
5604662 | Anderson et al. | Feb 1997 | A |
5610893 | Soga et al. | Mar 1997 | A |
5617430 | Angelotti et al. | Apr 1997 | A |
5644705 | Stanley | Jul 1997 | A |
5646918 | Dimitri et al. | Jul 1997 | A |
5654846 | Wicks et al. | Aug 1997 | A |
5673029 | Behl et al. | Sep 1997 | A |
5694290 | Chang | Dec 1997 | A |
5718627 | Wicks | Feb 1998 | A |
5718628 | Nakazato et al. | Feb 1998 | A |
5731928 | Jabbari et al. | Mar 1998 | A |
5751549 | Eberhardt et al. | May 1998 | A |
5754365 | Beck et al. | May 1998 | A |
5761032 | Jones | Jun 1998 | A |
5764615 | Ware et al. | Jun 1998 | A |
5793610 | Schmitt et al. | Aug 1998 | A |
5811678 | Hirano | Sep 1998 | A |
5812761 | Seki et al. | Sep 1998 | A |
5819842 | Potter et al. | Oct 1998 | A |
5831525 | Harvey | Nov 1998 | A |
5851143 | Hamid | Dec 1998 | A |
5859409 | Kim et al. | Jan 1999 | A |
5859540 | Fukumoto | Jan 1999 | A |
5862037 | Behl | Jan 1999 | A |
5870630 | Reasoner et al. | Feb 1999 | A |
5886639 | Behl et al. | Mar 1999 | A |
5890959 | Pettit et al. | Apr 1999 | A |
5912799 | Grouell et al. | Jun 1999 | A |
5913926 | Anderson et al. | Jun 1999 | A |
5914856 | Morton et al. | Jun 1999 | A |
5927386 | Lin | Jul 1999 | A |
5956301 | Dimitri et al. | Sep 1999 | A |
5959834 | Chang | Sep 1999 | A |
5999356 | Dimitri et al. | Dec 1999 | A |
5999365 | Hasegawa et al. | Dec 1999 | A |
6000623 | Blatti et al. | Dec 1999 | A |
6005404 | Cochran et al. | Dec 1999 | A |
6005770 | Schmitt | Dec 1999 | A |
6008636 | Miller et al. | Dec 1999 | A |
6008984 | Cunningham et al. | Dec 1999 | A |
6011689 | Wrycraft | Jan 2000 | A |
6031717 | Baddour et al. | Feb 2000 | A |
6034870 | Osborn et al. | Mar 2000 | A |
6042348 | Aakalu et al. | Mar 2000 | A |
6045113 | Itakura | Apr 2000 | A |
6055814 | Song | May 2000 | A |
6066822 | Nemoto et al. | May 2000 | A |
6067225 | Reznikov et al. | May 2000 | A |
6069792 | Nelik | May 2000 | A |
6084768 | Bolognia | Jul 2000 | A |
6094342 | Dague et al. | Jul 2000 | A |
6104607 | Behl | Aug 2000 | A |
6115250 | Schmitt | Sep 2000 | A |
6122131 | Jeppson | Sep 2000 | A |
6122232 | Schell et al. | Sep 2000 | A |
6124707 | Kim et al. | Sep 2000 | A |
6130817 | Flotho et al. | Oct 2000 | A |
6144553 | Hileman et al. | Nov 2000 | A |
6153999 | Borrego | Nov 2000 | A |
6166901 | Gamble et al. | Dec 2000 | A |
6169413 | Pack et al. | Jan 2001 | B1 |
6169930 | Blachek et al. | Jan 2001 | B1 |
6177805 | Pih | Jan 2001 | B1 |
6178835 | Orriss et al. | Jan 2001 | B1 |
6181557 | Gatti | Jan 2001 | B1 |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6185097 | Behl | Feb 2001 | B1 |
6188191 | Frees et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6193339 | Behl et al. | Feb 2001 | B1 |
6209842 | Anderson et al. | Apr 2001 | B1 |
6227516 | Webster, Jr. et al. | May 2001 | B1 |
6229275 | Yamamoto | May 2001 | B1 |
6231145 | Liu | May 2001 | B1 |
6233148 | Shen | May 2001 | B1 |
6236563 | Buican et al. | May 2001 | B1 |
6247944 | Bolognia et al. | Jun 2001 | B1 |
6249824 | Henrichs | Jun 2001 | B1 |
6252769 | Tullstedt et al. | Jun 2001 | B1 |
6262863 | Ostwald et al. | Jul 2001 | B1 |
6272007 | Kitlas et al. | Aug 2001 | B1 |
6272767 | Botruff et al. | Aug 2001 | B1 |
6281677 | Cosci et al. | Aug 2001 | B1 |
6282501 | Assouad | Aug 2001 | B1 |
6285524 | Boigenzahn et al. | Sep 2001 | B1 |
6289678 | Pandolfi | Sep 2001 | B1 |
6297950 | Erwin | Oct 2001 | B1 |
6298672 | Valicoff, Jr. | Oct 2001 | B1 |
6302714 | Bolognia et al. | Oct 2001 | B1 |
6304839 | Ho et al. | Oct 2001 | B1 |
6307386 | Fowler et al. | Oct 2001 | B1 |
6327150 | Levy et al. | Dec 2001 | B1 |
6330154 | Fryers et al. | Dec 2001 | B1 |
6351379 | Cheng | Feb 2002 | B1 |
6354792 | Kobayashi et al. | Mar 2002 | B1 |
6356409 | Price et al. | Mar 2002 | B1 |
6356415 | Kabasawa | Mar 2002 | B1 |
6384995 | Smith | May 2002 | B1 |
6388437 | Wolski et al. | May 2002 | B1 |
6388875 | Chen | May 2002 | B1 |
6388878 | Chang | May 2002 | B1 |
6389225 | Malinoski et al. | May 2002 | B1 |
6411584 | Davis et al. | Jun 2002 | B2 |
6421236 | Montoya et al. | Jul 2002 | B1 |
6434000 | Pandolfi | Aug 2002 | B1 |
6434498 | Ulrich et al. | Aug 2002 | B1 |
6434499 | Ulrich et al. | Aug 2002 | B1 |
6464080 | Morris et al. | Oct 2002 | B1 |
6467153 | Butts et al. | Oct 2002 | B2 |
6473297 | Behl et al. | Oct 2002 | B1 |
6473301 | Levy et al. | Oct 2002 | B1 |
6476627 | Pelissier et al. | Nov 2002 | B1 |
6477044 | Foley et al. | Nov 2002 | B2 |
6477442 | Valerino, Sr. | Nov 2002 | B1 |
6480380 | French et al. | Nov 2002 | B1 |
6480382 | Cheng | Nov 2002 | B2 |
6487071 | Tata et al. | Nov 2002 | B1 |
6489793 | Jones et al. | Dec 2002 | B2 |
6494663 | Ostwald et al. | Dec 2002 | B2 |
6525933 | Eland | Feb 2003 | B2 |
6526841 | Wanek et al. | Mar 2003 | B1 |
6535384 | Huang | Mar 2003 | B2 |
6537013 | Emberty et al. | Mar 2003 | B2 |
6544309 | Hoefer et al. | Apr 2003 | B1 |
6546445 | Hayes | Apr 2003 | B1 |
6553532 | Aoki | Apr 2003 | B1 |
6560107 | Beck et al. | May 2003 | B1 |
6565163 | Behl et al. | May 2003 | B2 |
6566859 | Wolski et al. | May 2003 | B2 |
6567266 | Ives et al. | May 2003 | B2 |
6570734 | Ostwald et al. | May 2003 | B2 |
6577586 | Yang et al. | Jun 2003 | B1 |
6577687 | Hall et al. | Jun 2003 | B2 |
6618254 | Ives | Sep 2003 | B2 |
6626846 | Spencer | Sep 2003 | B2 |
6628518 | Behl et al. | Sep 2003 | B2 |
6635115 | Fairbairn et al. | Oct 2003 | B1 |
6640235 | Anderson | Oct 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6651192 | Viglione et al. | Nov 2003 | B1 |
6654240 | Tseng et al. | Nov 2003 | B1 |
6669431 | Falace et al. | Dec 2003 | B1 |
6679128 | Wanek et al. | Jan 2004 | B2 |
6693757 | Hayakawa et al. | Feb 2004 | B2 |
6741529 | Getreuer | May 2004 | B1 |
6746648 | Mattila et al. | Jun 2004 | B1 |
6751093 | Hsu et al. | Jun 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6791799 | Fletcher | Sep 2004 | B2 |
6798651 | Syring et al. | Sep 2004 | B2 |
6798972 | Ito et al. | Sep 2004 | B1 |
6801834 | Konshak et al. | Oct 2004 | B1 |
6806700 | Wanek et al. | Oct 2004 | B2 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826046 | Muncaster et al. | Nov 2004 | B1 |
6830372 | Liu et al. | Dec 2004 | B2 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6861861 | Song et al. | Mar 2005 | B2 |
6862173 | Konshak et al. | Mar 2005 | B1 |
6867939 | Katahara et al. | Mar 2005 | B2 |
6892328 | Klein et al. | May 2005 | B2 |
6904479 | Hall et al. | Jun 2005 | B2 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6928336 | Peshkin et al. | Aug 2005 | B2 |
6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
6957291 | Moon et al. | Oct 2005 | B2 |
6965811 | Dickey et al. | Nov 2005 | B2 |
6974017 | Oseguera | Dec 2005 | B2 |
6976190 | Goldstone | Dec 2005 | B1 |
6980381 | Gray et al. | Dec 2005 | B2 |
6982872 | Behl et al. | Jan 2006 | B2 |
7006325 | Emberty et al. | Feb 2006 | B2 |
7039924 | Goodman et al. | May 2006 | B2 |
7054150 | Orriss et al. | May 2006 | B2 |
7070323 | Wanek et al. | Jul 2006 | B2 |
7076391 | Pakzad et al. | Jul 2006 | B1 |
7077614 | Hasper et al. | Jul 2006 | B1 |
7088541 | Orriss et al. | Aug 2006 | B2 |
7092251 | Henry | Aug 2006 | B1 |
7106582 | Albrecht et al. | Sep 2006 | B2 |
7123477 | Coglitore et al. | Oct 2006 | B2 |
7126777 | Flechsig et al. | Oct 2006 | B2 |
7130138 | Lum et al. | Oct 2006 | B2 |
7134553 | Stephens | Nov 2006 | B2 |
7139145 | Archibald et al. | Nov 2006 | B1 |
7164579 | Muncaster et al. | Jan 2007 | B2 |
7167360 | Inoue et al. | Jan 2007 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7203060 | Kay et al. | Apr 2007 | B2 |
7206201 | Behl et al. | Apr 2007 | B2 |
7216968 | Smith et al. | May 2007 | B2 |
7219028 | Bae et al. | May 2007 | B2 |
7219273 | Fisher et al. | May 2007 | B2 |
7227746 | Tanaka et al. | Jun 2007 | B2 |
7232101 | Wanek et al. | Jun 2007 | B2 |
7243043 | Shin | Jul 2007 | B2 |
7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
7273344 | Ostwald et al. | Sep 2007 | B2 |
7280353 | Wendel et al. | Oct 2007 | B2 |
7289885 | Basham et al. | Oct 2007 | B2 |
7304855 | Milligan et al. | Dec 2007 | B1 |
7315447 | Inoue et al. | Jan 2008 | B2 |
7349205 | Hall et al. | Mar 2008 | B2 |
7353524 | Lin et al. | Apr 2008 | B1 |
7385385 | Magliocco et al. | Jun 2008 | B2 |
7395133 | Lowe | Jul 2008 | B2 |
7403451 | Goodman et al. | Jul 2008 | B2 |
7421623 | Haugh | Sep 2008 | B2 |
7437212 | Farchmin et al. | Oct 2008 | B2 |
7447011 | Wade et al. | Nov 2008 | B2 |
7457112 | Fukuda et al. | Nov 2008 | B2 |
7467024 | Flitsch | Dec 2008 | B2 |
7476362 | Angros | Jan 2009 | B2 |
7483269 | Marvin, Jr. et al. | Jan 2009 | B1 |
7505264 | Hall et al. | Mar 2009 | B2 |
7554811 | Scicluna et al. | Jun 2009 | B2 |
7568122 | Mechalke et al. | Jul 2009 | B2 |
7570455 | Deguchi et al. | Aug 2009 | B2 |
7573715 | Mojaver et al. | Aug 2009 | B2 |
7584851 | Hong et al. | Sep 2009 | B2 |
7612996 | Atkins et al. | Nov 2009 | B2 |
7625027 | Kiaie et al. | Dec 2009 | B2 |
7630196 | Hall et al. | Dec 2009 | B2 |
7643289 | Ye et al. | Jan 2010 | B2 |
7646596 | Ng | Jan 2010 | B2 |
7729107 | Atkins et al. | Jun 2010 | B2 |
20010006453 | Glorioso et al. | Jul 2001 | A1 |
20010044023 | Johnson et al. | Nov 2001 | A1 |
20010046118 | Yamanashi et al. | Nov 2001 | A1 |
20010048590 | Behl et al. | Dec 2001 | A1 |
20020030981 | Sullivan et al. | Mar 2002 | A1 |
20020044416 | Harmon, III et al. | Apr 2002 | A1 |
20020051338 | Jiang et al. | May 2002 | A1 |
20020071248 | Huang et al. | Jun 2002 | A1 |
20020079422 | Jiang | Jun 2002 | A1 |
20020090320 | Burow et al. | Jul 2002 | A1 |
20020116087 | Brown | Aug 2002 | A1 |
20020161971 | Dimitri et al. | Oct 2002 | A1 |
20020172004 | Ives et al. | Nov 2002 | A1 |
20030035271 | Lelong et al. | Feb 2003 | A1 |
20030043550 | Ives | Mar 2003 | A1 |
20030155460 | Hiraguchi | Aug 2003 | A1 |
20030206397 | Allgeyer et al. | Nov 2003 | A1 |
20040165489 | Goodman et al. | Aug 2004 | A1 |
20040230399 | Shin | Nov 2004 | A1 |
20040236465 | Butka et al. | Nov 2004 | A1 |
20040264121 | Orriss et al. | Dec 2004 | A1 |
20050004703 | Christie | Jan 2005 | A1 |
20050010836 | Bae et al. | Jan 2005 | A1 |
20050018397 | Kay et al. | Jan 2005 | A1 |
20050055601 | Wilson et al. | Mar 2005 | A1 |
20050057849 | Twogood et al. | Mar 2005 | A1 |
20050069400 | Dickey et al. | Mar 2005 | A1 |
20050109131 | Wanek et al. | May 2005 | A1 |
20050116702 | Wanek et al. | Jun 2005 | A1 |
20050131578 | Weaver | Jun 2005 | A1 |
20050179457 | Min et al. | Aug 2005 | A1 |
20050185323 | Brace et al. | Aug 2005 | A1 |
20050207059 | Cochrane | Sep 2005 | A1 |
20050219809 | Muncaster et al. | Oct 2005 | A1 |
20050225338 | Sands et al. | Oct 2005 | A1 |
20050270737 | Wilson et al. | Dec 2005 | A1 |
20060010353 | Haugh | Jan 2006 | A1 |
20060023331 | Flechsig et al. | Feb 2006 | A1 |
20060028802 | Shaw et al. | Feb 2006 | A1 |
20060066974 | Akamatsu et al. | Mar 2006 | A1 |
20060130316 | Takase et al. | Jun 2006 | A1 |
20060190205 | Klein et al. | Aug 2006 | A1 |
20060227517 | Zayas et al. | Oct 2006 | A1 |
20060250766 | Blaalid et al. | Nov 2006 | A1 |
20060269384 | Kiaie et al. | Nov 2006 | A1 |
20070034368 | Atkins et al. | Feb 2007 | A1 |
20070035874 | Wendel et al. | Feb 2007 | A1 |
20070035875 | Hall et al. | Feb 2007 | A1 |
20070053154 | Fukuda et al. | Mar 2007 | A1 |
20070082907 | Canada et al. | Apr 2007 | A1 |
20070127202 | Scicluna et al. | Jun 2007 | A1 |
20070127206 | Wade et al. | Jun 2007 | A1 |
20070195497 | Atkins | Aug 2007 | A1 |
20070248142 | Roundtree et al. | Oct 2007 | A1 |
20070253157 | Atkins et al. | Nov 2007 | A1 |
20070286045 | Onagi et al. | Dec 2007 | A1 |
20080007865 | Orriss et al. | Jan 2008 | A1 |
20080030945 | Mojaver et al. | Feb 2008 | A1 |
20080112075 | Farquhar et al. | May 2008 | A1 |
20080239564 | Farquhar et al. | Oct 2008 | A1 |
20080282275 | Zaczek et al. | Nov 2008 | A1 |
20080282278 | Barkley | Nov 2008 | A1 |
20090028669 | Rebstock | Jan 2009 | A1 |
20090082907 | Stuvel et al. | Mar 2009 | A1 |
20090122443 | Farquhar et al. | May 2009 | A1 |
20090142169 | Garcia et al. | Jun 2009 | A1 |
20090153992 | Garcia et al. | Jun 2009 | A1 |
20090153993 | Garcia et al. | Jun 2009 | A1 |
20090153994 | Merrow | Jun 2009 | A1 |
20090175705 | Nakao et al. | Jul 2009 | A1 |
20090261047 | Merrow | Oct 2009 | A1 |
20090261228 | Merrow | Oct 2009 | A1 |
20090261229 | Merrow | Oct 2009 | A1 |
20090262444 | Polyakov et al. | Oct 2009 | A1 |
20090262445 | Noble et al. | Oct 2009 | A1 |
20090262454 | Merrow | Oct 2009 | A1 |
20090262455 | Merrow | Oct 2009 | A1 |
20090265032 | Toscano et al. | Oct 2009 | A1 |
20090265043 | Merrow | Oct 2009 | A1 |
20090265136 | Garcia et al. | Oct 2009 | A1 |
20090297328 | Slocum, III | Dec 2009 | A1 |
20100195236 | Merrow et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
583716 | May 1989 | AU |
1177187 | Mar 1998 | CN |
2341188 | Sep 1999 | CN |
1114109 | Jul 2003 | CN |
1192544 | Mar 2005 | CN |
3786944 | Nov 1993 | DE |
69111634 | May 1996 | DE |
69400145 | Oct 1996 | DE |
19701548 | Aug 1997 | DE |
19804813 | Sep 1998 | DE |
69614460 | Jun 2002 | DE |
69626584 | Dec 2003 | DE |
19861388 | Aug 2007 | DE |
0210497 | Jul 1986 | EP |
0242970 | Oct 1987 | EP |
0 277 634 | Aug 1988 | EP |
0356977 | Aug 1989 | EP |
0442642 | Feb 1991 | EP |
0466073 | Jul 1991 | EP |
0776009 | Nov 1991 | EP |
0582017 | Feb 1994 | EP |
0617570 | Sep 1994 | EP |
0635836 | Jan 1995 | EP |
741508 | Nov 1996 | EP |
0757320 | Feb 1997 | EP |
0757351 | Feb 1997 | EP |
0840476 | May 1998 | EP |
1 045 301 | Oct 2000 | EP |
1209557 | May 2002 | EP |
1422713 | May 2004 | EP |
1234308 | May 2006 | EP |
1760722 | Mar 2007 | EP |
1612798 | Nov 2007 | EP |
2241118 | Aug 1991 | GB |
2276275 | Sep 1994 | GB |
2299436 | Oct 1996 | GB |
2312984 | Nov 1997 | GB |
2328782 | Mar 1999 | GB |
2439844 | Jul 2008 | GB |
61-115279 | Jun 1986 | JP |
62-177621 | Aug 1987 | JP |
62-239394 | Oct 1987 | JP |
62-251915 | Nov 1987 | JP |
63-002160 | Jan 1988 | JP |
63-004483 | Jan 1988 | JP |
63-016482 | Jan 1988 | JP |
63-062057 | Mar 1988 | JP |
63-201946 | Aug 1988 | JP |
63-214972 | Sep 1988 | JP |
63-269376 | Nov 1988 | JP |
63-195697 | Dec 1988 | JP |
64-089034 | Apr 1989 | JP |
2-091565 | Mar 1990 | JP |
2-098197 | Apr 1990 | JP |
2-185784 | Jul 1990 | JP |
2-199690 | Aug 1990 | JP |
2-278375 | Nov 1990 | JP |
2-297770 | Dec 1990 | JP |
3-008086 | Jan 1991 | JP |
3-078160 | Apr 1991 | JP |
3-105704 | May 1991 | JP |
3-207947 | Sep 1991 | JP |
3-210662 | Sep 1991 | JP |
3-212859 | Sep 1991 | JP |
3-214490 | Sep 1991 | JP |
3-240821 | Oct 1991 | JP |
3-295071 | Dec 1991 | JP |
4-017134 | Jan 1992 | JP |
4-143989 | May 1992 | JP |
4-172658 | Jun 1992 | JP |
4-214288 | Aug 1992 | JP |
4-247385 | Sep 1992 | JP |
4-259956 | Sep 1992 | JP |
4-307440 | Oct 1992 | JP |
4-325923 | Nov 1992 | JP |
5-035053 | Feb 1993 | JP |
5-035415 | Feb 1993 | JP |
5-066896 | Mar 1993 | JP |
5-068257 | Mar 1993 | JP |
5-073566 | Mar 1993 | JP |
5-073803 | Mar 1993 | JP |
5-101603 | Apr 1993 | JP |
5-173718 | Jul 1993 | JP |
5-189163 | Jul 1993 | JP |
5-204725 | Aug 1993 | JP |
5-223551 | Aug 1993 | JP |
6-004220 | Jan 1994 | JP |
6-004981 | Jan 1994 | JP |
6-162645 | Jun 1994 | JP |
6-181561 | Jun 1994 | JP |
6-215515 | Aug 1994 | JP |
6-274943 | Sep 1994 | JP |
6-314173 | Nov 1994 | JP |
7-007321 | Jan 1995 | JP |
7-029364 | Jan 1995 | JP |
7-037376 | Feb 1995 | JP |
7-056654 | Mar 1995 | JP |
7-111078 | Apr 1995 | JP |
7-115497 | May 1995 | JP |
7-201082 | Aug 1995 | JP |
7-226023 | Aug 1995 | JP |
7-230669 | Aug 1995 | JP |
7-257525 | Oct 1995 | JP |
1982246 | Oct 1995 | JP |
7-307059 | Nov 1995 | JP |
8007994 | Jan 1996 | JP |
8-030398 | Feb 1996 | JP |
8-030407 | Feb 1996 | JP |
8-079672 | Mar 1996 | JP |
8-106776 | Apr 1996 | JP |
8-110821 | Apr 1996 | JP |
8-167231 | Jun 1996 | JP |
8-212015 | Aug 1996 | JP |
8-244313 | Sep 1996 | JP |
8-263525 | Oct 1996 | JP |
8-263909 | Oct 1996 | JP |
8-297957 | Nov 1996 | JP |
2553315 | Nov 1996 | JP |
9-044445 | Feb 1997 | JP |
9-064571 | Mar 1997 | JP |
9-082081 | Mar 1997 | JP |
2635127 | Jul 1997 | JP |
9-306094 | Nov 1997 | JP |
9-319466 | Dec 1997 | JP |
10-040021 | Feb 1998 | JP |
10-049365 | Feb 1998 | JP |
10-064173 | Mar 1998 | JP |
10-098521 | Apr 1998 | JP |
2771297 | Jul 1998 | JP |
10-275137 | Oct 1998 | JP |
10-281799 | Oct 1998 | JP |
10-320128 | Dec 1998 | JP |
10-340139 | Dec 1998 | JP |
2862679 | Mar 1999 | JP |
11-134852 | May 1999 | JP |
11-139839 | May 1999 | JP |
2906930 | Jun 1999 | JP |
11-203201 | Jul 1999 | JP |
11-213182 | Aug 1999 | JP |
11-327800 | Nov 1999 | JP |
11-353128 | Dec 1999 | JP |
11-353129 | Dec 1999 | JP |
2000-056935 | Feb 2000 | JP |
2000-066845 | Mar 2000 | JP |
2000-112831 | Apr 2000 | JP |
2000-113563 | Apr 2000 | JP |
2000-114759 | Apr 2000 | JP |
2000-125290 | Apr 2000 | JP |
3052183 | Apr 2000 | JP |
2000-132704 | May 2000 | JP |
2000-149431 | May 2000 | JP |
2000-228686 | Aug 2000 | JP |
2000-235762 | Aug 2000 | JP |
2000-236188 | Aug 2000 | JP |
2000-242598 | Sep 2000 | JP |
2000-278647 | Oct 2000 | JP |
3097994 | Oct 2000 | JP |
2000-305860 | Nov 2000 | JP |
2001-005501 | Jan 2001 | JP |
2001-023270 | Jan 2001 | JP |
2001-100925 | Apr 2001 | JP |
2002-42446 | Feb 2002 | JP |
2007-87498 | Apr 2007 | JP |
2007-188615 | Jul 2007 | JP |
2007-220184 | Aug 2007 | JP |
2007-293936 | Nov 2007 | JP |
2007-305206 | Nov 2007 | JP |
2007-305290 | Nov 2007 | JP |
2007-328761 | Dec 2007 | JP |
2008-503824 | Feb 2008 | JP |
10-1998-0035445 | Aug 1998 | KR |
10-0176527 | Nov 1998 | KR |
10-0214308 | Aug 1999 | KR |
10-0403039 | Oct 2003 | KR |
45223 | Jan 1998 | SG |
387574 | Apr 2000 | TW |
WO 8901682 | Aug 1988 | WO |
WO 9706532 | Feb 1997 | WO |
WO 0049487 | Feb 2000 | WO |
WO 0067253 | Nov 2000 | WO |
WO 0109627 | Feb 2001 | WO |
WO 0141148 | Jun 2001 | WO |
WO 03013783 | Feb 2003 | WO |
WO 03021597 | Mar 2003 | WO |
WO 03021598 | Mar 2003 | WO |
WO 03067385 | Aug 2003 | WO |
WO 2004006260 | Jan 2004 | WO |
WO 2004114286 | Dec 2004 | WO |
WO 2005024830 | Mar 2005 | WO |
WO 2005024831 | Mar 2005 | WO |
WO 2005109131 | Nov 2005 | WO |
WO 2006030185 | Mar 2006 | WO |
WO 2006048611 | May 2006 | WO |
WO 2006100441 | Sep 2006 | WO |
WO 2006100445 | Sep 2006 | WO |
WO 2007031729 | Mar 2007 | WO |
Entry |
---|
International Search Report and Written Opinion of International Application No. PCT/US2011/046919, dated Feb. 24, 2012. |
International Preliminary Report on Patentability issued Mar. 14, 2013 in International application No. PCT/US2011/046919, 5 pgs. |
Abraham et al., “Thermal Proximity Imaging of Hard-Disk Substrates”, IEEE Transactions on Mathematics 36:3997-4004, Nov. 2000. |
Abramovitch, “Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers”, Proceedings of the 1996 IFAC World Congress in San Francisco, CA, Jul. 1996 http://dabramovitch.com/pubs/amrfac—matj.pdf. |
Ali et al., “Modeling and Simulation of Hard Disk Drive Final Assembly Using a HDD Template” Proceedings of the 2007 Winter Simulation Conference, IEEE pp. 1641-1650, 2007 http://portal.acm.org/citation.cfm?id=1351837. |
Anderson et al., “Clinical chemistry: concepts and applications”, The McGraw-Hill Companies, Inc., pp. 131-132, 2003. |
Anderson et al., “High Reliability Variable Load Time Controllable Vibration Free Thermal Processing Environment”, Delphion, hhtps://www.delphion.com/tdbs/tdb?order=93A+63418, 3 pages, Mar. 18, 2009. |
Asbrand, “Engineers at One Company Share the Pride and the Profits of Successful Product Design”, Professional Issues, 4 pages, 1987. |
Bair et al., “Measurements of Asperity Temperatures of a Read/Write Head Slider Bearing in Hard Magnetic Recording Disks”, Journal of Tribology 113:547-554, Jul. 1991. |
Bakken et al., “Low Cost, Rack Mounted, Direct Access Disk Storage Device”, www.ip.com, 4 pages, Mar. 3, 2005. |
Biber et al., “Disk Drive Drawer Thermal Management”, Advances in Electronic Packaging vol. 1:43-46, 1995. |
Christensen, “How Can Great firms Fail? Insights from the hard Disk Drive Industry”, Harvard Business School Press, pp. 1-26, 2006. |
Chung et al., “Vibration Absorber for Reduction of the In-plane Vibration in an Optical Disk Drive”, IEEE Transactions on Consumer Electronics, Vo. 48, May 2004. |
Curtis et al., “InPhase Professional Archive Drive Architecture” Dec. 17, 2007 http://www.science.edu/TechoftheYear/Nominees/InPhase/Holographic%20Storage.pdf. |
Findeis et al., “Vibration Isolation Techniques Sutiable for Portable Electronic Speckle Pattern Interferometry”, Proc. SPIE vol. 4704, pp. 159-167, 2002 http://www.ndt.uct.ac.za/Papers/spiendt2002.pdf. |
FlexStar Technology, 30E/Cascade Users Manual, Doc #98-36387-00 Rev. 1.8, pp. 1-33, Jun. 1, 2004. |
FlexStar Technology, “A World of Storage Testing Solutions,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, “Environment Chamber Products,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, “FlexStar's Family of Products,” http://www.flexstar.com, 1 page (1999). |
Frankovich, “The Basics of Vibration Isolation Using Elastomeric Materials”, EARSC, 2005 http://www.isoloss.com/pdfs/engineering/BasicsofVibrationIsolation.pdf. |
Grochowski et al., “Future Trends in Hard Disk Drives” IEEE Transactions on Magnetics, vol. 32, No. 3, pp. 1850-1854, May 1996 http://svn.tribler.org/abc/branches/leo/dataset/preferences/johan/johan-68.pdf. |
Gurumurthi et al., “Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management”, International Symposium on Computer Architecture, Proceedings of the 32nd Annual International Symposium on Computer Architecture, IEEE Computer Society, pp. 38-49, 2005 http://portal.acm.org/citation.cfm?id=1069807.1069975. |
Gurumurthi, “The Need for temperature-Aware Storage Systems”, The Tenth Intersociety conference on Thermal and Thermomechanical Phenomena in Electronics, ITHERM pp. 387-394, 2006. |
Gurumurthi et al., “Thermal Issues in Disk Drive Design: Challenges and Possible Solutions”, ACM Transactions on Storage 2:41-73, Feb. 2006. |
Haddad et al., “A new Mounting Adapter For Computer Peripherals with Improved Reliability, Thermal Distribution, Low Noise and Vibration Reduction”, ISPS, Advances in Information Storage and Processing Systems, 1:97-108, 1995. |
Henderson, “HAD High Aerial Densities Require Solid Test Fixtures”, Flexstar Technology, Feb. 26, 2007. |
HighBeam Research website “ACT debuts six-zone catalytic gas heater. (American Catalytic Technologies offers new heaters)” www.highbeam.com, 4 pages, 1998. |
HighBeam Research website “Asynchronous Testing Increases Throughput.” www.highbeam.com, 7 pages, 2000. |
HighBeam Research website “Credence announces Production Release of the EPRO AQ Series for Integrated Test and Back-end Processing.” www.highbeam.com, 4 pages, 1995. |
HighBeam Research website “Test Multiple Parts At Once for Air Leaks. (Brief Article)”, www.highbeam.com, 1 page, 1999. |
Iwamiya, “Hard Drive Cooling Using a Thermoelectric Cooler”, EEP-vol. 19-2, Advances in Electronic Packaging, vol. 2:2203-2208, ASME 1997. |
Johnson et al., “Performance Measurements of Tertiary Storage Devices”, Proceedings of the 24th VLDB Conference, New York, pp. 50-61, 1998. |
Ku, “Investigation of Hydrodynamic Bearing Friction in Data Storage information System Spindle Motors”, ISPSVol. 1, Advances in Information Storage and Processing Systems, pp. 159-165, ASME 1995. |
Lindner, “Disk drive mounting”, IBM Technical Disclosure Brochure, vol. 16, No. 3, pp. 903-904, Aug. 1973. |
McAuley, “Recursive Time Trapping for Synchronization of Product and CHAMBER Profiles for Stress Test”, Delphion, www.delphion.com/tdbs/tdb?order=88A+60957, 3 pages, Mar. 18, 2009. |
Morgenstern, Micropolis Drives Target High-end Apps; Technology Provides Higher Uninterrupted Data Transfer. (Applications; Microdisk AV LS 3020 and 1050AV and 1760AV LT Stackable Hard Drive Systems) (Product Announcement) MacWeek, vol. 8, No. 6, p. 8; Feb. 7, 1994. |
Morris, “Zero Cost Power and Cooling Monitor System”, www.delphion.com/tdbs/tdb?order=94A+61950, 3 pages, Jan. 15, 2008. |
Nagarajan, “Survey of Cleaning and cleanliness Measurement in Disk Drive Manufacture”, North Carolina Department of Environment and Natural Resources, Feb. 1997. |
Notification of Transmittal of The International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2008/086181, 15 pages, Mar. 16, 2009. |
Park, “Vibration and Noise Reduction of an Optical Disk Drive by Using a Vibration Absorber Methods and Apparatus for Securing Disk Drives in a Disk”, IEEE Transactions on Consumer Electronics, vol. 48, Nov. 2002. |
Prater et al., “Thermal and Heat-Flow Aspects of Actuators for Hard Disk Drives”, InterSociety Conference on Thermal Phenomena, pp. 261-268, 1994. |
Ruwart et al., “Performance Impact of External Vibration on Consumer-grade and enterprise-class Disk Drives”, Proceedings of the 22nd IEEE/13th Goddard Conference on Mass Storage Systems and Technologies, 2005. |
Seagate Product Marketing, “Seagate's Advanced Multidrive System (SAMS) Rotational Vibration Feature”, Publication TP-229D, Feb. 2000. |
Schroeder et al., “Disk Failures in the Real World: What does an MTTP of 1,000,000 hours mean to you?”, In FAST'07: 5th USENIX Conference on File and Storage Technologies, San Jose, CA, Feb. 14-16, 2007. |
Schulze et al., “How Reliable is a Raid?,” COMPCON Spring apos; 89. Thirty-Fouth IEEE Computer Society International Conference: Intellectual Leverage, Digest of papers; pp. 118-123, Feb. 27-Mar. 3, 1989. |
Terwiesch et al., “An Exploratory Study of International Product Transfer and Production Ramp-Up in the Data Storage Industry”, The Information Storage Industry Center, University of California, www-irps.ucsd.edu/˜sloan/, pp. 1-31, 1999. |
Tzeng, “Dynamic Torque Characteriestics of Disk-Drive Spindle Bearings”, ISPS-vol. 1, Advances in Information Storage and Processing Systems, pp. 57-63, ASME 1995. |
Tzeng, “Measurements of Transient Thermal Strains in a Disk-Drive Actuator”, InterSociety conference on Thermal Phenomena, pp. 269-274, 1994. |
Wilson-7000 disk Drive Analyzer Product Literature, date accessed Jan. 28, 2009, 2 pages. |
Winchester, “Automation Specialists Use Machine Vision as a System Development Tool”, IEE Computing & Control Engineering, Jun./Jul. 2003. |
Xyratex website “Storage Infrastructure” www.xyratex.com/Products/storage-infrastructure/default.aspx 1995-2008. |
Xyratex website “Production Test Systems” www.xyratex.com/Products/production-test-systems/default.aspx 1995-2008. |
Xyratex website “Single cell—Production Test Systems” www.xyratex.com/products/production-test-system/single-cell.aspx 1995-2008. |
Xyratex website “Continuous Innovation—Production Test Systems” www.xyratex.com/products/production-test-systems/continuous-innovation.aspx 1995-2008. |
Xyratex website “Key Advantages—Production Test Systems” www.xyratex.com/products/production-test-systems/advantages.aspx 1995-2008. |
Xyratex website “Testing Drives Colder—Production Test Systems” www.xyratex.com/products/productino-test-systems/colder.aspx 1995-2008. |
“Xyratex to Debut its New Automated Test Solution for 2.5-Inch Disk Drives at DISKCON USA 2004” 2004 PR Newswire Europe www.prnewswire.co.uk/cgi/news/release?id=130103. |
“Automated Production Test Solutions”, Xyratex Product Test brochure, 2006. |
Xyratex “Process Challenges in the Hard Drive Industry” slide presentation, 2006 Asian Diskcon. |
Suwa et al., “Evaluation System for Residual Vibration from HDD Mounting Mechanism” IEEE Transactions on Magnetics, vol. 35, No. 2, pp. 868-873, Mar. 1999. |
Suwa et al., “Rotational Vibration Suppressor” IBM Technical Disclosure Bulletin Oct. 1991. |
Yee Leong Low et al., “Thermal network model for temperature prediction in hard disk drive” Journal Microsystem Technologies, vol. 15, No. 10-11, pp. 1653-1656, Oct. 2009 http://www.springerlink.com/content/20668jn67pk426r5/. |
Annex to Form PCT/ASA/206 Communication Relating to the Results of the Partial International Search, for International Application No. PCT/US2008/086814, dated Apr. 3, 2009, 5 pages. |
Annex to Form PCT/ASA/206 Communication Relating to the Results of the Partial International Search, for International Application No. PCT/US2008/086809, dated Apr. 3, 2009, 1 page. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039926, Sep. 1, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039591, Aug. 31, 2009, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2008/086814, Sep. 18, 2009, 17 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039888, Sep. 28, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039921, Sep. 25, 2009, 14 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040058, Sep. 29, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040829, Oct. 28, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039590, Oct. 30, 2009, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040835, Oct. 30, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040757, Nov. 24, 2009, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039898, Nov. 24, 2009, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040795, Nov. 26, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/045583, Nov. 27, 2009, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040888, Dec. 29, 2009, 14 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040894, Dec. 22, 2009, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/039934, Dec. 23, 2009, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040965, Dec. 23, 2009, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2009/040973, Jan. 11, 2010, 13 pages. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Transferring Disk Drives Within Disk Drive Testing Systems”, inventors: Polyakov et al, and having assigned U.S. Appl. No. 12/727,150. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/104,536. Revised as of May 27, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Transferring Storage Devices Within Storage Device Testing Systems”, inventors: John P. Toscano et al., and having assigned U.S. Appl. No. 12/727,201. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/424,980. Revised as of Jan. 4, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Processing Storage Devices”, inventors: Richard W. Slocum III., and having assigned U.S. Appl. No. 12/727,619. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/474,388. Revised as of Jan. 5, 2009. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Bulk Feeding Disk Drives To Disk Drive Testing Systems”, inventors: Noble et al., and having assigned U.S. Appl. No. 12/726,856. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/104,869. Revised as of Jan. 15, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Dependent Temperature Control Within Disk Drive Testing Systems”, inventors: Merrow et al., and having assigned U.S. Appl. No. 12/727,207. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/105,069. Revised as of Jan. 13, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Test Slot Cooling System for a Storage Device Testing System”, inventors: Merrow et al., and having assigned U.S. Appl. No. 12/727,700. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/503,567. Revised as of Jan. 13, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Storage Device Testing System Cooling”, inventors: Brian S. Merrow and having assigned U.S. Appl. No. 12/775,560. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/698,575. Revised as of Feb. 17, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Conductive Heating”, inventors: Brian S. Merrow et al., and having assigned U.S. Appl. No. 12/760,164. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/503,593. Revised as of Jan. 6, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Storage Device Temperature Sensing”, inventors: Brian S. Merrow et al., and having assigned U.S. Appl. No. 12/760,305. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/503,687. Revised as of Jan. 7, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Solid State Temperature Control of Hard Drive Tester”, inventors: Brian S. Merrow and having assigned U.S. Appl. No. 12/856,056. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/105,103. Revised as of Jan. 14, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Vibration Isolation Within Disk Drive Testing Systems”, inventors: Brian S. Merrow and having assigned U.S. Appl. No. 12/767,142. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/105,105. Revised as of Jan. 12, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Disk Drive Clamping Transport and Testing”, inventors: Brian S. Merrow et al., and having assigned U.S. Appl. No. 12/766,680. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 11/959,133. Revised as of Jan. 14, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Chilled Water Temp Control of Disk Drive Tester”, inventors: Brian S. Merrow and having assigned U.S. Appl. No. 12/766,680. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/105,061. Revised as of Feb. 18, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Vibration Isolation Within Disk Drive Testing Systems,” inventors: Brian S. Merrow and having assigned U.S. Appl. No. 12/767,142. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 12/105,105. Revised as of Mar. 30, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Disk Drive Clamping Transport and Testing,” inventors: Brian S. Merrow et al., and having assigned U.S. Appl. No. 12/767,113. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 11/959,133. Revised as of Apr. 4, 2010. |
Cardinal Intellectual Property's search report including the results of a search for the features of the claims included in the U.S. patent application entitled “Disk Drive Clamping Transport and Testing,”, inventors: Brian S. Merrow et al., and having assigned U.S. Appl. No. 12/766,680. The foregoing U.S. patent application is a continuation of U.S. Appl. No. 11/959,133. Revised as of Apr. 1, 2010. |
Exhibit 1 in Xyratex Technology, Ltd. v. Teradyne, Inc.; Newspaper picture that displays the CSO tester; 1990. |
Exhibit 2 in Xyratex Technology, Ltd. v. Teradyne, Inc.; Photos of the CSO tester obtained from Hitachi; 1990. |
Exhibit 1326 in Xyratex Technology, Ltd. v. Teradyne, Inc.; Image of the back of Exhibit 1 and Exhibit 2 photos, which display the photos' dates; 1990. |
Exhibit 1314 in Xyratex Technology, Ltd. V. Teradyne, Inc.; Case, “Last products of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 12, 1990. |
Exhibit 1315 in Xyratex Technology, Ltd. V. Teradyne, Inc.; Case, “History of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 17, 1990. |
Xyratex Technology, Ltd. V. Teradyne, Inc., Teradyne, Inc's Prior Art Notice Pursuant to 35 U.S.C. Section 282. Case No. CV 08-04545 SJO (PLAx), Oct. 16, 2009. |
Xyratex Technology, Ltd. V. Teradyne, Inc., Amended Joint Trial Exhibit List of Xyratex and Teradyne. Case No. CV 08-04545 SJO (PLAx), Nov. 12, 2009. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/GB2005/003490, Jan. 26, 2006, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20120050903 A1 | Mar 2012 | US |